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1. Introduction. We consider the periodic discrete-time algebraic Riccati equa-
tion (P-DARE) with period p ≥ 2:

Xj−1 = AH
j XjAj −AH

j XjBj(Rj + BH
j XjBj)

−1BH
j XjAj + Hj

= AH
j Xj(I + GjXj)

−1Aj + Hj ,
(1.1)

where, for all j, Aj = Aj+p, Hj = Hj+p and Xj = Xj+p are n×n matrices, Bj = Bj+p

are n×m matrices, and Rj = Rj+p are m×m matrices; Bj is of full column rank, Rj

is Hermitian positive definite (Rj > 0), Gj = BjR
−1
j BH

j = Gj+p, and Hj is Hermi-

tian positive semidefinite (p.s.d.) with Hj = CH
j Cj . Equation (1.1) arises frequently

in solving periodic discrete-time linear optimal control problems [1], [2]. Appropri-
ate assumptions on the coefficient matrices guarantee the existence and uniqueness
of the Hermitian p.s.d. stabilizing solution set {Xj}pj=1 to the P-DARE (1.1) (see
Theorem 2.5 of section 2). Note that for the case p = 1 we have a single Riccati
equation for which backward perturbation bounds and residual bounds are known
[15], [16].

A forward perturbation analysis of the P-DARE (1.1) is presented by Lin and
Sun [12], where perturbation bounds and condition numbers of the Hermitian p.s.d.
stabilizing solution set to the P-DARE are obtained [12, sections 3 and 4]. In this
paper, we present a backward perturbation analysis of the P-DARE (1.1).

Backward perturbation analysis is motivated by the following fact. Let an ap-
proximate Hermitian p.s.d. solution set {X̃j}pj=1 to the P-DARE (1.1) be given. For
example, the approximate solution set may come from a numerical algorithm for ap-
proximating the exact Hermitian p.s.d. stabilizing solution set {Xj}pj=1. Then there
are two questions associated with the approximate solution set: (1) Is the approxi-
mate solution set the exact solution set of a slightly perturbed P-DARE? (2) Is the
approximate solution set close to the exact solution set {Xj}pj=1? The result of a
backward perturbation analysis may be a backward error, or a residual bound. The
purpose of backward perturbation analysis of the P-DARE (1.1) is to test the stability
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of a computation or an algorithm and to ascertain the accuracy of an approximate
solution set.

In matrix computations, developing backward errors and residual bounds is a
part of the subject of perturbation theory (see [7], [13], and [17]). In recent years, the
study of backward errors and residual bounds of matrix equations has been developed
considerably. Taking full account of the special structure of the Sylvester equation,
Higham [6] evaluates the backward error of an approximate solution to the matrix
equation and determines the sensitivity of the equation to perturbations in the data.
After that, K̊agström [9] evaluates the normwise backward error of an approximate
solution to the generalized Sylvester equation, and determines the sensitivity of the
equation; Ghavimi and Laub [4] present a new backward error criterion, together with
a sensitivity measure, for assessing solution accuracy of nonsymmetric and symmetric
continuous-time algebraic Riccati equations. Normwise backward errors and residual
bounds for continuous-time and discrete-time algebraic Riccati equations are obtained
by the author [14], [15], [16]. This work, as a generalization of the results given by [15]
and [16], derives normwise backward errors and residual bounds for an approximate
Hermitian p.s.d. solution set to the P-DARE (1.1).

We begin in section 2 with pd-stable matrices and the Hermitian p.s.d. stabilizing
solution set to the P-DARE (1.1). In sections 3 and 4 we derive normwise backward
errors and residual bounds for an approximate Hermitian p.s.d. solution set to the P-
DARE (1.1), respectively. The results will be illustrated by simple numerical examples
in section 5.

2. Preliminaries.

2.1. Notation. Throughout this paper, Cn and Hn denote the set of n × n
complex and n × n Hermitian matrices, respectively, and Cp

n and Hp
n denote the p-

tuple product spaces Cn × · · · × Cn and Hn × · · · × Hn, respectively. A denotes the

conjugate of a matrix A, AT denotes the transpose of A, and AH = A
T
. I stands

for the identity matrix, In is the identity matrix of order n, and 0 is the null matrix.
The set of all eigenvalues of A is denoted by λ(A). The spectral radius ρ(A) is
defined by ρ(A) = max{|λj | : λj ∈ λ(A)}. An n × n matrix Φ is said to be d-
stable if ρ(Φ) < 1. The symbol ‖ ‖F is the Frobenius norm, and ‖ ‖2 is the spectral
norm and the Euclidean vector norm. For A = (a1, . . . , an) = (αij) ∈ Cn and a
matrix B, A ⊗ B = (αijB) is a Kronecker product, and vecA is a vector defined by
vecA = (aT1 , . . . , a

T
n )T . For A ∈ Cn we have [5, pp. 32–34]

vecAT = ΠvecA,

where Π is the vec-permutation matrix which can be expressed by

Π =
n∑

k,l=1

eke
T
l ⊗ ele

T
k ,

in which ek denotes the kth column of In. In order to save the space of the matrix
representation, we use the following notation [12]:

diag{Nj}pj=1 =

⎛⎜⎝ N1 · · · 0
...

. . .
...

0 · · · Np

⎞⎟⎠ , cyc{Nj}pj=1 =

⎛⎜⎜⎜⎜⎝
0 · · · 0 N1

N2
. . . 0

...
. . .

. . .
...

0 · · · Np 0

⎞⎟⎟⎟⎟⎠ .



PERTURBATION ANALYSIS FOR PERIODIC RICCATI EQUATIONS 3

2.2. On pd-stable matrices. We first cite some definitions from [12].
Let Φ1, . . . ,Φp ∈ Cn. If there are complex numbers α1, . . . , αp such that

det
[
diag{αjI}pj=1 − cyc{Φj}pj=1

]
= 0,

then α1 · · ·αp is an eigenvalue of the matrix set {Φj}pj=1.

The set of all eigenvalues of {Φj}pj=1 is denoted by λ
(
{Φj}pj=1

)
. We have [12]

λ
(
{Φj}pj=1

)
= λ(ΦpΦp−1 · · ·Φ1).

Consequently, if we define the spectral radius ρ
(
{Φj}pj=1

)
by

ρ
(
{Φj}pj=1

)
= max

{
|λj | : λj ∈ λ

(
{Φj}pj=1

)}
,

then

ρ
(
{Φj}pj=1

)
= ρ(ΦpΦp−1 · · ·Φ1).

Let Φ1, . . . ,Φp ∈ Cn. The matrix p-tuple {Φj}pj=1 is said to be pd-stable if the
matrix ΦpΦp−1 · · ·Φ1 is d-stable.

Let Φ1, . . . ,Φp ∈ Cn. Define the linear operator L : Hp
n → Hp

n by

L(W1, . . . ,Wp) =
(
W1 − ΦH

2 W2Φ2, . . . ,Wp−1 − ΦH
p WpΦp,Wp − ΦH

1 W1Φ1

)
,

(W1, . . . ,Wp) ∈ Hp
n.

(2.1)

It is known [12] that the matrix L defined by

L = Ipn2 −

⎛⎜⎜⎜⎜⎝
0 ΦT

2 ⊗ ΦH
2 · · · 0

...
. . .

. . .
...

...
. . . ΦT

p ⊗ ΦH
p

ΦT
1 ⊗ ΦH

1 · · · · · · 0

⎞⎟⎟⎟⎟⎠(2.2)

is a matrix representation of L on the space

Hpn2 ≡
{(

wT
1 , . . . , w

T
p

)T
: wj = vecWj , Wj ∈ Hn ∀j

}
.

Lemma 2.1 (see [12, Lemma 2.1]). The linear operator L defined by (2.1) is
singular provided that there is an eigenvalue λk ∈ λ

(
{Φj}pj=1

)
with |λk| = 1.

Lemma 2.2 (see [12, Lemma 2.2]). Let Φ = cyc{Φj}pj=1, where Φj ∈ Cn ∀j. If
{Φj}pj=1 is pd-stable, then Φ is d-stable.

Assume that {Φj}pj=1 is pd-stable. By Lemma 2.2 the matrix L defined by (2.2)

is nonsingular, and thus L−1 exists. In such a case, we define the quantity l by

l = ‖L−1‖−1,

where the operator norm ‖ ‖ for L−1 is induced by the Frobenius norm ‖ ‖F on Hp
n.

Note that Hp
n is not a subspace of Cp

n, but by [12, Appendix (I)] we have

l = ‖L−1‖−1
2 ,(2.3)
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i.e., the induced operator norms of L−1 on Cp
n and Hp

n are equal.
Let the matrix set {Φj}pj=1 be pd-stable. Define

spd = min

{
max

1≤j≤p
‖Ej‖2 : ρ

({
(I − Ej)

−1Φj

}p
j=1

)
= 1, Ej ∈ Cn ∀j

}
.(2.4)

The quantity spd measures the smallest max1≤j≤p ‖Ej‖2 such that
{
(I − Ej)

−1Φj

}p
j=1

has an eigenvalue on the unit circle. Note that the computation of spd may be a rather
difficult computational problem in the general case.

Lemma 2.3. Let {Φj}pj=1 be pd-stable, and let L be the linear operator defined
by (2.1) with L of (2.2) as its matrix representation. Let l and spd be the quantities
defined by (2.3) and (2.4), respectively, and let

φj = ‖Φj‖2, φ = max
1≤j≤p

φj .(2.5)

Then

l

φ2 + φ
√

φ2 + l + l
≤ spd.(2.6)

Proof. Let the matrices E∗
j ∈ Cn (j = 1, . . . , p) satisfy

spd = max
1≤j≤p

‖E∗
j ‖2 with ρ

({
(I − E∗

j )−1Φj

}p
j=1

)
= 1.

By Lemma 2.1 the transformation

⎛⎜⎜⎜⎝
W1

...
Wp−1

Wp

⎞⎟⎟⎟⎠ 	→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1 −
[
(I − E∗

2 )
−1

Φ2

]H
W2

[
(I − E∗

2 )
−1

Φ2

]
...

Wp−1 −
[(
I − E∗

p

)−1
Φp

]H
Wp

[(
I − E∗

p

)−1
Φp

]
Wp −

[
(I − E∗

1 )
−1

Φ1

]H
W1

[
(I − E∗

1 )
−1

Φ1

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is singular, where Wj ∈ Hn for all j; i.e., there are Hermitian matrices W ∗

1 , . . . ,W
∗
p

with Wk 
= 0 for some index k ∈ {1, . . . , p} such that

W ∗
1 −

[
(I − E∗

2 )
−1

Φ2

]H
W ∗

2

[
(I − E∗

2 )
−1

Φ2

]
= 0,

...

W ∗
p −

[
(I − E∗

1 )
−1

Φ1

]H
W ∗

1

[
(I − E∗

1 )
−1

Φ1

]
= 0.

(2.7)

Let Nj ∈ Cn be defined by

I + Nj =
(
I − E∗

j

)−1
, j = 1, . . . , p.(2.8)

Then (2.7) can be written as

L

⎛⎜⎝ W ∗
1
T

...

W ∗
p
T

⎞⎟⎠
T

=

⎛⎜⎜⎝
(
ΦH

2 W ∗
2 N2Φ2 + ΦH

2 NH
2 W ∗

2 Φ2 + ΦH
2 NH

2 W ∗
2 N2Φ2

)T
...(

ΦH
1 W ∗

1 N1Φ1 + ΦH
1 NH

1 W ∗
1 Φ1 + ΦH

1 NH
1 W ∗

1 N1Φ1

)T
⎞⎟⎟⎠

T

,

(2.9)
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or equivalently, by letting vecW ∗
j = w∗

j (j = 1, . . . , p), we have

L

⎛⎜⎝ w∗
1
...
w∗

p

⎞⎟⎠ =
(
cyc
{
ΩT

j

}p
j=1

)T ⎛⎜⎝ w∗
1
...
w∗

p

⎞⎟⎠ ,(2.10)

where

Ωj =
(
ΦT

j N
T
j

)
⊗ ΦH

j + ΦT
j ⊗

(
ΦH

j NH
j

)
+
(
ΦT

j N
T
j

)
⊗
(
ΦH

j NH
j

)
∀j.

Inverting L and taking 2-norm of the two sides of (2.10) we get

ν2 + 2ν − l

φ2
≥ 0,(2.11)

where

ν = max
1≤j≤p

νj with νj = ‖Nj‖2 ∀j,(2.12)

and by (2.11),

ν ≥

√
1 +

l

φ2
− 1 =

l

φ2 + φ
√

φ2 + l
.(2.13)

Observe that the relations of (2.8) imply

Nj = (I + Nj)E
∗
j

and

‖Nj‖2 ≤ (1 + ‖Nj‖2)‖E∗
j ‖2.

Hence, we have

‖E∗
j ‖2 ≥ ‖Nj‖2

1 + ‖Nj‖2
,

and

max
1≤j≤p

‖E∗
j ‖2 ≥

max
1≤j≤p

‖Nj‖2

1 + max
1≤j≤p

‖Nj‖2
=

ν

1 + ν
.

Combining it with (2.13) gives the inequality (2.6).
From Lemma 2.3 we get the following lemma.
Lemma 2.4. Let {Φj}pj=1 be pd-stable, and let L be the linear operator defined by

(2.1) with L in (2.2) as its matrix representation. Moreover, let l and φ be defined by
(2.3) and (2.5), respectively. If Ej ∈ Cn (j = 1, . . . , p) satisfy

max
1≤j≤p

‖Ej‖2 <
l

φ2 + φ
√

φ2 + l + l
,

then the matrix set {(Φj + Ej)}pj=1 is pd-stable.
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2.3. The Hermitian p.s.d. stabilizing solution set. By [2], the matrix pair
sets {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1 are said to be pd-stabilizable and pd-detectable,
respectively, if the pairs (Aj ,Bj) and (Aj , Cj) are d-stabilizable and d-detectable,
respectively, for j = 1, . . . , p, where

Aj = Aπj(p) · · ·Aπj(1),

Bj = (Aπj(p) · · ·Aπj(2)Bπj(1), Aπj(p) · · ·Aπj(3)Bπj(2), . . . , Aπj(p)Bπj(p−1), Bπj(p)),

Cj =
(
CT

πj(1)
, AT

πj(1)
CT

πj(2)
, AT

πj(1)
AT

πj(2)
CT

πj(3)
, . . . , AT

πj(1)
· · ·AT

πj(p−1)C
T
πj(p)

)T
,

(2.14)

and πj( ) is a permutation defined by

πj(k) =

⎧⎨⎩
k − j + 1 + p for k = 1, . . . , j − 1 and j ≥ 2,

k − j + 1 for k = j, . . . , p.
(2.15)

Note that the pair (A,B) is d-stabilizable if wHB = 0 and wHA = λwH for
some constant λ implies |λ| < 1 or w = 0, and that the pair (A,C) is d-detectable if
(AH , CH) is d-stabilizable.

Let Xj ∈ Hn (j = 1, . . . , p) and {Xj}pj=1 be a solution set to the P-DARE (1.1).

If the matrix set {(I + GjXj)
−1Aj}pj=1 is pd-stable, then {Xj}pj=1 is said to be a

stabilizing solution set to (1.1). If Xj ≥ 0 for all j, then {Xj}pj=1 is said to be a
Hermitian p.s.d. solution set.

The following result is a basic result on the existence and uniqueness of Hermitian
p.s.d. stabilizing solution sets to the P-DARE (1.1). (See [1], [2], [12].)

Theorem 2.5. For the P-DARE (1.1), if {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1 are
pd-stabilizable and pd-detectable, respectively, then there is a unique Hermitian p.s.d.
stabilizing solution set {Xj}pj=1 to the P-DARE (1.1).

The result will be illustrated by Example 5.1 of section 5.

Throughout this paper, the matrix pair sets {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1 of
(1.1) are assumed to be pd-stabilizable and pd-detectable, respectively.

3. Backward errors.

3.1. Definitions. Let {X̃j}pj=1 approximate the unique Hermitian p.s.d. stabi-

lizing solution set to the P-DARE (1.1), and assume that the matrices I +GjX̃j (j =
1, . . . , p) are nonsingular. Moreover, let ∆Aj ,∆Gj ,∆Hj be the corresponding per-
turbations in the coefficient matrices Aj , Gj , Hj (j = 1, . . . , p) of (1.1), respectively.

The normwise backward error η({X̃j}pj=1) of the approximate solution set {X̃j}pj=1

can be defined by

η({X̃j}pj=1) = max
1≤j≤p

min
{(∆Aj ,∆Gj ,∆Hj)}p

j=1∈E

∥∥∥∥(∆Aj

αj
,

∆Gj

βj
,

∆Hj

γj

)∥∥∥∥
F

,(3.1)
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where the set E is defined by

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(∆Aj ,∆Gj ,∆Hj)}pj=1 :

∆Aj ∈ Cn, ∆Gj ,∆Hj ∈ Hn,

X̃j−1

= (Aj + ∆Aj)
HX̃j

[
I + (Gj + ∆Gj)X̃j

]−1

(Aj + ∆Aj)

+Hj + ∆Hj ,

j = 1, . . . , p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.2)

and αj , βj , γj (j = 1, . . . , p) are positive parameters. Taking αj = βj = γj = 1 for

j = 1, . . . , p yields the normwise absolute backward error ηabs({X̃j}pj=1), and taking
αj = ‖Aj‖F , βj = ‖Gj‖F , γj = ‖Hj‖F (j = 1, . . . , p) yields the normwise relative

backward error ηrel({X̃j}pj=1).

From (3.1) and (3.2) we see that the backward error η({X̃j}pj=1) of an approximate

Hermitian solution set {X̃j}pj=1 to the P-DARE (1.1) is a measure of “smallest”

perturbations ∆Aj/αj ,∆Gj/βj ,∆Hj/γj (j = 1, . . . , p) such that {X̃j}pj=1 is just a
Hermitian solution set to the perturbed P-DARE

X̃j−1 = (Aj + ∆Aj)
HX̃j [I + (Gj + ∆Gj)X̃j ]

−1(Aj + ∆Aj) + Hj + ∆Hj ,

j = 1, . . . , p.
(3.3)

Moreover, from (3.1) and (3.2) we see that

η({X̃j}pj=1) = max
1≤j≤p

ηj ,(3.4)

where each ηj is defined by

ηj = min
(∆Aj ,∆Gj ,∆Hj)∈Ej

∥∥∥∥(∆Aj

αj
,

∆Gj

βj
,

∆Hj

γj

)∥∥∥∥
F

,(3.5)

in which the set Ej is defined by

Ej =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(∆Aj ,∆Gj ,∆Hj) :

∆Aj ∈ Cn, ∆Gj ,∆Hj ∈ Hn,

X̃j−1

=(Aj+∆Aj)
HX̃j

[
I+(Gj+∆Gj)X̃j

]−1

(Aj + ∆Aj)

+Hj+∆Hj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.6)

Consequently, the problem of estimating the backward error η({X̃j}pj=1) is re-
duced to the problem of estimating ηj for j = 1, . . . , p.
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3.2. Estimates of ηj (j = 1, . . . , p). For each j ∈ {1, . . . , p} define

L̃j = X̃j(I + GjX̃j)
−1 ∈ Hn, K̃j = L̃jAj ∈ Cn,(3.7)

and define the residual R̂j by

R̂j = X̃j−1 −AH
j X̃j(I + GjX̃j)

−1Aj −Hj ,(3.8)

where X̃0 = X̃p. Moreover, define

qj(∆Aj ,∆Gj)

= −K̃H
j ∆GjL̃j∆Gj(I + L̃j∆Gj)

−1K̃j + K̃H
j ∆Gj(I + L̃j∆Gj)

−1L̃j∆Aj

+∆AH
j L̃j∆Gj(I + L̃j∆Gj)

−1K̃j − ∆AH
j (I + L̃j∆Gj)

−1L̃j∆Aj .

(3.9)

Then by [15, section 2], the jth equation of (3.3) is equivalent to

K̃H
j ∆Aj + ∆AH

j K̃j − K̃H
j ∆GjK̃j + ∆Hj = R̂j + qj(∆Aj ,∆Gj).(3.10)

3.2.1. The real case. We now consider the case that all the coefficient matri-
ces Aj , Gj , Hj ; the perturbations ∆Aj ,∆Gj ,∆Hj ; and the approximate solution set

{X̃j}pj=1 are real. In such a case, (3.10) can be written as

K̃T
j ∆Aj + ∆AT

j K̃j − K̃T
j ∆GjK̃j + ∆Hj = R̂j + qj(∆Aj ,∆Gj).(3.11)

Define the matrix Tj by

Tj =
(
αj

[
In ⊗ K̃T

j +
(
K̃T

j ⊗ In

)
Π
]
, −βjK̃

T
j ⊗ K̃T

j , γjIn2

)
,(3.12)

where Π is the vec-permutation matrix. Then (3.11) is equivalent to the nonlinear
system

Tj

⎛⎜⎜⎜⎜⎜⎜⎜⎝

vec∆Aj

αj

vec∆Gj

βj

vec∆Hj

γj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= vecR̂j + vecqj(∆Aj ,∆Gj).(3.13)

By using the technique described by [15, section 2] we can prove the following result.

Theorem 3.1. For each j ∈ {1, . . . , p}, let Tj be the matrix defined by (3.12),
and define τj , ρj , µj, and νj by

τj =
∥∥∥T †

j

∥∥∥
2
, ρj =

∥∥∥T †
j vecR̂j

∥∥∥
2
,

µj =
(
α2
j + β2

j ‖K̃j‖2
2

)
‖L̃‖2, νj = βj‖X̃j‖2

∥∥∥(I + GjX̃j)
−1
∥∥∥

2
,

(3.14)
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where T †
j denotes the Moore–Penrose inverse of Tj, and L̃j , K̃j, and R̂j are the ma-

trices defined by (3.7) and (3.8). If

ρj ≤ min

⎧⎨⎩ 1

νj
,

τj

τjνj + 2µj +
√

(τjνj + 2µj)2 − τ2
j ν

2
j

⎫⎬⎭ ,(3.15)

then

lj ≤ ηj ≤ uj ,(3.16)

where

uj =
2τjρj

τj(1 + νjρj) +
√
τ2
j (1 + νjρj)2 − 4τj(τjνj + µj)ρj

,

lj = ρj −
µju

2
j

τj(1 − νjuj)
.

(3.17)

From Theorem 3.1 and the relation (3.4) we get the nonlinear estimates

l∗ ≡ max
1≤j≤p

lj ≤ η({X̃j}pj=1) ≤ max
1≤j≤p

uj ≡ u∗.(3.18)

Note that

uj = ρj +
µj

τj
ρ2
j + O(ρ3), lj = ρj −

µj

τj
ρ2
j + O(ρ3), j = 1, . . . , p.

Consequently, we have the linear estimates

ηj ≈ ρj ∀j, and η({X̃j}pj=1) ≈ max
1≤j≤p

ρj(3.19)

as max1≤j≤p ρj → 0 (j → ∞).

3.2.2. The complex case. Let

αj

[
In ⊗ K̃H

j + (K̃T
j ⊗ In)Π

]
= Uj,1 + iΩj,1,

−βjK̃
T ⊗ K̃H

j = Uj,2 + iΩj,2,

vec∆Aj = xj + iyj , vec∆Gj = uj + ivj , vec∆Hj = zj + iwj ,

vecR̂j = rj + isj , vecqj(∆Aj ,∆Gj) = aj + ibj , i =
√
−1,

where Uj,k and Ωj,k (k = 1, 2) are real matrices, and xj , yj , uj , vj , zj , wj , rj , sj , aj , bj
are real vectors. Moreover, let

T
(c)
j =

⎛⎝ Uj,1 −Ωj,1 Uj,2 −Ωj,2 γjIn2 0

Ωj,1 Uj,1 Ωj,2 Uj,2 0 γjIn2

⎞⎠ ,(3.20)
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and

χj =

(
xT
j

αj
,
yTj
αj

,
uT
j

βj
,
vTj
βj

,
zTj
γj

,
wT

j

γj

)T

.

Then (3.10) is equivalent to

T
(c)
j χj =

(
rj
sj

)
+

(
aj
bj

)
.

Referring to [10], [11], and the proof of Theorem 3.1, we can prove the following
result.

Theorem 3.2. For each j ∈ {1, . . . , p}, let T
(c)
j be the matrix defined by (3.20).

Define µj and νj by (3.14), and define τ
(c)
j and ρ

(c)
j by

τ
(c)
j =

∥∥∥∥T (c)
j

†
∥∥∥∥

2

, ρ
(c)
j =

∥∥∥∥T (c)
j

†
(

rj
sj

)∥∥∥∥
2

.

If

ρ
(c)
j ≤ min

⎧⎨⎩ 1

νj
,

τ
(c)
j

τ
(c)
j νj + 2µj +

√
(τ

(c)
j νj + 2µj)2 − τ

(c)
j

2
ν2
j

⎫⎬⎭ ,

then we have

l
(c)
j ≤ ηj ≤ u

(c)
j ,

where

u
(c)
j =

2τ
(c)
j ρ

(c)
j

τ
(c)
j (1 + νjρ

(c)
j ) +

√
τ

(c)
j

2
(1 + νjρ

(c)
j )2 − 4τ

(c)
j (τ

(c)
j νj + µj)ρ

(c)
j

,

l
(c)
j = ρ

(c)
j −

µju
(c)
j

2

τ
(c)
j (1 − νju

(c)
j )

.

From Theorem 3.2 and the relation (3.4) we get

l(c) ≡ max
1≤j≤p

l
(c)
j ≤ η({X̃j}pj=1) ≤ max

1≤j≤p
u

(c)
j ≡ u(c).

4. Residual bounds. In this section we prove the following result.
Theorem 4.1. Let {X̃j}pj=1 be an approximate Hermitian solution set to the

P-DARE (1.1) such that the matrices I + GjX̃j (j = 1, . . . , p) are nonsingular, and

the matrix set {(I + GjX̃j)
−1Aj}pj=1 is pd-stable. Define the residuals R̂j by

R̂j = X̃j−1 −AH
j X̃j(I + GjX̃j)

−1Aj −Hj , j = 1, . . . , p,(4.1)

where X̃0 = X̃p, and define the linear operator L : Hp
n → Hp

n by

L(W1, . . . ,Wp−1,Wp) =
(
W1 − Φ̃H

2 W2Φ̃2, . . . ,Wp−1 − Φ̃H
p WpΦ̃p,Wp − Φ̃H

1 W1Φ̃1

)
,

(4.2)
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where W1, . . . ,Wp ∈ Hn, and the matrices Φ̃j are defined by

Φ̃j = (I + GjX̃j)
−1Aj , j = 1, . . . , p.(4.3)

Moreover, let

φ = max
1≤j≤p

φj with φj = ‖Φ̃j‖2 ∀j,

γ = max
1≤j≤p

γj with γj =
∥∥∥(I + GjX̃j)

−1Gj

∥∥∥
2

∀j,
(4.4)

and

l =
∥∥L−1

∥∥−1
, ε =

∥∥∥L−1(R̂1, . . . , R̂p)
∥∥∥
F
,(4.5)

where the operator norm ‖ ‖ for L−1 is induced by the Frobenius norm ‖ ‖F on Cp
n. If

ε <
l

γ(2φ2 + 2φ
√

φ2 + l + l)
,(4.6)

then for the unique Hermitian p.s.d. stabilizing solution set {Xj}pj=1 to the P-DARE
(1.1) we have

∥∥∥(X̃1 −X1, . . . , X̃p −Xp)
∥∥∥
F
≤ 2lε

(1 + γε)l +
√

(1 + γε)2l2 − 4(φ2 + l)γlε
≡ r(ε).

(4.7)

As a corollary of Theorem 4.1, we have the estimate

∥∥∥(X̃1 −X1, . . . , X̃p −Xp)
∥∥∥
F
≤ 2ε

1 + γε
=

2
∥∥∥L−1(R̂1, . . . , R̂p)

∥∥∥
F

1 + γ
∥∥∥L−1(R̂1, . . . , R̂p)

∥∥∥
F

.

Moreover, from (4.7) we obtain a relative error bound brel(X̃j) for each X̃j (1 ≤
j ≤ p):

‖X̃j −Xj‖F
‖Xj‖F

≤ ‖X̃ −X‖F /‖X̃j‖F
1 − ‖X̃ −X‖F /‖X̃j‖F

≤ r(ε)/‖X̃j‖F
1 − r(ε)/‖X̃j‖F

≡ brel(X̃j).(4.8)

Proof of Theorem 4.1. The proof is completed by the following three steps.
Step 1. Perturbation equation.
Let

X = diag{Xj}pj=1, X̃ = diag{X̃j}pj=1,

∆X = diag{∆Xj}pj=1 with ∆Xj = X̃j −Xj , j = 1, . . . , p,

A = cyc{Aj}pj=1, G = diag{Gj}pj=1,

H = diag(H2, . . . , Hp, H1), R̂ = diag(R̂2, . . . , R̂p, R̂1).

Then (1.1) and (4.1) can be expressed by

X = AHX(I + GX)−1A + H(4.9)
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and

R̂ = X̃ −AHX̃(I + GX̃)−1A−H,(4.10)

respectively. By simple matrix operations, we can get from (4.9) and (4.10) the per-
turbation equation [16, section 3]

∆X−AH(I+X̃G)−1∆X(I+GX̃)−1A = R̂

+AH(I+X̃G)−1∆X(I+GX̃)−1G∆X
[
I+(I+GX̃)−1G∆X

]−1

(I+GX̃)−1A,

(4.11)

or equivalently,

L(∆X1, . . . ,∆Xp−1,∆Xp) = (R̂2, . . . , R̂p, R̂1) + (f2(∆X2), . . . , fp(∆Xp), f1(∆X1)),

(4.12)

where L is the linear operator defined by (4.2), R̂j (j = 1, . . . , p) are the residuals
defined by (4.1), and the functions fj(∆Xj) (j = 1, . . . , p) are defined by

fj(∆Xj)

= AH
j (I + X̃jGj)

−1∆Xj(I + GjX̃j)
−1Gj∆Xj [I + (I + GjX̃j)

−1Gj∆Xj ]
−1

×(I + GjX̃j)
−1Aj .

(4.13)

Since the matrix set {Φ̃j}pj=1 is pd-stable, the operator L is invertible. Conse-
quently, the perturbation equation (4.12) can be expressed by

(∆X1, . . . ,∆Xp−1,∆Xp)

= L−1[(R̂2, . . . , R̂p, R̂1) + (f2(∆X2), . . . , fp(∆Xp), f1(∆X1))].

(4.14)

Define the function g(∆X1, . . . ,∆Xp−1,∆Xp) on Hp
n by

g(∆X1, . . . ,∆Xp−1,∆Xp)

= L−1[(R̂2, . . . , R̂p, R̂1) + (f2(∆X2), . . . , fp(∆Xp), f1(∆X1))].

(4.15)

Obviously, g( ) can be regarded as a continuous mapping M : Hp
n → Hp

n, and the set
of solutions to (4.14) is just the set of fixed points of the mapping M.

Step 2. Estimates of some fixed points of M.
From the definition (4.15) we get

‖g(∆X1, . . . ,∆Xp)‖F ≤ ε +
‖(f2(∆X2), . . . , fp(∆Xp), f1(∆X1))‖F

l
,(4.16)

where ε and l are defined by (4.5). Moreover, from (4.13) we get

‖fj(∆Xj)‖F ≤
φ2
jγj‖∆Xj‖2

F

1 − γj‖∆Xj‖2
F

≤ φ2γ‖∆Xj‖2
F

1 − γ‖(∆X1, . . . ,∆Xp)‖F
, j = 1, . . . , p,(4.17)
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where φj , φ, γj , γ are defined by (4.4). Here we assume that the set {∆Xj}pj=1 satisfies

1 − γ‖(∆X1, . . . ,∆Xp)‖F > 0.(4.18)

Combining (4.16) and (4.17) gives

‖g(∆X1, . . . ,∆Xp)‖F ≤ ε +
φ2γ‖(∆X1, . . . ,∆Xp)‖2

F

l(1 − γ‖(∆X1, . . . ,∆Xp)‖F )
.(4.19)

By using the technique described by [16, section 4] we can prove that if ε satisfies
the condition (4.6), then the mapping M has a fixed point (∆X∗

1 , . . . ,∆X∗
p ) in the

set

Sr(ε) = {(∆X1, . . . ,∆Xp) ∈ Hp
n : ‖(∆X1, . . . ,∆Xp)‖F ≤ r(ε)} ,(4.20)

where r(ε) is defined by (4.7).
Note that the condition (4.6) implies that for any (∆X1, . . . ,∆Xp) ∈ Sr(ε) the

inequality (4.18) holds. In fact, if (∆X1, . . . ,∆Xp) ∈ Sr(ε), then we have

γ‖(∆X1, . . . ,∆Xp)‖F ≤ γr(ε) (by (4.20))

≤ 2γε

1 + γε
(by (4.7))

<
l

φ2 + φ
√

φ2 + l + l
(by (4.6))

≤ 1.

Step 3. On the matrix set {X̃j − ∆X∗
j }

p
j=1.

Let

∆X∗ = diag(∆X∗
1 , . . . ,∆X∗

p )

and

Y = X̃ − ∆X∗ = diag(Y1, . . . , Yp).

Then from Step 1 we see that Y is a Hermitian solution to the DARE (4.9); i.e., Y
satisfies

Y = AHY (I + GY )−1A + H,(4.21)

or equivalently,

Y −AH(I + Y G)−1Y (I + GY )−1A

= H + AH(I + Y G)−1Y GY (I + GY )−1A.
(4.22)

Observe the following two facts:
1. The matrix on the right-hand side of (4.22) is Hermitian p.s.d.
2. The matrix (I + GY )−1A can be written as

(I + GY )−1A = [I − (I + GX̃)−1G∆X∗](I + GX̃)−1A,
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or equivalently,

cyc
{
(I + GjYj)

−1Aj

}p
j=1

= cyc

{[
I − (I + GjX̃j)

−1Gj∆X∗
j

]−1

Φ̃j

}p

j=1

,(4.23)

where the matrices Φ̃j are defined by (4.3), and by the hypotheses the matrix set

{Φ̃j}pj=1 is pd-stable. Moreover, for j = 1, . . . , p we have∥∥∥(I + GjX̃j)
−1Gj∆X∗

j

∥∥∥
2

≤
∥∥∥(I + GjX̃j)

−1Gj

∥∥∥
2
‖∆X∗

j ‖2

≤ γjr(ε) (by (4.4) and (4.20))

≤ 2γlε

(1 + γε)l +
√

(1 + γε)2l2 − 4(φ2 + l)γlε
(by (4.4) and (4.7))

≤ 2γε

1 + γε

<
l

φ2 + φ
√

φ2 + l + l
(by (4.6)).

Consequently, by Lemma 2.4, the matrix set {[I − (I +GjX̃j)
−1Gj∆X∗

j ]−1Φ̃j}pj=1 is

pd-stable. By (4.23), the matrix set
{
(I + GjYj)

−1Aj

}p
j=1

is pd-stable. Further, by

Lemma 2.2, the matrix

cyc
{
(I + GjYj)

−1Aj

}p
j=1

= (I + GY )−1A

is d-stable.
Hence, the Hermitian matrix Y = diag(Y1, . . . , Yp), as a solution to (4.22), is

positive semidefinite [3, Proposition 2.1]; and so the matrix Y , as a Hermitian solution
to the DARE (4.21), is positive semidefinite and stabilizing. By the uniqueness of
the stabilizing solution to the DARE (4.21) [8, Proposition 1], we have Y = X =
diag{Xj}pj=1, the unique Hermitian p.s.d. stabilizing solution to the DARE (4.9).
Thus, the matrix set {Yj}pj=1 is just the unique Hermitian p.s.d. stabilizing solution
set to the P-DARE (1.1).

Overall, we have proved the estimate

‖(X̃1 −X1, . . . , X̃p −Xp)‖F = ‖(∆X∗
1 , . . . ,∆X∗

p )‖F ≤ r(ε).

Note that the function r(ε) defined by (4.7) has the Taylor expansion at ε = 0:

r(ε) = ε +
γφ2

l
ε2 + O(ε3) as ε → 0.

Consequently, for sufficiently small ‖L−1(R̂1, . . . , R̂p)‖F , we have the first order esti-
mate

‖(X̃1 −X1, . . . , X̃p −Xp)‖F <∼ ε =
∥∥∥L−1(R̂1, . . . , R̂p)

∥∥∥
F
.
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5. Numerical results. We now use a simple numerical example to illustrate
our results of sections 3 and 4. All computations were performed using MATLAB,
version 6.1. The relative machine precision is 2.22 × 10−16.

Example 5.1. Consider the P-DARE (1.1) with n = 2, p = 3, and

A1 =

(
0 0

10m 0

)
, A2 =

(
0 1
0 0

)
, A3 =

(
0 0
0 1

)
,

B1 =

(
1 0
0 1

)
, B2 =

(
1 0
0 1

)
, B3 =

(
1
0

)
,

C1 =

(
1 0
0 1

)
, C2 = (1, 0), C3 = (0, 0),

R1 =

(
1 0
0 1

)
, R2 =

(
1 0
0 1

)
, R3 = 1.

(5.1)

By Gj = BjR
−1
j BT

j and Hj = CT
j Cj (j = 1, 2, 3), we have

G1 =

(
1 0
0 1

)
, G2 =

(
1 0
0 1

)
, G3 =

(
1 0
0 0

)
,

H1 =

(
1 0
0 1

)
, H2 =

(
1 0
0 0

)
, H3 =

(
0 0
0 0

)
.

(5.2)

Thus, the corresponding P-DARE (1.1) can be written⎧⎨⎩
X3 = AT

1 (I + G1X1)
−1A1 + H1,

X1 = AT
2 (I + G2X2)

−1A2 + H2,
X2 = AT

3 (I + G3X3)
−1A3 + H3,

(5.3)

where Aj and Gj , Hj are the matrices of (5.1) and (5.2), respectively.
By (5.1), (2.14), and (2.15), we get the matrices Aj , Bj , and Cj (j = 1, 2, 3) with

A1 = A3A2A1 =

(
0 0
0 0

)
,

B1 = (A3A2B1, A3B2, B3) =

(
0 0 0 0 1
0 0 0 1 0

)
,

C1 =
(
CT

1 , AT
1 C

T
2 , AT

1 A
T
2 C

T
3

)T
=

(
1 0 0 0
0 1 0 0

)T

,

A2 = A2A1A3 =

(
0 0
0 0

)
,

B2 = (A2A1B3, A2B1, B2) =

(
10m 0 1 1 0
0 0 0 0 1

)
,

C2 =
(
CT

3 , AT
3 C

T
1 , AT

3 A
T
1 C

T
2

)T
=

(
0 0 0 0
1 0 1 0

)T

,

A3 = A1A3A2 =

(
0 0
0 0

)
,

B3 = (A1A3B2, A1B3, B1) =

(
0 0 0 1 0
0 0 10m 0 1

)
,

C3 =
(
CT

2 , AT
2 C

T
3 , AT

2 A
T
3 C

T
1

)T
=

(
1 0 0 0
0 0 0 0

)T

.
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Table 5.1

Estimates of relative backward errors (k = 12).

m l∗ u∗ crel(X1, X2, X3)

0 8.8 × 10−13 8.8 × 10−13 2.7

1 5.7 × 10−11 5.7 × 10−11 7.1 × 10

2 5.7 × 10−9 5.7 × 10−9 7.1 × 103

3 3.5 × 10−7 7.8 × 10−7 7.1 × 105

4 ∗ ∗ 7.1 × 107

It can be verified that the matrix pairs (Aj ,Bj) are d-stabilizable, and (Aj , Cj) are
d-detectable for j = 1, 2, 3; i.e., the matrix pair sets {(Aj , Bj)}3

j=1 and {(Aj , Cj)}3
j=1

are pd-stabilizable and pd-detectable, respectively. By Theorem 2.5, the P-DARE
(5.3) has a unique symmetric p.s.d. stabilizing solution set {Xj}3

j=1. It is easy to

verify that the set {Xj}3
j=1 with

X1 =

(
1 0
0 0

)
, X2 =

(
0 0
0 1

)
, X3 =

(
1 0
0 1

)
is the unique symmetric p.s.d. stabilizing solution set, which is independent of the
values of m.

Let the approximate symmetric p.s.d. solution sets {X̃j}3
j=1 be given by

X̃1 = X1 +

(
−0.3 −0.2
−0.2 0.8

)
× 10−k, X̃2 = X2 +

(
0.1 0.1
0.1 −0.2

)
× 10−k,

X̃3 = X3 +

(
−0.2 0.3

0.3 0.6

)
× 10−k, k = 0, 1, 2, . . . .

(5.4)

We now are going to give estimates of backward errors and residual bounds for the
approximate symmetric p.s.d. solution sets.

Estimates of backward errors. Some numerical results on backward errors of
the approximate solution sets are listed in Tables 5.1 and 5.2, where the bounds l∗

and u∗ are computed by (3.17)–(3.18), and the values of the relative condition number
crel(X1, X2, X3) listed in Table 5.1 are computed by [12, (4.24)] with

ξj = ‖Xj‖F , αj = ‖Aj‖F , γj = ‖Gj‖F , ηj = ‖Hj‖F , j = 1, 2, 3.

The cases when the condition (3.15) of Theorem 3.1 is violated are denoted by asterisks
in Tables 5.1 and 5.2.

From the results listed in Table 5.1 we see that the relative backward error in-
creases as the relative conditioning of the P-DARE deteriorates.

The results listed in Tables 5.1 and 5.2 show that the relative backward errors
are very small (η({X̃j}3

j=1)
<∼ 5.7 × 10−9) in the cases of k = 12 and m ≤ 2, and

in the cases of m = 1 and k ≥ 10; this means that in such cases each approximate
symmetric p.s.d. solution set {X̃j}3

j=1 is an exact symmetric p.s.d. solution set to a
slightly perturbed P-DARE.

From the results listed in Table 5.2 we see that the relative backward error de-

creases as the error ‖X̃ −X‖F =
√∑3

j=1 ‖X̃j −Xj‖2
F decreases.
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Table 5.2

Estimates of relative backward errors (m = 1, crel(X1, X2, X3) ≈ 71).

k l∗ u∗ ‖X̃ −X‖F
2 ∗ ∗ 1.2 × 10−2

4 3.4 × 10−3 7.9 × 10−3 1.2 × 10−4

6 5.7 × 10−5 5.7 × 10−5 1.2 × 10−6

8 5.7 × 10−7 5.7 × 10−7 1.2 × 10−8

10 5.7 × 10−9 5.7 × 10−9 1.2 × 10−10

12 5.7 × 10−11 5.7 × 10−11 1.2 × 10−12

Computed results for this example show that

lj ≈ uj ≈ ρj , j = 1, 2, 3,

which mean that the linear estimates (3.19) are relatively sharp, while the nonlinear
estimates (3.16) do not even exist in some cases. However, it is worth pointing out
that the nonlinear estimates (3.16) guarantee the existence of the solution to the
optimization problem (3.5), while the linear estimates (3.19) would formally give
approximate bounds which might not correspond to any solution to the problem
(3.5).

Residual bounds. Here we only present a few results in the case of m = 0. In
such a case, the relative condition number crel(X1, X2, X3) ≈ 2.7. Taking k = 4 in
(5.4) we obtain an approximate symmetric p.s.d. solution set {X̃j}3

j=1, among which

each X̃j approximates Xj (1 ≤ j ≤ 3) up to 5 significant figures.

A computation by (4.7) gives

r(ε)

‖X̃1‖F
≈ 1.5 × 10−4,

r(ε)

‖X̃2‖F
≈ 1.5 × 10−4,

r(ε)

‖X̃3‖F
≈ 1.1 × 10−4.

Combining the estimates with (4.8) we get relative error bounds for X̃j (j = 1, 2, 3):

brel(X̃1) ≈ 1.5 × 10−4, brel(X̃2) ≈ 1.5 × 10−4, brel(X̃3) ≈ 1.1 × 10−4.(5.5)

From (5.5) we see that the approximate symmetric p.s.d. solution set {X̃j}3
j=1 has at

least 4 correct digits.

Note that by Theorem 4.1 the estimate (4.7) can only be applied to the case where
the condition (4.6) is satisfied; i.e.,

δ(ε) ≡ l

γ(2φ2 + 2φ
√

φ2 + l + l)
− ε > 0.

The results listed in Table 5.3 show the scope of application of the estimate (4.7) for
this example.

Example 5.2 (see [12, Example 5.1]). Consider the P-DARE (1.1) with n = 3, p =
3, and

Aj = V T
j A

(0)
j Vj , Gj = V T

j G
(0)
j Vj , Hj = V T

j H
(0)
j Vj , j = 1, 2, 3,
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Table 5.3

m crel(X1, X2, X3) δ(ε)
0 2.7 δ(ε) > 0 if and only if k ≥ 1
1 7.1 × 10 δ(ε) > 0 if and only if k ≥ 11
2 7.1 × 103 δ(ε) > 0 if and only if k ≥ 13
3 7.1 × 105 δ(ε) > 0 if and only if k ≥ 21

Table 5.4

Estimates of relative backward errors.

m l∗ u∗

0 2.2 × 10−15 2.2 × 10−15

1 1.9 × 10−15 1.9 × 10−15

2 3.8 × 10−15 3.8 × 10−15

3 1.9 × 10−14 1.9 × 10−14

4 4.0 × 10−13 4.0 × 10−13

5 5.0 × 10−12 5.0 × 10−12

6 5.0 × 10−11 5.0 × 10−11

where

A
(0)
1 = diag(0, 10−m, 1), A

(0)
2 = diag(10−9, 10−m, 1 + 10−3),

A
(0)
3 = diag(10−3, 10−m+1, 0.5),

G
(0)
j = diag

(
1

j
10−m,

1

j
10−m, j × 10−m

)
, H

(0)
j = diag

(
1

j
10m, j, j × 10−m

)
,

j = 1, 2, 3,

and

V1 = I − 2v1v
T
1 with v1 =

1√
3
(1, 1, 1)T ,

V2 = I − 2v2v
T
2 with v2 =

1√
6
(1, 1, 2)T ,

V3 = I − 2v3v
T
3 with v3 =

1√
11

(−1, 1, 3)T .

By applying the file “dare” of Control System Toolbox, we get computed symmet-
ric p.s.d. solution sets {X̃1, X̃2, X̃3} to the P-DARE (1.1). Some numerical results on
backward errors and residual bounds for the computed solution sets are listed in Tables
5.4 and 5.5, respectively, where the relative error bounds brel(X̃j) for X̃j (j = 1, 2, 3)
are defined by (4.8).

The results listed in Table 5.4 show that each computed symmetric p.s.d. solution
set {X̃1, X̃2, X̃3} by applying the file “dare” of Control System Toolbox is the exact
symmetric p.s.d. solution set to a slightly perturbed P-DARE; in other words, the
computation has proceeded stably.

From the results listed in Table 5.5 we see that the computed symmetric p.s.d.
solution sets {X̃1, X̃2, X̃3} have high relative precision when m is a small natural
number; e.g., in the case m = 3, each computed X̃j has at least 14 correct digits.
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Table 5.5

Residual bounds.

m ε r(ε) brel(X̃1) brel(X̃2) brel(X̃3)

0 8.3 × 10−13 8.3 × 10−13 2.1 × 10−13 7.5 × 10−15 3.2 × 10−13

1 1.3 × 10−14 1.3 × 10−14 2.3 × 10−15 2.3 × 10−15 1.3 × 10−15

2 3.3 × 10−13 3.3 × 10−13 6.2 × 10−15 9.6 × 10−15 3.2 × 10−15

3 2.0 × 10−11 2.0 × 10−11 3.8 × 10−14 6.0 × 10−14 2.0 × 10−14

4 4.2 × 10−9 4.2 × 10−9 8.0 × 10−13 1.2 × 10−12 4.1 × 10−13

5 5.4 × 10−7 5.4 × 10−7 1.0 × 10−11 1.6 × 10−11 5.3 × 10−12

6 5.3 × 10−5 5.3 × 10−5 1.0 × 10−10 1.6 × 10−10 5.3 × 10−11
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1. Introduction. We consider the solution of systems of linear equations with
the following block 2 × 2 structure:[

A BT

B −C

] [
u
p

]
=

[
f
g

]
,(1.1)

where A ∈ R
n×n, B ∈ R

m×n, C ∈ R
m×m, f ∈ R

n, g ∈ R
m, and m ≤ n. We further

assume that matrices A, B, and C are large and sparse. Systems of the form (1.1) arise
in a variety of scientific and engineering applications, including computational fluid
dynamics [1, 20, 22, 24, 27, 44], mixed finite element approximation of elliptic PDEs
[12, 48, 60], optimization [5, 25, 26, 32, 39, 43], optimal control [9, 35], weighted and
equality constrained least squares estimation [10], structural analysis [56], electrical
networks [56], inversion of geophysical data [34], computer graphics [42], and others.

An important special case of (1.1) is when A is symmetric positive semidefinite,
C = O, rank(B) = m, and N (A) ∩ N (B) = {0}. In this case (1.1) corresponds to a
saddle point problem, and it has a unique solution.

In this paper we consider generalized saddle point problems, i.e., systems of the
form (1.1) satisfying all of the following assumptions:

• A has positive semidefinite symmetric part H = 1
2 (A + AT );

• rank(B) = m;
• N (H) ∩N (B) = {0};
• C is symmetric positive semidefinite.

As shown below (Lemma 1.1), these assumptions guarantee existence and unique-
ness of the solution. Although very often A is symmetric positive definite, we are
especially interested in cases where A is either symmetric and singular (i.e., only pos-
itive semidefinite), or nonsymmetric with positive definite symmetric part H (i.e.,
A is positive real). The latter situation arises when the steady-state Navier–Stokes
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equations are linearized by a Picard iteration, leading to the Oseen equations; see
[20, 22]. In this case, the A block corresponds to an appropriate discretization of a
convection-diffusion operator.

A number of solution methods have been proposed in the literature. Besides spe-
cialized sparse direct solvers [16, 17] we mention, among others, Uzawa-type schemes
[11, 21, 24, 27, 62], block and approximate Schur complement preconditioners [4, 15,
20, 22, 41, 45, 46, 48, 51], splitting methods [18, 30, 31, 49, 57], indefinite precon-
ditioning [23, 35, 39, 43, 48], iterative projection methods [5], iterative null space
methods [1, 32, 54], and preconditioning methods based on approximate factorization
of the coefficient matrix [25, 50]. Several of these algorithms are based on some form
of reduction to a smaller system, for example, by projecting the problem onto the
null space of B, while others work with the original (augmented) matrix in (1.1). The
method studied in this paper falls in the second category.

When A is symmetric positive (semi-)definite, the coefficient matrix in (1.1) is
symmetric indefinite, and indefinite solvers can be used to solve problem (1.1). Al-
ternatively, one can solve instead of (1.1) the equivalent nonsymmetric system[

A BT

−B C

] [
u
p

]
=

[
f
−g

]
, or Ax = b,(1.2)

where A is the coefficient matrix in (1.2), x = [uT , pT ]T and b = [fT , −gT ]T . The
nonsymmetric formulation is especially natural when A is nonsymmetric, but positive
real. Whether A is symmetric or not, the nonsymmetric matrix A has certain desirable
properties, which are summarized in the following result.

Lemma 1.1. Let A ∈ R
(n+m)×(n+m) be the coefficient matrix in (1.2). Assume

H = 1
2 (A+AT ) is positive semidefinite, B has full rank, C = CT is positive semidef-

inite, and N (H) ∩N (B) = {0}. Let σ(A) denote the spectrum of A. Then
(i) A is nonsingular.
(ii) A is semipositive real: 〈Av,v〉 = vTAv ≥ 0 for all v ∈ R

n+m.
(iii) A is positive semistable, that is, the eigenvalues of A have nonnegative real

part: �(λ) ≥ 0 for all λ ∈ σ(A).
(iv) If, in addition, H = 1

2 (A+AT ) is positive definite, then A is positive stable:
�(λ) > 0 for all λ ∈ σ(A).

Proof. To prove (i), let x = [up ] be such that Ax = 0. Then

Au + BT p = 0 and −Bu + Cp = 0.(1.3)

Now, from Ax = 0 we get xTAx = uTAu + pTCp = 0, and therefore it must be
uTAu = 0 and pTCp = 0, since both of these quantities are nonnegative. But uTAu =
uTHu = 0, which implies u ∈ N (H) since H is symmetric positive semidefinite (see
[36, p. 400]). Similarly, pTCp = 0 with C symmetric positive semidefinite implies
Cp = 0 and therefore (using the second of (1.3)) Bu = 0. Therefore u = 0 since
u ∈ N (H)∩N (B) = {0}. But if u = 0 then from the first of (1.3) we obtain BT p = 0
and therefore p = 0 since B has full column rank. Therefore the only solution to
Ax = 0 is the trivial solution, and A is nonsingular.

To prove (ii) we observe that for any v ∈ R
n+m we have vTAv = vTHv, where

H = 1
2 (A + AT ) =

[
H O
O C

]
is the symmetric part of A. Clearly H is positive semidefinite, hence vTAv ≥ 0.
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To prove (iii), let (λ,v) be an eigenpair of A, with ||v||2 = 1. Then v∗Av = λ

and (v∗Av)∗ = v∗ATv = λ̄. Therefore 1
2v

∗(A + AT )v = λ+λ̄
2 = �(λ). To conclude

the proof, observe that

v∗(A + AT )v = �(v)T (A + AT )�(v) + �(v)T (A + AT )�(v),

a real nonnegative quantity.
To prove (iv), assume (λ,v) is an eigenpair of A with v = [up ]. Then

�(λ) = u∗Hu + p∗Cp = �(u)TH�(u) + �(u)TH�(u) + �(p)TC�(p) + �(p)TC�(p).

This quantity is nonnegative, and it can be zero only if u = 0 (since H is assumed to be
positive definite) and Cp = 0. But if u = 0 then from the first of (1.3) we get BT p = 0,
hence p = 0 since B has full column rank. Hence v = 0, a contradiction.

Thus, by changing the sign of the last m equations in (1.1) we may lose sym-
metry (when A is symmetric), but we gain positive (semi-)definiteness. This can be
advantageous when using certain Krylov subspace methods, like restarted GMRES;
see [19, 53].

In this paper we propose a new approach for preconditioning generalized saddle
point problems based on an alternating symmetric/skew-symmetric splitting [2] ap-
plied to (1.2). This approach is very general in that it does not require the submatrix
A to be nonsingular or symmetric; hence, it is applicable to a broad class of problems.
The splitting method is described in section 2, and some of its convergence proper-
ties are studied in section 3. The use of the splitting as a preconditioner for Krylov
subspace methods is considered in section 4. Numerical experiments are presented in
section 5. Finally, in section 6 we draw our conclusions.

2. The alternating splitting iteration. In [2], the following stationary iter-
ative methods for solving positive real linear systems Ax = b was proposed. Write
A = H + S, where

H = 1
2 (A + AT ), S = 1

2 (A−AT )

are the symmetric and skew-symmetric part of A, respectively. Let α > 0 be a param-
eter. Similar in spirit to the classical alternating direction implicit (ADI) method [58],
consider the following two splittings of A:

A = (H + αI) − (αI − S)

and

A = (S + αI) − (αI −H).

Here I denotes the identity matrix. The algorithm is obtained by alternating between
these two splittings (see [7] for a general study of alternating iterations). Given an
initial guess x0, the symmetric/skew-symmetric iteration computes a sequence {xk}
as follows: {

(H + αI)xk+ 1
2 = (αI − S)xk + b,

(S + αI)xk+1 = (αI −H)xk+ 1
2 + b.

(2.1)

It is shown in [2] that if H is positive definite, the stationary iteration (2.1) converges
for all α > 0 to the solution of Ax = b.
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Let us now consider the application of (2.1) to generalized saddle point problems
in the form (1.2). In this case we have

H =

[
H O
O C

]
and S =

[
S BT

−B O

]
,

where S = 1
2 (A − AT ) is the skew-symmetric part of A. Hence, A is positive real

only when submatrices H and C are both symmetric positive definite (SPD), which is
almost never the case in practice. Therefore, the convergence theory developed in [2]
does not apply, and a more subtle analysis is required. We provide this analysis in
the next section.

A few remarks are in order. At each iteration of (2.1), it is required to solve two
sparse linear systems with coefficient matrices H + αI and S + αI. Note that under
our assumptions, both of these matrices are invertible for all α > 0. Clearly, the choice
of the solution methods used to perform the two half-steps in (2.1) is highly problem-
dependent, and must be done on a case-by-case basis. The alternating algorithm (2.1)
is just a general scheme that can incorporate whatever solvers are appropriate for a
given problem.

Nevertheless, it is possible to make some general observations. The first half-step
of algorithm (2.1) necessitates the solution of two (uncoupled) linear systems of the
form {

(H + αIn)uk+ 1
2 = αuk − Suk + f −BT pk,

(C + αIm)pk+ 1
2 = αpk − g + Buk.

(2.2)

Both systems in (2.2) are SPD, and any sparse solver for SPD systems can be applied.
This could be a sparse Cholesky factorization, or a preconditioned conjugate gradient
(PCG) scheme, or some specialized solver. Note that the addition of a positive term
α to the main diagonal of H (and C) improves the condition number. This, in turn,
tends to improve the rate of convergence of iterative methods applied to (2.2). More
precisely, if H is normalized so that its largest eigenvalue is equal to 1, then for the
spectral condition number of H + αI we have

κ(H + αI) =
1 + α

λmin(H) + α
≤ 1 +

1

α
,

independent of the size of the problem. Note that even a fairly small value of α, such
as α = 0.1, yields a small condition number (κ(H +αI) ≤ 11). Unless α is very small,
rapid convergence of the CG method applied to (2.2) can be expected, independent
of the number n of unknowns.

The second half-step of algorithm (2.1) is less trivial. It requires the solution of
two coupled linear systems of the form{

(αIn + S)uk+1 + BT pk+1 = (αIn −H)uk+ 1
2 + f ≡ fk,

−Buk+1 + αpk+1 = (αIm − C)pk+ 1
2 − g ≡ gk.

(2.3)

This system can be solved in several ways. Of course, a sparse LU factorization could
be used if the problem is not too large. An alternative approach is to eliminate uk+1

from the second equation using the first one (Schur complement reduction), leading
to a smaller (order m) linear system of the form

[B(In + α−1S)−1BT + α2Im]pk+1 = B(In + α−1S)−1fk + αgk.(2.4)
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Once the solution pk+1 to (2.4) has been computed, the vector uk+1 is given by
uk+1 = (αIn + S)−1(fk −BT pk+1). When S = O, system (2.4) simplifies to

(BBT + α2Im)pk+1 = Bfk + αgk,(2.5)

and uk+1 = 1
α (fk − BT pk+1). If BBT is sufficiently sparse, system (2.5) could be

formed explicitly and solved by a sparse Cholesky factorization. Otherwise, a PCG
iteration with a simple preconditioner not requiring access to all the entries of the
coefficient matrix BBT + α2Im could be used. However, when S 
= O the coefficient
matrix in (2.4) is generally dense. A nonsymmetric Krylov method could be used to
solve (2.4), requiring matrix-vector products with the matrix B(In + α−1S)−1BT +
α2Im. In turn, this requires solving a linear system of the form (αIn + S)v = z at
each step.

Also note that up to a scaling factor, the coefficient matrix of the coupled system
in (2.3) is a normal matrix of the form “identity-plus-skew-symmetric.” There are
various Lanczos-type methods that can be applied to systems of this kind; see [14, 61]
and, more generally, [38]. Other iterative methods for the solution of shifted skew-
symmetric systems can be found, e.g., in [47] and [29].

Yet another possibility is to regard (2.3) as a general nonsymmetric system and
to use preconditioned GMRES (say). Many of these schemes can benefit form the
fact that for even moderate values of α > 0, the condition number of S + αI is often
rather small.

It is important to stress that the linear systems in (2.1) need not be solved exactly.
The use of inexact solves was considered in [2] for the positive real case. The upshot
is that inexact solves can be used to greatly reduce the cost of each iteration, at the
expense of somewhat slower convergence. Typically, in practical implementations,
inexact solves result in a much more competitive algorithm. Here we observe that
when the alternating scheme is used as a preconditioner for a Krylov method, inexact
solves are a natural choice, and there is no theoretical restriction on the accuracy of
the inner solves. Inexact solutions are often obtained by iterative methods, leading
to an inner-outer scheme; in this case, a flexible solver like FGMRES [52] should be
used for the outer iteration. However, inexact solves may also be done by means of
incomplete factorizations. In this case, standard GMRES can be used for the outer
iteration.

Finally, we note that the scalar matrix αI in (2.1) could be replaced by a matrix
of the form αF , where F is SPD. This idea, in the context of ADI methods, goes
back to Wachspress and Habetler [59]; see also [58, p. 242]. It is straightforward to see
that this is equivalent to applying the alternating iteration (2.1) to the symmetrically
preconditioned system

Âx̂ = b̂, Â := F−1/2AF−1/2, x̂ = F1/2x, b̂ = F−1/2b.(2.6)

In this paper we limit ourselves to the case where F is the (n+m)× (n+m) diagonal
matrix having the ith diagonal entry equal to the ith diagonal entry of A if this is
nonzero, and one otherwise. As we show in the section on numerical experiments, in
many cases this simple diagonal preconditioning may considerably improve the rate
of convergence.

In the next section we turn to the study of the convergence of the general scheme
(2.1), assuming that the solves in (2.2) and (2.3) are performed exactly (rather than
approximately, as in an inexact inner-outer setting).
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3. Analysis of the stationary iteration. To analyze the convergence of (2.1),

we eliminate the intermediate vector xk+ 1
2 and write the iteration in fixed point form

as

xk+1 = Tαxk + c,(3.1)

where

Tα := (S + αI)−1(αI −H)(H + αI)−1(αI − S)

is the iteration matrix of the method, and c := (S+αI)−1[I+(αI−H)(H+αI)−1]b.
The fixed point iteration (3.1) converges for arbitrary initial guesses x0 and right-hand
sides b to the solution x = A−1b if and only if ρ(Tα) < 1, where ρ(Tα) denotes the
spectral radius of Tα.

It was shown in [2] that when A is positive real (i.e., H is SPD), the stationary
iteration is unconditionally convergent: ρ(Tα) < 1 for all α > 0. However, in the
context of generalized saddle point problems (1.2), the matrix H is only positive
semidefinite and generally singular. In this case, the analysis in [2] does not apply.
Indeed, for matrices whose symmetric part is positive semidefinite and singular, the
alternating iteration is not convergent in general.

However, as the following theorem shows, the alternating iteration converges for
a broad class of generalized saddle point problems.

Theorem 3.1. Consider problem (1.2) and assume that A is positive real, C
is symmetric positive semidefinite, and B has full rank. Then the iteration (3.1) is
unconditionally convergent; that is, ρ(Tα) < 1 for all α > 0.

Proof. The iteration matrix Tα is similar to

T̂α = (αI −H)(αI + H)−1(αI − S)(αI + S)−1 = R U ,

where R := (αI−H)(αI+H)−1 is symmetric and U := (αI−S)(αI+S)−1 orthogonal
(see [37, p. 440]). Now, R is orthogonally similar to the (n + m) × (n + m) diagonal
matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α−µ1

α+µ1
α−µ2

α+µ2

. . .
α−µn

α+µn
α−ν1

α+ν1
α−ν2

α+ν2

. . .
α−νm

α+νm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where µ1, µ2, . . . , µn are the (positive) eigenvalues of H and ν1, ν2, . . . , νm are the
(nonnegative) eigenvalues of C. That is, there is an orthogonal matrix V of order
n + m such that

VTRV = D =

[
D1 O
O D2

]
,

where D1 and D2 are diagonal matrices of order n and m, respectively.
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Note that∣∣∣∣α− µi

α + µi

∣∣∣∣ < 1 for 1 ≤ i ≤ n and

∣∣∣∣α− νi
α + νi

∣∣∣∣ ≤ 1 for 1 ≤ i ≤ m.

It follows that RU is orthogonally similar to

VTRUV = (VTRV)(VTUV) = DQ,

where Q := VTUV, being a product of orthogonal matrices, is orthogonal. Hence, the
iteration matrix Tα is similar to DQ, and therefore

ρ(Tα) = ρ(DQ) = ρ(QD).

We claim that ρ(QD) < 1 for all α > 0. To show this, partition Q conformally to D:

Q =

[
Q11 Q12

Q21 Q22

]
.

Then

QD =

[
Q11D1 Q12D2

Q21D1 Q22D2

]
.

Now, let λ ∈ C be an eigenvalue of QD and let x ∈ C
n+m be a corresponding

eigenvector with ||x||2 = 1. We assume λ 
= 0, or else there is nothing to prove. We
want to show that |λ| < 1. Clearly, QDx = λx implies Dx = λQTx and taking
norms:

||Dx||2 = |λ| ||QTx||2 = |λ|.

Therefore

|λ|2 = ||Dx||22 =

n∑
i=1

(
α− µi

α + µi

)2

xix̄i +

n+m∑
i=n+1

(
α− νi
α + νi

)2

xix̄i ≤ ||x||22 = 1.(3.2)

Hence, the spectral radius of Tα cannot exceed unity.
To prove that |λ| < 1 (strictly), we show that there exists at least one i (1 ≤ i ≤ n)

such that xi 
= 0. Using the assumption that B has full rank, we will show that xi = 0
for all 1 ≤ i ≤ n implies x = 0, a contradiction. Indeed, if the eigenvector x is of the
form x = [ 0

x̂ ] (where x̂ ∈ C
m), the identity QDx = λx becomes

QDx =

[
Q11D1 Q12D2

Q21D1 Q22D2

] [
0
x̂

]
=

[
Q12D2x̂
Q22D2x̂

]
=

[
0
λx̂

]
(3.3)

so that, in particular, it must be Q12D2x̂ = 0. We will prove shortly that Q12 has full
column rank; hence, it must be D2x̂ = 0. But by (3.3) we have λx̂ = Q22D2x̂ = 0,
and since λ 
= 0 by assumption, it must be x̂ = 0 (a contradiction, since x 
= 0).

To conclude the proof we need to show that Q12 ∈ R
n×m has full column rank.

Recall that Q = VTUV with

V =

[
V11 O
O V22

]
,
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where V11 ∈ R
n is the orthogonal matrix that diagonalizes (αIn−H)(αIn+H)−1 and

V22 ∈ R
m is the orthogonal matrix that diagonalizes (αIm − C)(αIm + C)−1. Recall

that the orthogonal matrix U is given by

(αI − S)(αI + S)−1 =

[
αIn − S −BT

B αIm

] [
αIn + S BT

−B αIm

]−1

=

[
U11 U12

U21 U22

]
.

An explicit calculation reveals that

U12 = −[(αIn − S)(αIn + S)−1 + In]BT [αIm + B(αIn + S)−1BT ]−1.

Clearly, −1 cannot be an eigenvalue of the orthogonal matrix (αIn − S)(αIn + S)−1,
hence (αIn −S)(αIn +S)−1 + In is nonsingular. The matrix αIm +B(αIn +S)−1BT

is also nonsingular, since B(αIn +S)−1BT is positive real. Indeed (αIn +S)−1, being
the inverse of a positive real matrix, is itself positive real and since B has full column
rank, so is B(αIn + S)−1BT .

Furthermore,

Q = VTUV =

[
V T

11U11V11 V T
11U12V22

V T
22U21V11 V T

22U22V22

]
and therefore

Q12 = V T
11U12V22 = −V T

11[(αIn−S)(αIn+S)−1+In]BT [αIm+B(αIn+S)−1BT ]−1V22,

showing that Q12 has full column rank since V T
11 and V22 are orthogonal and BT has

full column rank. This completes the proof.
Remark 3.1. It is easy to see that there is a unique splitting A = M−N with M

nonsingular such that the iteration matrix Tα is the matrix induced by that splitting,
i.e., Tα = M−1N = I −M−1A. An easy calculation shows that

M ≡ Mα = 1
2α (H + αI)(S + αI).(3.4)

It is therefore possible to rewrite the iteration (2.1) in correction form:

xk+1 = xk + M−1
α rk, rk = b −Axk.

This will be useful when we consider Krylov subspace acceleration.
The restriction in Theorem 3.1 that A be positive real is not essential. If A is

only semipositive real (singular), the alternating iteration (2.1) is still well defined,
but it may happen that ρ(Tα) = 1 for all values of α > 0. A simple example with
n = 2, m = 1 is given by

A =

[
1 0
0 0

]
, B =

[
0 1

]
, C = [0].

Nevertheless, a simple modification of the basic algorithm yields a convergent iter-
ation. To this end, recall that ρ(Tα) ≤ 1 for all α > 0; see (3.2). Also, note that
1 /∈ σ(Tα) since A is nonsingular. Let β ∈ (0, 1) be a parameter; then the matrix
(1 − β)I + βTα has spectral radius less than 1 for all α > 0. Indeed, the eigenvalues
of (1− β)I + βTα are of the form 1− β + βλ, where λ ∈ σ(Tα). It is easy to see that
since |λ| ≤ 1 and λ 
= 1, all the quantities 1 − β + βλ have magnitude strictly less
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than 1. This trick is routinely used in the solution of singular systems and Markov
chains; see, e.g., [40].

Thus, for any choice of the initial guess x̂0 = x0, the sequence {x̂k} defined by

x̂k+1 = (1 − β)x̂k + βxk+1 = (1 − β)x̂k + β(Tαx̂k + c)

(k = 0, 1, . . .) converges to the unique solution of problem (1.2) for all β ∈ (0, 1)
and all α > 0. In this way, the alternating iteration is applicable to any generalized
saddle point problem. The presence of the parameter β, unfortunately, adds another
complication to the method. Numerical experiments suggest that a value of β slightly
less than 1, like β = 0.99, should be used. When Krylov subspace acceleration is used,
however, there is no need to use this technique (that is, one can use β = 1 even when
H is singular).

Under the assumptions of Theorem 3.1, the asymptotic rate of convergence of the
alternating iteration is governed by the spectral radius of Tα, so it makes sense to try
to choose α so as to make ρ(Tα) as small as possible. In general, finding such a value
α = αopt is a difficult problem. Some results in this direction can be found in [2, 3, 6].
The results in [2] yield an expression of the optimal α for the case of A positive real,
too restrictive in our setting where H is usually singular.

Of course, choosing α so as to minimize the spectral radius of the iteration matrix
is not necessarily the best choice when the algorithm is used as a preconditioner for a
Krylov subspace method. Remarkably, it can be shown that for certain problems the
alternating iteration results in an h-independent preconditioner for GMRES when α
is chosen sufficiently small, corresponding to a spectral radius very close to 1; see [6]
and the numerical experiments in section 5.1 below.

Also, minimizing the spectral radius or even the number of GMRES iterations
does not imply optimal performance in terms of CPU time. Indeed, the efficient
implementation of the method almost invariably requires that the two linear systems
(2.2) and (2.3) be solved inexactly. Clearly, the choice of α will influence the cost of
performing the two solves. Indeed, “large” values of α will make the iterative solution
of (2.2) and (2.3) easy; on the other hand, it is clear from (3.2) that the nonzero
eigenvalues of Tα approach 1 as α → ∞ (and also as α → 0), and convergence of
the outer iteration slows down. Hence, there is a trade-off involved. If we define the
“optimal” value of α as the one that minimizes the total amount of work needed to
compute an approximate solution, this will not necessarily be the same as the α that
minimizes the number of (outer) iterations. Overall, the analytic determination of
such an optimal value for α appears to be daunting.

4. Krylov subspace acceleration. Even with the optimal choice of α, the
convergence of the stationary iteration (2.1) is typically too slow for the method to
be competitive. For this reason we propose using a nonsymmetric Krylov subspace
method like GMRES, or its restarted version GMRES(m), to accelerate the conver-
gence of the iteration.

It follows from Remark 3.1 that the linear system Ax = b is equivalent to (i.e.,
has the same solution as) the linear system

(I − Tα)x = M−1
α Ax = c,

where c = M−1
α b. This equivalent (left-preconditioned) system can be solved with

GMRES. Hence, the matrix Mα can be seen as a preconditioner for GMRES. Equiva-
lently, we can say that GMRES is used to accelerate the convergence of the alternating
iteration applied to Ax = b.
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Note that as a preconditioner we can use

Mα = (H + αI)(S + αI)

instead of the expression given in (3.4), since the factor 1
2α has no effect on the

preconditioned system. Application of the alternating preconditioner within GMRES
requires solving a linear system of the form Mαz = r at each iteration. This is done
by first solving

(H + αI)v = r(4.1)

for v, followed by

(S + αI)z = v.(4.2)

The GMRES method can also be applied to the right-preconditioned system
AM−1

α y = b where y = Mαx. Note that M−1
α A and AM−1

α are similar and there-
fore have the same eigenvalues. In principle, the convergence behavior of GMRES can
be different depending on whether left- or right-preconditioning is being used, but in
our numerical experiments we noticed little or no difference.

Under the assumptions of Theorem 3.1, since M−1
α A = I − Tα it is readily seen

that for all α > 0 the eigenvalues of the preconditioned matrix M−1
α A (or of AM−1

α )
are entirely contained in the open disk of radius 1 centered at (1, 0). In particular, the
preconditioned matrix is positive stable. The smaller the spectral radius of Tα, the
more clustered the eigenvalues of the preconditioned matrix (around 1); a clustered
spectrum often translates in rapid convergence of GMRES.

If a matrix is positive real, then it is positive stable; the converse, however, is not
true. A counterexample is given by a matrix of the form

A =

[
1 0
a 1

]
,

where a is any real number with |a| ≥ 2. The question then arises whether M−1
α A

(or AM−1
α ) is positive real, for in this case the convergence of GMRES(m) would be

guaranteed for all restarts m; see [19] and [53, p. 866]. Unfortunately, this is not true
in general. However, when A is SPD and C = O we can prove that the preconditioned
matrix is positive real provided that α is sufficiently large.

Theorem 4.1. Assume A is SPD, C = O, and B has full rank. Then there
exists α∗ > 0 such that M−1

α A is positive real for all α > α∗. An analogous result
holds for the right-preconditioned matrix, AM−1

α .
Proof. For brevity, we prove the theorem only for the left-preconditioned matrix;

the proof for the right-preconditioned one is similar. Up to a positive scalar multiple,
the symmetric part of the preconditioned matrix M−1

α A is given by

B = (S + αI)−1(H + αI)−1A + AT (H + αI)−1(αI − S)−1

(where we have used the fact that ST = −S). This matrix is congruent to

(S + αI)B(S + αI)T = (H + αI)−1A(αI − S) + (S + αI)AT (H + αI)−1,

which, in turn, is congruent to the inverse-free matrix

Z = A(αI − S)(H + αI) + (H + αI)(S + αI)AT .
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A direct calculation shows that

Z =

[
Zα −2αABT

−2αBA 2αBBT

]
,

where

Zα := 2αA2 + 2αBTB + 2α2A + BTBA + ABTB.

We want to show that Z is SPD for sufficiently large α. To this end, we observe that
Z can be split as

Z = 2

[
αA2 −αABT

−αBA αBBT

]
+

[
Mα O
O O

]
,(4.3)

where

Mα := 2α2A + 2αBTB + BTBA + ABTB.

The first matrix on the right-hand side of (4.3) is symmetric positive semidefinite,
since [

αA2 −αABT

−αBA αBBT

]
=

[
αA O
−αB Im

] [
α−1In O
O O

] [
αA −αBT

O Im

]
.

Next, we observe that

Mα = α(2BTB + 2αA) + (BTBA + ABTB)

is similar to a matrix of the form αIn + W , where W = WT is generally indefinite.
This matrix can be made SPD by taking α sufficiently large. Specifically, Mα is SPD
for all α > α∗, where

α∗ = −λmin(BTBA + ABTB)

(note that BTBA + ABTB is generally indefinite). Hence, for α > α∗ the matrix
Z is the sum of two symmetric positive semidefinite matrices; therefore, it is itself
symmetric positive semidefinite. Finally, it must be nonsingular for all α > α∗ (and
therefore positive definite). Indeed, it is clear from (4.3) that when Mα is positive
definite, any null vector of Z must be of the form

x =

[
0
x̂

]
, where x̂ ∈ R

m.

But then

Zx = 2

[
αA2 −αABT

−αBA αBBT

] [
0
x̂

]
=

[
−2αABT x̂
2αBBT x̂

]
,

which cannot be zero unless x̂ = 0, since BT has full column rank and A is nonsingular.
Hence Z has no nontrivial null vectors for α > α∗. This shows that the symmetric
part of the preconditioned matrix is SPD for all α > α∗, since it is congruent to a
matrix which is SPD for all such values of α.

It is worth mentioning that in all cases that we were able to check numerically,
we found the symmetric part of the preconditioned operator to be positive definite
already for rather small values of α.

More refined bounds and clustering results for the eigenvalues of M−1
α A can be

found in [55].
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5. Numerical experiments. In this section we present a sample of numerical
experiments conducted in order to assess the effectiveness of the alternating algorithm
(2.1) both as a stationary iterative scheme and as a preconditioner for GMRES. All
experiments were performed in Matlab. Our codes have not been optimized for highest
efficiency and therefore we do not report timings, but we do provide cost estimates
for some of the test problems. We think that the results of the experiments presented
here provide evidence of the fact that our approach is worth further consideration.

We target matrices from different application areas, but mostly from PDE prob-
lems. In all our runs we used a zero initial guess and stopped the iteration when
the relative residual had been reduced by at least six orders of magnitude (i.e., when
||b −Axk||2 ≤ 10−6||b||2).

5.1. Second order equations in first order system form. Let Ω ⊂ R
d

(d = 2, 3) be a bounded open set. Here we consider the numerical solution of boundary
value problems for the following second order elliptic PDE:

−∇ · (K∇ p) = g in Ω,(5.1)

where K = K(r) is a strictly positive function or tensor for r ∈ Ω̄ and g(r) is a given
forcing term. Equation (5.1) is complemented by appropriate boundary conditions.

The PDE (5.1) is equivalent to the following system of two first order PDEs:{
K−1 u −∇ p = 0,
−∇ · u = g.

(5.2)

Discretization of these equations leads to large sparse linear systems in saddle point
form (1.2).

We begin with the simplest possible case, namely, Poisson’s equation on the unit
square:

−∆p = −∇ · (∇ p) = g in Ω = [0, 1] × [0, 1].

This corresponds to taking K ≡ 1 in (5.1). We discretize form (5.2) of the problem
using finite differences with a forward difference for the gradient and a backward
difference for the divergence. Using an N ×N uniform grid with mesh size h = 1

N+1

results in a linear system of type (1.2) with n = 2N2 and m = N2, for a total system
size of 3N2 equations in as many unknowns.

As shown in [6], for this model problem Fourier analysis at the continuous (differ-
ential operator) level can be used to completely analyze the spectrum of the iteration
operator Tα. This allows us to find the optimal value αopt of the parameter as a func-
tion of h, showing that the spectral radius for the stationary iteration (2.1) behaves

as 1 − c
√
h as h → 0. The optimal value αopt itself behaves as h− 1

2 as h → 0. More
interestingly, the spectral analysis in [6] indicates that when GMRES acceleration is
used, a better choice is to use a small value of α, for it can be shown that for α ∈ (0, 1)
the eigenvalues of the preconditioned matrix lie in two intervals which depend on α,
but do not depend on h, resulting in h-independent convergence. In particular, α can
always be chosen so as to have convergence within 2–3 iterations, uniformly in h.

This behavior is illustrated in Table 5.1. We take the forcing term to be the
function g(x, y) = sinπx sinπy and we impose Neumann boundary conditions for
x = 0, x = 1, and homogeneous Dirichlet boundary conditions for y = 0, y = 1. The
numerical results are in agreement with the theoretical analysis. In particular, note
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Table 5.1

Two-dimensional Poisson’s equation. Comparison of iterative scheme optimized as an itera-
tive solver, full GMRES without preconditioner, GMRES with the optimized iterative scheme as a
preconditioner and iterative scheme optimized for GMRES.

GMRES
h Iterative No Prec. Preconditioned Optimized

1/10 66 54 14 2
1/25 103 140 19 2
1/50 146 286 25 2
1/100 207 574 34 2

that convergence is attained in two steps (independent of h) when the iteration is
optimized for GMRES acceleration. Here we used α = 0.001, but the behavior of the
preconditioned iteration is not very sensitive to the choice of α ∈ (0, 1).

In Figure 5.1 we display the eigenvalues of the preconditioned matrix M−1
α A in

the case of h = 1
10 for two values of α. On the left we used the value α = αopt that

minimizes the spectral radius, which is given by ρ(Tαopt) = 0.8062. On the right we
used α = 0.01, showing the clustering near 0 and 2 predicted by the theory developed
in [6]. Now the spectral radius of the iteration matrix is very close to 1. The cluster
near 0 contains m = 81 eigenvalues, the one near 2 the remaining n = 162. It should
be noted that the (tiny) imaginary part in Figure 5.1(b) is due to round-off error,
since the eigenvalues are real for small α; see [6, 55].
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Fig. 5.1. Eigenvalues of preconditioned matrices for the Poisson problem on a 10 × 10 grid.

Next we consider a somewhat harder problem, namely, the anisotropic equation

−100 pxx − pyy = g in Ω = [0, 1] × [0, 1].

Since this problem has constant coefficients, the technique used in [6] for Poisson’s
equation can be used to optimize the method. The results in Table 5.2 show that the
anisotropy in the coefficients drastically decreases the rate of convergence. However,
in this case there is an easy fix: as the results reported in Table 5.3 show, it is enough
to apply the scaling (2.6) to restore the effectiveness of the solver. We note that a
similar scaling has been used in [13] in a somewhat different context.



PRECONDITIONING GENERALIZED SADDLE POINT PROBLEMS 33

Table 5.2

Results for two-dimensional problem with anisotropic coefficients.

GMRES
h Iterative No Prec. Preconditioned Optimized

1/10 709 186 34 29
1/25 > 1000 651 44 31
1/50 > 1000 > 1000 52 31
1/100 > 1000 > 1000 59 31

Table 5.3

Results for two-dimensional problem with anisotropic coefficients, diagonally scaled.

GMRES
h Iterative No Prec. Preconditioned Optimized

1/10 138 100 15 2
1/25 210 344 17 2
1/50 292 > 500 22 2
1/100 400 > 500 29 2

Finally, we consider a more difficult problem with large jumps in the coefficients
K. The system is discretized using a discontinuous Galerkin finite element scheme.
This radiation diffusion problem arises in a nuclear engineering application and was
supplied to us by James Warsa of Los Alamos National Laboratory. For more details,
see [60] and the references therein. For this problem n = 2592, m = 864, n+m = 3456,
and A contains 93,612 nonzero entries. Here C 
= O (and indeed it is SPD).

The results for this problem are presented in Table 5.4, where the entries in the
first row correspond to GMRES with diagonal preconditioning (2.6). We give results
for full GMRES and for restarted GMRES with restart every 20 steps. Here we
cannot apply Fourier analysis to optimize the choice of α as we did in the constant
coefficient cases. Therefore, we experiment with different values of α. While the
fastest convergence rate for the stationary iterative methods correspond to α = 0.25,
a somewhat bigger α works best if the method is used as a preconditioner for GMRES.
In any case the method is not overly sensitive to the choice of α when GMRES
acceleration is used. We stress here again the importance of the diagonal scaling
(2.6), which results in a reduction by a factor of two in the number of iterations for
this problem.

5.2. Stokes and Oseen problems. In this section we present a few results for
discretizations of Stokes and Oseen problems. Recall that the Stokes system is{−∆u + ∇ p = f ,

∇ · u = 0
(5.3)

in Ω ⊂ R
d, together with suitable boundary conditions. Here u denotes the velocity

vector field and p the pressure scalar field. Discretization of (5.3) using stabilized
finite elements leads to saddle point problems of the type (1.2) with a symmetric
positive definite A and a symmetric positive semidefinite C.

The Oseen equations are obtained when the steady-state Navier–Stokes equations
are linearized by Picard iteration:{−ν∆u + (v · ∇)u + ∇ p = f ,

∇ · u = 0 .
(5.4)

Here the vector field v is the approximation of u from the previous Picard iteration.
The parameter ν > 0 represents viscosity. Various approximation schemes can be used
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Table 5.4

Results for discontinuous radiation diffusion equations.

α Iterative GMRES GMRES(20)
– 697 > 1000

0.1 750 155 239
0.2 375 100 113
0.25 257 97 101
0.3 304 89 100
0.4 404 85 95
0.5 504 85 100
0.6 604 81 98
0.7 704 80 108
0.8 805 80 115
0.9 905 80 120
1.0 1005 82 135

to discretize the Oseen problem (5.4) leading to a generalized saddle point system
of type (1.2). Now the A block corresponds to a discretization of the convection-
diffusion operator L[u] := −ν∆u+(v ·∇)u. It is nonsymmetric, but for conservative
discretizations, the symmetric part is positive definite.

We generated several test problems using the IFISS software package written
by Howard Elman, Alison Ramage, and David Silvester. We used this package to
generate discretizations of leaky lid driven cavity problems for both the Stokes and
Oseen equations. The discretization used is stabilized Q1-P0 finite elements. In
all cases the default value of the stabilization parameter (β = 0.25) was used. It
should be mentioned that the matrices generated by this package are actually singular,
since B has rank m − 2. This does not cause any difficulty to the iterative solvers
considered here. In particular, even if λ = 1 is now an eigenvalue of the iteration
matrix Tα = I − M−1

α A, the stationary iteration is still convergent, with a rate of
convergence governed by γ(Tα) := max{ |λ|; λ ∈ σ(Tα), λ 
= 1}.

For the Stokes problem we used a 16 × 16 grid. For the Oseen problem we used
two grids, 16 × 16 and 32 × 32. The first grid corresponds to n = 578 and m = 256,
for a total of 834 unknowns. For the second grid n = 2178 and m = 1024, for a
total of 3202 unknowns. Two values of the viscosity parameter were used for the
Oseen problems, ν = 0.01 and ν = 0.001. We experiment with both full GMRES and
GMRES(20). Diagonal scaling (2.6) greatly improves the rate of convergence in all
cases, and it is used throughout.

Table 5.5 contains results for the Stokes problem with both exact and inexact
solves. Although there is no value of α that yields convergence in two steps, the al-
ternating iteration is able to significantly improve the convergence of GMRES. Note
that the behavior of the preconditioned iteration is not overly sensitive to the choice
of α; in contrast, the rate of convergence of the stationary iteration without GMRES
acceleration depends strongly on α. Since the (average) cost of a preconditioned
GMRES(20) iteration is approximately three times the cost of an unpreconditioned
iteration, the preconditioner allows for a saving of about a factor of two over un-
preconditioned GMRES(20), when using the “best” values of α. Better results are
obtained with inexact solves corresponding to incomplete factorizations. We used
drop tolerance-based incomplete Cholesky for the first system in (2.1) and ILU for
the second one. In both cases the drop tolerance was set to tol = 0.05. For α ≥ 0.1 the
incomplete Cholesky factor of H+αI is very sparse, with about 25% of the nonzeros
in the coefficient matrix itself. The ILU factors of S+αI, for this particular example,
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Table 5.5

Results for Stokes problem.

Exact solves Inexact solves
α Iterative GMRES GMRES(20) GMRES GMRES(20)
– 103 194

0.01 > 1000 101 205 210 > 500
0.1 801 53 60 58 62
0.2 135 33 36 35 36
0.3 78 29 30 32 30
0.4 107 29 34 33 35
0.5 134 30 39 37 41
0.6 137 32 47 40 48
0.7 165 35 51 42 54
0.8 222 37 58 44 59
0.9 250 39 63 45 64
1.0 277 42 67 46 68

Table 5.6

Results for Oseen problem on 16 × 16 grid, ν = 0.01.

Exact solves Inexact solves
α Iterative GMRES GMRES(20) GMRES GMRES(20)
– 353 > 500

0.01 > 1000 105 268 179 > 500
0.1 > 1000 58 66 163 > 500
0.2 > 1000 38 39 107 > 500
0.3 > 1000 29 29 82 166
0.4 842 25 25 70 114
0.5 474 23 23 61 89
0.6 301 22 22 50 62
0.7 203 23 23 43 52
0.8 149 23 23 40 50
0.9 157 24 25 39 49
1.0 170 26 27 40 55
1.1 183 27 30 37 46
1.2 197 29 33 38 51

have around 35% of the nonzeros in the complete factors. As a result, the cost of
applying the preconditioner is reduced by about a factor of four (from 62.6 × 103 to
15.4×103 operations, per iteration). It can be seen that the rate of convergence dete-
riorates only slightly. This deterioration is more than compensated by the lower cost
per iteration. Moreover, the set-up cost goes down from 292× 103 operations for the
complete factorizations to 81 × 103 for the incomplete ones. Compared to the exact
case, the overall reduction in the total number of operations is more than a factor of
two for α between 0.4 and 1, while total storage for the preconditioner is reduced by
almost a factor of three. Also note that with inexact solves, the (average) cost of a
preconditioned GMRES(20) iteration is approximately one and a half times the cost
of an unpreconditioned iteration. Hence, for the best values of α, the preconditioner
results in a reduction of the cost of GMRES(20) by more than a factor of four.

Table 5.6 contains experimental results for the Oseen problem on the small
(16 × 16) grid with viscosity ν = 0.01. The results for GMRES with diagonal scal-
ing (2.6), reported in the first row, indicate that the Oseen problem is harder than
the Stokes problem. Here we see a surprising result: while the stationary iteration
tends to converge more slowly than for the Stokes problem, the preconditioned GM-
RES iteration now tends to converge faster. We think this could be due to the fact
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Table 5.7

Results for Oseen problem on 16 × 16 grid, ν = 0.001.

Exact solves Inexact solves
α Iterative GMRES GMRES(20) GMRES GMRES(20)
– 616 > 1000

0.01 > 1000 69 177 162 > 1000
0.1 > 1000 42 55 149 > 1000
0.2 > 1000 32 37 131 > 1000
0.3 > 1000 22 28 112 > 1000
0.4 > 1000 22 22 101 > 1000
0.5 > 1000 22 22 90 > 1000
0.6 > 1000 21 21 86 > 1000
0.7 965 21 21 70 664
0.8 713 21 21 76 > 1000
0.9 552 21 21 71 275
1.0 444 22 22 60 166
1.1 364 22 23 53 228
1.2 302 23 24 54 108
1.5 239 25 29 53 137
2.0 286 31 42 56 151

that the coefficient matrix has a more substantial skew-symmetric part in this case,
and preconditioning with the (shifted) skew-symmetric part becomes more effective.
Now GMRES(20) does not converge within 500 iterations without preconditioning.
Full GMRES requires about 5.7 times more flops than the stationary iteration with
α = 0.8, and about 17 times more than the preconditioned iteration. Note that this
estimate includes the set-up time for the preconditioner. The results obtained with
inexact solves (by incomplete factorization) show some deterioration (about a fac-
tor of two for the “best” α) in convergence rates. This deterioration is more than
compensated by the reduced cost of each preconditioned iteration.

In Table 5.7 we report results for the Oseen problem on the 16 × 16 grid and
a viscosity parameter ν = 0.001. Generally speaking, the Oseen problem becomes
harder to solve as the viscosity gets smaller; see the results for diagonally scaled
GMRES, and for the stationary iteration. However, the combination of the iteration
and GMRES acceleration results in even faster convergence than in the previous
case of ν = 0.01. In Figure 5.2 we display the eigenvalues of the preconditioned
matrix corresponding to the Oseen problem on the 16× 16 grid. The plot on the left
corresponds to a viscosity ν = 0.01 and the one on the right to ν = 0.001; we used the
values of α that resulted in the smallest number of preconditioned GMRES iterations
(α = 0.6 and α = 0.8, respectively). Note the stronger clustering of the spectrum for
the case with ν = 0.001.

Unfortunately, this apparent robustness with respect to ν is lost as soon as the
exact solves in (2.1) are replaced by inexact solves by incomplete factorization, espe-
cially with restarted GMRES. The same value of the drop tolerance tol = 0.05 was
used in all cases. Whether it is possible to solve the inner problems inexactly and still
preserve robustness with respect to ν remains an open question.

Finally, in Table 5.8 we present results for the Oseen problem with ν = 0.001 on
the finer grid. The preconditioned GMRES iteration appears to be fairly robust with
respect to the mesh size h and the viscosity parameter ν when exact solves are used.

5.3. A problem with singular A. Finally, we consider a saddle point problem
arising in geophysics and supplied to us by Eldad Haber of Emory University; see
[28, 33, 34]. In this application the submatrix A is symmetric positive semidefinite
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Fig. 5.2. Eigenvalues of preconditioned matrices for the Oseen problem on a 16 × 16 grid.

Table 5.8

Results for Oseen problem with exact solves on 32 × 32 grid, ν = 0.001.

α Iterative GMRES GMRES(20)
– > 1000 > 1000

0.1 > 1000 52 58
0.2 > 1000 36 38
0.3 > 1000 32 32
0.4 > 1000 29 30
0.5 > 1000 28 29
0.6 > 1000 28 34
0.7 > 1000 28 40
0.8 > 1000 39 42
0.9 757 31 44
1.0 574 33 47
1.5 684 43 55
2.0 864 53 121

and singular. In the example at hand n = 1241, m = 729, n + m = 1970, and A
contains 25,243 nonzeros. The A block has rank(A) = 876. In this problem, C = O.

We present results for this problem in Table 5.9. Diagonal scaling (2.6) drastically
improves the convergence of the preconditioned iterations. However, the convergence
of the stationary iteration (2.1) without GMRES acceleration remains extremely slow.
Likewise for GMRES with no preconditioning or diagonal preconditioning alone. The
results with inexact solves in Table 5.9 were obtained by replacing the exact solve
with no-fill incomplete factorizations, IC(0) and ILU(0). Again we see a deteriora-
tion in convergence rates, but each iteration is now far cheaper than in the case of
exact solves, resulting in huge savings. When α = 0.3 (but similar results hold for
all the other values of α in the table), the Cholesky factorization of H + αI requires
1.7×106 operations using a minimum degree ordering, resulting in a triangular factor
with 31.5 × 103 nonzeros. The complete factorization of S + αI (using minimum
degree as the initial ordering) costs a staggering 207 × 106 operations with a total
number of nonzeros in the factors exceeding 837× 103. In contrast, the IC(0) factor-
ization of H + αI only required 17.6 × 103 operations and resulted in an incomplete
Cholesky factor with just 5.2× 103 nonzeros; the ILU(0) factorization of S +αI took
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Table 5.9

Results for geophysics problem with singular A.

Exact solves Inexact solves
α Iterative GMRES GMRES(30) GMRES GMRES(30)
– > 500 > 500

0.1 > 1,000 49 60 85 177
0.2 > 1,000 42 42 68 110
0.3 > 1,000 44 62 60 112
0.4 > 1,000 48 92 58 93
0.5 > 1,000 51 98 62 104

76.1× 103 operations and resulted in a total of 21.4× 103 nonzeros in the incomplete
factors.

6. Conclusions and future work. In this paper we have studied the extension
of the alternating method of [2] to generalized saddle point problems. Because these
linear systems have coefficient matrices with singular symmetric part, they are not
positive real. Thus, the convergence analysis carried out in [2] for the positive real
case does not apply, and convergence has to be established using different arguments
from those used in [2]. Other approaches to studying convergence have been proposed
recently in [3] and [6]; see also [8] and [55].

Rather than used as a stand-alone solver, the stationary iteration is best used as
a preconditioner for a nonsymmetric Krylov subspace method, such as GMRES. Here
we have established theoretical properties of the preconditioned matrices that were
relevant for restarted GMRES, at least from a qualitative point of view.

Our numerical experiments with test matrices from several different applications
suggest that the combination of GMRES and the alternating iteration is fairly robust,
and not overly sensitive to the choice of the parameter α. As demonstrated already
in [6] for some model problems, there are important examples of systems of PDEs
where the combination of iteration (2.1) with an appropriate choice of the optimization
parameter α and GMRES acceleration results in an h-independent solver, or with a
weak dependence on h.

Our numerical experiments show that diagonal scaling (2.6) greatly improves the
convergence of the outer iteration. We have also performed some experiments with
inexact solves. For several of our test problems, the rate of convergence suffered
relatively little deterioration, leading to a reduction in overall costs in many cases.
However, we also found problems where inexactness in the inner solves resulted in
slow convergence, at least when incomplete factorizations were used.

Future work should focus on developing efficient implementations of the algo-
rithm, with particular attention to the problem of striking a balance between the rate
of convergence of the outer (preconditioned) iteration, and the amount of work spent
performing the inner (inexact) solves. Here we have presented a few results using
incomplete factorizations, but iterative methods may be a better (more flexible) op-
tion. For the Oseen equations with small viscosity parameter ν, it may be difficult
to find inexact inner solves that do not lead to a serious deterioration of the rate of
convergence of the outer iteration. The shifted symmetric part (4.1) has condition
numbers often of the order of 10 or less, and is typically very easy to solve, at least in
PDE problems. The solution of the shifted skew-symmetric part (4.2), on the other
hand, is somewhat more problematic and warrants further research. Preliminary re-
sults show that when α is not too small, fairly accurate approximate solutions to the
linear system (4.2) can be obtained in just 3–4 iterations of GMRES preconditioned
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with an incomplete factorization. This inner-outer scheme, which requires using a
flexible Krylov method (like FGMRES) as the outer iteration, is currently being in-
vestigated.
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Abstract. A generalization of the cyclic Jacobi algorithm is proposed that works in an arbitrary
compact Lie algebra. This allows, in particular, a unified treatment of Jacobi algorithms on different
classes of matrices, e.g., skew-symmetric or skew-Hermitian Hamiltonian matrices. Wildberger has
established global, linear convergence of the algorithm for the classical Jacobi method on compact
Lie algebras. Here we prove local quadratic convergence for general cyclic Jacobi schemes.

Key words. Jacobi algorithm, compact Lie algebras, real root space decomposition, quadratic
convergence, cost function, optimization

AMS subject classifications. 65F15, 17B20, 41A25, 74P20

DOI. 10.1137/S0895479802420069

1. Introduction. The Jacobi algorithm for diagonalizing real symmetric or com-
plex Hermitian matrices is a well-known eigenvalue method from numerical linear
algebra [14]. The classical version of the algorithm has been first proposed by Ja-
cobi (1846) [25], who successively applied Givens rotations that produce the largest
decrease in the distance to diagonality. In contrast, modern approaches use cyclic
sweep strategies to minimize the sum of squares of off-diagonal entries. Cyclic sweep
strategies are more efficient than Jacobi’s original approach, as one avoids the time
consuming search for the largest off-diagonal element. Moreover, cyclic strategies are
known to be well suited for parallel computing.

Variants of the Jacobi algorithm have been applied to various structured eigen-
value problems, including, e.g., the real skew-symmetric eigenvalue problem, [16, 24,
30], SVD computations [27], nonsymmetric eigenvalue problems [3, 6, 7, 34, 36], com-
plex symmetric eigenproblems [8], and normal matrices [13]. For applications to dif-
ferent types of generalized eigenvalue problems, we refer to [2, 4, 15, 37]. For Jacobi
methods applied to problems in systems theory, see [18, 19, 20].

The starting point for this paper is the Jacobi algorithm for the real skew-
symmetric eigenvalue problem. For previous work in this direction, see [30] and,
more recently, [16, 24] as well as the related papers [9, 28]. They all have in common
that some kind of a block Jacobi method is used, i.e., multiparameter transforma-
tions that annihilate more than one pair of off-diagonal elements at the same time.
In contrast, our approach exclusively uses one-parameter transformations.

Since the set of skew-symmetric matrices forms a Lie algebra it is not too surpris-
ing that the Jacobi algorithm can be extended to a general Lie algebraic setting. To
our knowledge Wildberger [38] was the first who proposed a generalization of the clas-
sical Jacobi algorithm to arbitrary compact Lie algebras. The classification of compact
Lie algebras shows that this approach essentially includes (i) the real skew-symmetric,
(ii) the complex skew-Hermitian, (iii) the real skew-symmetric Hamiltonian, (iv) the
complex skew-Hermitian Hamiltonian eigenvalue problem, and (v) some exceptional
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cases. One might think that an algorithm for case (i) is also appropriate for case (iii),
analogously for (ii) and (iv). However, to stay within the corresponding Lie algebra
requires that the transformations be structure preserving, and therefore it is neces-
sary to distinguish between these four cases. Nevertheless, following Wildberger, one
can treat the above mentioned problems (i)–(v) on the same footing, meaning that
the description and analysis of the Jacobi method can be carried out simultaneously
for all four problems. This is exactly what is done in this paper, with an emphasis
on establishing local quadratic convergence. There are several advantages of such an
abstract approach. First, the theory is independent of any special coordinate repre-
sentation of the underlying Lie algebra. This coordinate-free approach forces one to
formulate the basic features of the algorithm in an abstract way, thus enabling one to
work out the essential features of Jacobi algorithms. Moreover, the local convergence
analysis for the numerical algorithm is in all these cases exactly the same. Our con-
vergence analysis extends that described in the Ph.D. thesis by the third author [24],
where elementary tools from global analysis were first used to prove local quadratic
convergence for Jacobi-type methods. Questions of global convergence will not be
discussed in this paper, albeit we expect that the ideas behind the proof of global
convergence presented in [35] can be adopted. Instead, we restrict our discussion to
local convergence properties.

The reader may have noticed that the real symmetric eigenvalue problem does not
exactly fit into the framework developed in this paper, as the set of real symmetric
matrices does not form a Lie algebra. In contrast, the Hermitian eigenvalue problem
does. The reason is simply that the set of complex Hermitian matrices is up to
multiplication with

√
−1 isomorphic to the compact Lie algebra of skew-Hermitian

matrices. Of course, this process does not work for real symmetric matrices and
therefore requires a different approach to that of this paper.

The general-purpose algorithm developed in this paper reduces to the skew-
symmetric eigenvalue problem considered in [16] in the following way. Although the
cited author uses block Jacobi methods to reduce the off-norm, it is possible to for-
mulate an algorithm that uses only one-parameter rotations. Therefore the choice of
the torus algebra is essential, because it determines the root spaces and hence the
structure of the rotation matrices.

The paper is organized as follows. Basic definitions and results on Lie algebras
appear in section 2. Furthermore, the structure of compact Lie algebras is analyzed
and examples are given. In section 3 we discuss a cost function which can be regarded
as the natural generalization of the familiar sum of squares function of off-diagonal
entries. The critical points and the Hessian of this off-norm function are computed.
The Jacobi algorithm on compact Lie algebras is formulated in section 4. Explicit
formulas for the step size selections are given in section 5. The main result, namely
the local quadratic convergence of the Jacobi algorithm, is presented in section 6.
Finally, section 7 presents a pseudo code of the algorithm and section 8 includes
some numerical experiments for the set of skew-Hermitian Hamiltonian matrices. The
pseudo code is translated into a numerical algorithm for that case.

We like to emphasize that the notion of Hamiltonian matrices used in this pa-
per follow the established convention in mathematics and especially Lie group theory.
Thus a matrix is called Hamiltonian if it is skew-symmetric with respect to the stan-
dard symplectic form J . Some authors in linear algebra and systems theory differ
from that definition by referring instead to a Hamiltonian matrix as one that is skew-
Hermitian with respect to J . In the complex case this therefore leads to a different
concept of Hamiltonian and associated symplectic tranformations. In particular, com-
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plex Hamiltonian matrices in the latter sense do not define a complex Lie algebra,
while this is true for the standard definition of Hamiltonian matrices.

2. Preliminaries on Lie algebras. The purpose of this section is to recall some
basic facts and definitions about compact Lie algebras. For further information see,
e.g., [1], [5], or [26]. In what follows, let K denote the fields R, C of real or complex
numbers, respectively.

Definition 1. A K-vector space g with a bilinear product

[·, ·] : g × g −→ g

is called a Lie algebra over K if
(i) [X,Y ] = −[Y,X] for all X,Y ∈ g

(ii) [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).
Example 2. Let K = R or C. Classical Lie algebras are given for example by

sl(n,K) := {X ∈ K
n×n | trX = 0},

so(n,K) := {X ∈ K
n×n | X� + X = 0},

sp(n,K) := {X ∈ K
2n×2n | X�J + JX = 0},

where

J =

[
0 In

−In 0

]
and In denotes the (n× n)-identity matrix.

A Lie algebra g over R (C) is called real (complex). A Lie subalgebra h is a
subspace of g for which [h, h] ⊂ h holds. In what follows, g is always assumed to be
a finite dimensional Lie algebra. For any X ∈ g, the adjoint transformation is the
linear map

adX : g −→ g, Y �−→ [X,Y ](1)

and

ad : g −→ End(g), Y �−→ adY(2)

is called the adjoint representation of g.
By means of (1) and (2), properties (i) and (ii) of Definition 1 are equivalent to

adXY = −adY X and ad[X,Y ] = adXadY − adY adX , respectively. It follows immedi-
ately from property (i) that adXX = 0 for all X ∈ g.

Definition 3. Let g be a finite dimensional Lie algebra over K. The symmetric
bilinear form

κ : g × g −→ K, κ(X,Y ) �−→ tr(adX ◦ adY )(3)

is called the Killing form of g.
Let K = R or C. Then

sl(n,K) : κ(X,Y ) = 2 n tr(XY ) for n ≥ 2,

so(n,K) : κ(X,Y ) = (n− 2)tr(XY ) for n ≥ 3,

sp(n,K) : κ(X,Y ) = 2(n + 1)tr(XY ) for n ≥ 1;
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cf. [17, p. 221], or [10, VI, 4]. Note that in [17], the notation sp(2n,K) is used instead
of sp(n,K).

A Lie group is defined as a group together with a manifold structure such that
the group operations are smooth functions. For an arbitrary Lie group G, the tangent
space T1G at the unit element 1 ∈ G possesses a Lie algebraic structure. This tangent
space is called the Lie algebra of the Lie group G, denoted by g. The tangent mapping
of the conjugation mapping in G at 1,

conjx(y) := xyx−1

leads to the so-called adjoint representation of G

Ad : G× g −→ g;

cf. [5, p. 2]. Considering now the tangent mapping of Ad with respect to g at
1 leads to the adjoint transformation (1). If G is a matrix group, then the ele-
ments of the corresponding Lie algebra can also be regarded as matrices; cf. [26,
p. 53]. In this case the adjoint representation of g ∈ G applied to X ∈ g is given
by

AdgX = gXg−1,

i.e., by the usual similarity transformation of matrices, and the adjoint transformation
is given by

adY X = Y X −XY.

A basic property of the Killing form κ defined by (3) is its Ad-invariance, i.e.,

κ(AdgX,AdgY ) = κ(X,Y ) for all X,Y ∈ g, g ∈ G.(4a)

Differentiating the left side of this equation with respect to g gives

Dκ(AdgX,AdgY ) · gZ = κ(Adg(adZX),AdgY ) + κ(AdgX,Adg(adZY )),

where gZ ∈ TgG is in the tangent space of G at g. Therefore, using (4a) we get

κ(adXY,Z) = −κ(Y, adXZ) for all X,Y, Z ∈ g.(4b)

Definition 4. A real finite dimensional Lie algebra g is called compact if there
exists a compact Lie group with Lie algebra g.

Example 5. The following Lie algebras are compact (cf. [26, pp. 33, 36, and 66ff]):

so(n,R) := {S ∈ R
n×n | S� = −S},

u(n,C) := {X ∈ C
n×n | X∗ = −X},

su(n,C) := {X ∈ C
n×n | X∗ = −X, trX = 0},

sp(n) := u(2n,C) ∩ sp(n,C).

A finite dimensional Lie algebra g admits a positive definite Ad-invariant bilinear
form (cf. [26, p. 196, Proposition 4.24]). This property is used to show that the
Killing form on compact Lie algebras is negative semidefinite (cf. [26, p. 197, Corollary
4.26]).
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A Lie algebra g is called Abelian if [g, g] = 0. Let t ⊂ g denote a maximal Abelian
subalgebra of the compact Lie algebra g. Such a subalgebra is called torus algebra
and the dual space is denoted as t∗. The maximal torus theorem (cf. [5, p. 152]) states
that any two torus algebras, say t, t′, of a compact Lie algebra, are conjugate, i.e.,
there exists a g ∈ G, such that

Adgt = t
′.

Moreover, for a given X ∈ g and a fixed torus algebra t there exists g ∈ G such
that

AdgX ∈ t.

The maximal torus theorem therefore generalizes the well-known fact that any skew-
symmetric matrix is unitarily diagonalizable over C.

To define the Jacobi algorithm one needs a set of optimizing directions in a com-
pact Lie algebra. This is given by the real root space decomposition, which is an
important tool in analyzing the structure of Lie algebras. For the remainder of this
section, the root space decomposition of a compact Lie algebra is explained. Exam-
ple 8 illustrates the correspondence between the root space decomposition and the
off-diagonal entries of a skew-Hermitian matrix.

Lemma 6. Let g be a compact Lie algebra and X ∈ g. Then

ad∗
X = −adX for all X ∈ g,

where adjoint (·)∗ is defined relative to the Ad-invariant inner product on g.
Proof. Denote by B the Ad-invariant inner product on g; cf. [26, p. 197, Corollary

4.26]. Let X,Y, Z ∈ g. Then it holds that

B(adXY,Z) = B(Y,−adXZ) = B(−ad∗
XY,Z).

Now fix a maximal Abelian subalgebra t ⊂ g. For T1, T2 ∈ t, it holds that
adT1adT2 = adT2adT1 and hence

{adT | T ∈ t}

has a simultaneous eigenspace decomposition. Let X denote a simultaneous eigenvec-
tor of adT for all T ∈ t. By Lemma 6, adT possesses only purely imaginary eigenvalues
and hence one has ad2

TX = −(α(T ))2X, with α ∈ t∗. To fix notation, a notion of pos-
itivity on t∗ is introduced. This can be done for example via lexicographic ordering;
cf. [26, p. 109]. For α > 0, we write

gα = {X ∈ g | (adT )2X = −(α(T ))2X for all T ∈ t}.

If gα 	= 0, we call gα a real root space and α a root. The set of all positive roots is
denoted by Σ+ ⊂ t∗. Note that our notation slightly differs from that in the literature.
For example, Duistermaat and Kolk [5] denote the real root spaces by (gα⊕ g−α)∩ g,
where gα, g−α are the complex root spaces of the complexification of g.

We summarize the above results.
Proposition 7 (real root space decomposition). Let g be a compact Lie algebra

and let Σ+ denote the set of positive roots. Then g decomposes orthogonally with
respect to the Killing form into

g = t ⊕
∑

α∈Σ+

gα.(5)
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Eα

α(T )Fα

−α(T )2Eα

gα

adT

adT

Fig. 2.1. Action of adT in the real root space gα with respect to an orthogonal basis {Eα, Fα}.

Each real root space gα is of real dimension 2. It has an orthonormal basis {Eα, Fα}
with respect to κ such that for any T ∈ t and α ∈ Σ+ (see Figure 2.1):

(i) adTEα = α(T )Fα,
(ii) adTFα = −α(T )Eα.

Proof. The first part is not proven and the reader is referred to [5, p. 146] and
[26, p. 96, Proposition 2.21]. Let Eα ∈ gα arbitrary and let T ∈ t with α(T ) 	= 0.
Set

Fα :=
1

α(T )
adTEα.

Then Fα 	= 0 since ad2
TEα = −α(T )2Eα 	= 0 and κ(Fα, Eα) = 0 because

κ(adTEα, Eα) = κ(Eα,−adTEα) = −κ(adTEα, Eα).

In what follows, the following notation will be convenient. For a, b ∈ R and
X = aEα + bFα ∈ gα define

X := −bEα + aFα.(6)

Example 8. Let i :=
√
−1. Let g = su(3,C) and fix a torus algebra t by

t =

⎧⎨⎩
⎡⎣ix1 0 0

0 ix2 0
0 0 ix3

⎤⎦ ∣∣∣∣∣ x1, x2, x3 ∈ R,

3∑
k=1

xk = 0

⎫⎬⎭ .
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Then the real root spaces and the corresponding roots turn out to be

gα1 =

⎧⎨⎩
⎡⎣ 0 λ + iν 0
−λ + iν 0 0

0 0 0

⎤⎦ ∣∣∣∣∣ λ, ν ∈ R

⎫⎬⎭ , α1

⎛⎝⎡⎣ix1 0 0
0 ix2 0
0 0 ix3

⎤⎦⎞⎠= x1 − x2,

gα2
=

⎧⎨⎩
⎡⎣ 0 0 λ + iν

0 0 0
−λ + iν 0 0

⎤⎦ ∣∣∣∣∣ λ, ν ∈ R

⎫⎬⎭ , α2

⎛⎝⎡⎣ix1 0 0
0 ix2 0
0 0 ix3

⎤⎦⎞⎠= x1 − x3,

gα3
=

⎧⎨⎩
⎡⎣0 0 0

0 0 λ + iν
0 −λ + iν 0

⎤⎦ ∣∣∣∣∣ λ, ν ∈ R

⎫⎬⎭ , α3

⎛⎝⎡⎣ix1 0 0
0 ix2 0
0 0 ix3

⎤⎦⎞⎠= x2 − x3.

The way real root spaces of a compact Lie algebra are related to each other is
similar to the way complex root spaces of a complex semisimple Lie algebra [26, p. 96]
are related. We write α > β if α− β is positive.

Lemma 9. Let gα and gβ be real root spaces of the compact Lie algebra g. Without
loss of generality assume α > β. Then

[gα, gβ ] = gα+β ⊕ gα−β

holds, where

gα+β := 0 if α + β 	∈ Σ+,

gα−β := 0 if α− β 	∈ Σ+.

Proof. Direct consequence of the definition of real root spaces [5, p. 146] and the
relations between complex root spaces [26, p. 88, Proposition 2.5].

We need the following lemmata for further calculation.
Lemma 10. Let {Eγ , Fγ} be a basis of the real root space gγ as in Proposition 7.

Then Tγ := [Eγ , Fγ ] lies in the maximal torus algebra t and moreover, γ(Tγ) > 0.
Proof. By the Jacobi identity and Proposition 7 for an arbitrary H ∈ t it holds

that

adH [Eγ , Fγ ] = 0.

Hence, [Eγ , Fγ ] ∈ t. Now let X = x Eγ + y Fγ with (x, y) ∈ R
2 − {0} and let B be a

positive definite bilinear Ad-invariant form on g; cf. [26, p. 196]. Moreover (cf. (6))

γ([Eγ , Fγ ])B
(
X,X

)
= B

(
X, ad[Eγ ,Fγ ]X

)
= −y B

(
Eγ , x adEγ

adFγ
Eγ − y adFγ

adEγ
Fγ

)
+x B

(
Fγ , x adEγadFγEγ − y adFγadEγFγ

)
= −y B

(
Eγ ,−y adFγ

adEγ
Fγ

)
+ x B

(
Fγ , x adEγ

adFγ
Eγ

)
= y2 B

(
adEγFγ , adEγFγ

)
+ x2 B

(
adEγFγ , adEγFγ

)
> 0,

since [Eγ , Fγ ] 	= 0.
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Lemma 11. For arbitrary H ∈ t and any Ad-invariant bilinear form (·, ·) it holds
that

(H,Tγ) =
γ(H)

γ(Tγ)
(Tγ , Tγ) for all γ ∈ Σ+.

Proof. We use the definition of Tγ , cf. Lemma 10. Let H ∈ t. Then

γ(Tγ)(H, adEγFγ) = γ(Tγ)(adHEγ , Fγ)

= γ(H)γ(Tγ)(Fγ , Fγ)

= γ(H)(ad[Eγ ,Fγ ]Eγ , Fγ)

= γ(H)(−adEγadEγ
Fγ , Fγ)

= γ(H)(Tγ , Tγ).

3. A cost function. Since Jacobi-type methods can be considered as optimiza-
tion algorithms [22, 23], it is instrumental to make a thorough analysis of the cost
function we want to minimize. For the Jacobi algorithm, one considers the so-called
off-norm function of a square matrix X = (xij), defined as the sum of squares of all
its off-diagonal elements

off : R
n×n −→ [0,∞), off(X) =

∑
i �=j

x2
ij .

In this section, a generalization of the off-norm of matrices is discussed. The set of
critical points is computed as well as the Hessian. These calculations are essential
steps towards the analysis of the local convergence properties of our algorithm.

Let G be a compact Lie group with compact Lie algebra g and real root space
decomposition (5). Let κ denote the Killing form on g. Denote by

p : g −→ t(7)

the orthogonal projection on t with respect to κ. Any X ∈ g decomposes into

X = X0 +
∑

α∈Σ+

Xα

corresponding to (5), with X0 := p(X). For a given S ∈ g let

OS := {AdgS | g ∈ G}

denote the adjoint orbit of S. A cost function is defined as

f : OS −→ [0,∞), X �−→ −κ(X −X0, X −X0).(8a)

By negative semidefiniteness of κ on g, f is nonnegative. By orthogonality of the root
space decomposition (5), it holds that

f(X) = −κ(X,X) + κ(X0, X0)

and κ(X,X) = κ(S, S) is constant along the orbit OS , cf. (4a). Moreover, by Propo-
sition 7 and Lemma 12, (ii), the cost function defined by (8a) is equal to

f(X) = −κ(S, S) − 2
∑

α∈Σ+

α2(X0).(8b)
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This shows that f is the natural generalization of the off-norm function on a compact
Lie algebra.

We now analyze the cost function (8a) in detail. The following result summarizes
two properties that will be needed for subsequent calculations. Recall that X0 = p(X)
by definition.

Lemma 12. Let g be a compact Lie algebra with fixed maximal torus algebra t ⊂ g.
Let p be as in (7) and X,Y ∈ g. Then the following holds:

(i) p(adY X0) = 0,
(ii) κ(Y0, X −X0) = 0.
Proof. By linearity of the adjoint transformation (4b) and by the root space

decomposition (5) of g it holds that

adY X0 = adY0
X0 +

∑
α∈Σ+

adYα
X0.

The summand adYα
X0 lies in gα for all α ∈ Σ+ and adY0X0 = 0 holds. Hence adY X0

has no t-component and therefore

p(adY X0) = 0.

Statement (ii) is a direct consequence of (7).
Theorem 13. Let κ be the Killing form on the compact Lie algebra g, S ∈ g

arbitrary and p as in (7). Let

f : OS −→ [0,∞), X �−→ −κ
(
X − p(X), X − p(X)

)
as above.

(a) The following statements are equivalent:
(i) X ∈ OS is a critical point of f ,
(ii) adX0X = 0,
(iii) α(X0) Xα = 0 for all α ∈ Σ+.
(b) Let Z be a critical point of f and let adHZ ∈ TZOS be an arbitrary element

of the tangent space at Z. Then the Hessian of f at Z is

Hf (Z) : TZOS × TZOS −→ R,

(adHZ, adHZ) �−→ −2κ(adHZ, adHZ0 − p(adHZ)).

Proof. (a) For arbitrary H,X ∈ g let γ : R −→ OS , γ(t) = Adexp(tH)X, be
a smooth curve through X. The derivative of the cost function (8a) at X can be
calculated in the following way. By Lemma 12 and the Ad-invariance of the Killing
form κ (4b) we have

d

dt

(
f ◦ γ

)
(t)
∣∣∣
t=0

= −2κ(adHX − p(adHX), X −X0)

= −2κ(−adXH + p(adXH), X −X0)

= −2κ(H, adX(X −X0))

= −2κ(H, adX0X).

Hence

Df(X) ≡ 0 ⇐⇒ adX0X ∈ radκ,
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where radκ denotes the radical of the Killing form κ.
On compact Lie algebras, the radical radκ coincides with the center of g [5, p. 148]

and therefore adX0
X has to coincide with its projection on t. Using Lemma 12 again,

one obtains adX0X = 0. Hence for a critical point X it holds that∑
α∈Σ+

adX0
Xα = 0

⇐⇒

adX0
Xα = 0 for all α ∈ Σ+

⇐⇒

α(X0) ·Xα = 0 for all α ∈ Σ+.

(b) By a simple but lengthy computation, for arbitrary H ∈ g and γ(t) :=
Adexp(tH)Z, it follows that

d2

dt2
(f ◦ γ)(t)

∣∣∣
t=0

= − d2

dt2
κ(Adexp(tH)Z − p(Adexp(tH)Z),Adexp(tH)Z − p(Adexp(tH)Z))

∣∣∣
t=0

= −2
d

dt
κ(adHAdexp(tH)Z − p(adHAdexp(tH)Z),Adexp(tH)Z − p(Adexp(tH)Z))

∣∣∣
t=0

= −2κ(ad2
HZ − p(ad2

HZ), Z − Z0) − 2κ(adHZ − p(adHZ), adHZ − p(adHZ))

= −2κ(adHZ,−adHZ + adHZ0) − 2κ(adHZ, adHZ − p(adHZ))

= −2κ(adHZ, adHZ0 − p(adHZ)).

Note that for any ξ ∈ TZOS in the tangent space at a critical point Z, elements
H ∈ g satisfying ξ = adHZ are not uniquely determined. That is ξ = adHZ =
adH+CZ whenever [C,Z] = 0. Nevertheless,

κ(adH+CZ, adH+CZ0 − p(adH+CZ)) = κ(adHZ, adHZ0 − p(adHZ))

holds. Thus the selection of elements H with ξ = adHZ does not affect the validity
of the expression for the Hessian.

The next two lemmata contain information about the restriction of the Hessian to
one dimensional subspaces of TZOS . It turns out that, whenever the critical point Z
is not a global minimum, there exists a one dimensional subspace of TZOS on which
the restriction of the Hessian is negative definite. Hence the cost function possesses
only global minima. A similar argument shows that the local maxima of the cost
function are global. One concludes that all other critical points are saddle points.

Lemma 14. Let β ∈ Σ+ be a real root, Ω 	= 0 an arbitrary element of the real
root space gβ and let Z ∈ OS denote a critical point of the cost function (8a). Let
Z0 ∈ t denote the torus algebra component of Z. Then

β(Z0) 	= 0 implies Hf (Z)(adΩZ, adΩZ) > 0.

Proof. Let β(Z0) 	= 0. Then Zβ = 0 by Theorem 13. As adΩZα has no torus
algebra component for α 	= β, one obtains
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p(adΩZα) = 0 for all α ∈ Σ+.

Moreover, adΩZα lies for any α ∈ Σ+ in the orthogonal complement of gβ (cf.
Lemma 9) and therefore

κ

( ∑
α∈Σ+

adΩZα, adΩZ0

)
= −κ

( ∑
α∈Σ+

adΩZα, adZ0
Ω

)
= 0

also holds. We compute the restriction of the Hessian evaluated at Z to the subspace
R · adΩZ.

1

2
Hf (Z)(adΩZ, adΩZ) = −κ(adΩZ0, adΩZ0) − κ

( ∑
α∈Σ+

adΩZα, adΩZ0

)

= −κ(adΩZ0, adΩZ0)

= −β(Z0)
2κ(Ω,Ω) > 0.

Lemma 15. Let γ ∈ Σ+ be a real root, let {Ω1,Ω2} be some basis of gγ , and let
Z ∈ OS be a critical point of the cost function defined by (8a). Then

Zγ 	= 0 implies Hf (Z)(adΩj
Z, adΩj

Z) < 0

for either j = 1 or j = 2.
Proof. Let Ω ∈ {Ω1,Ω2} such that Ω 	∈ R · Zγ . By Theorem 13, γ(Z0) = 0 and

therefore (cf. (6))

adΩZ0 = −adZ0
Ω = ±γ(Z0)Ω = 0.

The Hessian restricted to the subspace R · adΩZ is

1

2
Hf (Z)(adΩZ, adΩZ) = κ

( ∑
α∈Σ+

adΩZα,
∑

α∈Σ+

p(adΩZα)

)

= κ

( ∑
α∈Σ+

p(adΩZα),
∑

α∈Σ+

p(adΩZα)

)

= κ(adΩZγ , adΩZγ) < 0;

cf. Lemma 10.
As a consequence of the last two lemmata we obtain the following.
Proposition 16.

(i) The local minima of the cost function (8a) are global minima. The set of the
minima is OS ∩ t.

(ii) The local maxima of the cost function (8a) are global maxima. The set of the
maxima is OS ∩ t⊥ where t⊥ denotes the orthogonal complement of t with respect to κ.

Proof. (i) Let Z be a local minimum of (8a); then

Hf (Z)(adΩZ, adΩZ) ≥ 0 for all Ω ∈ g.
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By Lemma 15,

Zγ = 0 for all γ ∈ Σ+.

Hence p(Z) = Z and f(Z) = 0.
(ii) Now let Z be a local maximum of (8a); then

Hf (Z)(adΩZ, adΩZ) ≤ 0 for all Ω ∈ g.

By Lemma 14,

γ(Z0) = 0 for all γ ∈ Σ+.(9)

By comparing (9) with (8b) it follows that f(Z) = −κ(S, S) and therefore Z is a
global maximum of f . It follows immediately from (9) that Z0 ∈ zg, the center of g,
and hence Z ∈ t⊥. Note that t ∩ t⊥ = zg.

The next theorem characterizes the critical points of the cost function (8a).
Theorem 17.

(a) A critical point Z of (8a) is a saddle point if and only if

0 < f(Z) < −κ(S, S).

(b) The set of minima of the cost function (8a) is finite.
Proof. (a) Direct consequence of Proposition 16.
(b) The set of minima of the cost function (8a) is exactly the intersection of OS

with the torus algebra t. By Weyl’s covering theorem [5, p. 153, section 3.7], we
conclude that |OS ∩ t| is finite.

4. The algorithm. As mentioned in the introduction, a Lie algebraic version
of the classical Jacobi algorithm has already been published by Wildberger; cf. [38].
Proceeding from the real root space decomposition (5) of a compact Lie algebra g,
Wildberger decomposes a given Z ∈ g into torus algebra and root space components,
i.e., Z = Z0 +

∑
α Zα. He shows the existence of a sequence of Lie algebra elements

(Z(1), Z(2), . . . ), for which the following holds.

(i) Z(k+1) = AdgkZ
(k), where gk only depends on Z

(k)
α and α is chosen such that

||Z(k)
α || = maxγ∈Σ+ ||Z(k)

γ || ,

(ii) Z(k+1) has no gα component,
(iii) the sequence (Z(k)) converges to some torus algebra element.

The method described in [38] uses only SU(2,C) transformations in a noncyclic man-
ner which is completely analogous to Jacobi’s original approach based on orthogo-
nal transformations to annihilate the off-diagonal elements having greatest modulus;
cf. [25].

We extend this construction by formulating in full generality a cyclic Jacobi algo-
rithm on compact Lie algebras. The algorithm proceeds as follows. Let G1, . . . , GM

be closed one-parameter subgroups of the compact Lie group G. Then in a first step
we minimize the restriction of the cost function (8a) to the orbit of the initial point
Z ∈ g under the adjoint action of G1. Let Z(1) ∈ AdG1Z denote that minimum.
The next step is done by minimizing the restriction of (8a) to AdG2Z

(1) and so on
until arriving at Z(M); cf. Figure 4.1. This procedure is called a sweep, and iterating
sweeps forms the algorithm.

More precisely, let N denote the number of real root spaces of g and choose

B = {Ω1, . . . ,Ω2N}(10)
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Fig. 4.1. Illustration of the first step of the cyclic Jacobi sweep.

as a basis of g/t, where for i = 1, . . . , N , the set {Ω2i−1,Ω2i} denotes orthogonal basis
vectors of the real root space gαi ; cf. Proposition 7. For Ω ∈ B consider

rΩ : OS × R −→ OS , rΩ(X, t) := Adexp(tΩ)X.

Furthermore, step size selections, depending on Ωi ∈ B, i = 1, . . . , 2N , are defined as

t
(i)
∗ : OS −→ R,

t
(i)
∗ (X) :=

{
0, if

(
f ◦ Adexp(tΩi)

)
(X) = f(X) for all t ∈ R

arg mint∈R

(
f ◦ Adexp(tΩi)

)
(X) otherwise.

(11)

To guarantee uniqueness, arg mint∈R

(
f ◦Adexp(tΩi)

)
(X) denotes that t ∈ R being of

smallest absolute value. In case there are two such minimal values ±t, we choose the
positive solution t > 0. A more explicit formula for (11) is given in section 5. Sweeps
are defined as follows.

Cyclic Jacobi Sweep

X
(1)
k := rΩ1

(
X

(0)
k , t

(1)
∗
(
X

(0)
k

))
,

X
(2)
k := rΩ2

(
X

(1)
k , t

(2)
∗
(
X

(1)
k

))
,

...

X
(2N)
k := rΩ2N

(
X

(2N−1)
k , t

(2N)
∗

(
X

(2N−1)
k

))
.

(12)
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The Jacobi algorithm consists of iterating sweeps.

Jacobi’s Algorithm.

1. Let X0, X1, . . . , Xk ∈ OS be given for some k ∈ N.

2. Set X
(0)
k := Xk and define the sequence X

(1)
k , . . . , X

(2N)
k as in (12).

3. Set Xk+1 := X
(2N)
k and continue with the next sweep.

(13)

Note that the smallest Lie algebra containing a root space is isomorphic to
su(2,C), see proof of Proposition 18. Therefore the Lie algebra g is the (nondirect)
sum

g =
∑
N

su(2,C) + zg,

where zg denotes the center of g. Hence sweep operations can in principle be or-
ganized via SU(2,C) suboperations minimizing simultaneously along the directions
{Ω2i−1,Ω2i} for i = 1, . . . , N as has been done by Wildberger [38]. Such an approach
leads to so-called block Jacobi methods as in each step the cost function restricted
to a two-dimensional subset is minimized (cf. [22, 23]); see also [28] for minimization
over higher dimensional subsets. Although in this paper we do not follow this idea
and restrict ourselves to the algorithm as described above, i.e., minimizing along one
dimensional subsets, our algorithm can also be considered as minimizing along the
directions {Ω2i−1,Ω2i} for i = 1, . . . , N simultaneously, as these two processes do not
influence each other; cf. Proposition 19 and the remark that follows.

Torus algebra directions T ∈ t can be omitted from the minimization process as
the cost function (8b) is constant along the orbits of the generated one-parameter
groups, i.e.,

p
(
Adexp(tT )X

)
= p(X)

holds for all T ∈ t and t ∈ R, because Lemma 12 implies

d

dt
p
(
Adexp(tT )X

)
= p

(
adTAdexp(tT )X

)
= 0.

Proposition 18. Let Xα ∈ gα and Y ∈ g arbitrary. Then
(i) Adexp(R·Xα)Y ∼= S1 if [Y,Xα] 	= 0 and
(ii) Adexp(R·Xα)Y ∼= {1} if [Y,Xα] = 0.

Thus the cost function restricted to Adexp(R·Xα)Y possesses at least one minimum and
Algorithms (12) and (13) are therefore well defined.

Proof. Let Xα ∈ gα − {0}. The smallest Lie subalgebra containing gα is

〈gα〉 :=
⋂

gα⊂h

{h is Lie subalgebra of g} = gα ⊕ R · [Xα, Xα];

cf. Lemma 10. Therefore 〈gα〉 is a three dimensional real vector space and it can easily
be checked that 〈gα〉 and su(2,C) are isomorphic as Lie algebras. Therefore, for any
element X ∈ 〈gα〉, the closure of the one parameter group exp(R · X) is isomorphic
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to a torus in SU(2,C). Any torus in SU(2,C) is isomorphic to the circle group S1,
and hence

exp(R ·X) ∼= S1.

The assertion for the orbits follows immediately from the identity

AdexpX = exp(adX) for all X ∈ g;

cf. [5, p. 23, Theorem 1.5.2].

5. More explicit description of the algorithm. To derive a more explicit
description of the algorithm, it is necessary to take a closer look at the cost function
(8a).

For Ω, X ∈ g and t ∈ R, it is well known (cf. [5, p. 23]) that

Adexp(tΩ)X = exp(tadΩ)X =

∞∑
k=0

1

k!
tkadk

ΩX.(14)

The following convention is used to simplify notation. Let Ω ∈ {Eγ , Fγ} be one basis
vector of the real root space gγ as in Proposition 7. Whenever “±” or “∓” occurs
in a formula, the upper sign stands for the case where Ω = Eγ while the lower one
stands for the case where Ω = Fγ . By Proposition 7 and Lemma 10 it holds that

adgγ
(t) ⊂ gγ and adgγ

(gγ) ⊂ t.(15)

Therefore, by projecting (14) onto the torus algebra, one obtains (cf. (6))

p(Adexp(tΩ)X) =

∞∑
k=0

1

(2k)!
t2k ad2k

Ω X0 +

∞∑
k=0

1

(2k + 1)!
t2k+1 ad2k+1

Ω c · Ω

= X0 ∓ γ(X0) ·
∞∑
k=0

1

(2k + 2)!
t2k+2 ad2k+1

Ω Ω +

+ c ·
∞∑
k=0

1

(2k + 1)!
t2k+1 ad2k+1

Ω Ω,

where c denotes the Ω-coefficient of X. It is easily shown by induction that for all
k ∈ N

ad2k+1
Ω Ω = ±

(
− γ(Tγ)

)k

Tγ(16)

holds. A straightforward computation then leads to

p(Adexp(tΩ)X) = X0 + g(t) · Tγ ,(17)

where

g(t) :=
γ(X0)

γ(Tγ)
cos

(√
γ(Tγ) · t

)
− γ(X0)

γ(Tγ)
± c√

γ(Tγ)
sin

(√
γ(Tγ) · t

)
.(18)
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Because of Lemma 11, the cost function (8a), restricted to the orbit of a Lie
algebra element X ∈ g under the adjoint action of a one parameter group generated
by some real root space element, is given by

f
∣∣∣
Adexp(tΩ)X

= −κ(S, S) + κ
(
X0, X0

)
+

(
2g(t)

γ(X0)

γ(Tγ)
+ g(t)2

)
κ
(
Tγ , Tγ

)
.(19)

From this expression we deduce an explicit formula for the step size selection (11).
The following proposition and corollary are an adaptation of the results presented in
section 8.4.1 of [14] to the Lie algebra setting.

Proposition 19. Let X ∈ g and Ω ∈ {Ω1, . . . ,Ω2N} as in (10) be a basis vector
of the root space gγ . Let f denote the cost function (8a). Then, either

f
∣∣∣
Adexp(tΩ)X

≡ f(X) for all t ∈ R

or

t �−→ f
∣∣∣
Adexp(tΩ)X

has periodicity
π√
γ(Tγ)

and admits on

I :=

(
− π

2
√
γ(Tγ)

,
π

2
√
γ(Tγ)

]
exactly one minimum, namely at

t∗(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π

2
√
γ(Tγ)

if γ(X0) = 0,

1√
γ(Tγ)

arctan

(
±c

√
γ(Tγ)

γ(X0)

)
if γ(X0) 	= 0,

(20)

where c denotes the Ω-coefficient of X.
Proof. The restricted cost function f |Adexp(tΩ)X is constant if and only if g(t)

defined by (18) is constant, i.e.,

g′(t) ≡ 0

⇐⇒

± c
√
γ(Tγ) cos

(√
γ(Tγ) · t

)
− γ(X0) sin

(√
γ(Tγ) · t

)
≡ 0

⇐⇒
c = 0 and γ(X0) = 0.

Now let c 	= 0. From the identity

g(t) + g

(
t +

π√
γ(Tγ)

)
= −2

γ(X0)

γ(Tγ)

one obtains after some computation

f
(
Ad

exp
((

t+ π√
γ(Tγ )

)
Ω
)X)

− f
(
Adexp(tΩ)X

)
= 0.
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Computing the zeros t̃ ∈ R of d
dtf(Adexp(tΩ)X) and the sign of the second derivative

at t̃ then completes the proof.
Choosing the step size (20) in Ω-direction annihilates the Ω-component of X.

More precisely we obtain the following.
Corollary 20. Let X ∈ g and Ω ∈ B = {Ω1, . . . ,Ω2N} be a basis vector of the

root space gγ , see (10). Denote by

pγ : g −→ R · Ω

the projection onto the subspace R · Ω ⊂ gγ . Then

pγ(Adexp(tΩ)X) =

(
∓ γ(X0)√

γ(Tγ)
sin

(√
γ(Tγ) t

)
+ c cos

(√
γ(Tγ) t

))
Ω,

where c denotes the Ω-coefficient of X. Consequently, choosing the step size t∗(X) as
in (20) annihilates the Ω-component of X.

Proof. We use again (14) and (15) to deduce

pγ(Adexp(tΩ)X) =

∞∑
k=0

1

(2k + 1)!
t2k+1 ad2k

Ω adΩX0 +

∞∑
k=0

1

(2k)!
t2k ad2k

Ω c Ω.

It is easily seen by induction that ad2k
Ω Ω = (−γ(Tγ))kΩ and it holds that adΩX0 =

∓γ(X0)Ω; hence

pγ(Adexp(tΩ)X) = ∓ γ(X0)

∞∑
k=0

(√
γ(Tγ) t

)2k+1

(2k + 1)!

(−1)k√
γ(Tγ)

Ω

+ c

∞∑
k=0

t2k

(2k)!
(−γ(Tγ))kΩ

=

(
∓ γ(X0)√

γ(Tγ)
sin

(√
γ(Tγ) t

)
+ c cos

(√
γ(Tγ) t

))
Ω.

The last statement follows from a simple calculation by substituting t∗(X) into the
last equation.

Note, that the Ω-component of X is not affected by the transformation
Adexp(tΩ)X, thus the two minimization steps along the Ω- and Ω-directions can be
done simultaneously.

6. Convergence proof. We can now describe the main result of this paper. It
is shown that the convergence of the Jacobi algorithm on compact Lie algebras is
locally quadratically fast, provided the adjoint orbit OS has maximal dimension. The
dimension of OS is equal to the dimension of the tangent space at Z ∈ OS ∩ t. Now
let α1, . . . , αk denote the roots for which

αi(Z) = 0, i = 1, . . . , k,

holds. Hence adZgαi = 0 for i = 1, . . . , k and therefore

ker adZ = t ⊕
∑
i

gαi
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and

dimOS = dimTZOS = dim{adZH | H ∈ g} = dim g − dim t − 2k.

This formula for the dimension justifies the following.
Definition 21. An element S ∈ g is called regular if dimOS = dim g − dim t.
Example. The set of skew-Hermitian (n × n)-matrices forms the Lie algebra

u(n,C). Fix a maximal Abelian subalgebra

t = {T ∈ u(n,C) | T = diag(it1, . . . , itn), tj ∈ R}.

The roots in this case turn out to be α(T ) = ±(ti − tj) for i < j. So the regular
elements of u(n,C) are exactly those matrices having pairwise distinct eigenvalues.

The set of regular elements in g is connected, open, and dense (cf. [5, p. 118
Theorem 2.8.5 and p. 146]). Therefore, the assumption in the following proposition
is generically satisfied.

Theorem 22 (main theorem). An element Z ∈ OS is a fixed point of the
algorithm if and only if p(Z) = Z holds. If S ∈ g is a regular element, the convergence
of the Jacobi algorithm (13) is locally quadratically fast.

Proof. The first statement of the theorem is implied by the following argument.
Obviously, the only candidates for fixed points are critical points of the cost function.
On the other hand, by Lemma 15, the algorithm is stationary neither at saddle points
nor at global maxima as in both cases there exists at least one Ωi-direction leading
downhill.

For the proof of the convergence property, we will show that a sweep is smooth
in a neighborhood of a minimum Z ∈ OS of the cost function (8a). Furthermore, its
derivative vanishes at Z and hence a simple Taylor argument will finish the proof of
the local quadratic convergence.

In a first step, the smoothness of the step size selections (11) is shown. Let N
denote the number of real root spaces and let

I :=

(
− π

2
√
γ(Tγ)

,
π

2
√
γ(Tγ)

]
.

For i = 1, . . . , 2N define

φi : I ×OS −→ [0,∞), φi(t,X) = f(Adexp(tΩi)X),

ψi : I ×OS −→ R, ψi(t,X) = D1φi(t,X),

where Dk denotes the first derivative with respect to the kth argument. By definition

of t
(i)
∗ (see (11)), it holds that

ψi

(
t
(i)
∗ (X), X

)
≡ 0.

As in the proof of Lemma 14, one obtains for Ωi ∈ gγ

D1ψi(t,X)
∣∣∣
(0,Z)

= −2γ(Z)2κ(Ωi,Ωi) > 0.

This holds for all γ ∈ Σ+ as S is a regular element. By continuity, D1ψi(t,X) is
greater than zero in a neighborhood of (0, Z) ∈ I ×OS . Hence the critical value

φi(t
(i)
∗ (X), X)
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is minimal for X ∈ U . This minimum is unique due to Proposition 19. Thus the

implicit function theorem implies that the functions t
(i)
∗ (11) are smooth in a neigh-

borhood U of Z, i = 1, . . . , 2N .
Let ξ ∈ TZOS = span(Ω1, . . . ,Ω2N ), the tangent space of OS at Z. Then

D2ψi(t,X)
∣∣∣
(0,Z)

ξ = −2D2κ(Ωi, adZ0
Z)ξ

= −2
(
κ(adΩiξ0, Z) + κ(adΩi

Z0, ξ)
)

= −2κ(adΩiZ, ξ)

(21)

as ξ0 = p(ξ) = 0 and Z0 = p(Z) = Z. Any partial optimization step within a sweep
is described by the mapping

ri : OS −→ OS , X �−→ Ad
exp

(
t
(i)
∗ (X)Ωi

)X.

The derivative of ri at Z acting on ξ is

Dri(Z)ξ = Ad
exp(t

(i)
∗ (Z)Ωi)

ξ +
(
adΩiAd

exp(t
(i)
∗ (Z)Ωi)

(Z)
)
◦ Dt

(i)
∗ (Z)ξ

= ξ + adΩi
(Z) ◦ Dt

(i)
∗ (Z)ξ.

By differentiating the equation

ψi

(
t
(i)
∗ (X), X

)
≡ 0

with respect to X in direction ξ, one obtains by the chain rule

Dψi

(
t
(i)
∗ (Z), Z

)
ξ = D1ψi

(
t
(i)
∗ (Z), Z

)
· Dt

(i)
∗ (Z)ξ + D2ψi

(
t
(i)
∗ (Z), Z

)
ξ = 0.

Hence

Dt
(i)
∗ (Z)ξ = −

D2ψi

(
t
(i)
∗ (Z), Z

)
D1ψi

(
t
(i)
∗ (Z), Z

)ξ = − κ(adΩiZ, ξ)

γ(Z)2κ(Ωi,Ωi)
.

The derivative for one partial step of the Jacobi sweep at Z therefore is

Dri(Z)ξ = ξ − adΩiZ
κ
(
adΩi

Z, ξ
)

γ(Z)2κ
(
Ωi,Ωi

)
= ξ − γ(Z)Ωi

κ
(
γ(Z)Ωi, ξ

)
γ(Z)2κ

(
Ωi,Ωi

)
= ξ − Ωi

κ
(
Ωi, ξ

)
κ
(
Ωi,Ωi

) ,
where Ωi ∈ gγ . It is easily seen that Dri(Z) is a projection that annihilates the Ωi-
component of ξ ∈ TZOS . By the chain rule and the fact that Z is a fixed point of
each partial step, i.e., ri(Z) = Z for all i, one calculates the derivative of one entire
sweep operation
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s(X) :=
(
r2n ◦ r2n−1 ◦ · · · ◦ r2 ◦ r1

)
(X),

evaluated at the fixed point Z as

Ds(Z)ξ =
(
Dr2n ◦ · · · ◦ Dr1

)
(Z)ξ = 0; therefore Ds(Z) ≡ 0.(22)

Now choose open, relatively compact neighborhoods U, V of Z in OS , such that
s(U) ⊂ V . U, V are diffeomorphic to open subsets of R

2N where 2N = dimOS .
Without loss of generality, we may assume that U, V are open, bounded subsets of
R

2N . Reformulating everything in local coordinates, from Taylor’s theorem, using
Ds(Z) ≡ 0, we obtain

||s(Xk) − Z|| ≤ sup
X∈U

||D2s(X)|| · ||Xk − Z||2.

Thus the sequence (Xk)k∈N generated by the Jacobi algorithm converges quadratically
fast to Z.

Theorem 22 generalizes the local convergence results for the Hermitian eigenvalue
problem [21]. Our proof applies to any cyclic method and is not restricted to what
is called a rowwise or columnwise cyclic method. The achieved shape of the “diago-
nalized” matrix need not necessarily be diagonal, but can be specified by the choice
of the torus algebra. Furthermore, the theory is independent of choices of matrix
representations of the underlying Lie algebra, hence a variety of structured matrix
problems fit well into this setting. Several matrix representations of the classical Lie
algebras can be found, e.g., in [12].

7. Pseudo code for the algorithm. Here we present a Matlab-like pseudo
code for the algorithm. Our formulation is sufficiently general such that one can
easily adapt the algorithm to any compact Lie algebra. Note that in section 8, the
algorithm is examplified, using the Lie algebra sp(n).

Let g be a compact Lie algebra, t ⊂ g a maximal Abelian subalgebra. Let a Lie
algebra element X ∈ g as well as a real root α be given. Denote by p : g → t the
orthogonal projection onto the torus algebra t. Let a basis of the corresponding root
space gα be {Eα, Fα}. Let this basis be normalized such that

α(Tα) = 1, where Tα = [Eα, Fα].(23)

Then for Ω ∈ {Eα, Fα} the algorithm computes a pair (sin t, cos t), such that
exp(tΩ)X exp(−tΩ) has no Ω-component. For the occurring ± signs see section 5.

Using standard trigonometric formulas, one obtains for the step size selections t
(i)
∗ (X)

(cf. Proposition 19) the identities

sin t∗(X) = ± sign(α(X0)) ·
c√

α(X0)2 + c2
,

cos t∗(X) =
|α(X0)|√
α(X0)2 + c2

,
(24)

where c denotes the Ω-coefficient of X and X0 = p(X) is the orthogonal projection
of X into the torus algebra.

Algorithm 1. Partial Step of Jacobi Sweep.

function: (cos, sin) = elementary.rotation(X,Ω)
Set c := Ω-component of X.



62 M. KLEINSTEUBER, U. HELMKE, AND K. HÜPER

Set S0 := p(X).
if α(X0) 	= 0

Set (cos, sin) :=

(
|α(X0)|√
α(X0)2 + c2

, ±sign(α(X0)) ·
c√

α(X0)2 + c2

)
.

else
if c 	= 0

Set (cos, sin) := (0, 1).
else

Set (cos, sin) := (1, 0).
endif

endif
end elementary.rotation

Denote by N the number of real roots and let

B = {Ω1,Ω2, . . . ,Ω2N}

be a basis of g/t as in (10) normalized as in (23). Denote the real root corresponding
to the basis Ω2i−1,Ω2i by αi and let f denote the cost function (8a). Given a Lie
algebra element S ∈ g and a tolerance tol > 0, this algorithm overwrites S by gSg−1,
where g ∈ exp(g) and f(gSg−1) ≤ tol.

Algorithm 2. Jacobi Algorithm.

Set g := identity matrix.
while f(S) > tol

for i = 1 : N
(cos, sin) := elementary.rotation(S,Ω2i−1).
r1 := exp(t∗(S)Ω2i−1).
S := r1Sr

−1
1 .

(cos, sin) := elementary.rotation(S,Ω2i).
r2 := exp(t∗(S)Ω2i).
S := r2Sr

−1
2 .

g := r−1
2 r−1

1 g.
endfor

endwhile

8. Numerical experiments. We illustrate the approach by considering the task
of finding the eigenvalues of a skew-Hermitian Hamiltonian matrix. As mentioned be-
fore, the set of skew-Hermitian, Hamiltonian matrices forms the compact Lie algebra
sp(n); see Example 5. This Lie algebra can be identified with the Lie algebra u(n,H)
of unitary quaternionic (n × n)-matrices. Although our previous theory is coordi-
nate free and independent of the choice of matrix representations, choosing explicit
descriptions for the Lie algebra elements, leads to different forms of the numerical
algorithm. To illustrate this phenomenon, consider sp(n). The Lie algebra sp(n) has
different isomorphic matrix representations, such as, e.g.,

sp(n) =

{[
A B
−B A

]
∈ C

2n×2n | A∗ = −A,B� = B

}
,
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or as in the example below. There are various natural choices for a torus algebra of
sp(n), e.g.,

t =

{[
iΛ 0
0 −iΛ

]
| Λ ∈ R

n×n is diagonal

}
,

t
′ =

{[
0 Λ
−Λ 0

]
| Λ ∈ R

n×n is diagonal

}
,

t
′′ =

{[
0 iΛ
iΛ 0

]
| Λ ∈ R

n×n is diagonal

}
,

leading to isomorphic variants of the eigenvalue problem. More matrix representations
of classical Lie algebras can be found in [12].

As a computational example, we consider the eigenvalue problem for an isomor-
phic copy of sp(n). Thus let

g =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

A B C D
−B A D −C
−C −D A B
−D C −B A

⎤⎥⎥⎦ ;A,B,C,D ∈ R
n×n|

A� = −A,B� = B,C� = C,D� = D

⎫⎪⎪⎬⎪⎪⎭ .

(25)

Note that g is isomorphic to sp(n) via the real Lie algebra isomorphism

ρ : sp(n) −→ g, X �−→
[

ReX ImX
−ImX ReX

]
.(26)

Let ⊗ denote the Kronecker product. The torus algebra of g is chosen as

t =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎤⎥⎥⎦⊗ Cdiag | Cdiag ∈ R
n×n is diagonal

⎫⎪⎪⎬⎪⎪⎭ .(27)

If ±iλk are the eigenvalues of the skew-Hermitian Hamiltonian matrix, the entries of
the diagonal matrix Cdiag in (27) consist of the λk’s. Let Cdiag = diag(λ1, . . . , λn).
With the assumptions above one computes the n2 real roots as

λi − λj , 1 ≤ i < j ≤ n,

λi + λj , 1 ≤ i ≤ j ≤ n.
.

Hence the matrices are regular in the sense of Definition 21 if and only if the moduli
of the λk’s are pairwise distinct and λk 	= 0 for all k.



64 M. KLEINSTEUBER, U. HELMKE, AND K. HÜPER

Let Eij ∈ R
n×n have (i, j)-entry equal to 1 and 0 elsewhere. As an orthogonal

basis for the corresponding real root spaces that satisfies condition (23), choose

Bλi−λj =

⎧⎪⎪⎨⎪⎪⎩
1

2

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦⊗ (Eij−Eji),
1

2

⎡⎢⎢⎣
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎤⎥⎥⎦⊗ (Eij + Eji)

⎫⎪⎪⎬⎪⎪⎭ ,

Bλi+λj =

⎧⎪⎪⎨⎪⎪⎩
1

2

⎡⎢⎢⎣
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦⊗ (Eij+Eji),
1

2

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎤⎥⎥⎦⊗ (Eij + Eji)

⎫⎪⎪⎬⎪⎪⎭ .

Then we obtain an ordered basis B of sp(n)/t as in (10) via

B =
⋃

1≤i<j≤n

Bλi−λj ∪
⋃

1≤i≤j≤n

Bλi+λj
.(28)

Now let X ∈ g in the chosen representation (25). Let Ωk be the kth element in B;
cf. (28). Denote by X[r,s] the (r, s)-entry of X. Then the algorithms of section 7 are
explicitly as follows. Algorithm 1′ computes the nontrivial entries (sin t∗(X), cos t∗(X)
occurring in the matrix exp(t∗(X)Ωk); cf. (11) and (24). Hence in Algorithm 2′, the
matrix exp(t∗(S)Ωk) need not be calculated explicitly but can easily be constructed by
replacing the required entries with the computed sin t∗(X) and cos t∗(X)), respectively.

Algorithm 1′. Partial Step of Jacobi Sweep.

function: (cos, sin) = elementary.rotation(X,Ωk)
if 1 ≤ k ≤ n2 − n

Set α(X0) := X[i,2n+i] −X[j,2n+j].
if k is odd

Set c := 2X[i,2n+j].
else

Set c := −2X[i,j].
endif

else
Set α(X0) := X[i,2n+i] + X[j,2n+j].
if k is odd

Set c := 2X[i,3n+j].
else

Set c := −2X[i,n+j].
endif

endif
if α(X0) 	= 0

Set (cos, sin) :=

(
|α(X0)|√
α(X0)2 + c2

, sign(α(X0)) ·
c√

α(X0)2 + c2

)
.

else
if c 	= 0

Set (cos, sin) := (0, 1).
else

Set (cos, sin) := (1, 0).
endif

endif
end elementary.rotation
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Given a Lie algebra element S ∈ g and a tolerance tol > 0, the following algorithm
overwrites S by gSg�, where g ∈ exp(g). Since the Killing form on g is given by

κ(X,Y ) = 4(n + 1)tr(XY ),

the cost function (8a) is

f(S) = −4(n + 1)tr
(
(S − S0)

2
)
,

where S0 denotes the projection of S onto t.
Algorithm 2′. Jacobi Algorithm.

Set g := identity matrix.
while f(S) > tol

for k = 1 : 2n2

(cos, sin) := elementary.rotation(S,Ωk).
Set r := exp(t∗(S)Ωk).
Set g := r�g.

endfor
endwhile
Finally, some numerical experiments are presented which are compatible with

local quadratic convergence. All simulations are done using Mathematica 4.0; cf.
[39]. For a given torus algebra element T , the initial point S is generated in the
following way. Let Ωk ∈ B (cf. (10)), an ordered basis of g, where n := 15. Then
dim g = 465 real values t1, . . . , t465 ∈ [−π, π] are chosen by using the Mathematica-
command Random. A generic group element g is generated via

g =

465∏
k=1

exp(tkΩk).

The initial point S is obtained by conjugating T with g, namely S = gTg�. Every
experiment is done with three different randomly chosen initial points, plotted to-
gether in one diagram where the value of the cost function is on the vertical axes.
The following simulations have been done.

Figure 8.1 Cdiag = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Figure 8.2 Cdiag = (96, 97, 97.5, 98, 98.5, 99, 99.5, 100, 100.5, 101, 101.5, 102,
102.5, 103, 104)

Figure 8.3 Cdiag = (0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 50)

Figure 8.4 Cdiag = (99.9998, 100.001, 100.0002, 100.03, 100.002, 100.001,
99.997,−0.002, 0.01, 0.2,−0.03,−0.001, 0.01, 0.002, 0.0001)

For the simulation in Figure 8.2, the absolute values of all eigenvalues are close
to 100. Nonregular elements show the same convergence behavior; cf. Figure 8.3.
Figure 8.4 illustrates the convergence behavior of the algorithm in the case when
there is a gap between the eigenvalues.
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Fig. 8.1. Convergence behavior for a regular element. dim g = 465, f = −κ(X −X0, X −X0).
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Fig. 8.2. Convergence behavior for an element with eigenvalues near 100, −100, respectively,
dim g = 465, f = −κ(X −X0, X −X0).
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Fig. 8.3. Convergence behavior for a nonregular element. dim g = 465, f = −κ(X −X0, X −X0).
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Fig. 8.4. Convergence behavior for an element with a gap between great and small eigenvalues.
dim g = 465, f = −κ(X −X0, X −X0).
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[20] U. Helmke, K. Hüper, and J. B. Moore, Computation of Signature Symmetric Balanced
Realizations, J. Global Optim., 27 (2003), pp. 135–148.

[21] P. Henrici, On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing
eigenvalues of Hermitian matrices, J. Soc. Indust. Appl. Math., 6 (1958), pp. 144–162.
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Abstract. We propose a Newton-like iteration that evolves on the set of fixed dimensional
subspaces of Rn and converges locally cubically to the invariant subspaces of a symmetric matrix.
This iteration is compared in terms of numerical cost and global behavior with three other methods
that display the same property of cubic convergence. Moreover, we consider heuristics that greatly
improve the global behavior of the iterations.

Key words. invariant subspace, Grassmann manifold, cubic convergence, symmetric eigenprob-
lem, inverse iteration, Rayleigh quotient, Newton method, global convergence
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1. Introduction. The problem of computing a p-dimensional eigenspace (i.e.,
invariant subspace) of an n×n matrix A = AT is ubiquitous in applied mathematics,
with applications in control theory, pattern recognition, data compression and coding,
antenna array processing, and a multitude of other domains.

Several methods for subspace estimation were proposed in the late seventies and
early eighties. Demmel [Dem87] provides a joint analysis of three of the early meth-
ods that refine initial estimates of arbitrary p-dimensional eigenspaces of a (possibly
nonsymmetric) n × n data matrix A. The early methods depend on the various nu-
merical solutions of a common Riccati equation. These methods converge at best
quadratically (Chatelin’s Newton-based method [Cha84]) even when A is symmetric
and involve the solution of a Sylvester equation at each iteration step. Moreover, the
iterations defined depend on a choice of normalization condition used to generate the
Riccati equation as well as the present iterative estimate of the eigenspace. More
recently, iterations have been proposed that operate “intrinsically” on the Grassmann
manifold, the set of p-planes in R

n. Watkins and Elsner [WE91] have studied a multi-
shifted QR algorithm that, as we will show, conceals a Grassmannian generalization of
the Rayleigh quotient iteration (RQI). Edelman, Arias, and Smith [EAS98] derived a
Newton iteration directly on the Grassmann manifold to find critical points of a gener-
alized Rayleigh quotient. A practical implementation of this method was investigated
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by Lundström and Eldén [LE02]. In a recent paper [AMSV02], the authors proposed
a generalization of the RQI posed directly on the Grassmann manifold where scalar
shifts are replaced by a matrix shift. All these algorithms are intrinsically defined
on the Grassmann manifold (i.e., the next iterate only depends on A and the current
iterate) and converge locally cubically to the isolated p-dimensional eigenspaces of
A = AT .

In the present paper, we compare the three recently proposed cubically convergent
iterations [WE91, EAS98, LE02, AMSV02] and propose a fourth cubically convergent
method inspired by the multihomogeneous Newton methods considered by Dedieu and
Shub [DS00]. The first goal of this paper is to compare the four iterations in terms
of numerical cost and global behavior. The global behavior of these iterations is of
particular interest as existing analytical results focus on the local convergence rates.
In the case where p = 1 and only a single eigenvector is computed the three recently
proposed methods degenerate to the same iteration, the classical RQI, for which the
global behavior is well understood [PK69, Par80, BS89, PS95]. In contrast, almost
no global analysis has been undertaken for the various iterations when p > 1. In this
paper, we show that although the local performance of the methods is comparable,
the global performance differs appreciably. In particular, we study for each method
how the shape of the basin of attraction of an eigenspace deteriorates when some
eigenvalues of A are clustered.

The second goal of this paper is to propose modifications to the methods that
improve the global performance of the iterations without compromising the local per-
formance. The purpose of the modifications is to ensure that each given eigenspace
is surrounded by a large basin of attraction. This guarantees that the iteration con-
verges to the targeted eigenspace even when started rather far away from it. For the
Grassmannian RQI of [AMSV02] we propose a simple threshold on the distance be-
tween successive iterates that improves the shape of the basins of attraction. For the
two Newton-based methods, we introduce a deformation parameter τ that achieves
a continuous transition between the original iteration and a gradient flow with large
basins of attraction. This deformation technique is related to line search methods and
trust region methods in optimization. We propose a simple choice for τ that dramat-
ically enlarges the basins of attraction around the attractors while preserving cubic
convergence. In the case of the new Newton-like iteration proposed in this paper, the
resulting algorithm (Algorithm 5.2) displays an excellent global behavior, combined
with a cubic rate of convergence and a numerical cost of O(np2) flops per iteration
when A is suitably condensed.

This paper is organized as follows. After a short review of subspaces, eigenspaces
and their representations (section 2), we state four cubically convergent iterative al-
gorithms for eigenspace computation (section 3). These iterations are compared in
terms of numerical cost and global behavior in section 4. In section 5, we propose ways
of improving the global behavior of the iterations. The main results are summarized
in the concluding section 6.

2. Subspaces and eigenspaces. In the present section, we introduce concepts
and notation pertaining to subspaces and eigenspaces.

Unless otherwise stated, all scalars, vectors, and matrices are real. The superscript
T denotes the transpose. Following conventions in [HM94], we use Grass(p, n) to
denote the Grassmann manifold of the p-dimensional subspaces of R

n, RP
n−1 =

Grass(1, n) to denote the real projective space, and ST(p, n) to denote the noncompact
Stiefel manifold, i.e., the set of n × p matrices with full rank. The columns space of
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Y ∈ ST(p, n) is denoted by span(Y ). The “span” mapping is an application on
ST(p, n) onto Grass(p, n) that is nowhere invertible. Given a matrix Y in ST(p, n),
the set of matrix representations of the subspace span(Y ) is

span−1(span(Y )) = Y GLp := {YM : M ∈ GLp},

where GLp denotes the set of p×p invertible matrices. This identifies Grass(p, n) with
ST(p, n)/GLp := {Y GLp : Y ∈ ST(p, n)}. More details on the Grassmann manifold
and matrix representations can be found in [FGP94, AMS02, Abs03].

Let A be an n × n matrix. Let X be a p-dimensional subspace of R
n and let

Q = [X|X⊥] be an orthogonal n× n matrix such that X spans X . Then QTAQ may
be partitioned in the form QTAQ =

(
A11 A12

A21 A22

)
where A11 ∈ R

p×p. The subspace X
is an eigenspace (i.e., invariant subspace) of A if and only if A21 = 0. By spectrum
of X , we mean the set of eigenvalues of A11. The external gap of the eigenspace
X of A is the shortest distance between the eigenvalues of A11 and the eigenvalues
of A22. The internal gap of X is the shortest distance between two eigenvalues of
A11. We say that X is a nondefective eigenspace of A if A11 is nondefective. The
eigenspace X is termed spectral [RR02] if A11 and A22 have no eigenvalue in common
(i.e., nonvanishing external gap). When A = AT , an eigenspace is spectral if and
only if it is isolated, i.e., there exists a ball in Grass(p, n) centered on V that does not
contain any eigenspace of A other than V. The span of a full-rank n × p matrix Y
is an eigenspace of A if and only if there exists a matrix L such that AY = Y L, in
which case Y is called an eigenbasis and L the corresponding eigenblock [JS01].

From now on, we assume that A = AT unless otherwise specified.

3. Four iterations for eigenspace computation. In this section, we define
four iterations that evolve on the Grassmann manifold of p-planes in R

n and converge
locally cubically to the spectral eigenspaces of a symmetric n× n matrix A.

3.1. Shifted inverse iterations. Inverse iteration is a widely used method
for computing eigenvectors of A corresponding to selected eigenvalues for which an
approximation is available [Ips97]. Let λ̂ be an approximation to an eigenvalue of A.
Inverse iteration generates a sequence of vectors xk starting from an initial vector x0

by solving the systems of linear equations

(A− λ̂I)z = xk(3.1)

and usually normalizing the result xk+1 := z/‖z‖. From a theoretical point of view,
the norm of xk is irrelevant: the iteration (3.1) induces an iteration on the projective
space, i.e., the set of one-dimensional subspaces of R

n. Except in some nongeneric
cases, the iteration converges to an eigenvector of A with an eigenvalue closest to λ̂,
and the rate of convergence is linear. However, a higher rate of convergence can be
achieved by adapting λ̂ “online” using the information given by the current iterate
xk. For A = AT , the choice of the feedback law λ̂ := ρ(xk), where ρ denotes the
Rayleigh quotient

ρ(y) :=
yTAy

yT y
,(3.2)

yields the well-known RQI

(A− ρ(xk)I)z = xk, xk+1 = z/‖z‖.(3.3)



ITERATIONS FOR INVARIANT SUBSPACE COMPUTATION 73

The fact that ρ provides a quadratic approximation of an eigenvalue around the
corresponding eigenvector explains why the rate of convergence is lifted from linear
to cubic [Par80, AMSV02].

In the present paper, we consider two ways of generalizing the RQI to the Grass-
mann manifold of p-planes in R

n. The first possibility is to use multiple scalar shifts,
where the shifts are the Ritz values computed from the current subspace.

Algorithm 3.1 (RSQR). Iterate the mapping Grass(p, n)�Y �→ Y+∈Grass(p, n)
defined by

1. Pick an orthonormal n× p matrix Y that spans Y.
2. Solve for Z ∈ R

n×p the equation

(A− ρ1I) . . . (A− ρpI)Z = Y,(3.4)

where ρ1, . . . , ρp are the eigenvalues of Y TAY repeated according to their multiplicity.
3. Define Y+ as the span of Z.
We call this iteration RSQR because of its link with the generalized Rayleigh-

shifted QR algorithm studied in [WE91]. It comes as a corollary from the results
of [WE91] that RSQR converges locally cubically to the spectral eigenspaces of A =
AT , as we now explain.

The RQI algorithm is related to the Rayleigh-shifted QR algorithm, as shown
e.g., in the enlightening paper by Watkins [Wat82]. The QR algorithm on the matrix
A with Rayleigh quotient shift can be written as a QR decomposition

(A− σkI)Qk = Qk+1Rk+1,(3.5)

where σk is the lower right element of Ak = QT
kAQk. Taking the inverse transpose

of (3.5) yields, assuming A = AT ,

(A− σkI)
−1Qk = Qk+1R

−T
k+1,(3.6)

where R−T
k+1 is now a lower triangular matrix. The last column of (3.6) yields

(A− σkI)
−1xk = r−1

k+1xk+1,

where xk denotes the last column of Qk and rk denotes the lower right element of Rk.
This is RQI (3.3). In [WE91], Watkins and Elsner study a generalized Rayleigh-
quotient shift strategy for the QR algorithm. It consists in replacing (A − σkI) by
P(A), where P(λ) is the characteristic polynomial of the p× p lower right submatrix
of QT

kAQk. In this case, (3.5) becomes

P(A)Qk = Qk+1Rk+1(3.7)

or equivalently, taking the inverse transpose,

P(A)−1Qk = Qk+1R
−T
k+1

whose last p columns yield

P(A)−1Xk = Xk+1Lk+1.

Here Xk denotes the last p columns of Qk and P(A) := (A − ρ1I) . . . (A − ρpI),
where ρ1, . . . , ρp denote the eigenvalues of XT

k AXk. This iteration maps the span of
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Xk to the span of Xk+1, and this is the above-defined RSQR (Algorithm 3.1). The
developments in [WE91] show that this iteration converges locally cubically to the
spectral eigenspaces of A. That is, for each spectral eigenspace V of A, there exist a
scalar c and a neighborhood B such that dist(Y+,V) ≤ cdist(Y,V)3 for all Y in B.
The distance between two subspaces can be, e.g., defined by the projection 2-norm
distp2(Y,V) = ‖PY−PV‖2, where PY and PV denote the orthogonal projectors onto Y
and V, respectively [GV96]. Any compatible definition, such as the geodesic distance
on the Grassmann manifold, can be used [EAS98].

Another Grassmannian generalization of the RQI, which uses a matrix shift in-
stead of multiple scalar shifts, has been proposed in [AMSV02]. This iteration has
been called Grassmann-RQI (GRQI).1

Algorithm 3.2 (GRQI). Iterate the mapping Grass(p, n)�Y �→ Y+∈Grass(p, n)
defined by

1. Pick a basis Y ∈ R
n×p that spans Y.

2. Solve

T Y Z := AZ − Z (Y TY )−1Y TAY︸ ︷︷ ︸
RA(Y )

= Y(3.8)

for Z ∈ R
n×p.

3. Define Yk+1 as the span of Z.
The matrix RA(Y ) can be interpreted as a block shift that reduces to the scalar

Rayleigh quotient (3.2) in the case p = 1. The computations in Algorithm 3.2 are done
in terms of n× p matrices, but they induce an iteration on the Grassmann manifold.
That is, Yk+1 does not depend on the choice of the representative Y of Yk chosen
in (3.8). The GRQI method converges locally cubically to the spectral eigenspaces of
A [Smi97, AMSV02].

Like the classical RQI mapping, which is ill-defined by (3.3) when ρ(x) is an
eigenvalue of A, the two iterations RSQR (Algorithm 3.1) and GRQI (Algorithm 3.2)
are defined almost everywhere on Grass(p, n), i.e., there are points of singularity. In
order to characterize these singularities, we introduce notations that will be used
throughout the text. Let X denote an n × p orthonormal matrix (i.e., XTX = I)
that spans the current iterate, and let [X|X⊥] be an orthogonal n×n matrix. Define
A11 := XTAX, A12 := XTAX⊥, A21 := XT

⊥AX, A22 := XT
⊥AX⊥. Let ρ1, . . . , ρp

denote the eigenvalues of A11 enumerated with their multiplicity. Then the RSQR
and GRQI methods map the span of X to the span of an n× p matrix

X+ = ZM,(3.9)

where M is any invertible p× p matrix chosen so that XT
+X+ = I, and Z verifies

RSQR : (A− ρ1I) . . . (A− ρpI)Z = X,(3.10)

GRQI : AZ − ZA11 = X.(3.11)

In RSQR, the matrices (A − ρiI) are invertible if and only if the ρi’s are not
eigenvalues of A, in which case Z is well defined by the RSQR equation (3.10) and is
full rank. In GRQI, a Sylvester equation (3.11) has to be solved. The solution Z exists
and is unique if and only if the spectra of A and of A11 are disjoint. Indeed, rotating

1During the final preparation of this manuscript, the authors became aware of an independent
derivation of the GRQI method in [Smi97].
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X �→ XQ so that A11 = diag(ρ1, . . . , ρp) decouples the Sylvester equation (3.11) into
p linear systems of equations

(A− ρi)zi = xi,

where xi and zi denote the ith column of the rotated X and Z, respectively. So, the
conditions for existence and uniqueness of Z are the same in both inverse iterations.
An additional subtlety of GRQI is that the computed Z may a priori be rank deficient.
However, numerical experiments suggest that if Z is the unique solution of the GRQI
equation (3.11), then it is full rank (see [AH02] for details).

If the span of X is close to V, then the eigenvalues of A11 are close to the eigen-
values of A|V , which are obviously eigenvalues of A. Therefore, (3.10) and (3.11) are
intrinsically ill-conditioned when the span of X is close to an eigenspace Y. This
ill-conditioning is essential for the fast convergence of the shifted iterations and does
not mean that the span of the computed Z is ill-conditioned as a function of X. This
fact was already emphasized in the case p = 1 by Peters and Wilkinson [PW79]. The
proof of cubic convergence of RSQR and GRQI shows that the span of Z is well condi-
tioned when the span of X is “sufficiently close” to the target eigenspace V. We shall
see later (section 4.2) that the notion of “sufficiently close” depends on the structure
of A.

3.2. Newton iterations. It comes as a direct consequence from the definitions
in section 2 that the p-dimensional eigenbases of A are the full-rank n × p solutions
of the matrix equation

F (Y ) := ΠY⊥AY = 0,(3.12)

where ΠY⊥ := I − Y (Y TY )−1Y T is the orthogonal projector onto the orthogonal
complement of span(Y ). This formulation of eigenbasis computation as a zero finding
problem calls for the utilization of the Newton iteration (see, e.g., [DS83, NW99]) in
the Euclidean space R

n×p, which consists in solving the Newton equation

F (Y ) + DF (Y )[∆] = 0,(3.13)

where DF (Y )[∆] denotes the directional derivative of F at Y in the direction of ∆,
and performing the update

Y+ = Y + ∆.(3.14)

However, the solutions of (3.12) are not isolated in R
n×p, namely, if Y is a solution,

then all the elements of the equivalence class Y GLp are solutions, too. In fact, since
F is homogeneous of degree one, i.e., F (YM) = F (Y )M , the solution of the Newton
equation (3.13), when unique, is ∆ = −Y . So any point Y is mapped to Y+ = 0. This
is clearly a solution of F (Y ) = 0, but it spans the trivial zero-dimensional subspace.

A remedy consists in constraining ∆ to belong to the horizontal space

HY := {∆ ∈ R
n×p : Y T∆ = 0},(3.15)

orthogonal to the equivalence class Y GLp. With this constraint on ∆, the solutions
∆ of F (Y + ∆) = 0 become isolated. However, the Newton equation (3.13) has,
in general, no solution ∆ in HY , so the Newton equation (3.13) must be relaxed.
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We will consider two approaches. The first one consists in projecting the Newton
equation (3.13) onto HY

ΠY⊥(F (Y ) + DF (Y )[∆]) = 0, Y T∆ = 0.(3.16)

The second approach consists in solving the Newton equation (3.13) in the least
squares sense, that is,

∆ = arg min
Y T ∆=0

‖F (Y ) + DF (Y )[∆]‖2.(3.17)

In the remainder of the present section, we develop the ideas (3.16) and (3.17) and
show how they relate to methods proposed in the literature.

Define a map JY : HY → HY by projecting the Fréchet derivative of F in a
direction ∆ ∈ HY back onto HY ,

JY : HY → HY : ∆ �→ ΠY⊥DF (Y )[∆] = ΠAΠ∆ − ∆(Y TY )−1Y TAY,(3.18)

where Π is a shorthand notation for ΠY⊥ . Using this notation, (3.16) may be written

JY [∆] = −F (Y ).(3.19)

The Newton–Grassman (NG) algorithm is formally stated as follows.
Algorithm 3.3 (NG). Iterate the mapping Grass(p, n) � Y �→ Y+ ∈ Grass(p, n)

defined by
1. Pick a basis Y ∈ R

n×p that spans Y and solve the equation

ΠAΠ∆ − ∆(Y TY )−1Y TAY = −ΠAY(3.20)

under the constraint Y T∆ = 0, where Π := I − Y (Y TY )−1Y T .
2. Perform the update

Y+ = span(Y + ∆).(3.21)

One checks that Y+ does not depend on the Y chosen in step 1. Indeed, if Y yields
the solution ∆ of (3.20), then YM produces the solution ∆M for any M ∈ GLp, and
span(Y + ∆) = span((Y + ∆)M).

Algorithm NG admits the following geometric interpretation, valid for arbitrary
A. The Grassmann manifold, endowed with the essentially unique Riemannian metric
invariant by the action of the group of rotations, is a Riemannian manifold. In [Smi94],
Smith proposes a Newton iteration on abstract Riemannian manifolds. This iteration,
applied on the Grassmann manifold in order to solve (3.12), yields the search direc-
tion ∆ given by (3.20), where ∆ is interpreted as an element of the tangent space
TY Grass(p, n); see [AMS02] for details. The update (3.21) is a simplification of the
Riemannian updating procedure

Y+ = ExpY∆(3.22)

consisting in following geodesics on the Grassmann manifold. Assuming A = AT ,
Algorithm NG—but with geodesic update (3.22) instead of (3.21)—is also obtained
by applying the Riemannian Newton method on Grass(p, n) for finding a stationary
point of a generalized Rayleigh quotient [EAS98].

Algorithm NG was previously proposed for the case A = AT in [LST98], where
quadratic convergence (at least) was proven. In [AMS02], it is shown that for
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arbitrary A, NG with either geodesic update (3.22) or projected update (3.21) con-
verges locally quadratically to the spectral p-dimensional eigenspaces of A. When
A = AT (which is assumed to hold in the present paper) the rate of convergence of
NG is shown to be cubic.

Now we turn to the least squares approach (3.17). As shown in the appendix, the
solution ∆ of the minimization problem (3.17) verifies

JT ◦ J [∆] + ΠAY (Y TY )−1Y TATΠ∆ = −JT [F (Y )],(3.23)

where JT denotes the adjoint of the operator J (3.18) defined with respect to the
inner product 〈Ω1,Ω2〉X = trace((XTX)−1ΩT

1 Ω2). Assuming A = AT , the operator
J is self-adjoint and we obtain the following algorithm.

Algorithm 3.4 (NH). Iterate the mapping Grass(p, n) � Y �→ Y+ ∈ Grass(p, n)
defined by

1. Pick a basis Y ∈ R
n×p that spans Y and solve the equation

(3.24) ΠA2Π∆ − 2ΠAΠ∆(Y TY )−1Y TAY + ∆(Y TY )−1Y TAY (Y TY )−1Y TAY

= −ΠAΠAY + ΠAY (Y TY )−1Y TAY

for the unknown ∆ under the constraint Y T∆ = 0.
2. Perform the update

Y+ = span(Y + ∆).(3.25)

Here again, it is checked that Y+ does not depend on the Y chosen in step 1.
This least squares approach can be interpreted as a matrix generalization of the
homogeneous Newton method proposed by Dedieu and Shub [DS00].

Algorithm NH converges locally cubically to the spectral eigenspaces of A. This
property can be deduced from the corresponding property in NG. Applying the oper-
ator J on the NG equation (3.19) yields

JT ◦ J [∆] = −JT [F (Y )](3.26)

which only differs from the NH equation (3.23) by the term ΠAY (Y TY )−1Y TATΠ∆.
Since ΠAY is zero at the solution and smooth, the operators in the left-hand side
of (3.26) and (3.19) differ only at the second order. Since the right-hand side is of
first order, the discrepancy between the solutions ∆ of the NH equation (3.24) and
the NG equation (3.20) is cubic, whence cubic convergence of NG is preserved in NH.

Like the inverse iterations (section 3.1), the two Newton methods NG (Algo-
rithm 3.3) and NH (Algorithm 3.4) have points of singularity. Let us rewrite the key
equations in a slightly more compact form, using the notations of section 3.1. The
two Newton iterations map the span of an orthonormal X to the span of

X+ = (X + ∆)M = (X + X⊥H)M,(3.27)

where M is chosen to orthonormalize X+ (M can, e.g., be obtained by a QR factor-
ization), and ∆ or H verify

NG : ΠAΠ∆ − ∆A11 = −ΠAX, XT∆ = 0,(3.28)

or A22H −HA11 = −A21.(3.29)

NH : ΠA2Π∆ − 2ΠAΠ∆A11 + ∆A2
11 = −ΠAΠAX + ΠAXA11, XT∆ = 0,(3.30)

or (A21A12 + A22A22)H − 2A22HA11 + HA2
11 = −A22A21 + A21A11.(3.31)



78 P.-A. ABSIL, R. SEPULCHRE, P. VAN DOOREN, AND R. MAHONY

The inverse iterations (RSQR and GRQI) and the Newton iterations (NG and
NH) are built on very different principles. In the inverse iterations, a new basis Z
appears directly as the solution of a linear system of equations that becomes more and
more ill-conditioned (i.e., almost singular) as the iterate X approaches an eigenspace.
In the Newton methods, a correction ∆, verifying the horizontality constraints, is
computed and added to the current iterate X. It is thus not surprising that the two
approaches involve different singularities. In NG (3.29), H exists and is unique if
and only if the spectra of A22 and A11 are disjoint. Note the difference from inverse
iterations: the matrix A is replaced by the projected matrix A22. In NH (3.31), H
exists and is unique if and only if the eigenvalues of the quadratic eigenvalue problem
(A21A12 +A22A22 − 2A22λ+ λ2I)x ≡ (A21A12 + (A22 − λI)2)x = 0 are distinct from
the eigenvalues of A11; see (4.6). When the span of X is close to V, the residual
matrix A21 has small norm, and the Sylvester operator on the left-hand side of (3.29)
and (3.31) is well-conditioned. Indeed, the eigenvalues of A22 are close to those of
A|V⊥ , the eigenvalues of A11 are close to those of AV , and the spectra of A|V⊥ and
AV are separated since, by hypothesis, V is a spectral eigenspace.

4. Comparison of methods. In the previous section, we have formulated four
iterations—two shifted inverse iterations (RSQR and GRQI) and two Newton meth-
ods (NG and NH)—that evolve on the Grassmann manifold of p-planes in R

n and
converge locally cubically to the spectral p-dimensional eigenspaces of a symmetric
n× n matrix A. Surprisingly, and in spite of different underlying approaches, RSQR
and GRQI coincide with NG in the particular case p = 1, as pointed out by several
authors [Shu86, Smi94, ADM+02, MA03]. When p > 1, however, the four methods
differ.

In the present section, we compare the iterations in terms of numerical cost and
global behavior. Low numerical cost and large basins of attraction are two desirable
features for methods that compute invariant subspaces from a first estimate.

4.1. Practical implementation. Comparing the implementation of the four
different techniques depends to a large extent on the structure of the matrix A. If
we assume first that A is dense, then all four methods have a comparable complex-
ity, namely O(pn3), which mainly accounts for the p matrix factorizations that each
requires. The RSQR solves

RSQR : (A− ρ1I) · · · (A− ρpI)Z = X,(4.1)

which involves p symmetric matrices (A−ρiI). In the case of the three other methods,
the first thing to do is to reduce A11 to a diagonal form. This is cheap since A11 is a
p× p matrix and p is in practical applications typically much smaller than n. More-
over, the diagonalization always exists since A11 is symmetric. This diagonalization
decouples (3.11), (3.28), or (3.30) into p independent systems of linear equations of
the form

GRQI : (A− ρiI)z = x,(4.2)

NG : Π(A− ρiI)Πδ = −ΠAx, XT δ = 0(4.3)

or (A22 − ρI)h = −A21e,(4.4)

NH : Π(A− ρiI)
2Πδ = −g, XT δ = 0(4.5)

or ((A21A12 + A22A22) − 2ρA22 + ρ2I)h = −(A22A21 −A21A11)e,(4.6)

where e ∈ R
p is the eigenvector defined by A11e = ρie and x := Xe, z := Ze, δ := ∆e,

h := He.
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Clearly O(pn3) seems excessive since most eigenvalue solvers require only O(n3)
floating point operations (i.e., flops). A significant improvement is obtained by pro-
ceeding in three phases as follows: (i) reduce the matrix A to a tridiagonal form in
O(n3) flops, (ii) compute an eigenspace of the tridiagonal matrix, (iii) compute the
corresponding eigenspace of the original A in O(n2p) flops. We now focus on the sec-
ond phase and assume that A is already in tridiagonal form. For RSQR the solution
of (4.1) requires now O(np2) flops, while for GRQI (4.2) this is O(np); the subse-
quent reorthogonalization of Z requires O(np2) for both methods. For the Newton
updates NG and NH, we use an idea from [PW79] which shows that the direction of
the solution z of (4.2) is also given by the direction of x + δ where[

A− ρiI x
xT 0

] [
δ
m

]
=

[
−Ax

0

]
.

In a similar fashion, one can rewrite the Newton methods NG and NH as (n+p)×(n+p)
symmetric problems: [

A− ρiI X
XT 0

] [
δ
m

]
=

[
−Ax

0

]
(4.7)

and [
(A− ρiI)

2 X
XT 0

] [
δ
m

]
=

[
−g
0

]
,(4.8)

respectively, rather than solving the dense problems (4.4) and (4.6). When (A −
ρiI) is tridiagonal, (4.7) and (4.8) can be solved in O(np2) flops each. The LDLT

decomposition of (A−ρiI) and the QR decomposition of (A−ρiI) both require O(n)
flops. The above problems are then replaced by[

LDLT X
XT 0

] [
δ
m

]
=

[
−Ax

0

]
(4.9)

and [
RTR X
XT 0

] [
δ
m

]
=

[
−g
0

]
,(4.10)

respectively, where L has only two diagonals and R only three. Solving the sys-
tems (4.9) and (4.10) (possibly with iterative refinement to ensure stability) requires
O(np2) flops each. For a tridiagonal matrix A, the complexity for all four methods
is thus O(np2) in addition to the cost of phases (i) and (iii). We point out, however,
that there exist very efficient numerical methods for computing all the eigenvectors of
tridiagonal matrices such that the computed eigenvectors are orthogonal to working
precision [DP03]. Moreover, the Multiple Relatively Robust Representations algo-
rithm announced in [DP03] would compute p eigenvectors of a tridiagonal matrix
with lower order of complexity, O(np), than the one reported above.

If the matrix A is sparse or banded, say with bandwidth 2q+1, then the numerical
cost per iterate of GRQI, NG, or NH is O(nq2p) + O(np2) assuming p, q << n.
If the bandwidth is sufficiently narrow, namely, q2 ≈ p, then the numerical cost
remains O(np2). For RSQR, assuming that the linear system (4.1) is solved by Gauss
elimination and back-substitution, the numerical cost per iterate is O(nq2p)+O(nqp2);
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hence the complexity of the algorithm essentially increases by a factor q at most as
long as q ≤ p. Another possibility, explained in section 3.1, is to implement RSQR as a
multishift QR algorithm [BD89]. Chasing a p×p bulge down a tridiagonal matrix can
be done with approximately n Householder reflections of dimension p×p and applying
those to X will yield the solution Z of (32). The numerical cost is thus O(np2), but
this implicit method has to be implemented with care [BBM02a, BBM02b] in order
to work properly.

Finally, if the matrix A is very large but sparse, one could consider alternative
sparse matrix techniques such as reordering methods that reduce the bandwidth of A
or even iterative methods. If an approximate solution is sought using an iterative
solver, a stopping criterion has also to be chosen for the inner iteration. Computing
the first iterates with high precision may be unnecessary [EW96]. Iterative solvers
are considered for the case p = 1 in [SE02], including a comparison between the RQI
equation (4.2) and the Newton equation (4.3).

4.2. Basins of attraction. The four subspace methods under investigation in
this paper, i.e., the two inverse iterations RSQR (Algorithm 3.1) and GRQI (Algo-
rithm 3.2) and the two Newton methods NG (Algorithm 3.3) and NH (Algorithm 3.4),
display local cubic convergence to the spectral eigenspaces of the symmetric matrix A.
By “local convergence,” it is meant that around each p-dimensional eigenspace V,
there exists a ball B in the Grassmann manifold Grass(p, n) such that the iteration
converges to V for all initial point in B. But nothing has been said yet about the size
of these balls. This is, however, an important issue, since a large ball means that the
iteration will converge to the target eigenspace even if the initial estimate is not very
precise.

It has been shown for previously available methods that the basins of attraction
are prone to deteriorate when some eigenvalues are clustered. Batterson and Smil-
lie [BS89] have drawn the basins of attraction of the RQI for n = 3 and have shown
that they deteriorate when two eigenvalues are clustered. The bounds involved in the
convergence results of the methods analyzed in [Dem87] blow up when the external
gap vanishes.

In the present section, we illustrate properties of the basins of attraction on three
examples. The first two examples are low-dimensional problems (n = 3 and p = 1, 2)
for which faithful two-dimensional pictures of the basins of attraction can be drawn
(the dimension of Grass(1, 3) and Grass(2, 3) is two). The third example is a higher-
dimensional case. In these examples, the matrices A are chosen to illustrate the
influence of the eigenvalue gaps on the basins of attraction.

In order to graphically represent basins of attraction, we take advantage of the
following facts. Let FA denote one of the four iteration mappings mentioned above.
The mappings are invariant by orthogonal changes of coordinates, i.e., QFA(Y) =
FQAQT (QY) for all Q orthogonal. Therefore, we work without loss of generality in a
coordinate system in which A is diagonal. Moreover, once A is diagonal, the mappings
are invariant by multiplication by a sign matrix. To show this, note that sign matrices
are orthogonal, replace Q above by a sign matrix S and use the relation SAS = A.
Consequently, it is sufficient to represent the basins of attraction in the first orthant.
The other orthants are deduced by symmetry. Note also that the matrices A, −A,
and A− σI yield the same sequences of iterates for all σ.

Example 1 (Dependence on external gap). We consider the case n = 3 and
p = 1 (iterates are one-dimensional subspaces of R

3). Then the two inverse iterations
(RSQR and GRQI) reduce to the RQI, which is equivalent to NG (see, e.g., [Smi94]).
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1 1.8

2

gamma = 0.2, p = 1, span(X
k+1

) = span Z

1 1.99

2

gamma = 0.01, p = 1, span(X
k+1

) = span Z

Fig. 4.1. Basins of attraction for RSQR, GRQI, and NG (n = 3, p = 1). The three vertices
correspond to the three eigenspaces. A similar figure appears in [BS89]. This figure also applies to
NG with n = 3, p = 2 (see Example 2 in section 4.2).

Figure 4.1 represents the basins of attraction of the RQI for A = diag(1, 2 − γ, 2).
On the left-hand side of the figure γ = .2, and on the right-hand side γ is reduced
to 0.01 in order to illustrate the effect of a small eigenvalue gap. Figure 4.1 should
be read as follows. Displayed is the simplex {x ∈ R

n : x1 + x2 + x3 = 1, xi > 0}.
The iterates—one-dimensional subspaces of R

3—are represented by their intersections
with the simplex. The three vertices correspond to the three eigendirections of A, and
the corresponding eigenvalues are indicated. The three colors indicate the three basins
of attraction. It is seen that the basin of attraction of the upper vertex shrinks as
its external gap is reduced. The basins of attraction of NH are qualitatively similar
to the RQI-NG case. In conclusion, this simple example shows the dependence on
external gap in all methods.

Example 2 (Dependence on internal gap in GRQI). We now investigate
the case n = 3, p = 2 (iterates are 2-planes in R

3) using the same two matrices A as
above. Let us first consider the case of RSQR. Its basins of attraction are shown on
Figure 4.2, where 2-planes are represented by the intersection of their normal vector
with the simplex. The three vertices correspond to the three two-dimensional eigen-
spaces of A. For example, the upper vertex corresponds to the minor eigenspace. On
the right-hand plot of Figure 4.2 and the ones that follow, the eigenspace represented
by the lower left vertex has a small internal gap and a large external gap, while the
two other vertices correspond to eigenspaces with a large internal gap and a small
external gap. Figure 4.2 shows that the basins of attraction for RSQR collapse when
the external gap is small. On this low-dimensional example, a small internal gap does
not affect the basin of attraction.

The basins of attraction of GRQI are shown on Figure 4.3, with the same con-
ventions as for the RSQR plot. One notices a peak growing towards the eigenspace
with small internal gap. The tip of the peak is very close to the eigenspace, but this
can hardly be seen on the figure because the peak is very narrow. This shows that
for GRQI the basins of attraction may deteriorate around the eigenspaces with small
internal gap. We will explain this feature analytically in section 4.3.
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1 1.8

2
p = 2, generalized Rayleigh−shifted QR

1 1.99

2
p = 2, generalized Rayleigh−shifted QR

Fig. 4.2. Basins of attraction for RSQR (case p = 2, n = 3). The elements of Grass(2, 3) (i.e.,
2-planes in R3) are represented by the intersection of their normal vector with the simplex.

1 1.8

2

gamma = 0.2, p = 2, span(X
k+1

) = span Z

1 1.99

2

gamma = 0.01, p = 2, span(X
k+1

) = span Z

Fig. 4.3. Basins of attraction for GRQI (case p = 2, n = 3).

The Newton iteration NG displays the following duality property : If X k is a
sequence of iterates generated by NG, then X k

⊥ also forms a sequence of iterates of NG.
To see this, let H verify the NG equation (3.29), note that X⊥ −XHT is orthogonal
to X +X⊥H, and (−HT ) verifies A11(−HT )− (−HT )A22 = −A12, which is just the
NG at the iterate X⊥. By this duality property, the orthogonal complements of the
iterates of NG (p = 2, n = 3) are one-dimensional iterates of NG (p = 1, n = 3).
Representing 2-planes by the intersection of their normal vector with the simplex, the
picture for NG in the case p = 2, n = 3 is the same as for the case p = 1, n = 3
illustrated on Figure 4.1.

The basins of attraction of the Newton iteration NH are shown in Figure 4.4,
with the conventions explained above. The basins of attraction do not collapse in this
low-dimensional example. One however should not conclude that everything goes well
in higher dimensions, as we will show shortly.
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1 1.8

2
p = 2, NH with tau=0

1 1.99

2
p = 2, NH with tau=0

Fig. 4.4. Basins of attraction for NH (case p = 2, n = 3). For the basins of attraction of NG
(p = 2, n = 3), see Figure 4.1.

In conclusion, this second example illustrates that the four methods are different
when p > 1. It also reveals a dependence on internal gap occurring in GRQI.

Example 3 (Higher-dimensional case). The principal interest of the low-
dimensional example studied above lies in the two-dimensional representation of the
basins of attraction. We now consider an example in Grass(3, 7), with dim Grass(3, 7)
= 12, in order to further investigate the influence of the eigenvalue gaps on the basins
of attraction. We use the matrix

A = diag(1, 2, 2 + γ, 2 + 2γ, 3, 4, 5),

where γ is a small number (we choose γ = 10−2). We select three different eigenspaces
in order to illustrate the influence of internal and external gaps. In each case, we pick
104 initial points randomly at three given distances of the targeted eigenspace and we
count how often the sequence of iterates fails to converge to the target. We declare
that the sequence converges if dist(X k,Vtarget) < 10−6 with k = 100, where dist
denotes the largest principal angle between the two arguments. The condition is
usually already verified for very small k (see Figure 4.5), but if the iteration is started
close to the boundary of the basin of attraction then the condition may be verified
after arbitrarily many steps.

Here are the results of our experiments:

(i) Convergence to the eigenspace Vleli with eigenvalues 1, 3, and 4. This eigen-
space has a large external gap and a large internal gap. The ratios of sequences that
failed to converge to the targeted eigenspace are shown in Figure 4.5(a). As predicted
by the theory, the four methods (RSQR, GRQI, NG, and NH) invariably converge
to the targeted eigenspace when the initial error is small. When the initial error is
large, the methods sometimes fail, and RSQR fails much more often than the other
methods.

(ii) Convergence to Vlesi with eigenvalues 2, 2 + γ, and 2 + 2γ (Figure 4.5(b)).
This illustrates the influence of a small internal gap. All methods except GRQI have
a large basin of attraction around Vlesi. This confirms the information obtained in the
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Fig. 4.5. Ratio of sequences that failed to converge to the targeted eigenspace in Example 3
(section 4). “Init. err” gives the value of the largest principal angle between the initial subspace and
the targeted eigenspace. Each ratio has been estimated using 104 randomly chosen starting points
in each case. The absence of bar means that the sequence converged for all trials. We declare that a
sequence converges if the largest principal angle between the 100th iterate and the target is smaller
than 10−6. The numbers between parentheses indicate the maximal number of iterates (evaluated
on the 104 trials) necessary for the convergence condition to be satisfied.

lower-dimensional case that the basins of attraction of eigenspaces with small internal
gap are collapsed in GRQI (see the peak observed for GRQI in Figure 4.3).

In a different experiment not reported on the figure, we also considered initial
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points situated at the distance 2
3
π
2 of Vlesi. At such a distance, Vlesi is seldom the

closest eigenspace, so convergence to Vlesi is not expected. And indeed, the iterates
of GRQI, NG, and NH seldom converged to Vlesi (probability of convergence around
0.02). However, the iterates of RSQR did very often converge to Vlesi, with probability
0.95. This means that the basin of attraction of Vlesi has a very large area under
RSQR. It suggests that the eigenspaces with clustered eigenvalues have an oversized
basin of attraction under RSQR, to the detriment of the other basins of attraction.

(iii) Convergence to Vseli with eigenvalues 2, 3, and 4 (Figure 4.5(c)). This
eigenspace has a large internal gap but a small external gap. The number of failures
of RSQR is about 10 times worse than for the other methods, and all the methods
sometimes fail to converge to Vseli unless they are started very close to it. This means
that the basin of attraction of Vseli is small for each method. Therefore, one usually
tries to avoid small external gaps by enlarging the targeted eigenspace to include
whole clusters of eigenvalues. However, this approach requires a priori information on
the eigenvalues. In section 5 we will propose modified Newton methods that display
large basins of attraction around eigenspaces like Vseli.

4.3. Dependence on eigenvalue gaps. The numerical experiments reported
in the previous section have led to the following observations. For the four methods
under investigation, collapsed basins of attraction are observed around eigenspaces
with small external eigenvalue gap. The basins of attraction of GRQI also deteriorate
when the internal gap between eigenvalues is small. Under RSQR, the eigenspaces
corresponding to clusters of eigenvalues have a particularly large basin of attraction.
In the present section, we justify these observations analytically. As an aside, we
obtain an alternative proof of cubic convergence for the Newton methods.

RSQR. For simplicity of the argument, consider A = diag(1, 1 + γ, 2) with γ
small. Let V be an eigenspace of A with small external gap, e.g., V = span(e2, e3)
corresponding to the eigenvalues 1 + γ and 2. We now exhibit a subspace X 0 close to
V that is mapped by RSQR to a subspace close to span(e1, e2). Let X 0 = span(e2 +
αe1, e3 + βe1) with |α|, |β| << 1. Then X 0 is close to V. The Ritz values of (A,X 0)
are ρ1 = 1 + γ − α2γ + O(α4) + O(α2β2) and ρ2 = 2 − β2 + O(β4) + O(α2β2), and
one obtains for the new iterate computed by RSQR from X 0

X 1 = span

⎛⎝(A− ρ1I)
−1(A− ρ2I)

−1

⎡⎣α β
1 0
0 1

⎤⎦⎞⎠ � span

⎡⎣−α3 1
1 0
0 γ/β3

⎤⎦ .

If γ << β3, then X 1 is close to span(e1, e2). In other words, given a X 0 that is close
to V but does not contain e3, if the cluster is sufficiently tight, then X 1 is close to
the eigenspace corresponding to the cluster. This shows that the basin of attraction
of span(e1, e2) contains points close to V.

The behavior we have just observed can be interpreted as a “cooperation” between
clustered eigenvalues. If a Ritz value is a good shift for one eigenvalue in a cluster,
it is also a good shift for all the eigenvalues in the cluster. Moreover, Ritz values
of a randomly chosen subspace are more likely to be close to a cluster than to an
isolated eigenvalue. This explains the oversized basins of attraction observed around
eigenspaces with clustered eigenvalues.

GRQI. For GRQI, both a small external gap and a small internal gap may affect
the quality of the basin of attraction of V, as we now show.
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GRQI maps the basis Y = V + V⊥K to the Z = V Z1 + V⊥Z2, where

Λ1Z1 + Z1(Ip + KTK)−1(Λ1 + KTΛ2K) = Ip,(4.11)

Λ2Z2 + Z2(Ip + KTK)−1(Λ1 + KTΛ2K) = K;(4.12)

see [AMSV02, Abs03]. Define K+ = Z2Z
−1
1 so that the span of Z is the same as the

span of V + V⊥K+.
Let us first consider equation (4.12). This is a Sylvester equation. It is well-

conditioned when K is small, therefore Z2 = O(K) due to the right-hand side. If the
external gap of V is small, i.e., gap[Λ1,Λ2] is small, then the Sylvester operator is
arbitrarily ill-conditioned for small K, so Z2 and K+ may be large.

Now consider equation (4.11). This Sylvester equation is ill-conditioned when
K is small. Since Λ1 is diagonal, the lines of (4.11) are decoupled. Without loss of
generality, let us consider the first line. Put Z1 = ( ζ11ζ21

ζ12
ζ22

), Λ1 = (σ Σ ), E = Λ1−(Ip+

KTK)−1(Λ1 + KTΛ2K) = (E11

E21

E12

E22
). The first line of (4.11) yields (see [AMSV02])

ζ11 = [E11 − E12(σIp − Σ + E22)
−1E21]

−1,(4.13)

ζ12 = −ζ11E12(σIp − Σ + E22)
−1.(4.14)

One obtains that Z−1
1 = O(E) = O(K2) and concludes that K+ = O(K3), so the

algorithm converges locally cubically [AMSV02]. However, if σ is close to an eigenvalue
of Σ (i.e., if the internal gap is small), then (σI − Σ −E22)

−1 is large for some small
E (i.e., small K). This suggests that if the internal gap is small, there are some small
Ks for which Z−1

1 is large, whence K+ is large.

Newton methods. We show here that NG converges locally cubically to V
and that the basin of attraction collapses when the external gap is small, but not
when the internal gap is small. A similar development for NH leads to the same
conclusions.

Let V be an orthonormal basis of the eigenspace V such that V TAV = Λ1 is
diagonal, and let V⊥ be an orthonormal basis of V⊥ such that V T

⊥ AV⊥ = Λ2 is
diagonal. The external gap of V is gap[Λ1,Λ2]. After some manipulations, one obtains
that under NG (Algorithm 3.3 with projective update), the span of V +V⊥K is mapped
to the span of V + V⊥K+, where K+ verifies

K+ = (K + (I + KKT )−1(L−K))(I −KT (I + KKT )−1(L−K))−1,(4.15)

in which L solves

(4.16) (Λ2 + KΛ1K
T )(I + KKT )−1 L− L (I + KTK)−1(Λ1 + KTΛ2K)

= [KΛ1K
T (I + KKT )−1 + Λ2((I + KKT )−1 − I)]K

−K[(I + KKT )−1KTΛ2K + ((I + KTK)−1 − I)Λ1].

One deduces from (4.16) that L = O(K3) and then K+ = O(K3), which means that
the Newton iteration NG converges cubically; the reader is referred to [AMS02] for
a detailed proof of cubic convergence. If the gap[Λ1,Λ2] is small, then the Sylvester
operator on the left-hand side of (4.16) becomes arbitrarily ill-conditioned for small
K’s (remember that the eigenvalues of a Sylvester operator are the differences between
the eigenvalues of the two matrices involved in the equation [Ste73]), whence K+ can
be large even if K is small. This reasoning suggests that if the external gap of V
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is small, then some initial points close to V do not yield convergence to V. On the
other hand, the conditioning of the Sylvester operator in (4.16) is not affected by the
internal gap of V.

5. Improving the basins of attraction. Large basins of attraction are de-
sirable as they ensure that the iteration will converge to the targeted eigenspace
even if the initial subspace is a relatively poor estimate. The analysis in section 4
has shown that a small external gap, and in the case of GRQI a small internal
gap, produces a degradation of the basins of attraction of the iterations defined in
section 3. For this reason, we now discuss ways of improving the shape of the basins
of attraction.

5.1. GRQI with limited variations. By experimenting with GRQI, we no-
ticed that the sequences of iterates that diverge from the target eigenspace start with
a big jump, i.e., the distance between the initial and second iterates is large. In an
attempt to prevent this behavior, we apply a threshold value on the distance between
two successive iterates.

This can be implemented in the following way. Let X be the current iterate and
let X be an orthonormal n × p matrix that spans X . Let θmax be a threshold value
on the principal angles between X and X+. Compute Z, the solution of the GRQI
equation (3.11). Orthonormalize Z, e.g., by a Gram–Schmidt process. Then, by the
CS decomposition theorem [PW94, GV96], there exist orthogonal matrices U1 and V1

and an orthonormal matrix Y with Y TX = 0 such that

ZV1 = XU1C + Y S,

where C = diag(cos(θ1), . . . , cos(θp)), S = diag(sin(θ1), . . . , sin(θp)), with 0 ≤ θ1 ≤
· · · ≤ θp ≤ π

2 . The θi’s are the principal angles between span(X) and span(Z),
and the columns of XU1 and ZV1 are the corresponding principal vectors. Define
θnewi = min{θi, θmax}. Then define Cnew = diag(cos(θnew1 ), . . . , cos(θnewp )), Snew =
diag(sin(θnew1 ), . . . , sin(θnewp )), and let the new iterate X+ be the span of Znew =
XU1C

new + Y Snew.

The matrix Znew is obtained from the original Z in O(np2) flops by computing the
singular value decomposition XTZ = U1CV T

1 , then S = sin(arccosC), and solving
Y S = ZV1 − XU1C. In fact, only the last columns of U1, S, and Y corresponding
to the θi’s larger than the threshold θmax have to be computed; the other columns of
ZV1 are unmodified in Znew.

We chose θmax = π
10 in numerical experiments. The basins of attraction of this

modified GRQI are displayed on Figure 5.1 for the low-dimensional case (n = 3,
p = 2) investigated in the previous section (Example 2). Compare Figure 4.3 (GRQI)
and Figure 5.1: the peak has been removed. Experimental results for the higher-
dimensional case (Example 3 in the previous section) are displayed on Figure 4.5 (see
columns labelled “GRQIlim”). They illustrate that this heuristic effectively suppresses
the problem of dependence on the internal gap.

Another (arguably more natural) modification of GRQI consists in taking X+ on
the Grassmann geodesic [EAS98, AMS02] between X and span(Z) with θp(X ,X+) =
θmax. This amounts to defining θnewi = λθi with λ = θmax

θp
. However, the previously

described technique works slightly better in experiments.
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1 1.8

2
gamma = 0.2, p = 2, GRQI with maxvar=.5*pi/5

1 1.99

2
gamma = 0.01, p = 2, GRQI with maxvar=.5*pi/5

Fig. 5.1. Basins of attraction for GRQI with limited steps (section 5.1) in the case p = 2,
n = 3. Compare with the original GRQI (Figure 4.3).

5.2. Modified Newton methods.

Deformation parameter τ . As explained in section 3.2, the NG iteration at-
tempts to find a p-plane Y such that each basis Y of Y verifies

F (Y ) := ΠY⊥AY = 0,(5.1)

where ΠY⊥ := I−Y (Y TY )−1Y T . Equation (5.1) holds if and only if Y is an invariant
subspace of A.

Let us define a cost function

f(Y ) :=
1

2
trace((Y TY )−1F (Y )TF (Y )).(5.2)

It is easily checked that f(Y ) depends only on the span of Y , and not on the basis Y
itself [AMS02]. So, the cost function f defines a scalar field on the Grassmann mani-
fold. This scalar field is zero at the eigenspaces of A and strictly positive everywhere
else. An illustration of the level curves of f is shown on Figure 5.2. We stress that
f reaches its minimum value (zero) at all the eigenspaces of A, and not only at an
extremal eigenspace. This is a fundamental difference with the more familiar Rayleigh
quotient.

Section 4 has shown that the basins of attraction of the two Newton methods
(NG and NH) deteriorate in the presence of a small external gap. On the other hand,
Figure 5.2 suggests that the basins of attraction of the steepest descent flow of the
cost function f remain broad even when the eigenvalue gap shrinks. A numerical
simulation of the steepest descent flow of f in Example 3 of section 4 shows that the
distance between each eigenspace and the boundary of its basin of attraction is large
(greater than 1

3
π
2 ) in all cases.

This prompts us to follow the steepest descent of f when the solution is far away
from a solution and use the Newton method in the neighborhood of a solution. It is,
however, difficult to decide when the commutation between the two behaviors should
occur. If the Newton iteration takes over too soon, the basins of attraction may be
collapsed. If the transition occurs late in the iterative process, then more steps will be



ITERATIONS FOR INVARIANT SUBSPACE COMPUTATION 89

1 1.8

2

1 1.99

2

Fig. 5.2. Level curves of the cost function f defined in (5.2). The cost function vanishes at
the three eigenspaces (represented by the three vertices) and is strictly positive everywhere else. The
gradient descent flow for f consists in following the steepest descent path of these level curves.

necessary before obtaining a good approximation of the eigenspace. A remedy is to
implement a smooth transition between the two behaviors by means of a deformation
parameter, an idea which connects with trust region methods (see, e.g., [DS83] or
Chap. 11 in [NW99]). We now show how this deformation approach works out in our
case.

Let Y be a basis for the current subspace, let HY be the horizontal space defined
as in (3.15), and let J : HY → HY : ΠDF (Y )[∆] be as in (3.18). The derivative of
the cost function f in the direction of ∆, with Y T∆ = 0, is given by

Df(Y )[∆] = trace((Y TY )−1F (Y )TDF (Y )[∆])

= trace((Y TY )−1F (Y )TJ [∆])

= trace((Y TY )−1(JT [F (Y )])T∆)

= trace(∆TJT [F (Y )](Y TY )−1),

where JT denotes the adjoint of the operator J defined with respect to the inner
product 〈Ω1,Ω2〉Y = trace((Y TY )−1ΩT

1 Ω2). Then a formula in [AMS02] directly
yields

grad f(Y ) = JT [F (Y )].(5.3)

On the other hand, the NG equation (3.20) reads J [∆] = −F (Y ), or equivalently

JT ◦ J [∆] = −JT [F (Y )].

A continuous deformation between the gradient descent flow of f and the Newton
method NG is thus given by

(JT ◦ J + τ Id)[∆] = −JT [F (Y )].

If τ is small, then ∆ is close to the NG-vector given by the NG equation (3.28), and
the iteration is close to pure NG. If τ is large, then the direction of ∆ is close to
the negative gradient of f , and the iteration is similar to a Euler integration of the
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gradient descent flow of f . Because we assume A = AT , the operator J is self-adjoint
and the modified NG algorithm can be expressed as follows.

Algorithm 5.1 (NG-tau). Iterate the mapping Y �→ Y+ defined by
1. Pick an orthonormal basis Y that spans Y and solve the equation

ΠAΠAΠ∆ + ∆Y TAY Y TAY − 2ΠAΠ∆Y TAY + τ∆ = −(ΠAΠAY − ΠAY Y TAY ),

(5.4)

where Π := (I − Y Y T ), under the constraint Y T∆ = 0.
2. Perform the update Y+ = span(Y + ∆).
We now introduce a τ deformation parameter in the NH iteration such that the

limiting cases τ = 0 and τ = ∞ correspond to pure NH and gradient descent for f ,
respectively. This is easily done because the right-hand side of the NH equation (3.30)
is precisely − grad f (compare (3.23) and (5.3)).

Algorithm 5.2 (NH-tau). Iterate the mapping Y �→ Y+ defined by
1. Pick an orthonormal basis Y that spans Y and solve the equation

ΠA2Π∆ + ∆Y TAY Y TAY − 2ΠAΠ∆Y TAY + τ∆ = −(ΠAΠAY − ΠAY Y TAY ),

(5.5)

where Π := (I − Y Y T ), under the constraint Y T∆ = 0.
2. Perform the update Y+ = span(Y + ∆).
Note that the only difference between NG-tau and NH-tau is in the first term

of (5.4) and (5.5).

Practical implementation. The major computational work in NG-tau (Algo-
rithm 5.1) or NH-tau (Algorithm 5.2) is solving (5.4) or (5.5) for ∆. Like in the
case of the original NG and NH iterations (see section 4.1), the first thing to do is to
diagonalize the small p × p matrix A11 := Y TAY . This decouples (5.4) or (5.5) into
p individual systems of linear equations of the form

((ΠAΠ − ρiI)
2 − τI)δ = −g, Y T δ = 0,(5.6)

Π((A− ρiI)
2 − τI)Πδ = −g, Y T δ = 0(5.7)

for NG-tau and NH-tau, respectively. In the case of NH-tau (5.7), the projectors are
outside the matrix, which allows for the utilization of the techniques described in sec-
tion 4.1. It is possible to obtain the Cholesky decomposition of (A−ρi)

2−τI = RT
τ Rτ

from that of (A− ρi)
2 = RTR in O(n) flops when R has only three diagonals [Par80].

The algorithm NH-tau will thus again require O(np2) flops per iteration. In the case
of NG-tau, in the absence of an efficient algorithm for solving (5.6), the cost for pro-
ducing a new iterate involves O(n3) flops, even if A is tridiagonal. Thus, NH-tau has
a serious advantage over NG-tau in terms of numerical cost.

Choosing the deformation parameter. There exist many strategies for tun-
ing the τ parameter in order to improve the global behavior of the algorithm while
preserving the ultimate rate of convergence of the Newton method. In a line search
approach, one selects τ so that the direction of K remains in a sector around the
negative gradient of f and then perform a line search along the direction of the K
computed from (5.4). Equation (5.4) is also helpful in trust region methods. A large τ
corresponds to a small trust region, while τ = 0 corresponds to a trust region that
contains the exact next Newton iterate.
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1 1.8

2
p = 2, NG with tau parameter

1 1.99

2
p = 2, NG with tau parameter

Fig. 5.3. Attraction basins for NG with τ := f (5.4) in the case p = 2, n = 3. Compare with
original NG on Figure 4.1. Local cubic convergence is preserved.

Classical strategies for choosing τ involve several parameters that the user can
choose at his convenience [DS83, NW99]. In the present case, the very simple choice
τ := f preserves the local cubic convergence and considerably enlarges the basins of
attraction around the eigenspaces, both for NG-tau and NH-tau.

1 1.8

2
p = 2, NH with tau=f

1 1.99

2
p = 2, NH with tau=f

Fig. 5.4. Attraction basins for NH-tau with τ := f (5.4) in the case p = 2, n = 3.

Local cubic convergence of NG-tau and NH-tau with τ = f is direct: τ is quadratic
in the distance between the current iterate Y and the target eigenspace V, while
the right-hand side of (5.4) or (5.5) is linear in the distance. Consequently, the
perturbation on the solution K of (5.4) induced by τ = f is cubic.

The global behavior of NG-tau and NH-tau is illustrated on Figures 5.3 and 5.4
in our low-dimensional example utilized in section 4.2. Comparison with Figure 4.1
shows that the basins of attraction have been considerably enlarged around the three
eigenspaces. The improvement is even more spectacular in the larger dimensional
case (Example 3 in section 4.2); see Figure 4.5. Both NG-tau and NH-tau invari-
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ably converged to the targeted eigenspace. We had to choose the largest principal
angle between the first iterate and the target greater than 1

2.2
π
2 in order to observe

convergence to a wrong eigenspace.

Note that the balls centered on the eigenspaces of A overlap if their radius (mea-
sured in arc length on Grassmann [AMS02] or by means of the largest principal angle)
is larger than π/4. So there is a geometrical limitation on the size of the basins of
attraction. Our results show that in the NG-tau and NH-tau, the basins of attraction
are so large that the geometrical limit is almost reached.

6. Conclusion. We have compared four iterative methods, i.e., RSQR (Algo-
rithm 3.1), GRQI (Algorithm 3.2), NG (Algorithm 3.3), and NH (Algorithm 3.4),
that operate on the set of p-dimensional subspaces of R

n and refine initial estimates
of invariant subspaces of a symmetric n × n matrix A with cubic rate of conver-
gence. Methods RSQR and GRQI are formulated as shifted inverse iterations. The
former uses multiple scalar shifts while the latter involves a matrix shift. Algorithms
NG and NH are derived from a Newton argument. Algorithm RSQR can be traced
back to [PK69, PP73] and its proof of cubic local convergence is implicitly contained
in [WE91]. GRQI is studied in [Smi97, AMSV02]. NG appears in [LST98, EAS98,
LE02] and is connected to [Ste73, DMW83, Cha84, Dem87, Fat98, DF01]. Its lo-
cal rate of convergence is studied in [AMS02]; see also sections 3.2 and 4.3. To our
knowledge, NH was never mentioned before in the literature.

We have shown that although these four iterations converge locally cubically
to the spectral (i.e., isolated) eigenspaces of A, they appreciably differ in their global
behavior. The basin of attraction of an eigenspace V collapses when the eigenvalues of
A relative to V are not well separated from the other eigenvalues of A. Moreover, in the
case of GRQI, the basin of attraction of V also deteriorates if the eigenvalues relative
to V are clustered. This dependence on eigenvalue gaps means that the sequence of
iterates may diverge from V even if the initial point is a good approximation of V.

For three of the methods, we have proposed ways of improving the shape of the
basins of attraction. In the GRQI case, our numerical experiments suggest that a
simple heuristic imposing a limitation on the distance between successive iterates
removes the bad influence of clustered eigenvalues in the target eigenspace. In the
Newton case, we have introduced a deformation parameter that achieves a continuous
deformation between the pure Newton case (NG or NH) and the gradient descent flow
of a cost function. Our experiments show that a simple choice of the deformation pa-
rameter spectacularly improves the shape of the basins of attraction while preserving
the ultimate cubic convergence rate.

We also commented on the practical implementation of the various iterations.
With the exception of the deformed NG iteration, a new iterate of each method can
be computed in O(np2) flops when A has bandwidth 2q + 1 and q = O(p1/2). When
q = 1 there exist very efficient methods that compute all eigenvectors; see [DP03].
When A is sparse but not banded the computational cost of one iteration step will
depend on the type of sparsity, but the complexity is essentially that of p sparse solves
and therefore likely to be only linear in n.

In the Newton methods presented here, it is essential to compute the updates with
high accuracy in order to take advantage of the cubic rate of convergence. Another
approach consists in using acceleration techniques that exploit the useful information
given by the previous updates in order to improve the current approximate solution.
This allows for lower accuracy solves of the Newton equations, e.g., using iterative
solvers; see [FSV98, Kny01] for more details. In the p = 1 case, this approach yields
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e.g., the celebrated Jacobi–Davidson method [SV96] for which the use of iterative
solvers as inner solution process is well understood [Not02, Not03]. As an aside, the
Jacobi–Davidson method is equivalent to RQI with p = 1 when the Newton equations
are solved exactly (this rejoins our remark on the p = 1 case in section 4). In the
p > 1 case, we obtain a “block Jacobi–Davidson” that was touched upon in recent
references [LE02, Bra03].

Among the algorithms considered here, our study suggests the NH algorithm with
deformation parameter (Algorithm 5.2) as the method of choice for its remarkable
combination of advantages: excellent global behavior, cubic rate of convergence, and
low numerical cost O(np2) when A is suitably condensed.

Appendix. Derivation of Algorithm NH. In this section, we explain how the
NH equation, i.e., (3.23) or (3.24), is derived from the minimization problem (3.17).

Let F be defined as in (3.12), F (Y ) := ΠY⊥AY and let HY denote the horizontal
space (3.15), HY := {Y T∆ = 0}. Let J denote the operator DF (Y ) restricted to act
on HY ,

J[∆] = ΠAΠ∆ − ∆(Y TY )−1Y TAY − Y (Y TY )−1∆TAY = J [∆] − Y (Y TY )−1∆TAY,

where J denotes the operator ΠDF (Y ) defined in (3.18) restricted to act on HY . Let

mY (∆) :=
1

2
‖F (Y ) + J[∆]‖2 =

1

2
trace((Y TY )−1(F (Y ) + J[∆])T (F (Y ) + J[∆])),

where the (Y TY )−1 factor is introduced so that mYM (∆M) = mY (∆) for all M ∈
GLp (this allows us to take Y not necessarily orthonormal).

The minimization problem (3.17) is to compute ∆∗ = arg min∆∈HY
mY (∆). To

this end, define J
T , the adjoint of J, by requiring that J

T is on R
n×p into HY and

verifies trace((Y TY )−1ΩT
J[∆]) = trace((Y TY )−1(JT [Ω])T∆) for all Ω ∈ R

n×p and
all ∆ ∈ HY . One obtains

J
T [Ω] = JT [ΠΩ] − ΠAY (Y TY )−1ΩTY

and

JT : HY → HY : ∆ �→ ΠATΠ∆ − ∆(Y TY )−1Y ATY T .

Then one readily obtains

DmY (∆)[∆̃] = trace((Y TY )−1(JT [F (Y )] + J
T ◦ J[∆])T ∆̃);

hence the solution ∆∗ of the minimization problem (3.17) verifies the normal equations
J
T ◦ J[∆∗] = −J

T [F (Y )] that is

JT ◦ J [∆∗] + ΠAY (Y TY )−1Y TAT∆∗ = −J [F (Y )].(6.1)

If A = AT , then J is self-adjoint and the latter equation develops into the NH equa-
tion (3.24).
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Abstract. Let M be a 2 × 2 matrix of Laurent polynomials with real coefficients and symme-
try. In this paper, we obtain a necessary and sufficient condition for the existence of four Laurent
polynomials (or finite-impulse-response filters) u1, u2, v1, v2 with real coefficients and symmetry such
that [

u1(z) v1(z)
u2(z) v2(z)

] [
u1(1/z) u2(1/z)
v1(1/z) v2(1/z)

]
= M(z) ∀ z ∈ C\{0}

and [Su1](z)[Sv2](z) = [Su2](z)[Sv1](z), where [Sp](z) = p(z)/p(1/z) for a nonzero Laurent polyno-
mial p. Our criterion can be easily checked and a step-by-step algorithm will be given to construct
the symmetric filters u1, u2, v1, v2. As an application of this result to symmetric framelet filter banks,
we present a necessary and sufficient condition for the construction of a symmetric multiresolution
analysis tight wavelet frame with two compactly supported generators derived from a given symmet-
ric refinable function. Once such a necessary and sufficient condition is satisfied, an algorithm will
be used to construct a symmetric framelet filter bank with two high-pass filters which is of interest
in applications such as signal denoising and image processing. As an illustration of our results and
algorithms in this paper, we give several examples of symmetric framelet filter banks with two high-
pass filters which have good vanishing moments and are derived from various symmetric low-pass
filters including some B-spline filters.

Key words. matrix splitting, symmetry, framelet filter banks, tight wavelet frames, low-pass
and high-pass filters, refinable functions
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1. Introduction and motivation. Matrix theory plays an important role in
wavelet analysis [4] and filter banks [17, 18]. In this paper, we are interested in splitting
a 2 × 2 matrix of Laurent polynomials with real coefficients and symmetry into the
form U(z)U(1/z)T for some 2×2 matrix U whose entries are Laurent polynomials with
real coefficients and symmetry. Our investigation on this matrix splitting problem is
greatly motivated by the recent development of symmetric tight wavelet frames and
framelet filter banks which have been found to be useful and interesting in many
applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In the following, let us
review some necessary background and explain our motivation to study this problem.

Since Daubechies constructed her famous family of compactly supported or-
thonormal wavelet bases in 1988, wavelets have been extensively studied and success-
fully applied to many areas. Though orthonormal wavelet bases have many desired
properties in applications, as Daubechies pointed out in [4], except the Haar wavelet
which is discontinuous, there is no compactly supported real-valued continuous or-
thonormal wavelet basis that can have symmetry. However, in many applications, for
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various purposes, symmetry is a much desired property. In order to achieve symme-
try in a wavelet system or a wavelet filter bank, many generalizations of orthonormal
wavelet bases have been proposed and investigated in the literature [4, 18]. In this
paper, we are particularly interested in tight wavelet frames and framelet filter banks
which currently stimulate a lot of interest in both theory and application due to their
particular interesting features [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. As a gen-
eralization of an orthonormal wavelet basis, a tight wavelet frame is an overcomplete
wavelet system that preserves many desirable properties of an orthonormal wavelet
basis. See Selesnick [15] for discussion on applications and interesting features of tight
wavelet frames and framelet filter banks.

Before proceeding further, let us review some definitions and notation. We say
that a set {ψ1, . . . , ψr} of functions in L2(R) generates a (normalized) tight wavelet
frame in L2(R) if

‖f‖2 =

r∑
�=1

∑
j∈Z

∑
k∈Z

|〈f, ψ�
j,k〉|2 ∀ f ∈ L2(R) with ψ�

j,k := 2j/2ψ�(2j · −k),

(1.1)

where 〈f, g〉 :=
∫

R
f(x)g(x) dx and ‖f‖2 := 〈f, f〉. The set {ψ1, . . . , ψr} is called a

set of generators for the corresponding tight wavelet frame. Let δ denote the Dirac
sequence such that δ0 = 1 and δk = 0 for all k ∈ Z\{0}. In particular, if {ψ1, . . . , ψr}
generates a tight wavelet frame and 〈ψ�

j,k, ψ
�′

j′,k′〉 = δ�−�′δj−j′δk−k′ for all �, �′ =

1, . . . , r and j, j′, k, k′ ∈ Z, then {ψ1, . . . , ψr} generates an orthonormal wavelet basis
in L2(R). It follows directly from (1.1) that any function f ∈ L2(R) has the wavelet
expansion: f =

∑r
�=1

∑
j∈Z

∑
k∈Z

〈f, ψ�
j,k〉ψ�

j,k.

In order to have a fast algorithm, one is interested in tight wavelet frames which
are derived from refinable functions via the multiresolution analysis (MRA). We

say that a function φ is refinable if φ̂(2ξ) = a(e−iξ)φ̂(ξ) for a Laurent polynomial
a with a(1) = 1 (a is called the mask for the refinable function φ and is also
called a low-pass filter in engineering), where the Fourier transform is defined to

be f̂(ξ) =
∫

R
f(x)e−iξx dx for f ∈ L1(R) and can be naturally extended to tempered

distributions. We usually normalize a refinable function φ by φ̂(0) = 1.

Throughout this paper, we assume that all Laurent polynomials have real coef-
ficients. In other words, all the filters discussed in this paper are of finite-impulse-
response (FIR) and have real coefficients.

As an important family of refinable functions, B-spline functions are useful in
applications. The B-spline function of order n (n ∈ N), denoted by Bn throughout
this paper, can be obtained via the recursive formula: B1 := χ[0,1], the characteristic

function of the interval [0, 1], and Bn(x) :=
∫ 1

0
Bn−1(x − t) dt for n � 2. The B-

spline function Bn ∈ Cn−2(R) is a symmetric refinable function satisfying B̂n(2ξ) =

2−n(1 + e−iξ)nB̂n(ξ) for ξ ∈ R.

In order to obtain an orthonormal wavelet basis from a refinable function φ via
the MRA, the refinable function φ must satisfy the following condition [4, 18]:∫

R

φ(x + k)φ(x) dx = δk ∀ k ∈ Z.(1.2)

By a simple argument, (1.2) implies that its mask a must satisfy the following condi-
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tion [4, 18]:

|a(z)|2 + |a(−z)|2 = 1 ∀ z ∈ T := {z ∈ C : |z| = 1}.(1.3)

If (1.2) holds, one can define a wavelet function by ψ̂(2ξ) = e−iξa(−eiξ)φ̂(ξ). Then
{ψ} generates an orthonormal wavelet basis in L2(R) (see [4]). Note that the Haar
wavelet is derived from the B-spline function B1 which is discontinuous.

The conditions in (1.2) and (1.3) impose a very restrict constraint on a refin-
able function and its low-pass filter. Many refinable functions such as the B-spline
functions Bn(n > 1) do not satisfy (1.2). In fact, up to an integer shift, B1 is the
only example of real-valued compactly supported refinable function that can have
symmetry and satisfy (1.2) (see [4]).

As discussed above, an orthonormal wavelet basis has only one generator. By
increasing the number of generators in a tight wavelet frame, recently it was found
that one has a lot of freedom in the construction of tight wavelet frames derived from
refinable functions which may not satisfy the condition in (1.2). For example, it was
demonstrated in Ron and Shen [14] that from any B-spline function of order n, one
can construct a symmetric tight wavelet frame with n generators. More recently, Chui
and He [1] (also see Petukhov [12]) showed that if the mask a for a symmetric refinable
function satisfies

|a(z)|2 + |a(−z)|2 � 1 ∀ z ∈ T,(1.4)

then one can derive a symmetric tight wavelet frame with three generators. Recently,
Daubechies et al. [6] and Chui, He, and Stöckler [2] obtained the following interesting
procedure that yields all possible MRA tight wavelet frames derived from a refinable
function.

Theorem 1.1. Let φ be a refinable function in L2(R) such that φ̂(2ξ)=a(e−iξ)φ̂(ξ)
for a Laurent polynomial a with a(1) = 1. Suppose that there exist Laurent polynomi-
als Θ, a1, . . . , ar such that Θ(1) = 1 and

[
a1(z) · · · ar(z)
a1(−z) · · · ar(−z)

]⎡⎢⎣a
1(1/z) a1(−1/z)

...
...

ar(1/z) ar(−1/z)

⎤⎥⎦ = MΘ(z),(1.5)

where

MΘ(z) :=

[
Θ(z) − Θ(z2)a(z)a(1/z) −Θ(z2)a(z)a(−1/z)
−Θ(z2)a(−z)a(1/z) Θ(−z) − Θ(z2)a(−z)a(−1/z)

]
,

z ∈ C\{0}.
(1.6)

Define the wavelet functions ψ1, . . . , ψr by ψ̂�(2ξ) = a�(e−iξ)φ̂(ξ), � = 1, . . . , r. Then
{ψ1, . . . , ψr} generates a tight wavelet frame in L2(R).

According to Theorem 1.1, a framelet filter bank consists of a low-pass filter a
and r high-pass filters a1, . . . , ar. In order to design a framelet filter bank, one has to
split the matrix MΘ in (1.6) into the form of (1.5).

Using Theorem 1.1, it was demonstrated in [2] (also cf. [6]) that for any refinable
function φ ∈ L2(R) whose integer shifts are stable, one can obtain an MRA tight
wavelet frame with two generators. Unfortunately, when φ is symmetric, the con-
struction in [2, 6] cannot guarantee the symmetry of the two constructed generators
which do not have symmetry in most cases.
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Though by increasing the number of generators in a tight wavelet frame one has
a great deal of freedom to construct them from refinable functions, in many appli-
cations, for various purposes such as computational cost and storage concern, one
prefers a symmetric tight wavelet frame with a small as possible number of genera-
tors (or equivalently, high-pass filters). Ideally, a tight wavelet frame with a single
symmetric generator is desirable. However, as shown in [2, 6], it is impossible to have
an MRA symmetric tight wavelet frame with one continuous generator. All the above
discussions naturally motivate us to consider construction of symmetric MRA tight
wavelet frames with two generators (that is, symmetric framelet filter banks with two
high-pass filters) for the following possible advantages.

(1) Such framelet filter banks have symmetry which is a much desired property
in applications.

(2) By using two high-pass filters, one still has much freedom to construct symmet-
ric framelet filter banks from many low-pass filters without imposing strict conditions
on them.

(3) By limiting to two high-pass filters, the associated framelet transform for
decomposition and reconstruction is efficient in terms of computational and storage
costs.

(4) Such symmetric framelet filter banks can have good vanishing moments, short
support and many other desired properties.

In order to construct a symmetric framelet filter bank with two high-pass filters,
according to Theorem 1.1, the core problem is to find two symmetric high-pass filters
a1 and a2 such that (1.5) holds with r = 2. In other words, we have to split the 2× 2
matrix MΘ of Laurent polynomials into the desirable form in (1.5). This motivates us
to investigate the problem of splitting a matrix of Laurent polynomials with symmetry
which may be of interest in other applications such as construction of symmetric
orthonormal multiwavelets and dual framelet filter banks [2, 5, 6].

The following is an outline of this paper. In section 2, we shall present a general
result on splitting a matrix of Laurent polynomials with symmetry. As an application
of this result to symmetric framelet filter banks, we shall present a necessary and
sufficient condition for the construction of a symmetric tight wavelet frame with two
generators derived from a given symmetric refinable function through Theorem 1.1.
Once the necessary and sufficient condition is satisfied, we shall present a step-by-
step algorithm (see Algorithm 2.5 in section 2) to derive the two symmetric high-pass
filters from a given low-pass filter. In section 3, we shall present some examples
of symmetric framelet filter banks with two high-pass filters which are derived from
various low-pass filters including some B-spline filters. Our work in this paper was also
motivated by [11, 13, 15], where symmetric tight wavelet frames with two generators
were considered but using the unitary extension principle in [14], which is a special
case of Theorem 1.1 by taking Θ = 1. In this paper, we shall generalize [13] by
considering the general fundamental function Θ instead of the special case Θ = 1. As
discussed in [2, 6], a nonconstant Θ is very important in order to have a tight wavelet
frame with good vanishing moments. Also, in order to use the unitary extension
principle, the mask must satisfy (1.4) which excludes some interesting low-pass filters
[1, 2, 6, 11, 12]. We shall see that by using the general construction in Theorem 1.1 the
investigation of symmetric tight wavelet frames and symmetric framelet filter banks
becomes much more complicated. This paper is also motivated by [9], which proves
that one can derive from any B-spline function of order m (m ∈ N) an MRA tight
wavelet frame in L2(R) which is generated by the dyadic dilates and integer shifts
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of three compactly supported real-valued symmetric wavelet functions with vanishing
moments of the highest possible order m. For multivariate tight wavelet frames, see
Han [7] and references therein.

In section 3, by using Algorithm 2.5 and Theorem 1.1 we shall give examples
to show that symmetric framelet filter banks with two high-pass filters having good
vanishing moments can be constructed. For applications of framelet filter banks,
see [15]. In order to prove the main results in this paper, in section 4, we shall
provide some auxiliary results. In section 5, we shall prove our main result on split-
ting a matrix of Laurent polynomials with symmetry. Though the whole proof of
the main result is somewhat technical, we shall present a step-by-step algorithm
(see Algorithm 5.1 in section 5) to implement the main result on splitting a matrix
of Laurent polynomials with symmetry which may be of interest in other applica-
tions.

2. Main results. In this section, we shall present the main results of this paper.
We shall obtain a general result on splitting a matrix of Laurent polynomials with
symmetry. As an application of such a result, we shall give a necessary and sufficient
condition for the construction of symmetric MRA tight wavelet frames with two com-
pactly supported generators. A step-by-step algorithm (Algorithm 2.5) will be given
for construction of symmetric framelet filter banks.

In order to state the results in this section, let us introduce some notation first.
We remind the reader that all of the Laurent polynomials discussed in this paper
have real coefficients and we say that a Laurent polynomial p with real coefficients
is symmetric (or antisymmetric) about k/2 for some k ∈ Z if p(z) = zkp(1/z) (or
p(z) = −zkp(1/z)). Throughout this paper, we say that a Laurent polynomial p is
(anti)symmetric if p is either symmetric or antisymmetric. For a nonzero Laurent
polynomial p, we define an operator S to be

[Sp](z) :=
p(z)

p(1/z)
, z ∈ C\{0}.(2.1)

When p ≡ 0, by convention Sp is undefined and can be anything.
The following result can be easily verified.
Proposition 2.1. Let p and q be two Laurent polynomials with real coefficients.

Then
(1) p is (anti)symmetric about k/2 for some k ∈ Z if and only if [Sp](z) = ±zk.
(2) [S(p(1/·))](z) = [Sp](1/z) = 1/[Sp](z).
(3) [S(pq)](z) = [Sp](z)[Sq](z) and [S((·)k)](z) = z2k for k ∈ Z.
(4) If p and q are (anti)symmetric such that Sp = Sq, then p±q is (anti)symmetric

and S(p± q) = Sp = Sq.

For a nonzero Laurent polynomial p(z) =
∑h

k=� pkz
k such that p� �= 0 and ph �= 0,

we denote the degree of p by deg(p) = h−�. In other words, deg(p) measures the length
of the filter p. By convention, deg(0) = −∞. For any two Laurent polynomials p and
q, we say that p | q if there is another Laurent polynomial h such that q(z) = p(z)h(z)
for all z ∈ C\{0}. We define gcd(p, q) to be a nonzero Laurent polynomial h with
maximum degree such that h | p and h | q. By convention, gcd(0, 0) = 0. We say that
a Laurent polynomial p is trivial if p(z) = czk for some c ∈ R\{0} and k ∈ Z. Up to
a factor of a trivial Laurent polynomial, gcd(p, q) is unique.

In the terminology of digital signal processing, the symmetries of filters are clas-
sified into type I to type IV filters according to whether the filter is symmetric or
antisymmetric with an even or odd degree. The operator S defined in (2.1) is very
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useful in this paper to distinguish these four types of symmetries of filters. See Table 1
for more detail.

Table 1

Type I to type IV symmetries of a filter p described in terms of the operator S defined in (2.1).
In this table, k is an integer and even (or odd) means the filter p has an even (or odd) degree.

Type I Type II Type III Type IV

symmetric/odd symmetric/even antisymmetric/odd antisymmetric/even

[Sp](z) = z2k+1 [Sp](z) = z2k [Sp](z) = −z2k+1 [Sp](z) = −z2k

Proposition 2.2. Let A(z) = A0+
∑N

k=1 Ak(z
−k+zk) with AN �= 0 be a Laurent

polynomial with real coefficients. Then A(z) = d(z)d(1/z) for some (anti)symmetric
Laurent polynomial d with real coefficients if and only if A(z) = dA(z)dA(1/z) for
the Laurent polynomial dA which is uniquely determined by one of the following four
cases:

Case 1. When N = 2n and AN > 0, define dA(z) = c0 +
∑n

k=1 ck(z
k + z−k) and

sgn(AN ) = 1.
Case 2. When N = 2n and AN < 0, define dA(z) =

∑n
k=0 ck(z

k − z−k) and
sgn(AN ) = −1.

Case 3. When N = 2n+ 1 and AN > 0, define dA(z) =
∑n

k=0 ck(z
k + z−1−k)and

sgn(AN ) = 1.
Case 4. When N = 2n + 1 and AN < 0, define dA(z) =

∑n
k=0 ck(z

k − z−1−k)
and sgn(AN ) = −1.
c0, . . . , cn are uniquely determined by the following recursive formula: cn :=

√
|AN |

and

cn−j :=
1

2cn

⎡⎣sgn(AN )AN−j −
n−1∑

k=n−j+1

ckc2n−j−k

⎤⎦ , j = 1, 2, . . . , n.(2.2)

Moreover, if A(z) = d(z)d(1/z) for an (anti)symmetric Laurent polynomial d with
real coefficients, then we must have d(z) = ±zkdA(z) for some k ∈ Z. Therefore, the
symmetry type of the filter d is completely determined by the degree of A and the sign
of the leading term of A.

Proof. If a Laurent polynomial d is (anti)symmetric and satisfies A(z)=d(z)d(1/z),
then it is easy to see that d(z) = ±zkdA(z) for some k ∈ Z. By comparing the
coefficients of A(z) and dA(z)dA(1/z), all the claims can be easily verified.

A similar algorithm for Proposition 2.2 also appeared in [16].
For a matrix M , we denote by Mj,k the (j, k)-entry of the matrix M . For a

Laurent polynomial p, we denote by Z(p, z0) the multiplicity of zeros of p at z = z0,
that is,

Z(p, z0) = sup{n ∈ N ∪ {0} : (z − z0)
n | p(z)}.(2.3)

Now we are ready to state the main results of this paper.
Theorem 2.3. Let A, B, and C be (anti)symmetric Laurent polynomials with

real coefficients. Denote a 2 × 2 matrix M by

M(z) =

[
A(z) B(z)

B(1/z) C(z)

]
, z ∈ C\{0}.(2.4)
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Then there exist (anti)symmetric Laurent polynomials u1, u2, v1, v2 with real coeffi-
cients such that

U(z)U(1/z)T = M(z) ∀ z ∈ C\{0} with U(z) :=

[
u1(z) v1(z)

u2(z) v2(z)

]
(2.5)

and

[Su1](z)[Sv2](z) = [Sv1](z)[Su2](z), z ∈ C\{0},(2.6)

if and only if all the following conditions are satisfied:
(a) The matrix M(z) is positive semidefinite (that is, M(z) � 0) for all z ∈ T.
(b) detM(z) = d(z)d(1/z) for some (anti)symmetric Laurent polynomial d with

real coefficients.
(c) Define g = gcd(A,B,C). If both B and d are not identically zero, then the ma-

trix M satisfies the following “gcd” condition; that is, one of the following conditions
must be true:

1. If [SB](z)[Sd](z) = z2n for some n ∈ Z, then Z(g, x) is an even number for
every x ∈ (−1, 0) ∪ (0, 1).

2. If [SB](z)[Sd](z) = z2n+1 for some n ∈ Z, then Z(g, x) is an even number
for every x ∈ (0, 1).

3. If [SB](z)[Sd](z) = −z2n for some n ∈ Z, then there is no condition on g.
4. If [SB](z)[Sd](z) = −z2n+1 for some n ∈ Z, then Z(g, x) is an even number

for every x ∈ (−1, 0).
We shall prove Theorem 2.3 in section 5 in a constructive way and a step-by-step

algorithm (see Algorithm 5.1) will be given to construct the desired filters u1, u2, v1, v2

from the matrix M . We shall also show that the “gcd” condition in Theorem 2.3
cannot be removed. Note that by Proposition 2.1 and (2.5), it is easy to see that
when B �≡ 0, (2.6) is equivalent to

[Su1](z)

[Su2](z)
= [SB](z) =

[Sv1](z)

[Sv2](z)
, z ∈ C\{0}.(2.7)

As an application of Theorem 2.3 to symmetric framelet filter banks, we have
the following result for constructing symmetric MRA tight wavelet frames with two
generators.

Theorem 2.4. Let φ∈L2(R) be a refinable function satisfying φ̂(2ξ)=a(e−iξ)φ̂(ξ)
for a symmetric Laurent polynomial a with real coefficients such that a(1) = 1. Let Θ
be a Laurent polynomial with real coefficients such that Θ(z) = Θ(1/z) and Θ(1) = 1.
Let MΘ be defined in (1.6). Then there exist two (anti)symmetric Laurent polynomi-
als a1 and a2 with real coefficients such that (1.5) in Theorem 1.1 holds with r = 2 if
and only if the following conditions are satisfied:

(a) MΘ(z) � 0 for all z ∈ T. (This condition can be replaced by Θ(z) � 0 for all
z ∈ T.)

(b) detMΘ(z) = d(z2)d(z−2) for an (anti)symmetric Laurent polynomial d with
real coefficients.

(c) Define g(z2) = gcd([MΘ]1,1, [MΘ]1,2, [MΘ]2,2). The matrix MΘ satisfies the
following “gcd” condition; that is, one of the following conditions must be true:

1. If [Sa](−z)[Sd](z) = z2n+1 for some n ∈ Z, then Z(g, x) is an even number
for every x ∈ (−1, 0) ∪ (0, 1).

2. If [Sa](−z)[Sd](z) = z2n for some n ∈ Z, then Z(g, x) is an even number for
every x ∈ (0, 1).
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3. If [Sa](−z)[Sd](z) = −z2n+1 for some n ∈ Z, then there is no condition on
g.

4. If [Sa](−z)[Sd](z) = −z2n for some n ∈ Z, then Z(g, x) is an even number
for every x ∈ (−1, 0).

Proof. Let us make some connections to Theorem 2.3 first. With r = 2, (1.5)
becomes

W (z)W (1/z)T = MΘ(z), where W (z) =

[
a1(z) a2(z)
a1(−z) a2(−z)

]
.(2.8)

Since the mask a is symmetric, we have [Sa](z) = zk for some k ∈ Z. Inspired by the
idea of polyphase decomposition, we define

P (z) :=

√
2

2

[
1 1
z −z

]
if k is even; P (z) :=

1

2

[
1 + z 1 − z
1 − z 1 + z

]
if k is odd.(2.9)

Then P (z)P (1/z)T = I2 and P (−z) = P (z)J2, where

J2 =

[
0 1
1 0

]
.

Now (2.8) can be rewritten as

U(z)U(1/z)T = M(z)(2.10)

with

U(z2) = W̃ (z) := P (z)W (z), M(z2) = M̃(z) := P (z)MΘ(z)P (1/z)T .(2.11)

When k is even, by computation we have

W̃ (z) =

√
2

2

[
a1(z) + a1(−z) a2(z) + a2(−z)

za1(z) − za1(−z) za2(z) − za2(−z)

]
(2.12)

and

[M̃(z)]1,2 =
1

2z

(
Θ(z) − Θ(−z) − Θ(z2)[a(z) + a(−z)][a(1/z) − a(−1/z)]

)
.

It is easy to see that W̃ (−z) = W̃ (z) and

M̃(−z) = P (z)J2MΘ(−z)J2P (1/z)T = P (z)MΘ(z)P (1/z)T = M̃(z).

So, U and M are well defined. Moreover, it is easy to see that M1,2 �≡ 0 and
[SM1,2](z) = z−1.

When k is odd, by computation we have

W̃ (z) =
1

2

[
(1 + z)a1(z) + (1 − z)a1(−z) (1 + z)a2(z) + (1 − z)a2(−z)
(1 − z)a1(z) + (1 + z)a1(−z) (1 − z)a2(z) + (1 + z)a2(−z)

]
(2.13)

and

M̃1,2(z) =
1

4
(z − 1/z)[Θ(z) − Θ(−z)] − 1

4
Θ(z2)[(1 + z)a(z) + (1 − z)a(−z)]

× [(1 − 1/z)a(1/z) + (1 + 1/z)a(−1/z)].
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It is clear that W̃ (−z) = W̃ (z) and M̃(−z) = M̃(z). So, U and M are well defined.
Moreover, it is easy to see that M1,2 �≡ 0 and [SM1,2](z) = −1.

By the definition of P and the definition (2.11), we have

detM(z2) = detMΘ(z)

and

g(z) = gcd(M1,1,M1,2,M2,2),

where

g(z2) = gcd([MΘ]1,1, [MΘ]1,2, [MΘ]2,2).

By the discussion above, we can clearly see the relation between conditions (a), (b),
and (c) in Theorem 2.3 and conditions (a), (b), and (c) in this theorem, respectively.
Based on the relation, we will prove the necessity and sufficiency, respectively.

Necessity. Suppose that there exist two (anti)symmetric Laurent polynomials a1

and a2 with real coefficients such that (1.5) holds; by (2.8) we have MΘ(z) � 0 for all
z ∈ T and therefore condition (a) holds. Note that detW (−z) = −detW (z). Thus,
we can define a Laurent polynomial d by d(z2) = zdetW (z). Clearly,

detMΘ(z) = detW (z)detW (1/z) = d(z2)d(z−2).

We now show that d is (anti)symmetric. Since a1 and a2 are (anti)symmetric, we
have [Sa1](z) = ε1z

k1 and [Sa2](z) = ε2z
k2 for some ε1, ε2 ∈ {−1, 1} and k1, k2 ∈ Z.

By (2.8) and (1.6), we have

a1(z)a1(−1/z) + a2(z)a2(−1/z) = [MΘ]1,2(z) = −Θ(z2)a(z)a(−1/z).(2.14)

Note that

S[a1(z)a1(−1/z)] = ε1z
k1ε1(−1/z)k1 = (−1)k1

and similarly, S[a2(z)a2(−1/z)] = (−1)k2 . Since

S[Θ(z2)a(z)a(−1/z)] = S[Θ(z2)]S[a(z)a(−1/z)] = (−1)k,

by a simple argument, it follows from (2.14) that

(−1)k1 = (−1)k2 = (−1)k.(2.15)

(Note that there are at least two even (or odd) numbers among k1, k2, and k. Say,
k1 and k2 are even. Then by item (4) in Proposition 2.1, we conclude that (−1)k1 =
(−1)k2 = (−1)k.) Note that detW (z) = a1(z)a2(−z) − a1(−z)a2(z). Since

S[a1(z)a2(−z)] = ε1ε2(−1)k2zk1+k2 = ε1ε2(−1)kzk1+k2

= ε1ε2(−1)k1zk1+k2 = S[a1(−z)a2(z)],

by Proposition 2.1, we conclude that

S[detW (z)] = ε1ε2(−1)kzk1+k2 .(2.16)
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So, detW is (anti)symmetric and therefore, by d(z2) = zdetW (z), d is (anti)sym-
metric. Hence condition (b) holds.

Recall that [Sa](z) = zk. When k is even, by Proposition 2.1 and the fact that
(−1)k1 = (−1)k2 = (−1)k = 1, it follows from (2.12) that

[SW̃1,1](z) = ε1z
k1 , [SW̃1,2](z) = ε2z

k2 , [SW̃2,1](z) = ε1z
2+k1 ,

[SW̃2,2](z) = ε2z
2+k2 , and [SM̃1,2](z) = z−2.

Thus, when k is even, (2.5) and (2.6) are satisfied. Since P (z)P (1/z)T = I2, we must
have g = gcd(M1,1,M1,2,M2,2). Note that

[SM1,2](z)[Sd](z) = z−1[Sd](z) = z−1−k[Sa](−z)[Sd](z)

and k is an even integer. Therefore, by Theorem 2.3, condition (c) must be true.
When k is odd, by Proposition 2.1 and the fact that (−1)k1 = (−1)k2 = (−1)k =

−1, it follows from (2.13) that

[SW̃1,1](z) = ε1z
1+k1 , [SW̃1,2](z) = ε2z

1+k2 , [SW̃2,1](z) = −ε1z
1+k1 ,

[SW̃2,2](z) = −ε2z
1+k2 , and [SM̃1,2](z) = −1.

Thus, when k is odd, (2.5) and (2.6) are satisfied. Note that

[SM1,2](z)[Sd](z) = −[Sd](z) = −(−z)−k[Sa](−z)[Sd](z) = z−k[Sa](−z)[Sd](z)

and k is an odd integer. Therefore, by Theorem 2.3, condition (c) must be true.
Sufficiency. Suppose that conditions (a), (b), and (c) in this theorem are satisfied.

From the discussion before the necessity part, applying Theorem 2.3 on M(z), we
know that there exist (anti)symmetric Laurent polynomials u1, u2, v1, v2 with real
coefficients such that (2.5) and (2.7) hold. Define[

a1(z) a2(z)
a1(−z) a2(−z)

]
:= P (1/z)TU(z2) = P (1/z)T

[
u1(z

2) v1(z
2)

u2(z
2) v2(z

2)

]
.

We show that a1 and a2 must be (anti)symmetric. Since [Sa](z) = zk, when k is even,
we have

a1(z) =

√
2

2
[u1(z

2) + u2(z
2)/z] and a2(z) =

√
2

2
[v1(z

2) + v2(z
2)/z].

By [SM1,2](z) = z−1, it follows from (2.7) that

S(u1(z
2)) = S(M1,2(z

2))S(u2(z
2)) = z−2S(u2(z

2)) = S(u2(z
2)/z)

and S(v1(z
2)) = S(v2(z

2)/z). By Proposition 2.1, we have [Sa1](z) = [Su1](z
2)

and [Sa2](z) = [Sv1](z
2). Since u1 and v1 are (anti)symmetric, so are the Laurent

polynomials a1 and a2.
When k is odd, we have

a1(z) = [(1 + 1/z)u1(z
2) + (1 − 1/z)u2(z

2)]/2

and

a2(z) = [(1 + 1/z)v1(z
2) + (1 − 1/z)v2(z

2)]/2.
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By [SM1,2](z) = −1, it follows from (2.7) that

S((1 + 1/z)u1(z
2)) = z−1S(u1(z

2))

= z−1S(M1,2(z
2))S(u2(z

2))

= S((1 − 1/z)u2(z
2))

and S((1 + 1/z)v1(z
2)) = S((1 − 1/z)v2(z

2)). By Proposition 2.1, we deduce that
[Sa1](z) = z−1[Su1](z

2) and [Sa2](z) = z−1[Sv1](z
2). Since both u1 and v1 are

(anti)symmetric, so are the Laurent polynomials a1 and a2. Now it is straightforward
to verify that (2.8) holds.

In order to construct symmetric framelet filter banks with two high-pass filters,
by the proof of Theorem 2.4, we present the following algorithm.

Algorithm 2.5. Let a be a symmetric Laurent polynomial with real coefficients
such that a(1) = 1 (that is, a is a low-pass filter). Suppose that we have a Laurent
polynomial Θ such that all the conditions in Theorem 2.4 are satisfied.

(1) Compute the symmetry center of the low-pass filter a: [Sa](z) :=a(z)/a(1/z)=
zk for some integer k. Define the 2 × 2 matrix P in (2.9) according to the parity of
the integer k.

(2) Calculate the 2×2 matrix M(z2) := P (z)MΘ(z)P (1/z)T , where MΘ is defined
in (1.6).

(3) Using Algorithm 5.1 in section 5 to split the matrix M into the desired form:

M(z) =

[
u1(z) v1(z)
u2(z) v2(z)

] [
u1(1/z) u2(1/z)
v1(1/z) v2(1/z)

]
and

[Su1](z)[Sv2](z) = [Su2](z)[Sv1](z).

In most cases g(z2) = gcd([MΘ]1,1, [MΘ]1,2, [MΘ]2,2) = 1 and consequently, by solv-
ing a system of linear equations, we have all the symmetric filters u1, u2, v1, v2 by
Algorithm 5.1.

(4) Obtain the symmetric high-pass filters a1 and a2 by

a1(z) := P1,1(1/z)u1(z
2) + P2,1(1/z)u2(z

2),

a2(z) := P1,1(1/z)v1(z
2) + P2,1(1/z)v2(z

2).

Then (2.8) holds and we have a symmetric framelet filter bank consisting of a low-pass
filter a and two high-pass filters a1 and a2.

In order to design a desired filter Θ such that all the conditions in Theorem 2.4
are satisfied, quite often one constructs a Θ such that Θ(1) = 1, Θ(z) � 0 for all z ∈ T

and

detM(z2) = Θ(z)Θ(−z) − Θ(z2)[Θ(z)a(−z)a(−1/z) + Θ(−z)a(z)a(1/z)]

= d(z2)d(z−2),

where d is determined in Proposition 2.2. In most cases the “gcd” condition in Theo-
rem 2.4 is automatically satisfied. More explicitly, we usually set Θ(z) = 1+c1w+· · ·+
cnw

n, w = (2−z−1/z)/4 with some unknown parameters c1, . . . , cn. So, we automati-
cally have Θ(1) = 1. Then we obtain some equations for the unknowns c1, . . . , cn from



108 BIN HAN AND QUN MO

the condition detM(z2) = d(z2)d(z−2) by Proposition 2.2. Solving such equations for
the unknowns c1, . . . , cn, we see that the desired condition detM(z2) = d(z2)d(z−2)
holds. Finally, we check the two conditions Θ(z) � 0 and the “gcd” condition which
quite often turn out to be satisfied automatically.

Suppose that the low-pass filter a is given. Theorem 2.4 gives us a necessary
and sufficient condition on Θ to construct a symmetric framelet with two high-pass
FIR filters. If we have found a desired Θ such that conditions (a), (b), and (c) in
Theorem 2.4 hold, then we can use Algorithm 2.5 to construct two symmetric high-
pass filters a1 and a2. Since we have some freedom in constructing a1 and a2 from
a and Θ, it is of interest to know what are all the possible symmetry types for these
two high-pass filters a1 and a2. We shall see in the following result that the symmetry
types of the high-pass filters a1 and a2 are completely determined by a and Θ.

Theorem 2.6. Let φ∈L2(R) be a refinable function satisfying φ̂(2ξ)=a(e−iξ)φ̂(ξ)
for a symmetric Laurent polynomial a with real coefficients such that a(1) = 1. Let Θ
be a Laurent polynomial with real coefficients such that Θ(z) = Θ(1/z) and Θ(1) = 1.
Suppose that conditions (a), (b), and (c) in Theorem 2.4 are satisfied. Let a1 and a2

be two (anti)symmetric Laurent polynomials with real coefficients such that (1.5) in
Theorem 1.1 are satisfied with r = 2. Denote

[Sa](z) = zk, [Sa1](z) = ε1z
k1 , [Sa2](z) = ε2z

k2

for some ε1, ε2 ∈ {−1, 1} and for some integers k, k1, and k2. Then k, k1, and k2

have the same parity (that is, k1 − k and k2 − k are even integers) and one of the
following two cases must be true:

(a) If [Sd](1) = (−1)k+1, then ε1ε2 = −1; that is, either ε1 = −1, ε2 = 1 (ψ1 is
antisymmetric and ψ2 is symmetric) or ε1 = 1, ε2 = −1 (ψ1 is antisymmetric and
ψ2 is symmetric);

(b) If [Sd](1) = (−1)k, then ε1 = ε2 = (−1)n, where n = Z(h, 1)/2 and h(z) :=
Θ(z) − Θ(z2)a(z)a(1/z).

In conclusion, up to a trivial switch of the two high-pass filters a1 and a2, the
symmetry types of the filters a1 and a2 are completely determined by the low-pass
filter a and the filter Θ.

Proof. We use the proof of the necessity part of Theorem 2.4 . As in the proof of
Theorem 2.4, we must have

(−1)k1 = (−1)k2 = (−1)k.

Therefore, both a1 and a2 have even degrees if a has an even degree, or, both a1 and
a2 have odd degrees if a has an odd degree. Thus, we only need to prove that up
to a trivial switch of the two high-pass filters a1 and a2, the numbers ε1 and ε2 are
completely determined by the low-pass filter a and the filter Θ. In the proof of the
necessity part of Theorem 2.4, we proved that (2.16) must be true. By Proposition 2.2
and detMΘ(z) = d(z2)d(z−2), we know that [Sd](1) depends only on a and Θ. Con-
sequently, we can assume that d(z2) = zdetW (z). Hence, it follows from (2.16) that
we must have

ε1ε2 = [Sd](1)[Sa](−1).(2.17)

If [Sd](1)[Sa](−1) = −1, then it follows from (2.17) that ε1ε2 = −1; therefore, we
have either ε1 = −1, ε2 = 1 or ε1 = 1, ε2 = −1. If [Sd](1)[Sa](−1) = 1, it follows
from (2.17) that ε1ε2 = 1. To complete the proof, it suffices to consider the case
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[Sd](1)[Sa](−1) = 1. In this case, we must have ε1 = ε2 since ε1ε2 = 1 and ε1, ε2 ∈
{−1, 1}. It is easy to see that

ε1 = (−1)Z(a1, 1) and ε2 = (−1)Z(a2, 1).

Define

n := min
(
Z(a1, 1), Z(a2, 1)

)
.

Then we have ε1 = ε2 = (−1)n and

lim
z→1

a1(z)a1(1/z) + a2(z)a2(1/z)

|z − 1|2n ∈ (0,∞).

Define h(z) := Θ(z) − Θ(z2)a(z)a(1/z). By (2.8) and (1.6), we have

a1(z)a1(1/z) + a2(z)a2(1/z) = h(z).

Thus, we have 2n = Z(h, 1), that is, n = Z(h, 1)/2. Hence, n depends only on a and
Θ. Therefore, ε1 and ε2 depend only on a and Θ.

3. Some examples of symmetric framelet filter banks. First, we illustrate
that the “gcd” condition in Theorem 2.4 cannot be removed. Then by Algorithm 2.5
we provide several examples of symmetric framelet filter banks with two high-pass
filters. In Theorem 2.4, the “gcd” condition seems unnatural. One may conjecture
that the “gcd” condition will be automatically satisfied if MΘ(z) � 0 for all z ∈ T

and detMΘ(z) = d(z2)d(z−2) holds for some (anti)symmetric Laurent polynomial d.
The following example shows that this conjecture is not true.

Example 3.1. Let the low-pass filter a be given by

a(z) :=
1

4
(1 + z)2[1 + c1(2 − z − z−1)/2],

where c1 ≈ 0.07391 is a root of x8+8x7+35x6+58x5−10x4−72x3−x2+14x−1 = 0.
By a simple calculation, it is easy to verify that the refinable function φ with the
mask a lies in L2(R) and in fact is a continuous function. Define b := c21 + 2c1 − 1,
f(z) := 1+b(2−z−z−1)/4 and Θ(z) := f(z2)f(z). It is easy to verify that MΘ(z) � 0
for all z ∈ T and detMΘ(z) = d(z2)d(z−2) for some antisymmetric Laurent polynomial
d such that [Sd](z) = −z2. Let x0 = 1 + 2(1−

√
b + 1)/b ≈ −0.43729 ∈ (−1, 0) which

satisfies f(x0) = 0. By a simple computation, we have Z(g, x0) = 1, where g(z2) =
f(z2) = gcd([MΘ]1,1, [MΘ]1,2, [MΘ]2,2). Since [Sa](−z)[Sd](z) = z2(−z2) = −z4,
the “gcd” condition fails while conditions (a) and (b) in Theorem 2.4 are satisfied.
Therefore, the “gcd” condition in Theorem 2.4 cannot be removed.

In the following, let us apply Algorithm 2.5 to obtain several examples of sym-
metric framelet filter banks with two high-pass filters.

Example 3.2. Let φ = B3 be the B-Spline function of order 3. It is known that
the low-pass filter for B3 is a(z) = (z + 1)3/8. Define

Θ(z) := 1 + w + 13/15w2 + c1w
3 + c2w

4 with w = (2 − z − z−1)/4.

In order to satisfy the condition detMΘ(z) = d(z2)d(z−2) for some (anti)symmetric
Laurent polynomial d, we find that c2 must be one of the 6 real roots of a polynomial
of degree 16 and c1 can be expressed as a rational polynomial with variable c2. For
simplicity, we present them in decimal notation: c1 ≈ −0.9515104959378669 and
c2 ≈ 3.803127158568155. It is easy to check that g = 1 and all the conditions in
Theorem 2.4 are satisfied. By Algorithms 2.5 and 5.1, solving a system of linear
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Fig. 1. (a) is the graph of ψ1. (b) is the graph of ψ2. {ψ1, ψ2} in Example 3.2 generates a
symmetric tight wavelet frame with 3 vanishing moments.

equations, we have the high-pass filters a1 and a2 as follows:

a1(z) := z(z − 1)3
[
0.01231796418812551(z3 + z−3) + 0.07390778512875306(z2+z−2)

+ 0.1935907748598208(z+z−1) − 0.01145080836662162
]
,

a2(z) := (z − 1)3
[
0.01523563127546168(z4 + z−4) + 0.09141378765277004(z3+z−3)

+ 0.2159429726473255(z2+z−2) + 0.2291636466016358(z+z−1)

+ 0.06272019447988098
]
.

Therefore, {ψ1, ψ2}, which is defined in Theorem 1.1, generates a symmetric tight
wavelet frame and has 3 vanishing moments. See Figure 1 for their graphs.

Example 3.3. Let φ = B4 be the B-Spline function of order 4. The low-pass filter
for B4 is a(z) = (z + 1)4/16. Define

Θ(z) := 1 + 3/4w + 62/45w2 + c1w
3 + c2w

4 + c3w
5 with w = (2 − z − z−1)/4.

In order to satisfy the condition detMΘ(z) = d(z2)d(z−2) for some (anti)symmetric
Laurent polynomial d, we find a solution {c1, c2, c3} in decimal notation as fol-
lows:

c1 ≈ −0.8755856554740179, c2 ≈ −0.09842565346701244,

c3 ≈ 0.0009697256495300811.

Then g = 1 and all the conditions in Theorem 2.4 hold. By Algorithms 2.5 and
5.1, solving a system of linear equations, we have the high-pass filters a1 and a2 as
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Fig. 2. (a) is the graph of ψ1. (b) is the graph of ψ2. {ψ1, ψ2} in Example 3.3 generates a
symmetric tight wavelet frame with 3 vanishing moments.

follows:

a1(z) :=z(z + 1)(z − 1)3
[
0.00002100045515458106(z5 + z−5)

+ 0.0001260027309274863(z4 + z−4) + 0.01944570184560223(z3 + z−3)

+ 0.1152041792127928(z2 + z−2) + 0.2275150394894326(z + z−1)

+ 0.009838194257376166
]
,

a2(z) :=z(z − 1)4
[
0.00006434461049978000(z5 + z−5)

+ 0.0005147568839982400(z4 + z−4) + 0.01966520045452812(z3 + z−3)

+ 0.1465117090722619(z2 + z−2) + 0.4466955026709126(z + z−1)

+ 0.5353777065261440
]
.

Therefore, {ψ1, ψ2}, which is defined in Theorem 1.1, generates a symmetric tight
wavelet frame and has 3 vanishing moments. See Figure 2 for their graphs.

Example 3.4. The low-pass filter a is given by

a(z) = z−2(z + 1)4(4 − z − z−1)/32 = −(z3 + z−3)/32 + 9(z + z−1)/32 + 1/2.

Define

Θ(z) := 1 + 2/5w2 + 44/315w3 + c1w
4 + c2w

5 + c3w
6 + c4w

7 + c5w
8 + c6w

9

with w := (2 − z − z−1)/4. In order to satisfy detMΘ(z) = d(z2)d(z−2) for some
(anti)symmetric Laurent polynomial d, we find a solution {c1, c2, c3, c4, c5, c6} in dec-
imal notation as follows:

c1 ≈ −0.5391476369353669, c2 ≈ 0.03123065991448046,

c3 ≈ 0.1404437899699654, c4 ≈ −0.008183355709257437,

c5 ≈ −0.02305770106687993, c6 ≈ 0.005166592059270131.
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Fig. 3. (a) is the graph of the interpolating refinable function φ. (b) is the graph of ψ1. (c)
is the graph of ψ2. {ψ1, ψ2} in Example 3.4 generates a symmetric tight wavelet frame with 4
vanishing moments.

It is easy to check that g = 1 and all the conditions in Theorem 2.4 hold. By
Algorithms 2.5 and 5.1, solving a system of linear equations, we have the high-pass
filters a1 and a2 as follows:

a1(z) :=(z − 1)4
[
0.000009949295438893275(z9 + z−9)

+ 0.00003979718175557310(z8 + z−8) + 0.00005349425360331152(z7 + z−7)

− 0.0001441976213869118(z6 + z−6) − 0.001526840787475249(z5 + z−5)

− 0.005764716919552544(z4 + z−4) − 0.01264520660352171(z3 + z−3)

− 0.01724394516308753(z2 + z−2) + 0.01039096409945511(z + z−1)

+ 0.1033772717787854
]
,

a2(z) :=(z − 1)4
[
0.000004387146598246904(z9 + z−11)

+ 0.00001754858639298762(z8+z−10)−0.000007220506808539094(z7+z−9)

− 0.0001868193047710449(z6 + z−8) − 0.001033777502667078(z5 + z−7)

− 0.002874902341160608(z4 + z−6) − 0.002673048014126028(z3 + z−5)

+ 0.009978772639517269(z2 + z−4) + 0.06388250373593019(z + z−3)

+ 0.2021738981781012(1 + z−2) + 0.3153550969816685z−1
]
.

Therefore, {ψ1, ψ2}, which is defined in Theorem 1.1, generates a symmetric tight
wavelet frame and has 4 vanishing moments. See Figure 3 for their graphs.

4. Some auxiliary results. In order to prove Theorem 2.3, in this section we
establish some auxiliary results. The following result generalizes [2, Theorem 4] by
taking into account symmetry.

Theorem 4.1. Let A,B, and C be (anti)symmetric Laurent polynomials with

real coefficients. Let M be defined in (2.4). Suppose that A(z) = A0 +
∑N

k=1 Ak(z
k +

z−k) with AN �= 0, M(z) � 0 for all z ∈ T and detM(z) = d(z)d(1/z) for some
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(anti)symmetric Laurent polynomial d with real coefficients. If A and B have no
common zeros in C\{0}, then there exist four (anti)symmetric Laurent polynomials
u1, u2, v1, v2 with real coefficients such that (2.5) and (2.7) are satisfied with the de-
grees of u1 and v1 being at most N . In fact, if u1, u2, v1, v2 are (anti)symmetric
Laurent polynomials with real coefficients such that the degrees of u1 and v1 are at
most N , (2.7) holds, and {u1, u2, v1, v2} is a solution to the system of linear equations{

B(1/z)u1(z) − d(z)v1(1/z) −A(z)u2(z) = 0,

B(1/z)v1(z) + d(z)u1(1/z) −A(z)v2(z) = 0,
(4.1)

with the normalization condition

u1(1)2 + v1(1)2 = A(1),(4.2)

then (2.5) holds.
Proof. If B(z) ≡ 0, by gcd(A,B) = 1, then A(z) must be a positive constant

and all the claims can be easily verified by taking u1 =
√
A, u2 = 0, v1 = 0, and

v2 = d/
√
A. So, we can assume that B is not identically zero.

If d(z) ≡ 0, then A(z)C(z) = B(z)B(1/z). Since gcd(A,B) = 1 and B is
(anti)symmetric, it follows from A(z)C(z) = B(z)B(1/z) = B(z)2/[SB](z) that
A must be a positive constant. All the claims hold by taking u1 =

√
A, u2 =

B(1/z)/
√
A, v1 = 0 and v2 = 0. So, we can assume that d is not identically zero.

In the first part of our proof, let us recall the proof of [2, Theorem 4]. Under
the assumption that (2.7) and the degrees of u1 and v1 are at most N , we first show
that (2.5) is equivalent to the system of linear equations in (4.1) with the condition
in (4.2).

Since M(z) � 0 for all z ∈ T and gcd(A,B) = 1, if we have A(z0) = 0 for some
z0 ∈ T, then by condition M(z0) � 0, we have

0 � detM(z0) = A(z0)C(z0) −B(z0)B(1/z0) = −B(z0)B(z0) = −|B(z0)|2.

Hence, B(z0) = 0. Therefore, (z − z0) | A(z) and (z − z0) | B(z). So, (z − z0) |
gcd(A,B) which is a contradiction to the assumption gcd(A,B) = 1. So, A(z) �= 0
for all z ∈ T. Since A(z) � 0 for all z ∈ T, we must have A(z) > 0 for all z ∈ T.
By Proposition 2.2, without loss of generality, we can assume that d(z) = detU(z).
By U(z)U(1/z)T = M(z), we have u1(1)2 + v1(1)2 = A(1) and therefore (4.2) holds.
Since d(z) �≡ 0 and d(z)U(z)−1 = adjU(z), it follows from U(z)U(1/z)T = M(z) that

d(z)U(1/z)T = d(z)U(z)−1M(z) = [adjU(z)]M(z)

=

[
v2(z) −v1(z)
−u2(z) u1(z)

] [
A(z) B(z)

B(1/z) C(z)

]
.

Comparing the (1, 1) and (2, 1)-entries of the above matrices, we see that (4.1) holds.
Conversely, let u1, u2, v1, v2 be (anti)symmetric Laurent polynomials with real

coefficients such that (2.7) holds and the degrees of u1 and v1 are at most N . If
{u1, u2, v1, v2} is a solution to the system of linear equations in (4.1) and satisfies the
normalization condition in (4.2), then we show that (2.5) must be true.

Multiplying u1(1/z) with the first equation and multiplying v1(1/z) with the
second equation in (4.1), by adding them together we have

B(1/z)[u1(z)u1(1/z) + v1(z)v1(1/z)] = A(z)[u1(1/z)u2(z) + v1(1/z)v2(z)].(4.3)
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Since A and B have no common zeros in C\{0}, we must have A(z) | [u1(z)u1(1/z)+
v1(z)v1(1/z)]. That is, there is a Laurent polynomial p such that u1(z)u1(1/z) +
v1(z)v1(1/z) = p(z)A(z). Since the degrees of u1 and v1 are at most N and A(z) =

A0 +
∑N

k=1 Ak(z
k + z−k) with AN �= 0, we conclude that p must be a constant. By

(4.2) and A(1) > 0, we must further have p ≡ 1. Therefore,

u1(z)u1(1/z) + v1(z)v1(1/z) = A(z).

It follows from (4.3) that B(1/z) = u1(1/z)u2(z) + v1(1/z)v2(z) and consequently,
B(z) = u1(z)u2(1/z) + v1(z)v2(1/z). In other words, [U(z)U(1/z)T ]j,k = [M(z)]j,k
for all 1 � j, k � 2 except for the case j = k = 2.

Multiplying v2(z) with the first equation and multiplying u2(z) with the second
equation in (4.1), by subtracting the second one from the first one, we have

B(1/z)[u1(z)v2(z) − u2(z)v1(z)] = d(z)[u1(1/z)u2(z) + v1(1/z)v2(z)] = d(z)B(1/z).

So, by B �≡ 0, d(z) = u1(z)v2(z) − u2(z)v1(z) = detU(z). Consequently,

det[U(z)U(1/z)T ] = d(z)d(1/z) = detM(z).

Now it is easy to deduce that [U(z)U(1/z)T ]2,2 = [M(z)]2,2 from the fact that
det[U(z)U(1/z)T ] = detM(z) and [U(z)U(1/z)T ]j,k = [M(z)]j,k for all 1 � j, k � 2
except for j = k = 2. So (2.5) holds.

In the second part of the proof, let us show the existence of a desirable solu-
tion {u1, u2, v1, v2} to the system of linear equations in (4.1) with the normalization
condition in (4.2).

First, we demonstrate that there are desirable Laurent polynomials u1 and v1

satisfying

A(z) | [B(1/z)u1(z) − d(z)v1(1/z)](4.4)

and

[Su1](z)[Sv1](z) = [SB](z)[Sd](z).(4.5)

Let u0 and v0 be two symmetric Laurent polynomials in the following parametric
forms:

u0(z) = b0 +

hb∑
j=1

bj(z
j + z−j) and v0(z) = c0 +

hc∑
k=1

ck(z
k + z−k),

where hb, hc are nonnegative integers and bj , ck, j = 0, . . . , hb, k = 0, . . . , hc are real
numbers which are to be determined later. Let us consider the following four cases.

Case 1. [SB](z)[Sd](z) = z2n for some n ∈ Z. We choose u1(z) = znu0(z)
and v1(z) = v0(z). When N is even, set hb = hc = N/2; when N is odd, set
hb = hc = (N − 1)/2.

Case 2. [SB](z)[Sd](z) = z2n+1 for some n ∈ Z. We choose u1(z) = zn(1+z)u0(z)
and v1(z) = v0(z). When N is even, set hb = N/2− 1 and hc = N/2; when N is odd,
set hb = hc = (N − 1)/2.

Case 3. [SB](z)[Sd](z) = −z2n for some n ∈ Z. When N is even, we choose
u1(z) = zn(z − 1/z)u0(z), v1(z) = v0(z) and set hb = N/2 − 1, hc = N/2; when N
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is odd, we choose u1(z) = zn(1 − z)u0(z), v1(z) = (1 + 1/z)v0(z) and set hb = hc =
(N − 1)/2.

Case 4. [SB](z)[Sd](z) = −z2n+1 for some n ∈ Z. We choose u1(z) = zn(1 −
z)u0(z) and v1(z) = v0(z). When N is even, set hb = N/2 − 1 and hc = N/2; when
N is odd, set hb = hc = (N − 1)/2.

It is easy to see that both u1 and v1 are (anti)symmetric and (4.5) holds. More-
over, the degrees of u1 and v1 are at most N and it is easy to verify that hb+hc+2 > N .
Since A(z) > 0 for all z ∈ T, by the Fejér–Riesz lemma, we have A(z) = Ã(z)Ã(1/z)
for some Laurent polynomial Ã with real coefficients such that all of the roots of
Ã are contained in {z ∈ C : |z| < 1}. Therefore, Ã(z) and Ã(1/z) have no com-

mon zeros in C\{0}. Since A(z) = A0 +
∑N

k=1 Ak(z
k + z−k), Ã(z) can have at

most N zeros in C\{0}, say, {z1, . . . , zN ′} are all of the distinct roots of the Lau-
rent polynomial Ã(z) in C\{0} such that Z(Ã, z1) + · · · + Z(Ã, zN ′) = N . Define
F (z) := B(1/z)u1(z) − d(z)v1(1/z). Now we have the following system of homoge-
neous linear equations:

F (j)(zk) = 0, k = 0, . . . , N ′, j = 0, . . . , Z(Ã, zk) − 1.(4.6)

Since the number of free parameters in {cj , dk : j = 0, . . . , hb, k = 0, . . . , hc} is
hb + hc + 2 > N and we have N homogeneous linear equations, there must be a
nonzero solution {cj , dk : j = 0, . . . , hb, k = 0, . . . , hc} to the system of homogeneous
linear equations in (4.6). So there exist u1 and v1 satisfying (4.6) with at least one of
them nonzero. In other words, we deduce from (4.6) that

Ã(z) | [B(1/z)u1(z) − d(z)v1(1/z)].(4.7)

Since z1, . . . , zN ′ are complex numbers, a solution {cj , dk : j = 0, . . . , hb, k = 0, . . . , hc}
may be complex numbers too. However, since Ã, B, and C are Laurent polynomials
with real coefficients, we can simply replace the numbers cj , dk by either their real
parts or their imaginary part so that (4.7) is still true and at least one of u1 and v1

is nonzero.
On the other hand, by (4.5) and Proposition 2.1, we deduce that B(1/z)u1(z) −

d(z)v1(1/z) is (anti)symmetric. So,

B(z)u1(1/z) − d(1/z)v1(z) = p(z)[B(1/z)u1(z) − d(z)v1(1/z)](4.8)

for some nonzero trivial Laurent polynomial p. Consequently, it follows from (4.7)
and (4.8) that

Ã(1/z) | [B(1/z)u1(z) − d(z)v1(1/z)].

Since Ã(z) and Ã(1/z) have no common zeros in C\{0} and A(z) = Ã(z)Ã(1/z), we
conclude that (4.4) holds. Later on we shall show that u1(1)2+v1(1)2 �= 0. If u1(1)2+
v1(1)2 �= 0, then we can properly scale u1 and v1 such that u1(1)2 + v1(1)2 = A(1)
holds. Note that without factorizing A we can solve the system of linear equations
given by [B(1/z)u1(z) − d(z)v1(1/z)] ≡ 0 mod A(z) to obtain the desired u1 and
v1.

Since A(z) �≡ 0, we can define

u2(z) :=
B(1/z)u1(z) − d(z)v1(1/z)

A(z)
and v2(z) :=

d(z)u1(1/z) + B(1/z)v1(z)

A(z)
.

(4.9)



116 BIN HAN AND QUN MO

By (4.4) we see that u2 is an (anti)symmetric Laurent polynomial with real coefficients.
Now we show that v2 is also an (anti)symmetric Laurent polynomial. By definition
of u2 and the fact that d(z)d(1/z) = detM(z) = A(z)C(z) −B(z)B(1/z), we have

A(z)d(1/z)u2(z) = B(1/z)d(1/z)u1(z) − detM(z)v1(1/z)

= B(1/z)d(1/z)u1(z) −A(z)C(z)v1(1/z) + B(1/z)B(z)v1(1/z).

From the above identity, we have

A(z)[d(1/z)u2(z) + C(z)v1(1/z)] = B(1/z)[d(1/z)u1(z) + B(z)v1(1/z)].

Since A(z) = A(1/z) and gcd(A,B) = 1, we conclude that A(z) | [d(1/z)u1(z) +
B(z)v1(1/z)] and therefore, by A(1/z) = A(z), A(z) | [d(z)u1(1/z) + B(1/z)v1(z)].
So v2 is a Laurent polynomial with real coefficients. By (4.5) and Proposition 2.1, we
see that v2 is (anti)symmetric.

By (4.9) and Proposition 2.1, we see that (2.7) and the system of linear equations
in (4.1) must hold. In the following, let us show that u1(1)2 + v1(1)2 �= 0. Since
both (2.7) and (4.1) are satisfied, as we demonstrated in the first part of the proof,
we must have u1(z)u1(1/z) + v1(z)v1(1/z) = pA(z) for some constant p. If u1(1) =
v1(1) = 0, by A(1) > 0, then we must have p = 0. That is, |u1(z)|2 + |v1(z)|2 =
u1(z)u1(1/z) + v1(z)v1(1/z) = 0 for all z ∈ T. So, u1 and v1 must be identically
zero which is a contradiction to our choice of u1 and v1 since one of them must be
nonzero. So u1(1)2 + v1(1)2 �= 0. Now replacing u1 and v1 by cu1 and cv1 with
c =

√
A(1)/(u1(1)2 + v1(1)2) in the above proof, we see that (4.1) and (2.7) still

hold. Moreover, we have u1(1)2 + v1(1)2 = A(1) which completes the proof.
Let R[z, z−1] denote all of the Laurent polynomials with real coefficients. For a

Laurent polynomial p ∈ R[z, z−1], we say that p is irreducible in R[z, z−1] if q | p for
some q ∈ R[z, z−1] implies that q = p0 or q = p0p for some trivial Laurent polynomial
p0 ∈ R[z, z−1] (that is, p0 = czk for some c ∈ R\{0} and k ∈ Z).

Now we have a stronger version of Theorem 4.1.
Corollary 4.2. Let A,B, and C be (anti)symmetric Laurent polynomials with

real coefficients. Let M be defined in (2.4). Suppose that M(z) � 0 for all z ∈
T and detM(z) = d(z)d(1/z) for some (anti)symmetric Laurent polynomial d with
real coefficients. If gcd(A,B,C) = 1, then there exist four (anti)symmetric Laurent
polynomials u1, u2, v1, v2 with real coefficients such that (2.5) and (2.7) are satisfied.

Proof. If C(z) ≡ 0, then gcd(A,B) = gcd(A,B,C) = 1 and all the claims follow
from Theorem 4.1. So, we can assume that C is not identically zero.

Define h(z) = gcd(A(z), B(z)B(1/z)). By the symmetry of A and B, we see that h
must be (anti)symmetric. Now, we show that gcd(h,C) = 1. Suppose not. Then there
is a nontrivial irreducible p ∈ R[z, z−1] such that p | gcd(h,C). So, p | h and p | C.
Consequently, p | A and p | B(z)B(1/z). Note that B(1/z) = B(z)/[SB](z) and SB
is trivial. So p | B2. Since p is irreducible, we must have p | B. So, p | gcd(A,B,C)
which is a contradiction since p is nontrivial but by assumption gcd(A,B,C) = 1.

Next, we show that for a nontrivial irreducible p ∈ R[z, z−1], if p2n−1 | h for some
n ∈ N, then we must have p2n | h. Since p2n−1 | h, we have p2n−1 | B(z)B(1/z) and
therefore, p2n−1 | B2. Since p is irreducible, we must have pn | B and consequently
p2n | B(z)B(1/z).

On the other hand, by p2n−1 | h and h = gcd(A(z), B(z)B(1/z)), we have

p2n−1 | [A(z)C(z) −B(z)B(1/z)].
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Since A(z)C(z) − B(z)B(1/z) = detM(z) = d(z)d(1/z), we have p2n−1 | d(z)d(1/z).
Since d(1/z) = d(z)/[Sd](z) and Sd is trivial, it follows from p2n−1 | d2 that p2n |
d(z)d(1/z). Since C �≡ 0, by d(z)d(1/z) = detM(z) = A(z)C(z) − B(z)B(1/z), we
have

A(z) =
d(z)d(1/z) + B(z)B(1/z)

C(z)
.

By gcd(h,C) = 1 and p | h, we must have gcd(p, C) = 1 since p is nontrivial irre-
ducible. Hence, we must have p2n | A. So, p2n | h. As a consequence of the fact that
p2n−1 | h implies p2n | h, factorize h as

h(z) = p0(z)

m∏
j=1

p
2nj

j (z),

where p0 is a trivial Laurent polynomial and p1, . . . , pm are essentially different non-
trivial irreducible Laurent polynomials in R[z, z−1]. Now define

dh(z) :=

m∏
j=1

p
nj

j (z).

Then h(z) = p0(z)dh(z)dh(z). Note that by Proposition 2.2 we can directly obtain
dh from h without factorizing h. Since ([Sdh](z))2 = [Sh](z)/[Sp0](z) is a trivial
Laurent polynomial, Sdh must be trivial and therefore dh is (anti)symmetric. So,
gcd(A(z), B(z)B(1/z)) = dh(z)dh(1/z). Since both dh and B are (anti)symmetric, it
follows from dh(z)dh(1/z) | B(z)B(1/z) that d2

h | B2 and consequently dh | B. Define

Ã(z) :=
A(z)

dh(z)dh(1/z)
, B̃(z) :=

B(z)

dh(z)
and M̃(z) =

[
Ã(z) B̃(z)

B̃(1/z) C(z)

]
.

Clearly, Ã, B̃, and C are (anti)symmetric Laurent polynomials and gcd(Ã, B̃) = 1.
By Theorem 4.1, there exist four (anti)symmetric Laurent polynomials ũ1, ũ2, ṽ1, ṽ2

with real coefficients such that

M̃(z) =

[
ũ1(z) ṽ1(z)
ũ2(z) ṽ2(z)

] [
ũ1(1/z) ũ2(1/z)
ṽ1(1/z) ṽ2(1/z)

]
(4.10)

and

[Sũ1](z)

[Sũ2](z)
= [SM̃1,2](z) =

[Sṽ1](z)

[Sṽ2](z)
.(4.11)

Note that

M(z) =

[
dh(z) 0

0 1

]
M̃(z)

[
dh(1/z) 0

0 1

]
.

Define

u1(z) = ũ1(z)dh(z), v1(z) = ṽ1(z)dh(z), u2(z) = ũ2(z), v2(z) = ṽ2(z).

Then it follows directly from (4.10) and (4.11) that (2.5) and (2.7) are satisfied.
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Lemma 4.3. Let p be a nonzero (anti)symmetric Laurent polynomial with real
coefficients. Then there exist c ∈ {−1, 1} and k ∈ Z such that czkp(z) � 0 for all
z ∈ T if and only if Z(p, z0) is an even integer for every z0 ∈ T.

Proof. If czkp(z) � 0 for all z ∈ T, then by the Fejér–Riesz lemma, czkp(z) =
q(z)q(1/z) for some Laurent polynomial q with real coefficients. Hence for all z0 ∈ T,
we have

Z(p, z0) = Z(czkp(z), z0) = Z(q(z), z0) + Z(q(1/z), z0) = 2Z(q(z), z0),

where we used the fact that Z(q(1/z), z0) = Z(q(z), z0) = Z(q, z0) for all z0 ∈ T since
q is a Laurent polynomial with real coefficients. So Z(p, z0) must be an even integer
for every z0 ∈ T.

Conversely, write p(z) = q(z)h(z) such that q(z) �= 0 for all z ∈ T and all of the
zeros of h lie on T. Since p is (anti)symmetric and Z(p, z0) = Z(h, z0) is an even
integer for all z0 ∈ T, there exist c1 ∈ {−1, 1} and k1 ∈ Z such that c1z

k1h(z) � 0 for
all z ∈ T. Since [Sp](z) = [Sq](z)[Sh](z), q must be symmetric. Since q(z) �= 0 for all
z ∈ T, we must have [Sq](z) = z2k2 for some k2 ∈ Z. So z−k2q(z) �= 0 and is real-
valued for all z ∈ T. Consequently, there exists c2 ∈ {−1, 1} such that c2z

−k2q(z) > 0
for all z ∈ T. So, c1c2z

k1−k2p(z) = c1z
k1h(z)c2z

−k2q(z) � 0 for all z ∈ T.
When p is antisymmetric, it is evident that the condition in Lemma 4.3 cannot

be satisfied.
Lemma 4.4. Let g be a nonzero Laurent polynomial with real coefficients. Then

there exist two (anti)symmetric Laurent polynomials q1 and q2 with real coefficients
such that

q1(z)q1(1/z) + q2(z)q2(1/z) = g(z)(4.12)

and

[Sq1](z)/[Sq2](z) = z2k,−z2k, z2k+1, or − z2k+1 for some integer k

if and only if g(z) � 0 for all z ∈ T and Z(g, x) is an even integer for every x ∈
(−1, 0) ∪ (0, 1), x ∈ ∅, x ∈ (0, 1), or x ∈ (−1, 0), respectively.

Proof. Necessity. If (4.12) holds, then it is evident that g(z) � 0 for all z ∈ T.
Since q1(1/z) = q1(z)/[Sq1](z) and q2(1/z) = q2(z)/[Sq2](z), we can rewrite (4.12) as
follows:

q2
1(z) + q2

2(z)[Sq1](z)/[Sq2](z) = g(z)[Sq1](z).

If [Sq1](z)/[Sq2](z) = z2k, then we have q2
1(x) + x2kq2

2(x) = g(x)[Sq1](x) for all
x ∈ R\{0} and consequently, it is easy to see that for every x ∈ (−1, 0) ∪ (0, 1), we
have

Z(g, x) = Z(g[Sq1], x) = min(Z(q2
1 , x), Z(q2

2 , x)) = 2 min(Z(q1, x), Z(q2, x)).

So, when [Sq1](z)/[Sq2](z) = z2k, Z(g, x) must be an even integer for all x ∈ (−1, 0)∪
(0, 1).

If [Sq1](z)/[Sq2](z) = z2k+1, then we have q2
1(x) + x2k+1q2

2(x) = g(x)[Sq1](x) for
all x ∈ R\{0}. Similarly, it is easy to prove that Z(g, x) = 2 min(Z(q1, x), Z(q2, x))
must be an even integer for every x ∈ (0, 1).

If [Sq1](z)/[Sq2](z) = −z2k+1, then we have q2
1(x)+(−x)2k+1q2

2(x) = g(x)[Sq1](x)
for all x ∈ R\{0}. Similarly, it is easy to prove that Z(g, x) = 2 min(Z(q1, x), Z(q2, x))
must be an even integer for every x ∈ (−1, 0).
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Sufficiency. Since g(z) � 0 for all z ∈ T, by the Fejér–Riesz lemma, we can
write g(z) = h(z)h(1/z) for some Laurent polynomial h with real coefficients such
that all of the roots of h are contained in {z : |z| � 1}. Set q1(z) = zk[h(z) +
h(1/z)]/2 and q2(z) = [h(z) − h(1/z)]/2. Then it is easy to verify that (4.12) holds
and [Sq1](z)/[Sq2](z) = −z2k. In the following, let us consider the other three cases.
Factorize h as

h(z) = p0(z)(z − 1)Z(h,1)(z + 1)Z(h,−1)
m∏
j=1

p
nj

j (z),

where p0 is a trivial Laurent polynomial and all pj , j = 1, . . . ,m are essentially dif-
ferent nontrivial irreducible Laurent polynomials in R[z, z−1]. Since there are only
two types of nontrivial irreducible Laurent polynomials in R[z, z−1], without lost
of generality we can assume that either pj = z − aj for some aj ∈ (−1, 1)\{0} or
pj(z) = z2 + bjz + cj for some bj , cj ∈ R satisfying b2j − 4cj < 0. Let us consider the
following two cases.

If pj(z) = z2 + bjz + cj for some bj , cj ∈ R satisfying 4cj > b2j , since cj � 0 and
−2

√
cj � bj � 2

√
cj , then we have

pj(z) = [z + bj/2]2 + z2k
[√

cj − b2j/4 z
−k

]2

= [z −√
cj ]

2 + z2k+1
[√

2
√
cj + bj z

−k
]2

= [z +
√
cj ]

2 − z2k+1
[√

2
√
cj − bj z

−k
]2

.

If pj(z) = z − aj for some aj ∈ (−1, 1)\{0}, then by assumption, we have the
following cases:

Case 1: If Z(g, x) is an even integer for all x ∈ (−1, 0) ∪ (0, 1), then nj must be
an even integer and therefore, p

nj

j (z) = [(z − aj)
nj/2]2 + z2k × 0.

Case 2: If Z(g, x) is an even integer for all x ∈ (0, 1), then nj must be an even
integer when aj ∈ (0, 1). Therefore, when aj ∈ (0, 1), we have p

nj

j (z) = [(z−aj)
nj/2]2+

z2k+1 × 0. When aj ∈ (−1, 0), we also have pj(z) = z − aj = [
√−aj ]

2 + z2k+1[z−k]2.
Case 3: If Z(g, x) is an even integer for all x ∈ (−1, 0), then nj must be an even

integer if aj ∈ (−1, 0). When aj ∈ (−1, 0), we have p
nj

j (z) = [(z−aj)
nj/2]2−z2k+1×0.

When aj ∈ (0, 1), we also have pj(z) = z − aj = −
(
[
√
aj ]

2 − z2k+1[z−k]2
)
.

By a direct computation, it is easy to verify the following identity:

(f2
1 + wf2

2 )(f2
3 + wf2

4 ) = (f1f3 − wf2f4)
2 + w(f1f4 + f2f3)

2.(4.13)

By the above argument, using the identity in (4.13) we have

h(z) = q̃0(z)(z − 1)Z(h,1)(z + 1)Z(h,−1)
(
q̃2
1(z) + w(z)q̃2

2(z)
)
,

where q̃0 is a trivial Laurent polynomial, w(z) = z2k, z2k+1, or −z2k+1 according to the
assumption, and q̃1 and q̃2 are Laurent polynomials with real coefficients. Observing
that w(1/z) = w(z)−1, we have

h(1/z) = q̃0(1/z)(1/z − 1)Z(h,1)(1/z + 1)Z(h,−1)
(
q̃2
1(1/z) + w(z)[q̃2(1/z)/w(z)]2

)
.

Note that q̃0(z)q̃0(1/z) is a positive constant since q̃0 is trivial. By a simple compu-
tation, we deduce that

g(z) = h(z)h(1/z) = q1(z)q1(1/z) + q2(z)q2(1/z),
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where

q1(z) :=
√
q̃0(z)q̃0(1/z)(z−1)Z(h,1)(z+1)Z(h,−1)[q̃1(z)q̃1(1/z) − q̃2(z)q̃2(1/z)],

q2(z) :=
√
q̃0(z)q̃0(1/z)(z−1)Z(h,1)(z+1)Z(h,−1)[q̃1(z)q̃2(1/z)w(z)−1 + q̃2(z)q̃1(1/z)].

Since w(z)−1 = w(1/z), by a simple computation, we have

q1(1/z) = (−1)Z(h,1)z−Z(h,1)−Z(h,−1)q1(z),

q2(1/z) = (−1)Z(h,1)z−Z(h,1)−Z(h,−1)w(z)q2(z).

Therefore, both q1 and q2 are (anti)symmetric and [Sq1](z)/[Sq2](z) = w(z).

5. Proof of Theorem 2.3 and its associated algorithm. In this section, we
shall prove Theorem 2.3 and give a step-by-step algorithm to implement it.

Proof of Theorem 2.3. If g = gcd(A,B,C) ≡ 0, then A = B = C = 0 and all the
claims are obviously true by taking u1 = u2 = v1 = v2 = 0. So, we will assume g �≡ 0.

Since g = gcd(A,B,C), by the symmetry of A,B, and C, g is (anti)symmetric.
Since detM(z) � 0 for all z ∈ T, we see that

0 � B(z)B(1/z) � A(z)C(z) ∀ z ∈ T.

Since B(1/z) = B(z)/[SB](z), it yields that 2Z(B, z) � Z(A, z) + Z(C, z) for all
z ∈ T. So, by the definition of g, we have Z(g, z) = min(Z(A, z), Z(B, z), Z(C, z)) =
min(Z(A, z), Z(C, z)) for every z ∈ T. Since A(z) � 0 and C(z) � 0 for all z ∈
T, by Lemma 4.3, Z(A, z) and Z(C, z) are even integers. Consequently, Z(g, z) =
min(Z(A, z), Z(C, z)) is an even integer for all z ∈ T. Since g is (anti)symmetric, by
Lemma 4.3, there exist c ∈ {−1, 1} and k ∈ Z such that czkg(z) � 0 for all z ∈ T.
Since g = gcd(A,B,C), without loss of generality, we can assume that g(z) � 0 for
all z ∈ T by replacing g by czkg(z). Now define M̃(z) = M(z)/g(z) by

M̃(z) =

[
Ã(z) B̃(z)

B̃(1/z) C̃(z)

]
with

Ã(z) =
A(z)

g(z)
, B̃(z) =

B(z)

g(z)
, C̃(z) =

C(z)

g(z)
.

(5.1)

Since g(z) � 0 for all z ∈ T, it is easy to see that all Ã, B̃, C̃ are (anti)symmetric
Laurent polynomials and M̃(z) � 0 for all z ∈ T.

Sufficiency. Since d(z)d(1/z)=detM(z) = g(z)2detM̃(z), we have g2 | d(z)d(1/z).
Since d(1/z) = d(z)/[Sd](z), g2 | d2 and therefore, g | d. So define d1(z) = d(z)/g(z).
Then d1 is an (anti)symmetric Laurent polynomial and detM̃(z) = d1(z)d1(1/z). Note
that gcd(Ã, B̃, C̃) = 1. By Corollary 4.2, there exist four (anti)symmetric Laurent
polynomials ũ1, ũ2, ṽ1, ṽ2 with real coefficients such that (4.10) and (4.11) are satisfied.
Define

d̃(z) := ũ1(z)ṽ2(z) − ũ2(z)ṽ1(z).

By (4.11), d̃ is (anti)symmetric and by Proposition 2.1 [Sd̃](z) = [Sũ1](z)[Sṽ2](z).
By Proposition 2.2, it follows from d̃(z)d̃(1/z) = detM̃(z) = d1(z)d1(1/z) that we

must have d̃(z) = ±zkd1(z) = ±zkd(z)/g(z) for some k ∈ Z. So, [Sd̃](z) = z2k[Sd](z).
Rewrite (4.11) as

[Sũ1](z)

[Sũ2](z)
= [SB̃](z) = [SB](z) =

[Sṽ1](z)

[Sṽ2](z)
.
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So, we have

[Sṽ1](z)

[Sũ1](z)
=

[Sṽ1](z)

[Sṽ2](z)

[Sũ1](z)[Sṽ2](z)

([Sũ1](z))2
= [SB](z)

[Sd̃](z)

([Sũ1](z))2

=

(
zk

[Sũ1](z)

)2

[SB](z)[Sd](z)

and

[Sṽ2](z)

[Sũ2](z)
=

[Sũ1](z)

[Sũ2](z)

[Sũ1](z)[Sṽ2](z)

(Sũ1](z))2
= [SB](z)

[Sd̃](z)

([Sũ1](z))2
=

[Sṽ1](z)

[Sũ1](z)
.

By assumption in (c) and Lemma 4.4, there exist two (anti)symmetric Laurent poly-
nomials q1 and q2 such that

[Sq1](z)

[Sq2](z)
=

[Sṽ1](z)

[Sũ1](z)
=

[Sṽ2](z)

[Sũ2](z)
=

(
zk

[Sũ1](z)

)2

[SB](z)[Sd](z)(5.2)

and g(z) = q1(z)q1(1/z) + q2(z)q2(1/z). Define[
u1(z) v1(z)
u2(z) v2(z)

]
=

[
ũ1(z) ṽ1(z)
ũ2(z) ṽ2(z)

] [
q1(z) −q2(1/z)
q2(z) q1(1/z)

]
.

Now by (5.2) and Proposition 2.1, it is easy to check that all u1, u2, v1, v2 are (anti)sym-
metric Laurent polynomials. By a direct computation, it is easy to see that (2.5) and
(2.7) are satisfied.

Necessity. Obviously, (a) and (b) must be true. We shall prove that (c) must be
true. We can assume that d �≡ 0. As we proved before the part of sufficiency, we can as-
sume that g(z) � 0 for all z ∈ T. Let M̃ be defined in (5.1). We have g(z)2detM̃(z) =
detM(z) = d(z)d(1/z). So, g2 | d(z)d(1/z). Since d(1/z) = d(z)/[Sd](z), we deduce
that g2 | d2 and therefore, g | d. Define d̃(z) = d(z)/g(z). Then d̃ is (anti)symmetric
and detM̃(z) = d̃(z)d̃(1/z). Since M(z) � 0 and g(z) � 0 for all z ∈ T, it is easy to
see that M̃(z) � 0 for all z ∈ T. Since gcd(Ã, B̃, C̃) = 1, by Corollary 4.2, (4.10) and
(4.11) are satisfied. So,[

u1(z) v1(z)
u2(z) v2(z)

] [
u1(1/z) u2(1/z)
v1(1/z) v2(1/z)

]
= g(z)M̃(z)

= g(z)

[
ũ1(z) ṽ1(z)
ũ2(z) ṽ2(z)

] [
ũ1(1/z) ũ2(1/z)
ṽ1(1/z) ṽ2(1/z)

]
.

Define

Q(z) :=

[
q1(z) q2(z)
q3(z) q4(z)

]
:=

[
ṽ2(z) −ṽ1(z)
−ũ2(z) ũ1(z)

] [
u1(z) v1(z)
u2(z) v2(z)

]
.

Then Q(z)Q(1/z)T = g(z)d̃(z)d̃(1/z)I2. In particular, we have

q1(z)q1(1/z) + q2(z)q2(1/z) = g(z)d̃(z)d̃(1/z).

By (2.7) and (4.11), we have

[Su1](z)

[Su2](z)
=

[Sv1](z)

[Sv2](z)
= [SB](z) = [SB̃](z) =

[Sũ1](z)

[Sũ2](z)
=

[Sṽ1](z)

[Sṽ2](z)
.



122 BIN HAN AND QUN MO

By Proposition 2.1, q1 and q2 are (anti)symmetric. By Proposition 2.2, d(z) =
±zk[u1(z)v2(z) − u2(z)v1(z)]. So,

[Sd](z) = z2k[Su1](z)[Sv2](z) = z2k[Su2](z)[Sv1](z).

Observing that

[Sq1](z) = [Sṽ2](z)[Su1](z) and [Sq2](z) = [Sṽ2](z)[Sv1](z),

we have

[Sq1](z)

[Sq2](z)
=

[Sṽ2](z)[Su1](z)

[Sṽ2](z)[Sv1](z)
=

[Su1](z)

[Su2](z)

z2k[Su2](z)[Sv1](z)

(zk[Sv1](z))2
=

[SB](z)[Sd](z)

(zk[Sv1](z))2
.

By Lemma 4.4, Z(g(z)d̃(z)d̃(1/z), x) must be an even integer for the corresponding
cases. Note that d̃(1/z) = d̃(z)/[Sd̃](z). So, Z(d̃(z)d̃(1/z), x) is always an even integer
for all x ∈ R. So, Z(g, x) = Z(g(z)d̃(z)d̃(1/z), x) − Z(d̃(z)d̃(1/z), x) must be an even
integer for the corresponding cases. Therefore, (c) must be true.

Finally, by the proof of Theorem 2.3 and all the auxiliary results in section 4, let
us present the following algorithm on splitting a matrix of Laurent polynomials with
symmetry.

Algorithm 5.1. Let A,B, and C be (anti)symmetric Laurent polynomials with
real coefficients. Let M be the 2×2 matrix defined in (2.4) such that all the conditions
in Theorem 2.3 are satisfied.

(1) Compute g = gcd(A,B,C). By the proof of Theorem 2.3, without loss of
generality, we can assume that g �≡ 0 and g(z) � 0 for all z ∈ T.

(2) Compute h(z) = gcd(A(z)/g(z), B(z)B(1/z)/g(z)2). By the proof of Corol-
lary 4.2, we can assume that h(z) � 0 for all z ∈ T and we can calculate dh such that
h(z) = dh(z)dh(1/z) by Proposition 2.2.

(3) Define a 2 × 2 matrix M̃ of Laurent polynomials with real coefficients by

M̃(z) =

[
Ã(z) B̃(z)

B̃(1/z) C̃(z)

]

with

Ã(z) =
A(z)

g(z)h(z)
, B̃(z) =

B(z)

g(z)dh(z)
, C̃(z) =

C(z)

g(z)
.

By Proposition 2.2, we can calculate d̃ such that detM̃(z) = d̃(z)d̃(1/z). (If we have
an (anti)symmetric Laurent polynomial d such that detM(z) = d(z)d(1/z), then we
can take d̃(z) = d(z)/(g(z)dh(z))).

(4) Assume Ã(z) = Ã0 +
∑N

k=1 Ãk(z
k + z−k) with ÃN �= 0. Parameterizing

the (anti)symmetric Laurent polynomials ũ1 and ṽ1 such that [Sũ1](z)[Sṽ1](z) =
[SB̃](z)[Sd̃](z) and the degrees of ũ1 and ṽ1 are at most N (see the paragraph after
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the formula (4.5) about how to parameterize ũ1 and ṽ1). Then according to Theo-
rem 4.1 there must be a nonzero solution {ũ1, ṽ1} to the system of linear homogeneous
equations derived from

B̃(1/z)ũ1(z) − d̃(z)ṽ1(z) ≡ 0 mod Ã(z).

By the proof of Theorem 4.1, we must have ũ1(1)2+ ṽ1(1)2 �= 0. Multiplying ũ1 and ṽ1

by a constant, we can require that the solution {ũ1, ṽ1} satisfy ũ1(1)2 + ṽ1(1)2 = Ã(1).
(5) Define the symmetric filters ũ2 and ṽ2 by

ũ2(z) :=
B̃(1/z)ũ1(z) − d̃(z)ṽ1(1/z)

Ã(z)
and

ṽ2(z) :=
d̃(z)ũ1(1/z) + B̃(1/z)ṽ1(z)

Ã(z)
.

(6) By Lemma 4.4, write g(z) = q1(z)q1(1/z) + q2(z)q2(1/z) for some (anti)sym-
metric Laurent polynomials q1 and q2 such that [Sq1](z)/[Sq2](z) = [Sṽ1](z)/[Sũ1](z).
(In most cases, g = 1 and we can simply choose q1 = 1 and q2 = 0.)

(7) Obtain the (anti)symmetric Laurent polynomials (or symmetric FIR filters)
u1, u2, v1, v2 by

U(z) :=

[
u1(z) v1(z)
u2(z) v2(z)

]
=

[
dh(z) 0

0 1

] [
ũ1(z) ṽ1(z)
ũ2(z) ṽ2(z)

] [
q1(z) −q2(1/z)
q2(z) q1(1/z)

]
.

Then U(z)U(1/z)T = M(z) and [Su1](z)[Sv2](z) = [Su2](z)[Sv1](z).
It is not necessary to check all the conditions in Theorem 2.3 in advance. If at

some step one cannot carry out Algorithm 5.1, then the conditions in Theorem 2.3
cannot be satisfied.

Acknowledgments. The authors would like to thank the referees for helpful
comments to improve the presentation of this paper and for suggesting the reference
[16].
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Abstract. There is a class of linear problems for which the computation of the matrix-vector
product is very expensive since a time consuming method is necessary to approximate it with
some prescribed relative precision. In this paper we investigate the impact of approximately com-
puted matrix-vector products on the convergence and attainable accuracy of several Krylov subspace
solvers. We will argue that the sensitivity towards perturbations is mainly determined by the under-
lying way the Krylov subspace is constructed and does not depend on the optimality properties of the
particular method. The obtained insight is used to tune the precision of the matrix-vector product in
every iteration step in such a way that an overall efficient process is obtained. Our analysis confirms
the empirically found relaxation strategy of Bouras and Frayssé for the GMRES method proposed
in [A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, Technical Report
TR/PA/00/15, CERFACS, France, 2000]. Furthermore, we give an improved version of a strategy
for the conjugate gradient method of Bouras, Frayssé, and Giraud used in [A Relaxation Strategy for
Inner-Outer Linear Solvers in Domain Decomposition Methods, Technical Report TR/PA/00/17,
CERFACS, France, 2000].

Key words. Krylov subspace methods, inexact matrix-vector product, approximate matrix-
vector product, Richardson iteration, Chebyshev iteration, GMRES, FOM, CG, Orthores, residual
gap
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1. Introduction. There is a class of linear problems where the coefficient ma-
trix cannot be stored explicitly in computer memory but where the matrix-vector
products can be computed relatively cheaply using an approximation technique. For
this type of problem, direct methods are not attractive. Krylov subspace methods
for solving linear systems of equations require, in every iteration step, basic linear
algebra operations, like adding vectors and doing inner products, and, usually, one or
two matrix-vector products. This makes this class of solution methods very attractive
for the mentioned class of problems since we can very easily replace the matrix-vector
product in a particular Krylov subspace method with some approximation.

It is obvious that the accurate computation of the matrix-vector product can be
quite time consuming if done to high precision. On the other hand, the accuracy of
the matrix-vector product has an influence on the Krylov subspace method used for
solving the linear system. In this paper we investigate the impact of approximately
computed, or inexact, matrix-vector products on the convergence and attainable ac-
curacy of various Krylov subspace methods. Our analysis should provide further
insight into the relaxation strategies for the accuracy of the matrix-vector product as
introduced by Bouras and Frayssé [3] and Bouras, Frayssé, and Giraud [4]. For exam-
ple, for GMRES they propose to compute the matrix-vector product with a precision
proportional to the inverse of the norm of the current residual. When the residual
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December 10, 2003; published electronically August 27, 2004.

http://www.siam.org/journals/simax/26-1/40345.html
†Department of Mathematics, Heinrich Heine Universität, Universitätsstr. 1, D-40224, Düsseldorf,
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decreases, the demands on the quality of the computed matrix-vector product are
relaxed, which explains the term relaxation. Various researchers have reported that
this strategy works remarkably well for practical problems.

The, perhaps, counterintuitive phenomenon that an accurate matrix-vector prod-
uct is needed in the beginning of the iterative process, instead of at the final iterations
has also been observed and analyzed for the Lanczos method for the eigenvalue prob-
lem [13]. We also like to refer to independent work of Simoncini and Szyld presented in
[25]. This work later resulted in the paper [26] and some comments on the differences
with the work described here can be found at the end of this paper.

In this paper we focus on the impact of perturbations on the matrix-vector product
in various Krylov subspace solvers. This problem is related to rounding error analysis
of Krylov subspace methods since in the latter case an inexact matrix-vector product
is one source of errors. In our analysis we will use an approved method from this area:
we try to bound the norm of the residual gap and separately analyze the behavior
of the computed residuals (although this is possible only in a few special cases). The
usual way for bounding the gap is based on an inspection of the recurrences, e.g.,
[27, 15, 20, 19, 2]. Our approach differs from the analysis in these papers in the
sense that the analysis here is based on exploiting properties of the upper Hessenberg
matrices that arise in the matrix formulation of the Krylov subspace method. Where
possible we point out the differences with techniques used in literature and discuss
implications for rounding error analysis.

Another related problem is when a variable preconditioner is used in the Krylov
subspace method. See [10, 24, 31, 9, 12] for some results and the discussion throughout
this paper.

The outline of this paper is as follows. In sections 2 and 3 we set up the framework
that we need in the rest of this paper. We give an expression for the residual gap for
a general Krylov subspace method in section 3. This general expression is exploited
in the remainder of this paper, starting with Richardson iteration in section 4 and
Chebyshev iteration in section 5. The conjugate gradient (CG) method is the subject
of section 6. Inexact GMRES and FOM for general matrices are treated in section 7
and we conclude with some numerical experiments in section 8.

2. Krylov subspace methods. This paper is concerned with the approximate
solution of the n× n linear system

Ax = b, with ‖b‖2 = 1.(2.1)

In this section we summarize some properties (in terms of matrix formulations) of the
class of iterative linear system solvers called Krylov subspace methods.

Before we continue we have to define some notation. The vector ek denotes the
kth standard basis vector, i.e., (ek)j = 0 for all j �= k and (ek)k = 1. Furthermore, �1 is

the vector with all components one and, similarly, �0 is the vector with all components
zero. The dimension of these vectors should be apparent from the context. We warn
the reader for some unconventional notation: if we apply a matrix with k columns
to an �-vector with � ≤ k, then we assume the vector to be expanded with zeros if
necessary (we do the same with other operations and equalities). Finally, we use bold
capital letters to denote matrices with n rows and use small bold capitals to denote the
columns of these matrices where the subscript indicates the column number (starting
with 0), so, for example, v0 = Ve1. The zero vector of length n is denoted by 0.

The notion of a Krylov subspace plays an important role in the analysis and
derivation of a large class of iterative methods for solving (2.1). The Krylov subspace
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of order k (generated by the matrix A and the vector b) is defined as

Kk ≡ Kk(A,b) ≡ span{b,Ab, . . . ,Ak−1b}.(2.2)

In this paper we concentrate on iterative solution methods for which the iterate in
step j, xj , and its corresponding residual rj = b − Axj , respectively, belong to the
spaces Kj and Kj+1. Iterative solution methods with this property are called Krylov
subspace methods.1 We, furthermore, assume for all j ≤ k that the residuals provide
a sequence that after k steps of the subspace method can be summarized by the
following matrix relation:

ARk = Rk+1Sk, with Rke1 = b, �1∗Sk = �0∗.(2.3)

Here, the matrix Rk is an n by k matrix with as jth column rj−1, and Sk is a k+1 by
k upper Hessenberg matrix. The last condition in (2.3) for the Hessenberg matrix is a
necessary and sufficient condition for the vector rj to be a residual that corresponds
to some approximate solution from the space Kj ; see [18, section 4.4]. Indeed, if Sj

denotes the matrix Sj from which the last row is dropped, then, if Sj is invertible, we
have with β ≡ e∗j+1Sjej ,

�0∗ = �1∗Sj = �1∗Sj + βe∗j ⇒ βe∗jS
−1
j = −�1∗

and

SjS
−1
j e1 =

[
Sj

βe∗j

]
S−1
j e1 = e1 − ej+1.(2.4)

Now, if we let

xj ≡ Rj(S
−1
j e1),(2.5)

then we get, using (2.3) and (2.4), that

b − Axj = b − ARj(S
−1
j e1) = b − Rj+1(SjS

−1
j e1)

= b − Rj+1(e1 − ej+1) = b − (r0 − rj) = rj .

This shows that rj = b − Axj if xj is as in (2.5). Hence, for this choice we can say
that the iterate xj is consistent with the residual vector rj .

Moreover, we can get a recursion for the iterates xj by substituting Rk = b�1∗ −
AXk in (2.3). This shows that

−Rk = Xk+1Sk, Xke1 = 0.(2.6)

Some Krylov subspace methods use the recursions in (2.3) or (2.6) explicitly in their
implementation. An example is the Chebyshev method where the iterates are com-
puted with the, in this case, three-term relation in (2.6); see also section 5.

It is common to view Krylov subspace methods as polynomial based iteration
methods where the residuals are characterized as matrix polynomials in A that act on
the vector b; see, e.g., [6]. This viewpoint plays an important role in the convergence
analysis of a large number of Krylov subspace methods. The property of Sk that the

1Notice that this characterization does not include the Bi-CGSTAB method, for example.
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columns sum up to zero, is equivalent to the fact that the residual polynomials have
the interpolatory constraint that they are one in zero. We will, however, not use this
polynomial interpretation and will mostly consider the matrix formulation and exploit
algebraic properties of the matrix Sk.

We conclude this section with a useful property of the Hessenberg matrix Sk that
we will frequently use in the remainder of this paper.

Lemma 2.1. If the matrix Sj is invertible for j ≤ k, then the LU -decomposition
of Sk and the one of Sk exists. Furthermore,

Sk = JkUk and Sk = JkUk,(2.7)

where Jk is lower bidiagonal with (Jk)j,j = 1 and (Jk)j+1,j = −1 and Uk is upper

triangular with (Uk)i,j =
∑i

l=1(Sk)l,j for i ≤ j.
Proof. The existence of the LU -decomposition of Sk follows from the fact that

each principal submatrix of Sk is nonsingular; see, for instance, [11, Theorem 3.2.1].
The matrix J−1

k is lower triangular with all components one. Therefore, it follows
that J−1

k Sk = Uk. This proves the first equality in (2.7). The second equality follows
by checking that

JkUk = (Jk − ek+1e
∗
k)Uk = Sk − ek+1e

∗
kUk = Sk.

2.1. Derivation from Krylov decompositions. For theoretical purposes and
future convenience, we summarize in this section some facts about a so-called Krylov
decomposition given by

ACk = Ck+1Tk, Cke1 = b,(2.8)

where Ck is an n by k matrix and Tk is a k + 1 by k upper Hessenberg matrix. The
column space of Ck is a subspace of the Krylov space Kk but the columns, cj , are not
necessarily residuals corresponding to approximations from Kj . However, from this
relation different residual sequences (2.3) can be derived depending on the required
properties for the rj . In order to continue our discussion, we assume that Tk has

full rank, and we define the k + 1-vector �γk as the vector such that �γ∗
kTk = �0∗ and

�γ∗
k = (1, γ1, . . . , γk)

∗. Notice that, due to the Hessenberg structure of Tk, the elements
γj can be computed using a simple and efficient recursion.

A simple way to derive a residual sequence is to put Γk ≡ diag(�γk−1); then we
see that the matrices

Sk ≡ Γk+1TkΓ
−1
k and Rk ≡ CkΓ

−1
k(2.9)

satisfy (2.3) (with, indeed, �1∗Sk = �0∗). In this case the residual rj is a multiple of
the vector cj . In terms of the polynomial interpretation of Krylov subspace methods,
this construction of the residual sequence can be viewed as obtaining the residual
polynomials by scaling the polynomials, generated by the coefficients in Tk, such that
they are one in zero. Furthermore, if Tj is invertible, then we have for the residual

rj = cj/γj = Cj+1(I − TjT
−1
j )e1 = b − ACjT

−1
j e1,(2.10)

where we have used (2.8) and the first statement of the following lemma. (For ease of
future reference, we formulate the lemma slightly more general than needed here.)
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Lemma 2.2. Let j ≤ k. Then,

e1 − Tj(T
−1
j e1) =

ej+1

γj
and e1 − Tj(T

†
je1) =

�γj
‖�γj‖2

2

,(2.11)

where T †
j denotes the generalized inverse of Tj [11, section 5.5.4] and where, for the

first expression, Tj is assumed to be invertible.
Proof. The first expression follows from a combination of e1 − Tj(T

−1
j e1) =

e1−Γ−1
j+1SjS

−1
j Γje1 and (2.4). For the second expression we notice that I−TjT

†
j is the

orthogonal projection on Ker(Tj
∗) = span(�γj), we have that I−TjT

†
j = ‖�γj‖−2

2 �γj �γ
∗
j .

This leads to the first expression in (2.11).
The lemma also leads to an expression for residuals from an alternative construc-

tion:

rj = b − ACjT
†
je1 = Cj+1(I − TjT

†
j)e1 =

1

‖�γj‖2
2

Cj+1�γj .(2.12)

If we define

Υk ≡ [�γ0, . . . , �γk−1], Θk ≡ diag(‖�γ0‖2, . . . , ‖�γk−1‖2),

then we get

Sk ≡ (Υk+1Θ
−2
k+1)

−1Tk(ΥkΘ
−2
k ) and Rk ≡ Ck(ΥkΘ

−2
k ).(2.13)

It can be easily checked that �1∗(Υk+1Θ
−2
k+1)

−1 = �γ∗
k and therefore �1∗Sk = �0∗ and also

the Hessenberg form is preserved. It should be noted that the matrix (Υk+1Θ
−2
k+1)

−1

can be decomposed into simple factors since Υk+1 = Γk+1J
−1
k+1. These latter obser-

vations are related to the well-known fact (see, e.g., [6, section 2.5]) that minimal
residual polynomials, or Kernel polynomials, can be generated efficiently using cou-
pled recurrences.

3. Inexact Krylov subspace methods. In the previous section we collected
some general properties of Krylov subspace methods. There is a class of applications
for which it is very costly to compute the matrix-vector product to high precision. The
original motivation for the research in this paper was a linear system that occurs in
simulations in quantum chromodynamics (QCD) [8]. In this area the so-called overlap
formulation has initiated a lot of research in solving linear systems of the form

(rΓ5 + sign(Q))x = b, ‖b‖ = 1 (r ≥ 1),(3.1)

where Q and Γ5 are sparse Hermitian indefinite matrices. The matrix sign(Q) is
the so-called matrix sign function; see, e.g., [11, p. 372]. This matrix is dense and is
known only implicitly since we are given only the action of the matrices Q and Γ5

to vectors. Realistic simulations require in the order of one to ten million unknowns.
Usually, (3.1) is solved with a standard Krylov subspace method for linear systems,
for example the CG method (since this matrix is Hermitian). In every step some
vector iteration method is required to compute the product of sign(Q) and a vec-
tor. The usual approach is to construct some polynomial approximation for the sign
function, for example with a Lanczos approximation. For an overview and comparison
of methods used in this context we refer to [30].
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In this paper we consider the general problem of solving (2.1) where we assume
that we are given, for every scalar η and vector y, some approximation function
Mη : C

n → C
n with the property that

Mη(y) = Ay + g with ‖g‖2 ≤ η‖A‖2 ‖y‖2.(3.2)

It is, furthermore, assumed that the smaller η is chosen, the more time consuming
this approximation becomes to construct.

In the iterative methods that we discuss, it is necessary in step j to compute
the product of the matrix A with some vector, say y. If the matrix-vector products
are replaced with approximations computed with the function Mη, then we will refer
to the resulting method as an inexact Krylov subspace method. This can also be
viewed as a Krylov subspace method where a perturbation gj−1 is added to the exact
matrix-vector product in step j where gj−1 is such that ‖gj−1‖2 ≤ ηj−1‖A‖2 ‖y‖2.

Due to the existence of the errors, gj−1, the space spanned by the residuals
computed in the iterative method, is, in general, not a Krylov subspace generated
by A anymore. This has two consequences: the convergence behavior is altered, and
the maximally attainable accuracy of the iterative method is limited. The central
question in this paper is how large the perturbations can be if one is interested in a
solution xk such that ‖b−Axk‖2 = O(ε) without altering the convergence behavior
too much, or equivalently, how to pick ηj−1 in step j.

3.1. Relaxation strategies. In [3], Bouras and Frayssé showed numerical ex-
periments for GMRES with a relative precision ηj in step j + 1 given by

ηj = max

{
ε

‖b − Axj‖2
, ε

}
.(3.3)

For an impressive list of numerical experiments, they observed that with (3.3) the
GMRES method converged roughly as fast as the unperturbed version, despite the
sometimes large perturbations. Furthermore, the norm of the true residual (‖b −
Axj‖2) seems to stagnate around a value of O(ε). Obviously, such a strategy can
result in large savings in practical applications. The true residual is unfortunately,
in general, not known, since this would require an exact matrix-vector product. The
approximate residual, as computed in the inexact Krylov subspace method (cf. section
3.2), can serve as an alternative. Another interesting property of this choice for ηj is
that it requires very accurate matrix-vector products in the beginning of the process,
and the precision is relaxed as soon as the method starts to converge; that is, the
residuals become small. This justifies the term relaxation strategy as introduced in
[3]. We conclude with the remark that this condition was derived empirically in [3]
based on the experience of the authors with a large number of experiments and no
insight or analysis is given to explain this remarkable observation.

3.2. The analysis of inexact Krylov subspace methods. In the remainder
of this paper we will see that, for the methods that we consider, the approximate resid-
uals, rj , computed in the inexact Krylov subspace method now satisfy the perturbed
relation

ARk + Fk = Rk+1Sk, with Rke1 = b, �1∗Sk = �0∗.(3.4)

The columns of the matrix Fk are a function of the errors in the matrix-vector prod-
ucts. Furthermore, xj still satisfies (2.5) (or equivalently (2.6)) because of the as-
sumption of exact arithmetic. For the moment we assume that these relations hold
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but we stress that their validity must be checked for every inexact Krylov subspace
method which is obtained by replacing in a particular method the exact matrix-vector
product with some approximation.

As a consequence of the perturbation term Fk, the vector rk is usually not a
residual anymore for the approximate solution xk. Therefore, we will refer to the
vector rk as the computed residual in contrast to the true residual defined by b−Axk.
In the analysis of inexact Krylov methods, the true residuals are the quantities of
interest and we have

‖b − Axk‖2 ≤ ‖rk‖2 + ‖rk − (b − Axk)‖2.(3.5)

This inequality forms the basis of our analysis. If the computed residuals, for suffi-
ciently large k, become small compared to the residual gap, then it follows from (3.5)
that the stagnation level of the inexact Krylov subspace method is determined by
the residual gap, the difference between the computed residual and the true residual.
Furthermore, in the early iterations the norm of the computed residuals is large com-
pared to the size of the residual gap. This shows that the initial convergence of the
true residuals is determined by the residuals computed in the inexact Krylov subspace
method.

In the coming sections we will analyze the effect of inexact matrix-vector products
and, in particular, relaxation strategies as in (3.3) on different Krylov subspace meth-
ods by writing the residual relation into the form (3.4) and by bounding the residual
gap. If it is additionally shown that the computed residuals in the end become suffi-
ciently small, then the residual gap will ultimately determine the attainable accuracy.
The convergence of the computed residuals is a difficult topic that we can only fully
analyze in some special cases. It should be noticed that for the applications that
we have in mind, the norm of the computed residuals can be efficiently monitored,
while for the true residual or size of the residual gap, it is necessary to compute an
accurate matrix-vector product which is not feasible. It turns out that, under our
assumptions, a general expression can be given for the residual gap. We give this
expression in section 3.3 and exploit it in the remainder of this paper.

For the analysis in this paper, we assume the use of exact arithmetic operations.
Here, we are interested in the effect of errors in the matrix-vector multiplication, but
it is also a reasonable assumption, considering that, in general, the “error” in the
matrix-vector product is much larger than machine precision, as in the QCD example
(3.1) mentioned in the beginning of section 3, where the error in the matrix-vector
product is an error resulting from the truncation of an approximation process for the
matrix sign function times a vector.

3.3. A general expression for the residual gap. The goal is to get an ex-
pression for the residual gap. Assuming that xk is of the form (2.6) and the computed
residuals satisfy (3.4), then we find, using again (2.4), the following expression:

rk − (b − Axk) = rk − r0 + ARkS
−1
k e1 = −FkS

−1
k e1 = −

k∑
j=1

fj−1e
∗
jS

−1
k e1.(3.6)

This shows that the expression for the gap is a linear combination of the columns
of Fk, i.e., the vectors fj−1. The coefficients −(e∗jS

−1
k e1) somehow determine the

propagation of the perturbations through the recurrences. Our approach for bounding
the gap is based on using properties of the matrix Sk. We will do this for various



132 JASPER VAN DEN ESHOF AND GERARD L. G. SLEIJPEN

Krylov subspace methods in the remainder of this paper. Therefore, the following
lemma is convenient and will frequently be used.

Lemma 3.1. Let Tk be upper Hessenberg and of full rank. For j ≤ k, we have

|e∗jT
†
ke1| ≤ ‖T †

k‖2
1

‖�γj−1‖2
, |e∗jT−1

k e1| ≤ ‖T †
k‖2

(
1

‖�γj−1‖2
+

1

|γk|

)
.(3.7)

Proof. To prove (3.7), we observe that T †
kTk is the identity on k-vectors if Tk is

of rank k. Since e∗j�yj−1 = 0 for any j − 1-vector �yj−1 we have that

e∗jT
†
ke1 = e∗jT

†
k(e1 − Tk�yj−1) and

e∗jT
−1
k e1 = e∗jT

†
k(e1 − Tk�yj−1) + e∗jT

†
k(Tk(T

−1
k e1) − e1).

With �yj−1 = T †
j−1e1 and �yj−1 = T−1

j−1e1, a combination with (2.11) leads to

e∗jT
†
ke1 = e∗jT

†
k

�γj−1

‖�γj−1‖2
2

= e∗jT
†
k

ej
γj−1

and e∗jT
−1
k e1 = e∗jT

†
ke1 − e∗jT

†
k

ek+1

γk
,

and (3.7) easily follows.
We expressed our estimates in terms of the smallest singular value of Tk. This

value depends monotonically (decreasing) on k, and ‖T−1
m ‖2 ≥ ‖Tk

†‖2 if m > k. The
smallest singular value of Tk does not have this attractive property: even if Tm is
well-conditioned, there may be a k < m for which Tk is singular or nearly singular.

4. Inexact Richardson iteration. One of the simplest iterative methods for
linear systems is Richardson iteration, e.g., [16]. This method allows a straightforward
analysis, however, it already demonstrates some important aspects of our analysis.
Therefore, Richardson iteration is useful as a starting point. With a perturbed matrix-
vector product, this method is described by the following recurrences for j = 1, . . . , k
(with x0 = 0, r0 = b):

rj = rj−1 − α(Arj−1 + gj−1),(4.1)

xj = xj−1 + αrj−1,(4.2)

and ‖gj‖ ≤ ηj‖A‖2 ‖rj‖2. For simplicity we restrict our attention to symmetric
positive definite matrices A with an optimal choice for α:

α ≡ 2

λmin + λmax

,(4.3)

where λmin and λmax are, respectively, the smallest and largest eigenvalue of A.
For this method it is clear that after k steps of the method, the iterates satisfy

(2.6) and the residuals satisfy (3.4) with Fk = Gk and Sk = JkUk with Uk = α−1I.
Therefore, we can exploit (3.6) and, using e∗jS

−1
k e1 = α, we get the following bound

on the norm of the residual gap:

‖rk − (b − Axk)‖2 =

∥∥∥∥ k∑
j=1

fj−1α

∥∥∥∥
2

≤ α‖A‖2

k−1∑
j=0

ηj‖rj‖2.

Recall that we are only interested in an approximate solution xk with ‖b−Axk‖2 =
O(ε). This suggests to pick ηj = ε/‖rj‖2 and for this choice we get, using (4.3),

‖rk − (b − Axk)‖2 ≤ εkα‖A‖2 = ε2k
C(A)

C(A) + 1
< ε2k,
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Fig. 4.1. Richardson iteration with ηj = 10−5/‖rj‖2, true residuals (—), norm computed
residual (- ·), and the quantities 10−5C(A), 2j10−5 (both dotted) as a function of j. The matrix
A has dimension 1000 and C(A) = 10. Left: Errors have all components equal. Right: Random
errors.

where C(A) ≡ ‖A‖2 ‖A−1‖2. We stress that the residual gap for this simple iteration
method can be obtained by comparing the recursions for rj and b − Axj directly.
We have used here a slightly more involved approach to demonstrate the use of our
general formula (3.6), which becomes more convenient when studying more advanced
methods.

It remains to be shown that the computed residuals become sufficiently small.
For inexact Richardson iteration we have the following result which even shows that
the computed residuals become small at a speed comparable to the exact process.

Theorem 4.1. Let rk satisfy (4.1) with ηj = 0, and let rk satisfy (4.1) with
ηj = ε/‖rj‖2. Then

‖rk − rk‖ ≤ εC(A).

Proof. The difference between the two residuals is given by

rk − rk = (I−αA)kb+α

k∑
j=1

(I−αA)k−jfj−1 − (I−αA)kb = α

k∑
j=1

(I−αA)k−jfj−1.

For ηj = ε/‖rj‖2 we have ‖fj‖2 ≤ ηj‖A‖2 ‖rj‖2 = ε‖A‖2; hence

‖rk − rk‖2 ≤ |α|
k∑

j=1

‖(I − αA)‖k−j
2 ε‖A‖2 ≤ ε‖A‖2 ‖(αA)−1‖2|α| = εC(A).

Since rk will go to zero for k → ∞, we expect the norm of rk ultimately to stagnate
at a level below εC(A). This shows that the final residual precision is essentially
determined by the residual gap. We give a simple illustration of this in Figure 4.1,
where we have simulated inexact matrix-vector multiplications by adding an artificial
perturbation to the exact matrix-vector product. We conclude that for Richardson
iteration the required precision of the matrix-vector product can be relaxed with a
strategy similar to the one proposed for GMRES in (3.3).
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4.1. Discussion. One might remark that in practical applications the residual
is not computed in an incremental fashion as in (4.1). However, incrementally com-
puted residuals are important for a relaxation strategy to be successful. Furthermore,
directly computed residuals are not necessarily more accurate even if using a fixed
precision, i.e., ηj = η. In this case a direct computation of the (k+1)th residual yields

‖rk − (b − Axk)‖2 ≤ η‖A‖2 ‖xk‖2 = ‖(η‖A‖2Rk)S
−1
k e1‖2,

whereas an expression for the recursively computed residual follows from (3.6)

‖rk − (b − Axk)‖2 = ‖FkS
−1
k e1‖2.

Both Fk and η‖A‖2Rk have a (j+1)th column with a length smaller than η‖A‖2 ‖rj‖2.
Hence, the difference in the upper bounds is determined by the mutual angle between
the columns. In case the residuals change slowly and if the fj are random, the recur-
sively computed residual can be more accurate. Numerical experiments confirm this,
although the differences are small. Experiments also suggest that in the situation of
only finite precision errors an incrementally computed residual is no longer necessarily
more accurate than a directly computed residual as is often observed in practice.

5. Inexact Chebyshev iteration. A more advanced method than Richardson
iteration is Chebyshev iteration, e.g., [11, section 10.1.5], [7, Chapter 7]. It is more
advanced than Richardson iteration in the sense that it employs a three-term recur-
rence for the residuals for faster convergence. For clarity and in order to establish
notation, we start with a short derivation of Chebyshev iteration. Again, we assume
A to be symmetric positive definite.

We define φ(t) ≡ αt − β as a function that maps the interval [λmin, λmax] to the
interval [−1, 1], so (for example)

α ≡ 2

λmax − λmin

, β ≡ λmax + λmin

λmax − λmin

.(5.1)

The main idea behind the Chebyshev method is to construct the residuals rj as
multiples of the vectors cj = cj(φ(A))b, where cj(t) is the Chebyshev polynomial of
degree j; see [7, p. 4] for a definition. An efficient algorithm comes from the three-term
recurrence for the Chebyshev polynomials

cj = 2φ(A)cj−1 − cj−2, with c0 = b, c1 = φ(A)b,

which reads in matrix formulation for k steps

ACk = CkTk with Tk ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β
α

1
2α

1
α

β
α

1
2α

1
2α

. . .
. . .

. . .
. . .
1
2α

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.(5.2)

Equations (2.3) and (2.9) now give a three-term recurrence for the residuals with
γj = cj(φ(0)). A recursion for the approximate solutions xj is given by (2.6). For
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convenience of the reader, we give the resulting recurrence relations: for j = 2, . . . , k,
we have

rj = 2α
γj−1

γj
(Arj−1 + gj−1) − 2β

γj−1

γj
rj−1 −

γj−2

γj
rj−2,(5.3)

xj = −2α
γj−1

γj
rj−1 − 2β

γj−1

γj
xj−1 −

γj−2

γj
xj−2,(5.4)

with r0 = b, r1 = αγ0

γ1
(Ar0 + g0) − β γ0

γ1
r0, x0 = 0, and x1 = −αγ0

γ1
r0. In this

recursion we have already used an inexact version of the matrix-vector product in
(5.3). It easily follows that the computed residuals in the inexact Chebyshev method
satisfy (3.4) with Fk = Gk and therefore ‖fj‖2 ≤ ηj‖A‖2‖rj‖2. In order to bound
the residual gap with (3.6), we have to bound e∗jS

−1
k e1; this is accomplished in the

following lemma.
Lemma 5.1. Let Tk be as in (5.2), and let α and β be as (5.1). Then

|e∗jS−1
k e1| = |e∗jT−1

k ej | ≤
2α√
β2 − 1

=
2√

λmaxλmin

= 2

√
C(A)

‖A‖2
.(5.5)

Proof. Using (2.4) we see that

e∗jS
−1
k e1 = e∗jS

−1
k (e1 − Sk(S

−1
j−1e1)) = e∗jS

−1
k (e1 − Sj−1(S

−1
j−1e1)) = e∗jS

−1
k ej .

The first equality now follows from the relation Sk = ΓkTkΓ
−1
k .

The matrix Tk is given by Tk = β
α (I + 1

2β∆), where ∆ is the k by k matrix with

zeros entries everywhere except at the positions (i − 1, i) and (i, i − 1), where it has
the value one and the (2, 1) element is 2. To obtain the estimate for e∗jT

−1
k ej , we

express (I + 1
2β∆)−1 as a Neumann series and check that e∗j∆

2i−1ej = 0. With some

effort it can be shown that |e∗j∆2iej | ≤ 2 (2i)!
(i!)2 for all i = 1, 2, . . .; see Lemma A.1 in

Appendix A. Now use for t = 1/β2 that

1√
1 − t

=

∞∑
i=0

(2i)!

(2ii!)2
ti if |t| < 1.

This leads to the estimate in(5.5).
A combination of Lemma 5.1 and (3.6) gives the following bound on the residual

gap:

‖rk − (b − Axk)‖2 ≤ 2
√
C(A)/‖A‖2

k−1∑
j=0

‖fj‖2 ≤ 2
√
C(A)

k−1∑
j=0

ηj‖rj‖2.

Given the fact that we are interested in a residual precision of only O(ε), we propose
the same relaxation strategy as for Richardson iteration in section 4, i.e., pick ηj =
ε/‖rj‖2. The gap for this strategy can then be bounded as

‖rk − (b − Axk)‖2 ≤ 2kε
√
C(A).(5.6)

The proposed relaxation strategy allows very large perturbations when the resid-
uals are small. Nevertheless, the following theorem shows that also the initial conver-
gence speed of the computed residuals for this strategy is close to that of the exact
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method. Furthermore, the computed residuals become, in the end, sufficiently small
for (5.6) to be meaningful as measure for the attainable accuracy.

Theorem 5.2. Let rk satisfy (5.3) with ηj = 0, and let rk satisfy (5.3) with
ηj = ε/‖rj‖2. Then,

‖rk − rk‖2 ≤ ε(1 − |γk|−1)C(A).

Proof. If we subtract (2.3) from (3.4), then we get

A(Rk − Rk) + Fk = (Rk+1 − Rk+1)Sk, (R0 − R0)e1 = 0.(5.7)

Let vmin be the normalized eigenvector of A corresponding to λmin. We will show
that ‖rk − rk‖2 is maximal when for all perturbations we have fj = ε‖A‖2vmin (or

Fk = ε‖A‖2vmin
�1∗). Subsequently, we will solve (5.7) for these perturbations from

which our claim follows.
With (2.9) we rewrite (5.7) as

ADk + FkΓk = Dk+1Tk,

with dj ≡ (rj − rj)γj . Written as a three-term recurrence this reads as

dj = 2φ(A)dj−1 − dj−2 + 2αfj−1γj−1,

with d0 = 0, d1 = αf0. This recurrence can be solved using standard techniques (e.g.,
[7, p. 58], [10, section 2]), which gives

dk = αuk(φ(A))f0γ0 +

k−1∑
j=1

2αuk−j(φ(A))fjγj ,

where uj is the so-called Chebyshev polynomial of the second kind (e.g., [7]), i.e.,
uj+1(t) = 2tuj(t) − uj−1(t), u0(t) = 0 and u1(t) = 1.

Realizing that |uj(t)| ≤ j for t ∈ [−1, 1], uj(−1) = (−1)jj and sign(γj) = (−1)j

it follows that

‖dk‖2 ≤

∣∣∣∣∣∣εα‖A‖2

⎛⎝uk(φ(λmin))γ0 +

k−1∑
j=1

2uk−j(φ(λmin))γj

⎞⎠∣∣∣∣∣∣ .
This shows that the error is maximal if all perturbations are ε‖A‖2vmin.

In order to solve (5.7) with Fk = ε‖A‖2vmin
�1∗, we use a relation for the iterates

which follows from substituting Rk = b�1∗ − AXk in (2.6):

AXk − b�1∗ = Xk+1Sk, X0e1 = 0.(5.8)

Comparing (5.8) with (5.7) shows that ‖rk − rk‖2 is bounded by the norm of the
(k + 1)th approximate solution of Chebyshev iteration when the right-hand side is
ε‖A‖2vmin, which is

ε‖A‖2
1 − ck(−1)/γk

λmin

vmin.

By noting that 0 ≤ ck(−1)/γk ≤ 1 and |ck(−1)| = 1 the proof can be con-
cluded.

In Figure 5.1 we give an illustration of our relaxation strategy for Chebyshev
iteration similar to what we did for Richardson iteration in section 4.
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Fig. 5.1. Chebyshev iteration with ηj = 10−10/‖rj‖, true residuals (—), norm computed

residual (- ·), and the quantities 10−10C(A), 2j10−10
√

C(A) (both dotted) as a function of j. The

matrix A has dimension 100 and C(A) = 1000. Left: Errors have all components equal. Right:
Random errors.

5.1. Discussion. The effect of perturbations on the Chebyshev method has been
investigated in literature. Woźniakowski analyzes in [33] the effect of finite precision
arithmetic on the Chebyshev method. He describes a variant of the Chebyshev method
where the residuals are computed directly and concludes that this method is forward
stable. Furthermore, he points out this method is not well behaved: the residuals
for this method can stagnate at a level of C(A)‖A‖2 ‖A−1b‖2 times the machine
precision. (It is interesting to note that a similar observation has been made for
MINRES [28].) A method is well behaved if the true residuals decrease below the level
of ‖A‖2 ‖A−1b‖2 times the machine precision.

Gutknecht and Strakoš [20] analyze the residual gap for general Krylov subspace
methods that use two three-term recurrences (one for the residuals and one for the
approximate solutions). This analysis is applied in [19] in a qualitative discussion on
the residual gap for the Chebyshev method. The approach from [19] differs essentially
from ours in that we are using properties of the matrix Sk to bound the gap instead
of a close inspection of the recursion as in [20]. The advantage is that it is easier
to derive bounds in terms of global properties (as in Lemma 5.1) and our approach
is not restricted to a certain type of recursion. Expressions similar to that in [20]
can be obtained from (3.6) by writing out e∗jS

−1
k e1 using the LU -decomposition from

Lemma 2.1. A difference is that, due to a different context, we do not consider
perturbations on the recursion for the iterates but an analysis as in the previous
sections can be easily extended to this case.

For the Chebyshev method with inexact preconditioning, called flexible precondi-
tioning in this paper, convergence results have been established by Golub and Overton
[10] for ηj = η but where η can be modest (and much larger than ε). Moreover, under
certain assumptions for the cost of the flexible preconditioner, it is shown in [9] that a
fixed threshold strategy is optimal with respect to asymptotic convergence. It is not
difficult to see that, if one sets the preconditioner to M = I, the residuals of this flex-
ible process satisfy the perturbed residual relation given in (3.4). However, since the
perturbation is the consequence of inexact preconditioning, instead of inexact matrix-
vector products, we still have that rj = b − Axj . This shows that, although there
are common elements, flexible preconditioning is different from the case of inexact
matrix-vector products. Since, for the latter case, there is also an accuracy issue.
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6. The inexact CG method. In this section we discuss relaxation strategies
for the CG method [21] and some of its variants although, strictly speaking, not
all variants that we discuss use gradients that are conjugate. The most popular
formulation of the CG method is due to Hestenes and Stiefel [21, section 3] and
consists of three coupled two-term recurrences. For j = 1, . . . , k, this method, with
inexact matrix-vector product, is defined by the recurrences

c = Apj−1 + gj−1,(6.1)

rj = rj−1 − αj−1c,(6.2)

xj = xj−1 + αj−1pj−1,(6.3)

pj = rj + βj−1pj−1,(6.4)

with

αj−1 ≡ ‖rj−1‖2
2

p∗
j−1c

and βj−1 ≡ ‖rj‖2
2

‖rj−1‖2
2

,(6.5)

and p0 = r0 = b and x0 = 0. We have added a perturbation, gj−1, to the matrix-
vector product in (6.2) to obtain the inexact version with ‖gj−1‖2 ≤ ηj−1‖A‖2 ‖pj−1‖2.

The goal is, again, to obtain a final residual precision of about ε. Therefore,
we want to investigate the influence of the ηj on the residual gap and we make the
assumption that the computed residuals become sufficiently small in the end as for
Chebyshev iteration in the previous section.

We define

Ũk ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −β0

1 −β1

. . .
. . .

. . . −βk−2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,∆k ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α0

α1

. . .

. . .

αk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This gives us the following equivalent matrix formulations of the recurrences of the
inexact CG method:

APk + Gk = Rk+1Jk∆
−1
k , Xk+1Jk = −Pk∆k, Rk = PkŨk.

Combining these relations shows that

ARk + (GkŨk) = Rk+1(Jk∆
−1
k Ũk) and − Rk = Xk+1(Jk∆

−1
k Ũk).(6.6)

We see that (3.4) and (2.6) are satisfied for this method with Sk ≡ Jk∆
−1
k Ũk and

Fk ≡ GkŨk. Therefore, we can use our familiar formula (3.6) to get an expression for
the residual gap:

rk − (b − Axk) = −FkS
−1
k e1 = −GkŨkS

−1
k e1 = −Gk∆kJ

−1
k e1 = −

k−1∑
j=0

αjgj .

This expression can also be obtained by an inductive combination of (6.2) and (6.3).
This simpler argument, that avoids the matrix formulation, was used in [27, 15].



INEXACT KRYLOV SUBSPACE METHODS 139

However, the present argument explains how CG fits in the general framework of this
paper. Moreover, for the conclusions below we need the matrix formulation anyway.

From ‖gj‖2 ≤ ηj‖A‖2‖pj‖2, we get the following bound on the norm of the
residual gap:

‖rk − (b − Axk)‖2 ≤
k−1∑
j=0

ηj |αj |‖A‖2‖pj‖2.(6.7)

Thus, the problem of deriving relaxation strategies for the CG method amounts to
bounding |αj |‖pj‖2. We do this in the remainder of this section.

The CG method is intimately connected with the Lanczos method, e.g., [11,
Chapter 9]. In order to continue we introduce for theoretical purposes the following
inexact Lanczos process:

AVk + F̃k = Vk+1Tk,(6.8)

where Tk ≡ Γ−1
k+1SkΓk, Γk ≡ diag(�γk−1), γj ≡ (−1)j‖rj‖−1

2 , Vk ≡ RkΓk, and F̃k ≡
FkΓk. From (6.6) and Section 2 it follows that xj = RjS

−1
j e1 = VjT

−1
j e1 and

combining this with (6.3) shows that

αjpj = Vk(T
−1
j+1e1 − T−1

j e1).(6.9)

We will use this relation to bound |αj |‖pj‖2.

6.1. The case of Tk positive definite. First we assume that Tk is positive
definite. In the previous section we reduced the problem of bounding the gap to
bounding |αj |‖pj‖2. We will do this using (6.9) and the following result.

Lemma 6.1. Let j < k. Then,

T−1
j+1e1 − T−1

j e1 = T−1
j+1

ej+1

γj
=

�γj
�γ∗
j Tj+1�γj

.(6.10)

Proof. First observe that

T−1
j+1e1 − T−1

j e1 = T−1
j+1(e1 − Tj+1T

−1
j e1) = T−1

j+1(e1 − TjT
−1
j e1).

Now, the first identity in (6.10) follows from Lemma 2.2.
Since �γ∗

j+1Tj+1 = �0∗, we see that �γ∗
j Tj+1 = δe∗j+1 for some scalar δ. Multiplication

from the right with �γj shows that δ = �γ∗
j Tj+1�γj/γj . Since Tj+1 is symmetric, we find

�γj = δT−1
j+1ej+1, which leads to the second identity.

We combine this lemma with (6.9) and arrive at the estimate

|αj |‖pj‖2 ≤ ‖Vk‖2‖T−1
k ‖2ρj , with ρj ≡

1

‖�γj‖2
=

(
j∑

i=0

‖ri‖−2
2

)−1/2

.(6.11)

Inserting this estimate in (6.7), we find the following bound on the norm of the residual
gap:

‖rk − (b − Axk)‖2 ≤ ‖Vk‖2‖A‖2‖T−1
k ‖2

k−1∑
j=0

ηjρj .(6.12)
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This estimate can be further bounded using that ‖Vk‖2 ≤ ‖Vk‖F ≤
√
k. In practice,

this turns out to be crude since ‖Vk‖2 is close to one or only a modest multiple of
one. If A is symmetric positive definite, then, in the exact case, ‖T−1

k ‖2 ≤ ‖A−1‖2.
In the inexact case, ‖A‖2‖T−1

k ‖2 can be viewed as an approximation to C(A). It
is tempting to refer to the results of Paige [23] for perturbed Lanczos processes to
bound this quantity. However, the perturbations in our context are not assumed to be
uniformly bounded. In fact, they are allowed to grow during the process. Therefore,
we cannot make use of his results. Of course, we can monitor this quantity during
the inexact process and, possibly, incorporate this estimate into our tolerance ηj .

Bouras, Frayssé, and Giraud proposed in [4], following their work for inexact
GMRES and (3.3), a relaxation strategy for the CG method where they take

ηj = max

{
ε

‖rj‖2
, ε

}
.(6.13)

If we take the larger tolerance ηj = ε/ρj (since ρj ≤ ‖rj‖2), then we have from (6.12)
that

‖rk − (b − Axk)‖2 ≤ εk‖Vk‖2‖A‖2‖T−1
k ‖2.(6.14)

We saw that our analysis of the residual gap helps to provide insight into the practical
success of the Bouras–Frayssé–Giraud condition (6.13) and even suggests that we
can relax stronger than previously proposed. Indeed, numerical experiments with
symmetric positive definite matrices A confirm this.

An alternative for bounding |αj |‖pj‖2 follows from noticing that in (6.10), for a

fixed value of i, the quantities e∗i (T
−1
j e1 − T−1

j−1e1) have a constant sign for all j (or
are zero). Therefore, we have that

‖T−1
j e1 − T−1

j−1e1‖2 ≤ ‖T−1
i e1‖2 for i ≥ j.

This provides a similar bound on |αj |‖pj‖2 as derived by Greenbaum in [15] for the
residual gap of CG in order to study the attainable accuracy of the CG method in finite
precision computations. She uses that the errors of the CG method are monotonically
decreasing in 2-norm in order to bound ‖αjpj‖2. In our context this approach is too
crude since it does not lead to a relaxation strategy.

6.2. The case of Tk indefinite. The CG method is still used in practice for
solving Hermitian indefinite systems, despite its lack of robustness. One reason is
that, although the tridiagonal matrix can be ill conditioned in one iteration, this can
never happen for two consecutive iterations, e.g., [1, 17]. If A is symmetric indefinite
but nonsingular, then, even in the exact case, Tk will not be definite and we cannot
uniformly bound �γ∗

j Tk�γj away from zero. We may not expect that Lemma 6.1 leads
to useful results for bounding |αj |‖pj‖2 using (6.9). As an alternative, we use the
following lemma.

Lemma 6.2. Let j < k. Then,

T−1
j+1e1 − T−1

j e1 = T †
j+1

(
ej+1

γj
− ej+2

γj+1

)
.(6.15)

Proof. We observe that T †
j+1Tj+1 is the identity on j + 1-vectors and conclude

that

T−1
j+1e1 − T−1

j e1 = T †
j+1

(
(e1 − Tj+1T

−1
j e1) − (e1 − Tj+1T

−1
j+1e1)

)
.
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The proof can be concluded by rewriting the expressions on the right with the help
of Lemma 2.2.

If we use that ‖T †
j+1‖2 ≤ ‖T †

k‖2 for k > j and, from (6.5), that βj = γ2
j /γ

2
j+1,

then we can bound the norm of the residual gap as

‖rk − (b − Axk)‖2 ≤ ‖Vk‖2‖A‖2‖T †
k‖2

k−1∑
j=0

ηj‖rj‖2

√
1 + βj .(6.16)

A similar expression can be found in [27, 15], where the perturbations are assumed
to be small and second order terms have been neglected (then it can be proven that

‖A‖2‖T †
k‖2 � C(A)). For the choice ηj = ε/‖rj‖2, we get, using (6.16),

‖rk − (b − Axk)‖2 ≤ εk‖Vk‖2‖A‖2‖T †
k‖2 max

0≤j<k

√
1 + βj .(6.17)

We see that, as long as the βj are bounded, this strategy can work very well. How-
ever, practical problems often lead to a matrix A that is indefinite, for instance in
the QCD example discussed in section 3. In this case there can be very large inter-
mediate residuals caused by an eigenvalue of Tk being “accidentally” close to zero.
The situation of an eigenvalue of Tk close to zero is in literature often referred to as
a near breakdown. It results in a value of βj that is very large, and it follows from
(6.17) that the proposed strategy in (6.13) may fail in achieving the required residual
precision.

From (6.16) it follows that picking ηj = ε/(‖rj+1‖2 + ‖rj‖2) is a better strategy
in this case. However, this is not practical since the size of rj+1 is not known yet. An
alternative is to consider the first bound in (6.7) and pick

ηj =
ε

|αj |‖pj‖2
.

If the approximation of the matrix-vector product is computed with an iterative
method, then the inner product of pj with the “current” approximation to the matrix-
vector product can be monitored (at the cost of an additional inner product), and
from this αj can be estimated. Nevertheless, in case of a near breakdown a very
accurate matrix-vector product is still necessary. We will therefore consider variants
of the CG method in Section 6.4.

6.3. The behavior of the computed residuals. Studying the convergence
and stagnation level of the computed residuals is a much more difficult topic. Green-
baum [14] showed that the convergence of a slightly perturbed CG process is equal
to that of the exact method applied to a matrix with eigenvalues in small clusters
around the eigenvalues of the original matrix. The width of these clusters is deter-
mined by the size of the perturbation of the Lanczos process. Unfortunately, this
analysis does not apply in our situation since it does not explain why the accuracy
of the matrix-vector product can be relaxed when the CG method converges as was
the case for Richardson iteration and Chebyshev iteration in the previous sections.
Numerical experiments indeed suggest that a relaxation strategy for the accuracy of
the matrix-vector products does not spoil the convergence of the computed residuals
and they seem to stagnate at a level in the order of ε.

However, the convergence speed can be very different from that of the exact CG
method. It is important to mention that in numerical experiments we observe that
a near breakdown of the method can severely alter the behavior of the computed
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residuals. In this case, F̃k in (6.8) has some relatively very large columns. To see

this we mention that for the jth column of F̃k we have that ‖̃fj−1‖ = ‖gj−1 − βj−2

gj−2‖2/‖rj−1‖2. A simple analysis shows that

‖pj−1‖2 = ‖RkŨ
−1
k ej‖2 ≤ ‖RkΓk‖2 ‖Γ−1

k Ũ−1
k ej‖2 = ‖Vk‖2

‖rj−1‖2
2

ρj−1
,

where ρj is as defined in (6.11). Notice that ρj can be viewed as the norm of a
smoothed residual, e.g., [21, Section 7]. We have the following upper bound for the

norm of the jth column of F̃k:

‖̃fj−1‖ = ‖gj−1 − βj−2gj−2‖2/‖rj−1‖2 ≤ ‖A‖2 ‖Vk‖2 ‖rj−1‖2

(
ηj−1

ρj−1
+

ηj−2

ρj−2

)
.

The ratio ‖rj−1‖2/ρj−1 is large in case of a near breakdown since then we have that
ρj−1 � ‖rj−1‖2. This shows that when there is a near breakdown, there can be a
relatively very large perturbation of the Lanczos relation. One consequence is a large
residual gap (as discussed). Another effect is a potential delay in the convergence (or
even worse). A simple numerical example is given in the next section.

6.4. Variants of the CG method. Mathematically equivalent variants of the
CG method can be derived from the Lanczos method. In this section we will consider
two such alternatives. These methods are based on a three-term recurrence for the
residuals instead of the coupled two-term recurrences of the Hestenes and Stiefel
implementation discussed in the previous sections. We start with a short derivation
of these alternatives.

Since the CG residuals are multiples of the Lanczos vectors, we can derive the
coefficients for the recurrence (2.3) from the Lanczos relation by virtue of (2.9). To
see this, we write

Tk ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 β0

β0 α1
. . .

. . .
. . .

. . .

. . .
. . . βk−2

βk−2 αk−1

βk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Sk ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ0 δ0

τ0 µ1
. . .

. . .
. . .

. . .

. . .
. . . δk−2

τk−2 µk−1

τk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix Tk is computed using the Lanczos method and we want expressions for
the elements of the matrix Sk. We can do this similar to our derivation of Chebyshev

iteration in Section 5. From the necessary property that �1∗Sk = �0, it immediately
follows that τj = −(µj + δj−1) (with δ−1 = 0). Using (2.9) we see that µj = αj ,
δj = βj(γj/γj+1) and τj = βj(γj+1/γj). Eliminating βj gives that δj = τj(γj/γj+1)

2.
With δ−1 = 0 we get, using Lemma 2.2,

δj = τj
‖rj+1‖2

2

‖rj‖2
2

, µj =
r∗jArj

‖rj‖2
2

, τj = −(µj + δj−1).

Computing the residuals and iterates with these coefficients and the recurrences given
in (2.3) and (2.6) gives a variant of CG known as Orthores (where we use the nomen-
clature from [20]).
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Rutishauser’s variant of this method is obtained by introducing auxiliary vari-
ables ∆xj and ∆rj using the LU -decomposition, Sk = JkUk, from Lemma 2.1 where
(Uk)j,j = −τj−1 and (Uk)j+1,j = δj−1. This gives

Rk+1Jk = ∆Rk, ∆Rk Uk = ARk and

Xk+1Jk = ∆Xk, ∆Xk Uk = −Rk.
(6.18)

Now that we have defined the two methods, we shift our attention to the inexact
case. In inexact Orthores the matrix-vector product is perturbed in step j with a
term gj−1. This leads to the (familiar) perturbed residual relation

ARk + Fk = Rk+1Sk, with Rke1 = b, �1∗Sk = �0∗,

where Fk = Gk and, therefore, ‖fj‖2 ≤ ηj‖A‖2 ‖rj‖2. For the inexact version of
Rutishauser’s method we have ∆Rk Uk = ARk + Gk, and it follows that, for the
same perturbations, the inexact version of Orthores and Rutishauser’s variant are
equivalent under the assumption of exact arithmetic and, hence, the same upper
bounds apply.

We want to bound the gap for the discussed methods and derive a suitable relax-
ation strategy. Therefore, we notice that the residuals of inexact Orthores are now
multiples (γ−1

j ) of the Lanczos vectors of an inexact Lanczos process given by (6.8)

with Tk ≡ Γ−1
k+1SkΓk, Γk ≡ diag(�γk−1) and γj ≡ (−1)j‖rj‖−1

2 . Combining this with
Lemma 3.1 shows that

|e∗jS−1
k e1| ≤ ‖T †

k‖2
1

‖rj−1‖2
(ρj−1 + ‖rk‖2) ,(6.19)

where ρj−1 is as defined in (6.11). The general expression for the residual gap (3.6),
now leads to the following bound:

‖rk − (b − Axk)‖2 ≤ ‖T †
k‖2

k−1∑
j=0

‖rj‖−1
2 (ρj + ‖rk‖2) ‖fj‖2

≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj (ρj + ‖rk‖2) .

Recall that we assume that the computed residuals ultimately become small enough.
Now, assume that we terminate the iterative process for ‖rk‖2 ≤ ε. In this case we
see that the size of the gap is essentially determined by the values of the ρj , the ηj ,

and ‖T †
k‖2. Unfortunately, we have no a priori knowledge about the size of ‖T †

k‖2.
We hope that this quantity is in the order of ‖A−1‖2. For inexact Orthores (and
Rutishauser’s variant) we propose the following relaxation strategy:

ηj =
ε

ρj
,(6.20)

where ρj is given in (6.19) and can be computed at little additional cost. For the
proposed relaxation strategy in (6.20), we have for the residual gap

‖rk − (b − Axk)‖2 ≤ εk‖A‖2 ‖T †
k‖2

(
1 +

‖rk‖2

ρk

)
.
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Fig. 6.1. True residuals exact FOM (dotted), CG (–), Orthores (- ·), Rutishauser’s variant
(dots) as a function of j. In both pictures ε = 10−10. Left: ηj = ε. Right: ηj = ε/ρj .

This shows that the distance between the computed and true residual can be large
when there is a near breakdown but when the process is terminated, if ‖rk‖2 ≤ ε,
the gap is hopefully O(ε). An alternative is to pick ηj = ε/(ε + ρj) which somewhat
simplifies the resulting expression that bounds the gap.

Let us summarize our findings. If we consider the upper bounds on the residual
gap, we see that for the two discussed variants based on a three-term recurrence there
is no need in computing the matrix-vector product more accurately in case of a near
breakdown in contrast to the standard coupled two-term based recurrence implemen-
tation of CG. As seen, we can exploit this in our relaxation strategy. For indefinite
matrices A, where the convergence behavior of the residuals is highly irregular, the
alternative CG methods and relaxation strategy in this section can offer advantages
over CG and the relaxation strategy by Bouras, Frayssé, and Giraud in (6.13). Fur-
thermore, for the three-term recurrences, a near breakdown does not lead to a large
perturbation of the (implicit) Lanczos relation. Hence, we expect the effect of loss of
convergence speed caused by near breakdowns less dramatic than for CG.

In Figure 6.1 we give a simple illustration. The right-hand side has all components
equal and the matrix is A = diag(1 : 100)−5.2025 I. The shift causes a large interme-
diate residual in the fifth step. The figure illustrates that Orthores and Rutishauser’s
variant perform equal and better than the CG method with respect to accuracy and
convergence speed. Here, we prefer to use the three-term recurrence variants over the
coupled two-term recurrences.

6.5. Discussion. For positive definite systems, the standard CG method seems
appropriate in the inexact setting. The observations in the previous section show
that (in the inexact setting) the use of a three-term recurrence for solving Hermitian
indefinite systems can offer advantages over the standard CG implementation, espe-
cially in situations where the matrix A is not too ill-conditioned and convergence is
irregular. Numerical experiments are given in section 8.

Numerical experiments (not reported here) suggest that this is not necessarily
the case when floating point errors are the only source of errors. For example, near-
breakdowns also influence the attainable precision of Rutishauser’s variant of the CG
method, just as for standard CG. Orthores, on the other hand, seems not sensitive to
peaks but appears to be [20], like Chebyshev iteration and MINRES, not well behaved
(cf. section 5.1). Our analysis can be extended for making a rounding error analysis
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of several variants of the CG method for indefinite systems. This can help identify
the different design choices in the construction of a CG method that influence the
accuracy.

Studying the behavior of the computed residuals is a much more difficult subject.
In general we observe in numerical experiments that the computed residuals become
small enough for the residual gap to be a meaningful indicator for the attainable
residual precision. It is also often observed that the initial convergence speed is
comparable to the convergence speed of the exact method. Nevertheless, in a few
cases, small perturbations of the matrix-vector product can delay convergence for the
CG method and its variants. This also is the case for inexact GMRES that we discuss
in the next section and we refer to this section for a numerical example and further
discussion.

As a final remark we notice that we could have proposed inexact MINRES as
the alternative for indefinite systems. We have not done this here for two reasons.
A simple analysis of inexact MINRES shows that essentially the same bound applies
as for inexact Orthores, and therefore the same relaxation strategy is appropriate.
Second, we want to illustrate that the underlying mechanism for constructing the
Krylov subspace is important and not the chosen optimality properties of the residuals.
This is also illustrated in the next section in our discussion about inexact FOM and
GMRES.

7. Inexact FOM and GMRES. The Lanczos method is a starting point for
the derivation of a large class of iterative methods for Hermitian matrices A. For
non-Hermitian systems, the Arnoldi method (see, for instance, [11, section 9.4]) can
be used for constructing an orthonormal basis v0, . . . ,vk for Kk+1 and can therefore
serve as a starting point. The Arnoldi method can be summarized by the following
relation:

AVk = Vk+1Tk, Vke1 = b,(7.1)

where Tk is k + 1 by k upper Hessenberg and Vk is n by k and orthogonal. Recall
that b is assumed to have unit length.

If in step j of the Arnoldi method the matrix-vector product is computed ap-
proximately, i.e., a perturbation gj−1 is added to the matrix-vector product Avj−1,
then we obtain an inexact Arnoldi method. This latter method satisfies the following
perturbed Arnoldi relation:

AVk + F̃k = Vk+1Tk, Vke1 = b,(7.2)

where F̃k = Gk and, therefore, ‖̃fj‖ ≤ ηj‖A‖2 ‖vj‖2 = ηj‖A‖2. An interesting
observation is that Vk is still an orthogonal matrix, but now the columns span the
Krylov subspace Kk(Âk,b) with Âk ≡ A + F̃kV

∗
k . We will assume in this section

that Tj is invertible and Tj has full rank for j ≤ k.
The inexact FOM and inexact GMRES method [3] use the Arnoldi relation ex-

plicitly and construct their iterates as

yF

j = T−1
j e1, xF

j = Vjy
F

j and yG

j = T †
je1, xG

j = Vjy
G

j .

The corresponding computed residuals are given by

rF

j = Vj+1(I − TjT
−1
j )e1 and rG

j = Vj+1(I − TjT
†
j)e1.
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These expressions are a special case of (2.10) and (2.12) and, therefore, we get from
Lemma 2.2 that rF

j = vj/γj and rG
j = ‖�γj‖−2

2 Vj�γj , where �γk is as defined in Section 2,

i.e., γ∗
kTk = �0∗ and �γ∗

ke1 = 1. This gives the following relation between the norms of
the computed residuals of inexact FOM and inexact GMRES:

ρj ≡ ‖rG

j ‖2 =

(
j∑

i=0

‖rF

i ‖−2

)−1/2

.(7.3)

The same result is well known for exact FOM and exact GMRES from the work of
Brown [5].

Notice that an alternative expression for the residuals is given by rF
j = b− Âjx

F
j

and similarly for inexact GMRES. Hence, inexact FOM/GMRES is equivalent to

exact (or ideal) FOM/GMRES applied to the linear system Ânx = b. Therefore,

these methods, after at most n steps, terminate with xF
n = xG

n = (A+ F̃nV
∗
n )−1b and

in the inexact GMRES method, the computed residuals are monotonically decreasing.
In the remainder of this section, we will drop the superscripts F or G in expressions
that are valid for both methods.

In order to bound the residual gap in step k, we use an expression for the gap
that is equivalent to (3.6) but is expressed in terms of the matrix F̃k (this simplifies
the analysis in this section somewhat). We have

rk − (b − Axk) = rk − (b − (Âk − F̃kV
∗
k )xk) = −F̃kyk.(7.4)

Hence,

‖rk − (b − Axk)‖2 = ‖F̃kyk‖2 ≤ ‖A‖2

k−1∑
j=0

ηj |e∗j+1yk|.(7.5)

Since the iterates of inexact FOM and GMRES ultimately will approach the same

vector Â
−1

n b, and thus yF

k ≈ yG

k , it is evident from (7.4) that an appropriate relaxation
strategy for inexact GMRES is also suitable for inexact FOM, and vice versa. This
will be confirmed by the analysis below.

If we plug (3.7) into (7.5), then we get the following bound for the residual gap
of inexact FOM,

‖rF

k − (b − AxF

k)‖2 ≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj(‖rG

j ‖2 + ‖rF

k‖2),(7.6)

and for inexact GMRES we get

‖rG

k − (b − AxG

k )‖2 ≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj‖rG

j ‖2.(7.7)

We follow the same approach as for Orthores in section 6.4 and assume that we
terminate the inexact FOM/GMRES method in step k when ‖rk‖2 ≤ ε, where ε
is again in the order of the required residual precision. We see that in step k the
residual gap is essentially determined by the tolerances ηj , the ‖rG

j ‖2 (or ρj), and the
smallest singular value of Tk. Again, the size of the smallest singular value of the
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Hessenberg matrix is difficult to estimate a priori (we can, however, monitor it during
the iterations and incorporate this quantity in our choice for η). We, again, see that
relaxation is possible with ηj = ε/ρj . This results for inexact FOM in the bound

‖rF

k − (b − AxF

k)‖2 ≤ εk‖A‖2‖T †
k‖2

(
1 +

‖rF

k‖2

ρk

)
,(7.8)

and for inexact GMRES we get

‖rG

k − (b − AxG

k )‖2 ≤ εk‖A‖2‖T †
k‖2.(7.9)

We see that the relaxation strategy derived from the bounds on the residual gap con-
firms the empirical choice of Bouras and Frayssé in (3.3) for GMRES and can explain
the success of this approach. See also the numerical experiments in [3]. Furthermore,
we note that the expression for the residual gap of the inexact FOM method and
inexact Orthores from the previous section coincide which can be explained by the
fact that, for both methods, the matrix-vector products in the exact counterparts are
applied to an orthogonal basis. Of course, the behavior of the computed residuals and
the values of ‖T †

k‖2 differ.

7.1. The behavior of the computed residuals. For inexact GMRES we know
that the size of the computed residuals monotonically decrease and rn = 0. There-
fore the gap provides, in the end, useful information about the attainable accuracy.
However, this does not say anything about the speed of convergence of the perturbed
process. The many numerical experiments in [3] suggest that the convergence of the
inexact method with the proposed relaxation strategy is comparable to the conver-
gence speed of the exact method. It is, however, very difficult to give a rigorous
analysis of this observation. In some cases it can be proven that convergence of the
relaxed process is approximately as fast as for the unperturbed process (similar to
what we have seen for Chebyshev iteration). This is, for example, the case for inexact
processes where the perturbation is of the special form

F̃k = Vk+1Ek,(7.10)

with Ek some upper Hessenberg matrix. In this case we have

AVk = Vk+1Tk − F̃k = Vk+1T k, with T k ≡ Tk − Ek.

This shows that only the Hessenberg matrix Tk differs from the Hessenberg matrix
of the unperturbed process T k and the perturbation does not change the Krylov
subspace, or its basis given by Vk+1.

To understand the convergence of the inexact process, we compare the norm of
the computed residual for the inexact process, with perturbations of the form (7.10),
to that of the exact method. We denote the computed residuals of both methods
with, respectively, rj and rj . For the GMRES method these “residuals” are given by
the following expressions:

rG

j = Vj+1(I − TjTj
†)e1 and rG

j = Vj+1(I − T jT
†
j)e1.

Since we have that T k = Tk −Ek, we can apply standard perturbation theory for the
least squares problem. For example, with Theorem 19.1 in [22] we can show that∣∣‖rG

k‖2 − ‖rG

k‖2

∣∣ ≤ ‖rG

k − rG

k‖2 ≤ (1 + 2‖A‖2‖A−1‖2)‖Ek‖2.
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This shows that if ‖rG

k‖2 = O(ε) all the ηj should be about ε in order to retain the
speed of convergence of the exact method. This simple argument is not sufficient for
explaining the fast convergence of the inexact method with the relaxation strategy
(3.3), leaving some more work necessary. By generalizing Theorem 19.1 in [22], we
get the following theorem.

Theorem 7.1. Let Wk ≡ ÂkVk and let Pk be the skew projection along Vk on
span(Wk):

Pk = Wk(V
∗
k Wk)

−1V∗
k = Vk+1T kT

−1

k V∗
k .

Then, we have for the inexact FOM method

‖rF

k − rF

k‖2 ≤ ‖I − Pk‖2‖A‖2‖T †
k‖2

k−1∑
j=0

ηj(‖rG

j ‖2 + ‖rF

k‖2).

For the inexact GMRES method we have that

‖rG

k − rG

k‖2 ≤ ‖A‖2‖T †
k‖2

k−1∑
j=0

ηj(‖rG

j ‖2 + ‖rG

k‖2).

Proof. We prove the first statement,

‖rF

k − rF

k‖2 = ‖T kT
−1

k e1 − TkT
−1
k e1‖2

= ‖[(T k − Tk) − T kT
−1

k (T k − Tk)]T
−1
k e1‖2

= ‖(Ek − T kT
−1

k Ek)T
−1
k e1‖2 = ‖(I − Pk)F̃kT

−1
k e1‖2

≤
k−1∑
j=0

‖(I − Pk )̃fj‖2 |e∗j+1T
−1
k e1|

≤ ‖I − Pk‖2‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj(‖rG

j ‖2 + ‖rF

k‖2),

where, in the last line, we have used Lemma 3.1. This proves the first statement.
For the proof for inexact GMRES, we define Qk as the orthogonal projection onto

span(Wk); then

Qk = Wk(W
∗
kWk)

−1W∗
k = Vk+1T kT

†
kV

∗
k+1.

We have that

‖rG

k − rG

k‖2 = ‖T kT
†
ke1 − TkT

†
ke1‖2

= ‖T kT
†
k(I − TkT

†
k)e1 − (I − T kT

†
k)TkT

†
ke1‖2

≤ ‖T kT
†
k(I − TkT

†
k)‖2 ‖(I − TkT

†
k)e1‖2 + ‖(I − T kT

†
k)Ek T

†
ke1‖2

≤ ‖(I − T kT
†
k)Ek T

†
k‖2 ‖rG

k‖2 + ‖(I − T kT
†
k)Ek T

†
ke1‖2

= ‖(I − Qk)F̃k T
†
k‖2 ‖rG

k‖2 + ‖(I − Qk)F̃k T
†
ke1‖2

≤ ‖F̃k‖2‖T †
k‖2 ‖rG

k‖2 +

k∑
j=0

‖̃fj‖2 |e∗j+1T
†
ke1|

≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj(‖rG

j ‖2 + ‖rG

k‖2).
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Fig. 7.1. Convergence inexact FOM with ηj = ε = 10−12: true residual (—), computed residual
(- ·), and 1/j! (dotted) as a function of j.

Here we used Lemma 3.1 and the identities (I − T kT
†
k)Tk = −(I − T kT

†
k)Ek and

‖T kT
†
k(I − TkT

†
k)‖2 = ‖(I − T kT

†
k)TkT

†
k‖2, which, for example, can be found in

[29].
This theorem shows that for special perturbations, the relaxation strategy also

preserves the convergence speed of the exact method until the norm of the residuals
becomes in the order of the required residual precision. Of course, this does not
explain the often good results with relaxed GMRES that is observed, for example, in
the experiments in [3]. However, this theorem is difficult to extend to more general
perturbations since the Hessenberg reduction is not forward stable; see [32]. This
means that small perturbations in the matrix-vector product can drastically change
the resulting Hessenberg matrix. We emphasize that this does not necessarily imply a
severe loss of convergence speed for general perturbations but only that the usefulness
of the analytical approach taken here is limited. Nevertheless, small perturbations of
the matrix-vector product can indeed delay convergence (but they seem not to have
a big impact on the stagnation level). We illustrate this by the following experiment
with inexact FOM. (Notice that the convergence of the computed residuals of inexact
FOM and GMRES are related; see (7.3).)

The matrix A ∈ R
100×100 is lower bidiagonal with diagonal elements (A)j,j = j

and has ones on its lower bidiagonal. For the right-hand side we have taken b = e1.
It easily follows for this example that Tn = A and the corresponding vector �γj with

�γ∗
j Tj = �0∗ and �γ∗

j e1 = 1 is given by γj = (−1)jj!. Therefore we have that ‖rF
j‖2 =

1/j!. Figure 7.1 shows the convergence history of inexact FOM with ηj = ε = 10−12.
Although, the accuracy requirement is achieved (as expected), for the inexact method
many more iterations are necessary to reach the required precision. An explanation is
offered by the fact that the right-hand side is mainly oriented in the direction of a few
eigenvectors of A and the errors in the matrix-vector product introduce components
in directions for which convergence is slow. We mention that convergence of GMRES
for this system for general right-hand sides is much slower than for the right-hand side
taken in this example. We must, however, emphasize that this example is academic
since also in finite precision computations the convergence can be much slower than
the exact expression for which the residuals suggests.
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Fig. 8.1. True residuals CG (solid), Orthores (- ·), Rutishauser’s variant (dots), ηj (dotted) as
a function of j. In both pictures ε = 10−8. Left: ηj = ε. Right: ηj = ε/ρj .

8. Numerical experiments. In this section we conduct an experiment with
inexact CG and its variants from section 6. For experiments with inexact GMRES
we refer the reader to [3]. All experiments are done in Matlab.

The linear system comes from the computation of quark propagators using Wil-
son fermions in QCD. The matrix DW is CONF6.0-0.00l4x4.2000 from the Matrix
Market. This matrix is complex valued and contains 3072 unknowns. The matrix has
the following property, e.g., [8], Γ5 DW = D∗

W Γ5 with Γ5 ≡ I ⊗ (γ5 ⊗ I3) and

γ5 ≡

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎦ .

The Hermitian matrix A is now given by A = Γ5 DW . This matrix is highly indefinite.
For the right-hand side we have taken a complex random vector of unit length. To
simulate an inexact matrix-vector product we have added in step j of CG, a random
complex vector. We have not taken into account the norm of A in our experiments.

Figure 8.1 shows the results for inexact CG, Orthores, and Rutishauser’s variant
when a residual precision of O(ε) is required with ε = 10−8. The left picture shows
the results for a constant precision (ηj = ε) and the right picture for the relaxation
strategy from Section 6.4 (ηj = ε/ρj).

For ηj = 10−8 we see that the three-term recurrence is superior to the coupled
two-term recurrence. This can be explained by our analysis and the large residuals
in the initial steps. This advantage remains if we apply the relaxation strategy from
section 6.4 (although we lose some additional digits compared to the constant precision
case).

9. Conclusions and outlook. In this paper we have investigated the effect of
approximately computed matrix-vector products on the convergence and accuracy of
various Krylov subspace methods. This analysis was used to derive suitable relaxation
strategies for these methods. Our results provide insights into the mechanisms behind
the successful results with the relaxation strategies of Bouras and Frayssé in [3] and
Bouras, Frayssé, and Giraud in [4]. Furthermore, it was shown that for the CG method
the three-term recurrence can offer advantages over the standard coupled two-term
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recurrence in case the matrix is indefinite and suffers from large intermediate residuals
or peaks in the convergence curve. This was illustrated in section 8.

For methods like Richardson iteration and Chebyshev iteration it is necessary
that the residuals are computed in an incremental matter in order for a relaxation
strategy to be possible. We illustrated, by the example of CG versus Orthores for
indefinite problems, that it is the underlying way the Krylov subspace is constructed
that is of importance. By comparing inexact FOM and inexact GMRES we saw
that the optimality properties of the residuals are not of influence on the attainable
accuracy in the end. Therefore, a relaxation strategy for GMRES should also work
for FOM, since the Krylov subspace is constructed in the same matter, i.e., using
inexact Arnoldi.

Studying the convergence of the inexact methods is a more difficult problem.
Stationary methods construct residual polynomials that are small everywhere on a
predefined interval. For these types of methods we could prove that, with our relax-
ation strategies, convergence is as fast for the exact method. For GMRES and CG
this is a much more difficult problem. For the GMRES method we have given some
results in case the perturbations are of a special form. In future work we plan to fur-
ther study the effect of inexact matrix-vector products on optimal Krylov subspace
methods. And, in particular, the effect of increasing the error during the process.

As a side product of our work, we have shown that using the matrix formulations
of the Krylov subspace methods in some cases can simplify the analysis of the residual
gap, which is a problem that frequently occurs in analyses of the attainable accuracy
of subspace methods. In particular, for three-term recurrences insightful expressions
can be easily obtained for the likes of Chebyshev method and Orthores.

In future work we want to apply the observations in this paper to the simulation
of overlap fermions (as mentioned in the beginning of section 3) and combine this
with the work in [30] for the computation of the matrix sign function acting on a
vector. Furthermore, we plan to extend the analysis in this paper to a rounding error
analysis for the different variants of CG for indefinite Hermitian systems (and the
BiCG method) in order to understand the effect of the different types of breakdown
on the residual gap.

Postscript. After the submission of this paper, the presentation in [25] of Si-
moncini and Szyld resulted in the paper [26]. We discuss some differences with this
work. The analysis in the presentation [25] mainly focused on the inexact GMRES
and inexact FOM method and is based on showing that the true residuals satisfy a
quasi-orthogonality condition of the form ‖U∗

k(b − Axk)‖ ≤ O(ε) for some matrix
Uk. It is interesting to notice that the quasi-orthogonality is equal to a projection
of the residual gap. Therefore, in their presentation, the authors in the end pre-
sented a result similar to our Lemma 3.1 to bound this quasi-orthogonality. Paper
[26] considers a large number of practical applications. Moreover, the approach taken
in the analysis is very different. In this paper, we are interested in the convergence
and stagnation level of the true residuals which are indicators for the quality of the
iterates. The basis of our analysis is the splitting into a study of the residual gap,
which is connected to the stagnation level, and the convergence and stagnation of
the computed residuals. In [26], the authors consider two aspects of inexact Krylov
subspace methods: the already mentioned quasi-orthogonality of the true residuals
and the variational properties of inexact GMRES and inexact FOM method. (This is
equivalent to the observation in Section 7 that the computed residuals in inexact GM-
RES and FOM are residuals of an exact GMRES/FOM process applied to a “nearby”
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matrix.) There seems to be no discussion in [26] about the direct consequence of
quasi-orthogonality and the conserved variational properties of the Krylov subspace
method on the stagnation level and convergence speed of the inexact method.

Acknowledgments. The authors are thankful to Valeria Simoncini for providing
them with a copy of the slides from [25]. We are thankful to the referees for their
constructive comments. Their remarks have helped us to improve the presentation of
this paper.

Appendix A. A technical result.
Lemma A.1. Let ∆k be the k by k matrix with zeros entries everywhere except at

the positions (j− 1, j) and (j, j− 1), where it has the value one and the (2, 1) element
is 2. Then

|e∗j∆2i
k ej | ≤ 2

(2i)!

(i!)2
for all i, j ≥ 1, j ≤ k.

Proof. Let R
N and R

Z be the space of vectors with indices in N and Z, respectively.
Consider the map ∆̃ on R

Z given by ∆̃ej ≡ ej−1 +ej+1 for all j ∈ Z. Extend the map
∆k on R

k to the map ∆ on R
N given by ∆ej ≡ ej−1 + ej+1 for j > 1 and ∆e1 ≡ 2e2.

Note that 0 ≤ e∗i ∆kej ≤ e∗i ∆ej for all i, j ∈ N: here we follow the convention that
∆kej = 0 if j > k. Consider the linear map P : R

Z → R
N defined by Pej+1 = e|j|+1.

One can easily check that P∆̃ej = ∆Pej for all j ∈ Z. Therefore, P∆̃ = ∆P, and
for j ≥ 0, we have that

∆2iej+1 = ∆2iPej+1 = P(∆̃2iej+1) = P

(
2i∑
�=0

(2i)!

�!(2i− �)!
ej−2i+2�+1

)
.

If i < j then |j − 2i + 2�| + 1 = j + 1 only if � = i. Hence, if i < j we find that
e∗j+1∆

2i
k ej+1 ≤ e∗j+1∆

2iej+1 = 2i!
(i!)2 . If � ≡ i− j ≥ 0 then |j − 2i+ 2�|+ 1 = j + 1 and

e∗j+1∆
2i
k ej+1 ≤ e∗j+1∆

2iej+1 = 2i!
(i!)2 + 2i!

(i−j)!(i+j)! ≤ 2 2i!
(i!)2 .
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Abstract. Perturbation bounds for the Jacobi inverse eigenvalue problem (JIEP), which are
more realistic than the earlier ones, are proved and illustrated by numerical experiments. The
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1. Introduction. Hochstadt [15] stated the following problem, called the Jacobi
inverse eigenvalue problem (JIEP): given n ≥ 1 and real numbers λ1 < µ1 < λ2

< · · · < µn−1 < λn, find a Jacobi matrix

J =

⎛⎜⎜⎜⎜⎜⎜⎝

α1 β1

β1
. . .

. . .

. . .
. . .

. . .

βn−2 αn−2 βn−1

βn−1 αn

⎞⎟⎟⎟⎟⎟⎟⎠ , αk, βk ∈ R, βk > 0,(1.1)

such that λk are the eigenvalues of J and µk are the eigenvalues of its principal lower
(n − 1) × (n − 1) submatrix. This problem, including its practical importance, is
discussed in [5, sect. 4].

The related stability problem (to estimate the perturbation of J in terms of the
spectrum’s perturbation) was considered in [13, 22], where perturbation estimates
with respectively nonconstructive1 and constructive coefficients were proved. Though
the result of [22] is undoubtedly of principal importance, its coefficient may be huge
(probably because of straightforward work with the power basis of a Krylov subspace).

In this paper we shall try to give perturbation bounds that are not too far from
reality. The technique of orthogonal polynomials and integral representation of Han-
kel determinants2 will be exploited. We shall first consider a similar problem [9] in
terms of the associated Gaussian quadrature formula [12] and the underlying Lanczos
process [19, Chap. 13]; the fact that this intermediate problem is well conditioned was
conjectured in [10, sect. 3.1]. Then we shall reduce investigation of perturbation of µi

to that of weights of the quadrature formula. The results of numerical experiments
will be shown.

∗Received by the editors June 24, 2002; accepted for publication (in revised form) by I. S. Dhillon
November 4, 2003; published electronically August 27, 2004.

http://www.siam.org/journals/simax/26-1/41009.html
†Central Geophysical Expedition, Narodnogo Opolcheniya Street, House 38, Building 3, Moscow

123298, Russia (mmd@cge.ru).
1This means that only the existence theorem was proved.
2Earlier Hankel determinants were used in an algorithm of computing singular values [21]; Hankel

matrices played an important role in the analysis of reduction to tridiagonal form [18].
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Finally, we shall briefly present analogous results for the unitary Hessenberg in-
verse eigenvalue problem (UHIEP).

2. Preliminaries. We shall use the following notation: µ is a positive measure
on R, Qk (k ∈ N) are the corresponding orthonormal polynomials, sk =

∫
xk dµ(x)

are its moments, αk and βk are the coefficients of the Lanczos recurrence

xQk(x) = βk+1Qk+1(x) + αk+1Qk(x) + βkQk−1(x) (k ∈ N),(2.1)

Q−1 ≡ 0, Q0 = 1/
√
s0

(Qk can be considered as the Lanczos vectors of the Lanczos process in L2,µ with the
initial vector 1 (a constant function) and the operator of multiplication by x),

Hk =

∣∣∣∣∣∣∣∣∣
s0 s1 . . . sk−1

s1 s2 . . . sk
...

... · · ·
...

sk−1 sk . . . s2k−2

∣∣∣∣∣∣∣∣∣ > 0 and Gk =

∣∣∣∣∣∣∣∣∣
s1 s2 . . . sk
s2 s3 . . . sk+1

...
... · · ·

...
sk sk+1 . . . s2k−1

∣∣∣∣∣∣∣∣∣(2.2)

are Hankel determinants.
The formulae

Qk(x) =
1√

HkHk+1

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sk
s1 s2 . . . sk+1

...
... . . .

...
sk−1 sk . . . s2k−1

1 x1 . . . xk

∣∣∣∣∣∣∣∣∣∣∣
,(2.3)

Hk =
1

k!

∫
· · ·
∫ ∏

1≤i<j≤k

(tj − ti)
2 dµ(t1) . . . dµ(tk),(2.4)

and

leading coefficient of Qk =

√
Hk

Hk+1
=

1
√
s0 β1 · · ·βk

(2.5)

(see [17, Chap. 2, sect. 5] or [20, Chap. 2]) will be used.
We shall assume from now on that the measure µ has a finite set of increase points

λi (spectrum), λ1 < · · · < λn, with weights ωi = µ(λi) > 0. Note that the Lanczos
coefficients αk and βk are the same as in (1.1), provided the weights are related to µi

by the formula

ωi =

n−1∏
j=1

(λi − µj)
/ ∏

1≤j≤n, j �=i

(λi − λj).(2.6)

In this (discrete) situation the polynomials Qk are defined for 0 ≤ k ≤ n − 1, the
quantities Hk and Gk are defined for 0 ≤ k ≤ n and βn = 0.

Let

d = min
1≤i,j≤n, i �=j

|λi − λj | > 0 and d2 = min
1≤i≤n, 1≤j≤n−1

|λi − µj | > 0

be the separations.
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In the case λ1 > 0 we shall also consider the Stieltjes continued fraction repre-
sentation of the impedance function (useful in cutting computational domains when
numerically solving differential equations; see, e.g., [6])

n∑
i=1

ωi

x + λi
=

1

ĥ1x +
1

h1 +
1

ĥ2x + . . .
1

hn−1 +
1

ĥnx +
1

hn

.(2.7)

According to a theorem by Stieltjes [8, Chap. 16, Thm. 15], the fraction (2.7) has real

positive parameters hk and ĥk. They are determined by the formulae [16, (13.17)]

hk =
H2

k

Gk−1Gk
, ĥk =

G2
k−1

Hk−1Hk
.(2.8)

The symbol RP denotes relative perturbation: RP a = |ã/a− 1|, where ã is a
perturbed value of a quantity a �= 0. Analogously, the symbol AP denotes absolute
perturbation: AP a = |ã− a|.

3. Auxiliary assertions. To shorten further formulae, we introduce the family
of functions3

m

D (δ) =
δ

1 −mδ
, 0 ≤ δ <

1

m
, m ≥ 1, D =

1

D .(3.1)

These monotonically increasing functions possess the following simple properties:

m

D (δ) = δ + O(δ2) as δ → +0;

D
[m
D (δ)

]
=

m+1

D (δ), 0 ≤ δ <
1

m + 1
;

m

D (δ) ≤
m+1

D (δ), 0 ≤ δ <
1

m + 1
;

m

D (δ1)+
m

D (δ2) ≤
m

D (δ1 + δ2), δ1 ≥ 0, δ2 ≥ 0, δ1 + δ2 ≤ 1

m
.

Lemma 3.1. Let k ∈ N and εi (1 ≤ i ≤ k) be real numbers such that

k∑
i=1

|εi| < 1.(3.2)

Then ∣∣∣∣∣
k∏

i=1

(1 + εi) − 1

∣∣∣∣∣ ≤ D
(

k∑
i=1

|εi|
)
.(3.3)

3This is a referee’s suggestion; it will enable us to avoid taking care of O(δ2) terms (cf. [14]).
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Proof. We shall use the inequalities

x

1 + x
≤ log(1 + x) ≤ x (x > −1),

1 + x ≤ exp(x) ≤ 1

1 − x
(x < 1)

[1, items 4.1.33, 4.2.30–31]. We obtain with the use of (3.2)

k∏
i=1

(1 + εi) − 1 = exp

[
k∑

i=1

log(1 + εi)

]
− 1 ≤ exp

(
k∑

i=1

εi

)
− 1(3.4)

≤ 1

1 −
∑k

i=1 εi
− 1 =

∑k
i=1 εi

1 −
∑k

i=1 εi
≤

∑k
i=1 |εi|

1 −
∑k

i=1 |εi|

and

k∏
i=1

(1 + εi) − 1 = exp

[
k∑

i=1

log(1 + εi)

]
− 1 ≥ exp

(
k∑

i=1

εi
1 + εi

)
− 1(3.5)

≥
k∑

i=1

εi
1 + εi

≥ −
k∑

i=1

|εi|
1 − |εi|

≥ −
∑k

i=1 |εi|
1 −

∑k
i=1 |εi|

.

The inequalities (3.4) and (3.5) imply (3.3).
Lemma 3.1 will help us to estimate relative perturbations, because its assertion

(3.3) can be reformulated as

RP
k∏

i=1

ai ≤ D
(

k∑
i=1

RP ai

)
.(3.6)

Note that if RP a ≤ D(δ1) and RP b ≤ D(δ2), then

RP(ab) ≤ D[D(δ1) + D(δ2)] ≤
2

D (δ1 + δ2)(3.7)

and

RP
1

a
=

∣∣∣∣ 1
ea − 1

a
1
a

∣∣∣∣ =

∣∣∣∣∣ ea−a
a

ea−a
a + 1

∣∣∣∣∣ ≤ RP a

1 − RP a
= D(RP a) =

2

D (δ1).(3.8)

The next two lemmas evaluate perturbation of Hankel determinants (2.2).
Lemma 3.2. Let max1≤i≤n APλi ≤ ε and ωi remain unchanged. Then we have4

RPHk ≤ D
(

4εk log k

d

)
.(3.9)

Proof. Due to the discreteness of µ we can rewrite formula (2.4) as

Hk =
∑

t1<···<tk, t1,...,tk∈{λ1,...,λn}

∏
1≤i<j≤k

(tj − ti)
2

k∏
i=1

µ(ti).

4Provided the value of D is well defined according to (3.1).
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We now estimate RP
∏

1≤i<j≤k(tj − ti) for a k-tuple (t1, . . . , tk). Noting that for k−1
index pairs (i, j) tj−ti ≥ d, for k−2 other index pairs tj−ti ≥ 2d, . . . , for 1 remaining
index pair tj − ti ≥ (k − 1)d, we derive

∑
1≤i<j≤k

RP(tj − ti) ≤
2ε

d

k−1∑
i=1

k − i

i
=

2ε

d

[
k

k−1∑
i=1

1

i
− (k − 1)

]
≤ 2εk log k

d
,(3.10)

which gives (3.9) by virtue of (3.6).
Estimate (3.9) and further similar estimates are valid when the quantities under

the
m

D symbols obey the inequality in (3.1).
Lemma 3.3. Suppose that λ1 > 0. Let max1≤i≤n APλi ≤ ε and ωi remain

unchanged. Then the estimate

RPGk ≤ D
(

4εk log k

d
+

εk

λ1

)
(3.11)

holds.
Proof. Because of the positivity of the spectrum we can define a positive measure

ν by the formula dν(λ) = λ dµ(λ). Note that Gk are the analogues of the quantities
Hk for the measure ν. The measure ν has the same spectrum as µ, but each weight
ωi is changed to λiωi, so we have

Gk =
∑

t1<···<tk, t1,...,tk∈{λ1,...,λn}

∏
1≤i<j≤k

(tj − ti)
2

k∏
i=1

(tiωi).

Recalling (3.10) and additionally noting that

k∑
i=1

RP ti ≤
k∑

i=1

ε

λi
≤ εk

λ1
,

we obtain (3.11).

4. Influence of nodes’ perturbation.
Theorem 4.1. Under the condition of Lemma 3.2 the bound

RPβk ≤ 1

2

3

D
[
16εk log(k + 1)

d

]
(4.1)

takes place.
Proof. It follows from formula (2.5) by induction that

βk =

√
Hk−1Hk+1

Hk
(4.2)

(see [11]). Formulae (3.9) and (4.2) in view of (3.6)–(3.8) imply

RPβ2
k ≤ D

(
RPHk−1 + RPHk+1 + 2RPH−1

k

)
≤ D

{
D
[
4ε(k − 1) log(k − 1)

d

]
+ D

[
4ε(k + 1) log(k + 1)

d

]
+ 2

2

D
(

4εk log k

d

)}
≤ D

{
2

D
[
8εk log(k + 1)

d

]
+ 2

2

D
(

4εk log k

d

)}
≤

3

D
[
16εk log(k + 1)

d

]
.
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Theorem 4.2. Under the condition of Lemma 3.3 the bound

RPαk ≤
3

D
(

16εk log k

d
+

2εk

λ1

)
(4.3)

is valid.
Proof. Substituting x = 0 into the determinant formula (2.3) and decomposing

the determinant in the last row, we obtain

Qk(0) =
(−1)kGk√
HkHk+1

.

Now from the partial case of the recurrence (2.1) at x = 0 and from (4.2) derive

αk = −βk−1Qk−2(0) + βkQk(0)

Qk−1(0)
(4.4)

=

(√
Hk−2Hk

Hk−1
· Gk−2√

Hk−2Hk−1

+

√
Hk−1Hk+1

Hk
· Gk√

HkHk+1

) √
Hk−1Hk

Gk−1

=
HkGk−2

Hk−1Gk−1
+

Hk−1Gk

HkGk−1
.

(Recall that βn = 0, so some terms disappear when k = n.) Formulae (3.9) and (3.11)
by virtue of (3.6)–(3.8) give the bound

RP
HkGk−2

Hk−1Gk−1
≤ D

(
RPHk + RPGk−2 + RPH−1

k−1 + RPG−1
k−1

)
≤ D

[
D
(

4εk log k

d

)
+ D

(
4εk log k

d
+

εk

λ1

)
+

2

D
(

4εk log k

d

)
+

2

D
(

4εk log k

d
+

εk

λ1

)]
≤

3

D
(

16εk log k

d
+

2εk

λ1

)
and the analogous bound for Hk−1Gk

HkGk−1
that follow (4.3).

Remark 1. In the case of λ1 ≤ 0 an additive shift can enable one to obtain
estimates for APαk. Indeed, put s = d− λ1 > 0. Applying Theorem 4.2 to the exact
eigenvalues λi + s and perturbed eigenvalues λ̃i + s (and taking into account that the
new αk, α̃k equal αk + s, α̃k + s, respectively, and that the new λ1 equals d), we
deduce

|α̃k − αk|
αk − λ1 + d

≤
3

D
[
εk(16 log k + 2)

d

]
,

whence

|α̃k − αk| ≤
3

D
[
εk(16 log k + 2)

d

]
(αk − λ1 + d)

≤
3

D
[
εk(16 log k + 2)

d

]
(λn − λ1 + d).
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Theorem 4.3. Under the condition of Lemma 3.3 for the parameters of continued
fraction (2.7) the estimates

RPhk and RP ĥk ≤
3

D
(

16εk log k

d
+

2εk

λ1

)
take place.

Proof. We use representations (2.8) and estimates (3.9) and (3.11).

5. Numerical experiments. Numerical experiments were carried out on a PC
in double precision. The Lanczos algorithm with full reorthogonalization5 was imple-
mented to solve the inverse spectral problem, as recommended in [5, sect. 4.5]. The
perturbations of the eigenvalues were chosen in the ε-vicinities of the exact eigen-
values with ε = 10−10 for Examples 1 and 2 and ε = 10−5 for Example 3 in order to
generate maximal possible errors, allowing for the weights to remain the same.

It is known [9, sect. 3.1] that the recurrence coefficients are less sensitive to the
weights’ perturbation than that of the nodes, so in our numerical tests we perturbed
only the latter.

Two of the examples were taken (up to an additive shift) from [9, sect. 4].

Example 1 (see Figure 1). Equidistant spectrum with equal weights: n = 100,
λi = i/n, ωi = 1/n.

Example 2 (see Figure 2). Truncated Charlier spectrum: n = 40, λi = i,
ωi = e−1/(i− 1)!.

Example 3 (see Figure 3). Truncated Sturm–Liouville-like spectrum: n = 100,
λi = [π(i− 0.5)]2, ωi = 2.

The curves drawn confirm the validity of the estimates.

We mention for comparison that the estimate of work [22] can be simplified for
the case of frozen weights6 and written as

∥∥∥J̃ − J
∥∥∥
F
≤ L

[
n∑

i=1

(
λ̃i − λi

)2
]1/2

,

where the index F denotes the Frobenius norm, and that the coefficient L for the
matrices of Examples 1–3 equals approximately 7.3 · 1093, 4.7 · 10101, and 6.7 · 10498,
respectively.

Remark 2. These and other numerical experiments have shown that partial can-
cellation of relative errors may take part in (4.2) and similar formulae; in these cases
the actual errors are less than those predicted by our theorems.

6. Influence of perturbation of weights. Since this is not a critical point, we
shall keep the style (i.e., still use the Hankel determinants) rather than try to obtain
the best possible estimates.

Theorem 6.1. If max1≤i≤n RPωi ≤ ε while λi are frozen, then

RPβk ≤ 1

2

3

D (4kε),(6.1)

5Fast computation was not an aim of ours, we just wanted to reliably obtain tables for drawing
curves. There exist other computational methods, e.g., [7].

6The term ‖q − q̃‖2 vanishes in [22, formulae (3.20) and (3.23)].
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Fig. 1. Equidistant spectrum with equal weights.

and if λ1 > 0, also

RPαk ≤
3

D (4kε).(6.2)

Proof. In the style of Lemmas 3.2 and 3.3 one can instantly show that RPHk ≤
D(kε) and (when λ1 > 0) RPGk ≤ D(kε). In view of (4.2) and (4.4) this gives (6.1)
and (6.2).

7. A general perturbation scheme. The following assertion almost directly
follows from formula (2.6).

Proposition 7.1. If max1≤i≤n−1 APµi ≤ ε and λj remain unchanged, then

max
1≤i≤n

RPωi ≤ D
[
2ε

d2
+

2ε(log n + 1)

d

]
.(7.1)
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Fig. 2. Truncated Charlier spectrum.

If max1≤i≤n APλi ≤ ε and µj remain unchanged, then

max
1≤i≤n

RPωi ≤
3

D
[
2ε

d2
+

6ε(log n + 1)

d

]
.(7.2)

Proof. In the first case we note that

n−1∑
j=1

RP(λi − µj) ≤
2ε

d2
+

2ε

d

n−2∑
l=1

1

l
≤ 2ε

d2
+

2ε(log n + 1)

d
.

In the second case again

n−1∑
j=1

RP(λi − µj) ≤
2ε

d2
+

2ε(log n + 1)

d
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Fig. 3. Truncated Sturm–Liouville-like spectrum.

and ∑
1≤j≤n, j �=i

RP(λi − λj) ≤
4ε

d

n−2∑
l=1

1

l
≤ 4ε(log n + 1)

d
.

Any small simultaneous perturbation of λi and µj can be presented as a com-
position of special perturbations, which have already been studied. Denote by Λ,
M, and Ω the sequences (λ1, . . . , λn), (µ1, . . . , µn−1) and (ω1, . . . , ωn), respectively.

Imagine that we wish to move from Λ(0), M(0), and the corresponding Ω(0) to per-
turbed tuples Λ̃, M̃, and Ω̃, also connected by (2.6). Suppose max1≤i≤n APλi ≤ ε
and max1≤j≤n−1 APµj ≤ ε.

1. Move from M = M(0) to M = M̃, keeping Λ = Λ(0).7 By means of (2.6)

7We may assume that the perturbed quantities µ̃j interlace not only the λ̃i, but also the λi:
otherwise ε ≥ d2 and the estimates (7.3) are trivial.
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calculate the weight tuple Ω = Ω(1), corresponding to Λ = Λ(0) and M = M̃. Apply
estimates (7.1) and (6.1)–(6.2) to analyze the effect of this perturbation on J :

max
1≤i≤n

∣∣∣∣∣ω(1)
i

ω
(0)
i

− 1

∣∣∣∣∣ = O

(
ε log n

d2

)
and

βk

(
Λ(0),Ω(1)

)
βk

(
Λ(0),Ω(0)

) − 1 = O

(
εk log n

d2

)
,

αk

(
Λ(0),Ω(1)

)
αk

(
Λ(0),Ω(0)

) − 1 = O

(
εk log n

d2

)
,

(7.3)

the dependence on nodes and weights being explicitly indicated and the estimates for
αk being valid provided λ1 > 0.

2. Compute Ω = Ω̃ corresponding to Λ = Λ̃ and M = M̃. Bound the deviation
of Ω̃ from Ω(1) with the use of (7.2):

max
1≤i≤n

∣∣∣∣∣ ω̃i

ω
(1)
i

− 1

∣∣∣∣∣ = O

(
ε log n

d2

)
.

3. Jump from Ω = Ω(1) to Ω = Ω̃, holding Λ = Λ(0). Exploit (6.1)–(6.2) to
analyze the influence on J :

βk(Λ
(0), Ω̃)

βk

(
Λ(0),Ω(1)

) − 1 = O

(
εk log n

d2

)
,

αk(Λ
(0), Ω̃)

αk

(
Λ(0),Ω(1)

) − 1 = O

(
εk log n

d2

)
.(7.4)

4. Move from Λ = Λ(0) to Λ = Λ̃, freezing Ω = Ω̃. Apply estimates (4.1) and
(4.3) to analyze the effect of this perturbation on J :

βk(Λ̃, Ω̃)

βk(Λ(0), Ω̃)
− 1 = O

(
εk log k

d

)
,

αk(Λ̃, Ω̃)

αk(Λ(0), Ω̃)
− 1 = O

(
εk log k

d
+

εk

λ1

)
.(7.5)

Combining the bounds (7.3)–(7.5), obtained at points 1, 3, and 4, we can estimate

the total effect of the jump (Λ(0),M(0)) −→ (Λ̃, M̃):

RPβk = O

(
εk log n

d2

)
, RPαk = O

(
εk log n

d2
+

εk

λ1

)
.

We could write out concrete bounds with the use of
m

D, but we do not want to over-
complicate the formulae.

8. Unitary Hessenberg inverse eigenvalue problem. Any n×n upper Hes-
senberg unitary matrix with positive subdiagonal components is known to be uniquely
presented as a product of Givens rotations/reflections

H(γ1, . . . , γn) =

n−1∏
k=1

⎛⎜⎜⎝
Ik−1

−γk σk

σk γ̄k
In−k−1

⎞⎟⎟⎠ · diag(In−1,−γn)

with

γk ∈ C, |γk| < 1 (k = 1, . . . , n− 1), |γn| = 1, σk =
√

1 − |γk|2.(8.1)
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The problem of constructing H(γ1, . . . , γn) from spectral data, including indication
of applications, is discussed in [5, sect. 8].

The following uniqueness theorem for UHIEP was established in [2, 3].
Theorem 8.1. Given two sets {λ1, . . . , λn} and {µ1, . . . , µn} of strictly interlaced

points on the unit circumference T , there exist a unique set of parameters γk obeying
(8.1) and a unique α on T such that the spectrum of H(γ1, . . . , γn) is {λ1, . . . , λn}
and the spectrum of H(αγ1, . . . , αγn) is {µ1, . . . , µn}.

We shall investigate the corresponding stability problem, using the same technique
as for JIEP. The formula [2, Proposition 4.2]

α =

n∏
i=1

µi

λi

makes the analysis of perturbation of α trivial, so we shall concentrate on the param-
eters γk.

Note that α �= 1. Define a discrete positive measure τ on T with the nodes λi

and the corresponding weights [2, the proof of Proposition 4.3]

ωi =
1

|1 − α| |λi|
·

∏n
j=1 |λi − µj |∏

1≤j≤n, j �=i |λi − λj |
.(8.2)

The measure τ induces the system φk (0 ≤ k ≤ n− 1) of polynomials (Szegö polyno-
mials) orthonormal on T and having positive leading coefficients (see [20, Chap. 11]
and [17, Chap. 3]).

Introduce the moments ck =
∫
T
z−n dτ(z) and the determinants

Dk =

∣∣∣∣∣∣∣∣∣
c0 c−1 . . . c−k+1

c1 c0 . . . c−k+2

...
... · · ·

...
ck−1 ck−2 · · · c0

∣∣∣∣∣∣∣∣∣ > 0, Ek =

∣∣∣∣∣∣∣∣∣
c−1 c−2 . . . c−k

c0 c−1 . . . c−k+1

...
... · · ·

...
ck−2 ck−3 · · · c−1

∣∣∣∣∣∣∣∣∣ ∈ C,

k = 0, . . . , n.(8.3)

The determinant representation

φk(z) = (DkDk+1)
−1/2

∣∣∣∣∣∣∣∣∣∣∣

c0 c−1 . . . c−k

c1 c0 . . . c−k+1

...
... . . .

...
ck−1 ck−2 . . . c−1

1 z . . . zk

∣∣∣∣∣∣∣∣∣∣∣
follows

φk(0) =
(−1)kEk√
DkDk+1

(8.4)

and

κk ≡ leading coefficient of φk =

√
Dk

Dk+1
.(8.5)
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One has integral expressions

Dk =
1

k!

∫
T

· · ·
∫
T

∏
1≤i<j≤k

|tj − ti|2 dτ(t1) . . . dτ(tk),(8.6)

Ek =
1

k!

∫
T

· · ·
∫
T

∏
1≤i<j≤k

|tj − ti|2
k∏

i=1

ti · dτ(t1) . . . dτ(tk),(8.7)

the former of which is provided by [20, sect. 11.1, reference to formula (2.2.11)], the
latter following from the former with the use of analytical continuation by weights
(ωi �→ λiωi).

Lemma 8.2. The Schur parameters γk possess the determinant representation

γk =
(−1)kEk

Dk
, k = 1, . . . , n.(8.8)

Proof. Formula [3, (2)] can be written as

φk(z)

κk
= z

φk−1(z)

κk−1
+ γk

φ∗
k−1(z)

κk−1
, k = 1, . . . , n,(8.9)

φn(z)

κn
≡

n∏
i=1

(z − λi),

where φ∗
k−1(z) = zk−1φk−1(1/z). Comparing (8.9) and formula [17, Chap. 3, sect. 1,

(1.7)]

φk(z)

κk
= z

φk−1(z)

κk−1
+

φk(0)

κk
·
φ∗
k−1(z)

κk−1
, k = 1, . . . , n− 1,

and taking into account (8.4) and (8.5), we obtain

γk =
φk(0)

κk
=

(−1)kEk

Dk
.(8.10)

In the case k = n we have

(−1)nEn

Dn
= (−1)n

n∏
i=1

λi = γn
φ∗
n−1(0)

κn−1
= γn.

Define the absolute separations

d = min
1≤i,j≤n, i �=j

|λi − λj | > 0, d2 = min
1≤i,j≤n

|λi − µj | > 0.(8.11)

Theorem 8.3. Let λi be perturbed such that APλi ≤ ε, and let the weights ωi

remain unchanged. Then

AP γk = O

(
k2ε

d

)
.(8.12)
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Proof. The use of (8.7) and (8.6) gives

APEk = AP
1

k!

∑
(t1,...,tk), {t1,...,tk}⊆{λ1,...,λn}

∏
1≤i<j≤k

|ti − tj |2
k∏

i=1

[τ(ti)ti]

≤ 1

k!

∑
(t1,...,tk), {t1,...,tk}⊆{λ1,...,λn}

AP
∏

1≤i<j≤k

|ti − tj |2
k∏

i=1

[τ(ti)ti]

≤ O

(
k2ε

d
+ kε

)
1

k!

∑
(t1,...,tk), {t1,...,tk}⊆{λ1,...,λn}

∏
1≤i<j≤k

|ti − tj |2
k∏

i=1

τ(ti)

= O

(
k2ε

d

)
Dk.

Analogously,

RPDk = O

(
k2ε

d

)
.

Recalling (8.1) and (8.8), we finally derive

AP γk =

∣∣∣∣∣ Ẽk

D̃k

− Ek

Dk

∣∣∣∣∣ ≤ |Ẽk − Ek|
D̃k

+ |Ek| |D̃−1
k −D−1

k |

≤ |Ẽk − Ek|
Dk

· Dk

D̃k

+

∣∣∣∣1 − Dk

D̃k

∣∣∣∣ = O

(
k2ε

d

)
.

Similar reasoning leads to the following theorem.
Theorem 8.4. Let ωi be perturbed such that RPωi ≤ ε, and let us freeze the

nodes λi. Then

AP γk = O(kε).(8.13)

Remark 3. The quantities γk are invariant with respect to a proportional change
of weights ωi, because the numerator Ek and denominator Dk in (8.8) are both ho-
mogeneous of degree k in a common multiple due to (8.3).

Proposition 8.5. If max1≤i≤n APλi ≤ ε and µi are frozen, then

max
1≤i≤n

RP |1 − α|ωi = O

(
nε

d
+

nε

d2

)
.(8.14)

If max1≤i≤n APµi ≤ ε and λi are frozen, then

max
1≤i≤n

RP |1 − α|ωi = O

(
nε

d2

)
.(8.15)

Proof. Both assertions are straightforward consequences of (8.2) and (8.11).
An arbitrary small simultaneous perturbation of λi and µj can be analyzed analo-

gously to what was done in section 7. Formulae (8.14), (8.15), and Remark 3, applied
to the multiple |1−α|, reduce estimating the result of a general eigenvalue perturba-
tion to (8.12) and (8.13).
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Note that we could estimate a relative perturbation of the so-called complimentary
Schur parameters σk (1 ≤ k ≤ n− 1) (see (8.1)) owing to the representation

σk =

√
1 −

(
|φk(0)|
κk

)2

=

√
1 −

κ2
k − κ2

k−1

κ2
k

=
κk−1

κk
=

√
Dk−1Dk+1

Dk

(cf. (4.2); the formulae (8.10), [20, (11.3.6)], and (8.5) have been utilized).
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Abstract. This paper investigates both the convexity and elasticity of the growth rate of
size-classsified population models. For an irreducible population projection matrix, we discuss the
convexity properties of its Perron eigenvalue under perturbation of the vital rates, extending work
of Kirkland and Neumann on Leslie matrices. We also provide nonnegative attainable lower bounds
on the derivatives of the elasticity of the Perron eigenvalue under perturbation of the vital rates,
sharpening, in the context of population projection matrices, the main result of Kirkland, Neumann,
Ormes, and Xu.
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ticity, convexity
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1. Introduction. In this paper we deal with a discrete time population model
originally due to Lefkovitch [13]. The model is commonly known as the size-classified
model for population growth. (In describing this model, we follow the notation and
terminology used in Caswell [5, sect. 4.2].) We consider a population of organisms
classified into n groups. In one time unit, for each i = 2, . . . , n, a member of the
population in group i stays in group i with probability Pi, and for each i = 1, . . . , n−1,
an individual in group i moves to group i + 1 with probability Gi. Further, it is
assumed that all members of the population are born into group 1, and that the
fecundity rate for an individual in group i is Fi, i = 1, . . . , n.1 Taken together, the
quantities F1, . . . , Fn, G1, . . . , Gn−1 and P2, . . . , Pn are referred to as the vital rates.

Letting x(t) be the n-vector whose ith entry is the number of individuals in group
i at time t, i = 1, . . . , n, and assuming that the vital rates are independent of t, we
arrive at the following fundamental relation:

x(t + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 . . . . . . . . . Fn

G1 P2 0 . . . . . . 0

0 G2 P3

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
. 0

0 . . . . . . 0 Gn−1 Pn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x(t) := Ax(t).(1.1)
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1Strictly speaking, F1 is not simply a fecundity rate but rather represents the contribution of
individuals in group 1 at time t to the number of individuals in group 1 at time t + 1. Thus F1

combines the fecundity rate of those in group 1 with the probability of remaining in group 1 after
one time unit.
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The matrix A is known as the projection matrix for the population model. In the
special case that Pi = 0, i = 2, . . . , n, we have the much-studied Leslie model, where
the ith group consists of the individuals whose ages are between i − 1 and i time
units, i = 1, . . . , n, and where the maximum possible age is n time units. We remark
that while the Leslie model has received much attention in modeling human popula-
tions (see [16] for example), the size-classsified model arises more naturally for other
populations (see [5, p. 58], for example).

From (1.1), it follows that x(t) = Atx(0), so that the structure of the powers of
A governs the growth of the population. In particular if A is primitive, that is, some
power has all positive entries, then Perron–Frobenius theory applies.2 Consequently,
there is a positive number λ which is the eigenvalue of A having largest modulus, and
corresponding right and left eigenvectors v and zT , respectively, both of which have
all positive entries; λ is known as the Perron eigenvalue for A while v and zT are right
and left Perron eigenvectors, respectively. It follows that if v is normalized so that
1T v = 1 (where 1 denotes the all ones vector), then as t → ∞, x(t) is asymptotic to a
scalar multiple of λT v. Thus the eigenvalue λ can be interpreted as the (asymptotic)
growth rate of the population, while the vector v can be thought of as the stable
population structure. The latter term arises because Av = λv, so that ratios of entries
in v are unchanged under projection by A.

In this paper we shall be interested in the behavior of the growth rate λ as a single
vital rate in A is perturbed. There are two natural ways by which we can measure
the effect on the growth rate of a perturbation in the vital rates, namely sensitivity
analysis and elasticity analysis.

Sensitivity analysis in population models consists mostly of considering the deriva-
tives of the growth rate with respect to the vital rates (see [6], for example). Specifi-
cally, suppose that we have an n × n irreducible nonnegative matrix M with Perron
eigenvalue λ1. Let v and zT be right and left Perron eigenvectors for M , respectively,
normalized so that zT v = 1. Then it follows from standard results (see Wilkinson [19]
or Stewart [18], for example) that

∂λ1

∂mi,j
= vjzi, i, j = 1, . . . , n.(1.2)

In particular, since both v and zT are positive vectors, ∂λ1

∂mi,j
> 0, for each i and j.

Formulae are also available for the second derivative of the Perron eigenvalue λ1

with respect to mi,j . In [8, 9], it is shown that if Q# denotes the group (generalized)
inverse3 of the singular matrix Q = λ1I −M, then

∂2λ1

∂m2
i,j

= 2vjziq
#
j,i, i, j = 1, . . . , n.(1.3)

From (1.3) we see that sign ( ∂2λ1

∂m2
i,j

) = sign(q#
j,i), so that λ1 is a convex or concave

2Applying a standard result from the theory of nonnegative matrices (see [3], for example), we
find that the matrix A of (1.1) is primitive if and only if each of G1, . . . , Gn−1 and Fn is positive,
and, in addition, either some Pi is positive or gcd{j|Fj > 0} = 1.

3The group inverse of a matrix B ∈ Rn,n, when it exists, is the unique matrix X ∈ Rn,n which
satisfies the matrix equations BXB = B, XBX = X, and BX = XB. For background material
on generalized inverses see Ben-Israel and Greville [2] and Campbell and Meyer [4]. Algorithms for
computing X can be found in Anstriecher and Rothblum [1] and Hartwig [10]. We comment that
in many of our works we have computed Q# according to an explicit formula for it found by Meyer
[14, p. 457]. Our numerical experience with this formula is very favorable.
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function of mi,j according to whether q#
j,i is positive or negative, respectively. Con-

sequently, we see that Q# carries qualitative information on the behavior of λ1 as
a function of mi,j , while together v, zT and Q# can be used to quantify that be-
havior, and are key to the sensitivity analysis of λ1. In section 3, we consider the
class of projection matrices arising from (1.1) and provide an explicit formula for the
corresponding matrix Q#. Analysis of the signs of certain entries of Q# then yields
qualitative information on the nature of the population growth rate as a function of
the vital rates. These results generalize those of [11], which deals exclusively with
Leslie matrices.

The elasticity analysis, on the other hand, concerns the proportional response of
the growth rate to changes in the vital rates. Considering the projection matrix A
of (1.1), we observe that the probabilities Pi and Gi are always bounded above by
1, while the fecundity rates Fj may well exceed 1. Because of such a difference in
scale, some population biologists—for example, De Kroon et al. [7]—have suggested
choosing elasticity analysis as an alternative to sensitivity analysis. Specifically, the
elasticity of λ1 with respect to the (i, j)th entry of M is defined as follows:

ei,j : =
mi,j

λ1

∂λ1

∂mi,j
.(1.4)

In [5, sect. 9.7], Caswell discusses the convexity of the growth rate by means of the
sensitivity of the elasticities to changes in the vital rates. In particular, Caswell
deduces from (1.4) that for i, j, k, � = 1, . . . , n,

∂ei,j
∂mk,�

=
mi,j

λ1

∂2λ1

∂mi,j∂mk,�
− mi,j

λ2
1

∂λ1

∂mk,�

∂λ1

∂mi,j
+

δi,kδj,�
λ1

∂λ1

∂mi,j
,(1.5)

where δp,q is 1 or 0 according to whether p = q or not. In section 4, we consider
a projection matrix A arising from (1.1), and using the explicit formula for Q#, we
provide a way of computing the derivatives (∂ei,j/∂ai,j) with respect to the vital
rates. Lower bounds on these derivatives are also presented.

Throughout, we will assume basic knowledge of the theory of nonnegative ma-
trices; some familiarity with matrix models for population growth is helpful, though
not essential. For background on the former we refer the reader to [3, 17], while [5]
provides an extensive discussion of the latter.

2. Preliminaries. Suppose that we have a population projection matrix A of
the form arising in (1.1). If, in addition, each row of A sums to 1, we shall say that A
is a stochastic population projection matrix. Thus, A is an n×n irreducible stochastic
population projection matrix if and only if it can be written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 . . . . . . an

1 − b1 b1 0 . . . 0

0 1 − b2 b2
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 1 − bn−1 bn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,(2.1)

where ai ≥ 0 for i = 1, . . . , n − 1, an > 0,
∑n

i=1ai = 1, and 0 ≤ bi < 1, for
i = 1, . . . , n− 1.
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In much of our subsequent development, it will be convenient to deal with matrices
of the form (2.1), rather than with general population projection matrices. There is no
loss of generality in this approach since the latter case can be reduced to the former,
as we see from the following.

Remark 2.1. Suppose that A ≥ 0 is an irreducible n × n matrix with Perron
eigenvalue λ > 0 and a corresponding right Perron eigenvector v = [v1, . . . , vn]T > 0.
Let V = diag(v1, . . . , vn), and let P = 1

λV
−1AV . It is well known that P is irreducible

and stochastic (see [3, p. 49], for example).
If uT is the left Perron eigenvector for A normalized so that uT v = 1, it is readily

seen that uTV is the left Perron eigenvector for P , normalized so that uTV 1 = 1.
Thus, if we set S = vuT (which by (1.2) carries information about the derivatives
of λ with respect to the entries in A) and S̃ = 1uTV = V −1SV (which carries the
corresponding information for P ) we see that

∂λ

∂ai,j
= sj,i =

vj
vi
s̃j,i.

Further, it is easy to check that if Q = λI −A and Q̃ = I − P , then

Q# =
1

λ
V Q̃#V −1.

Putting these relations together with (1.3), we find that

∂2λ

∂a2
i,j

=
2

λ

(vj
vi

)2

s̃j,iq̃
#
j,i.

Thus we see that the first two derivatives of the Perron eigenvalue of A with respect
to ai,j can be expressed in terms of the corresponding quantities for P . Note also
that the signs of the second derivatives for A are the same as the corresponding signs
of the second derivatives for P .

Using the information above in conjunction with (1.5), we find that

∂ei,j
∂ai,j

=
1

λ

(vj
vi

)[
2pi,j s̃j,iq̃

#
j,i − pi,j

(
s̃j,i

)2

+ s̃j,i

]
.

On the other hand, denoting the elasticities of P by ẽi,j , it is clear from (1.2), (1.3),
and (1.5) that

∂ẽi,j
∂pi,j

= 2pi,j s̃j,iq̃
#
j,i − pi,j

(
s̃j,i

)2

+ s̃j,i

or, in matrix notation, [∂ei,j
∂ai,j

]
=

1

λ
V −1

[∂ẽi,j
∂pi,j

]
V.(2.2)

Thus the derivatives of the elasticities for A can be recovered from the corresponding
derivatives of the elasticities for P via a diagonal similarity transformation using V .
In particular, both derivative matrices have the same sign pattern.

Based on Remark 2.1, we shall consider in the sequel an n×n irreducible stochastic
population projection matrix A of the form (2.1). Evidently, if A is such a matrix and
Q = I − A, then we shall need to compute Q# in order to apply formulae (1.3) and
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(1.5). Fortunately, Meyer [15] provides a formula for Q# for any irreducible stochastic
matrix. Specifically, on letting wT be the normalized left Perron eigenvector for A
such that wT1 = 1 and partitioning A as specified in (2.1), i.e.,

A =

⎡⎣ a1,1 A1,2

A2,1 A2,2

⎤⎦ ,(2.3)

where A2,2 ∈ R
n−1,n−1, then we have that

Q# =

⎡⎢⎢⎣
w1w

T
2 Q

−1
2,21 −wT

2 Q
−1
2,2(I − 1wT

2 )

−w1(I − 1wT
2 )Q−1

2,21 (I − 1wT
2 )Q−1

2,2(I − 1wT
2 )

⎤⎥⎥⎦ ,(2.4)

where we have partitioned wT as wT = [w1 | wT
2 ], with w2 ∈ R

n−1, in conformity
with the partitioning of A.

Set b0 := 0, s0 := 0, and si :=
∑i

j=1aj , for i = 1, . . . , n− 1. It is straightforward
to ascertain that the left Perron eigenvector for A is given by

wT =
1

n−1∑
i=0

1 − si
1 − bi

[
1 − s0

1 − b0
, . . . ,

1 − sn−1

1 − bn−1

]
.(2.5)

We shall now proceed to compute the blocks of Q# arising in (2.4). First, an easy
calculation gives

Q−1
2,2 =

⎡⎢⎢⎢⎢⎢⎣

1

1 − b1
0 . . . 0

1

1 − b1

1

1 − b2

. . .
.
.
.

.

.

.
.
.
.

. . . 0
1

1 − b1

1

1 − b2
. . .

1

1 − bn−1

⎤⎥⎥⎥⎥⎥⎦.(2.6)

Thus

Q−1
2,21 =

[
1

1 − b1
,

1

1 − b1
+

1

1 − b2
, . . . ,

1

1 − b1
+ · · · + 1

1 − bn−1

]T
.(2.7)

Next, we find from (2.4) that

q#
1,1 = w1w

T
2 Q

−1
2,21 = w2

1

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
.(2.8)

With q#
1,1 in hand, we see from (2.4) that the (2, 1)-block of Q# is given by

−w1(I − 1wT
2 )Q−1

2,21 = −w1Q
−1
2,21 + q#

1,11.(2.9)

The remaining entries of Q# can also be determined from (2.4) and (2.5), and therefore
we obtain the following.
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Observation 2.2. Let A be the irreducible stochastic population projection matrix
given in (2.1) and let Q = I −A. For any 2 ≤ k ≤ n and for any 2 ≤ j ≤ n,

q#
j,k =

w1

1 − bk−1

[
− (1 − sk−1)

j−1∑
i=1

1

1 − bi
−

n−1∑
i=k−1

1 − si
1 − bi

+ w1(1 − sk−1)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm

]
if j < k(2.10)

and

q#
j,k =

w1

1 − bk−1

[
− (1 − sk−1)

j−1∑
i=1

1

1 − bi
−

n−1∑
i=k−1

1 − si
1 − bi

+ w1(1 − sk−1)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm

]
+

1

1 − bk−1
if j ≥ k.

(2.11)

Furthermore, for j = 1 and for any 2 ≤ k ≤ n,

q#
1,k =

w1

1 − bk−1

[
−

n−1∑
i=k−1

1 − si
1 − bi

+ w1(1 − sk−1)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm

]
.(2.12)

3. The structure of Q# corresponding to population projection matri-
ces. It follows from a result in [14, Thm. 4.1] that the diagonal entries of Q# are
positive; that fact is readily verified for the (1, 1) entry from (2.4). In fact, it turns
out that the maximum entry in each column of Q# is found on the diagonal (see [9,
Thm. 3.1]). We continue in this vein by investigating certain monotonicity and sign
properties found in the matrix Q#.

We begin with the following lemma.

Lemma 3.1. Let A be an irreducible stochastic population projection matrix given
by (2.1) and let Q = I −A. Then for j = 1, . . . , n, q#

j,1 is decreasing in j. Moreover,

there exists an index 1 ≤ j0 ≤ n− 1 such that q#
j0,1

≥ 0 > q#
j0+1,1.

Proof. From (2.7), (2.8), and (2.9) we see that for j = 1, . . . , n− 1,

q#
j+1,1 = q#

1,1 − w1e
T
j Q

−1
2,21

= w2
1

[
n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
−

n−1∑
i=0

1 − si
1 − bi

j∑
m=1

1

1 − bm

]
.(3.1)

Thus, the entries of Q# decrease as we proceed down its first column. From (2.8), we

see that q#
1,1 > 0, while from (3.1) it follows that

q#
n,1 = −w2

1

[
n−2∑
i=1

1 − si
1 − bi

n−1∑
m=i+1

1

1 − bm
+

n−1∑
i=1

1

1 − bi

]
< 0.
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Since q#
j,1 is decreasing in j, there must be an index 1 ≤ j0 ≤ n − 1 such that

q#
j0,1

≥ 0 > q#
j0+1,1.

Example 3.2. Lemma 3.1 shows that the entries in the first column of Q# change
sign at some index j0 as we proceed down that column. This example illustrates the
fact that such a sign change can take place at any position.

Fix an index j0 with 1 ≤ j0 ≤ n − 1, and construct an irreducible stochastic
population projection matrix as in (2.1) by selecting parameters as follows: set aj = 0,
for all 1 ≤ j ≤ n − 1, an = 1, and bi = 0, for all i �= j0. Finally, for a small
positive number ε, let bj0 = 1 − ε. We claim that if ε is sufficiently small, then

q#
j0,1

> 0 > q#
j0+1,1.

From (3.1) we see that for 0 < ε < 1, we have that

q#
j0,1

= w2
1

[
j0−1∑
i=1

i +
1

ε

(
j0 − 1 +

1

ε

)

+
n−1∑

i=j0+1

(
i− 1 +

1

ε

)
− (j0 − 1)

(
n− 1 +

1

ε

)⎤⎦

= w2
1

⎡⎣j0−1∑
i=1

i +
1

ε2
+

n−1∑
i=j0+1

(
i− 1 +

1

ε

)
− (j0 − 1)(n− 1)

⎤⎦ ,

which is positive for all sufficiently small ε > 0.
Next, consider q#

j0+1,1. Again, by (3.1), we have that

q#
j0+1,1 = w2

1

[
j0−1∑
i=1

i +
1

ε

(
j0 − 1 +

1

ε

)

+
n−1∑

i=j0+1

(
i− 1 +

1

ε

)
−
(
j0 − 1 +

1

ε

)(
n− 1 +

1

ε

)⎤⎦

= w2
1

⎡⎣j0−1∑
i=1

i +

n−1∑
i=j0+1

(i− 1) − j0
ε
− (j0 − 1)(n− 1)

⎤⎦ ,

which is negative for all sufficiently small ε > 0.
Paralleling Lemma 3.1, our next result establishes a monotonicity result for entries

in the other columns of Q#.
Theorem 3.3. Let A be an irreducible stochastic population projection matrix

as given in (2.1) and let Q = I − A. Fix any 2 ≤ k ≤ n. Then, q#
j−1,k > q#

j,k for
j = 2, . . . , k − 1 and for j = k + 1, . . . , n.

Proof. Comparing (2.12) with (2.10) shows that q#
1,k > q#

2,k. For j = 3, . . . , k− 1,

the fact that q#
j−1,k > q#

j,k now follows from (2.10), while for j = k + 1, . . . , n, the
corresponding inequality follows from (2.11).

We next consider the behavior of the entries of Q# along the superdiagonal.
Theorem 3.4. Let A be an irreducible stochastic population projection matrix as

in (2.1) and let Q = I −A. If q#
k,k+1 ≥ 0 for some k = 2, . . . , n− 1, then q#

j,j+1 ≥ 0,
for 1 ≤ j ≤ k − 1.
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Proof. We note that from (2.10) and (2.12), it follows readily that for k =
1, . . . , n− 1,

q#
k,k+1 =

w1

1 − bk

[
−(1 − sk)

k−1∑
i=1

1

1 − bi

+ w1(1 − sk)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
−

n−1∑
i=k

1 − si
1 − bi

]
.(3.2)

From (3.2) we note that q#
j,j+1 ≥ 0 if and only if

w1

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
≥

j−1∑
i=1

1

1 − bi
+

1

1 − sj

n−1∑
i=j

1 − si
1 − bi

.(3.3)

Since q#
k,k+1 ≥ 0, we see that

w1

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
≥

k−1∑
i=1

1

1 − bi
+

1

1 − sk

n−1∑
i=k

1 − si
1 − bi

=

k−2∑
i=1

1

1 − bi
+

1

1 − bk−1
+

1

1 − sk

n−1∑
i=k

1 − si
1 − bi

≥
k−2∑
i=1

1

1 − bi
+

1

1 − sk−1

n−1∑
i=k−1

1 − si
1 − bi

since sk ≥ sk−1. Our claim now follows by using an inductive argument.
Remark 3.5. Note that from (3.2), q#

n−1,n < 0 if and only if

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
<

n−1∑
i=0

1 − si
1 − bi

n−1∑
i=1

1

1 − bi
.

This inequality is readily seen to be equivalent to the following:

−
n−1∑
i=1

1 − si
1 − bi

n−1∑
m=i+1

1

1 − bm
<

n−1∑
i=1

1

1 − bi
.(3.4)

As (3.4) always holds, we conclude that q#
n−1,n < 0.

Example 3.6. From Theorem 3.4 and Remark 3.5, we see that either the entire
superdiagonal of Q# is negative or, as we proceed down the superdiagonal, there is an
index 2 ≤ k ≤ n− 1, where a sign change takes place, i.e., where q#

k−1,k ≥ 0 > q#
k,k+1.

In this example, we show that it is possible for the sign change to take place at any
such index k and that it is possible for the entire superdiagonal to be negative.

Fix an index k with 2 ≤ k ≤ n − 1 and construct an irreducible stochastic
population projection matrix as in (2.1) by selecting parameters as follows: for a
small positive number ε, set a1 = · · · = ak−1 = 0, ak = 1− ε, ak+1 = · · · = an−1 = 0,
and an = ε, and let b1 = · · · = bk = 0, and bk+1 = · · · = bn−1 = 1 − ε. Note that
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1 − si = 1 if i < k, while 1 − si = ε if i ≥ k. Also (1 − si)/(1 − bi) = 1 if i �= k, while
(1− sk)/(1− bk) = ε. It now follows that w1 = 1/(n− 1 + ε). Applying (3.2), we find
that

q#
k−1,k = w1

{
− (k − 1)(k − 2)

2

+
1

n− 1 + ε

[
k(k − 1)

2
+ εk +

n− k − 1

ε

]
− (n− k) − ε

}
,

which is readily seen to be positive for all sufficiently small ε > 0. We also find from
(3.2) that

q#
k,k+1 = w1

{
−ε

k(k − 1)

2

+
ε

n− 1 + ε

[
k(k − 1)

2
+ εk +

n− k − 1

ε

]
− (n− k) − ε

}
,

and it is straightforward to show that this expression is negative for all sufficiently
small positive ε. Finally, we note that the analogous construction for k = 1 and small
ε > 0 yields a matrix such that q#

1,2 < 0, so that the entire superdiagonal of Q# is
negative.

Example 3.7. While Q# does exhibit some monotonic behavior as we proceed
down a column, there is, in general, no such monotonic behavior as we proceed down
the superdiagonal or down the diagonal, as the following example illustrates. Let

A =

⎡⎢⎣ 0.1139 0.2626 0.2574 0.1152 0.2509
0.9421 0.0579 0 0 0

0 0.6471 0.3529 0 0
0 0 0.1868 0.8132 0
0 0 0 0.9901 0.0099

⎤⎥⎦.
Then on using Matlab to compute Q#, we find that

Q# =

⎡⎢⎣ 0.8165 −0.0860 −0.1726 −0.7148 0.1569
0.6091 0.7803 −0.3724 −1.1213 0.1043
0.3071 0.4963 0.8819 −1.7130 0.0278

−0.7390 −0.4876 −0.1259 1.5898 −0.2373
−0.9364 −0.6733 −0.3161 1.2031 0.7227

⎤⎥⎦.
Thus, while there is structure to the signs of the entries on the diagonal and super-
diagonal of Q#, those entries may not follow a monotonic pattern.

4. Elasticity of the Perron eigenvalue for a population projection ma-
trix. Suppose that we have an irreducible stochastic population projection matrix
A, as given in (2.1). In this section we develop formulae for the derivatives of the
elasticity of its Perron eigenvalue as functions of the vital rates, and present lower
bounds on those derivatives. We note that in [12] it is shown that for any n × n
irreducible nonnegative matrix M , the elasticity of its Perron eigenvalue with respect
to mi,j is a differentiable nondecreasing function of mi,j . Thus, on letting ei,j be the
elasticity of the Perron eigenvalue for A with respect to ai,j , we have that

∂ei,j
∂ai,j

≥ 0 ∀ i, j = 1, . . . , n.(4.1)
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We then see that for matrices arising in the size-classified model, our lower bounds in
this section generalize (4.1).

Note that for any pair (i, j), if we substitute (1.3) into (1.5), we find that

∂ei,j
∂ai,j

= wi

(
2ai,jq

#
j,i − ai,jwi + 1

)
.(4.2)

We begin by discussing ∂ei,i/∂ai,i, i = 1, . . . , n. Since q#
i,i > 0, for each such i,

we find that

∂e1,1

∂a1,1
≥ 1 − a1w1(4.3)

and that

∂ei,i
∂ai,i

≥ 1 − bi−1wi, i = 2, . . . , n.(4.4)

Evidently, each ∂ei,i/∂ai,i is positive, as anticipated by (4.1).
Remark 4.1. We note that ∂ei,i/∂ai,i can be arbitrarily close to 0. To see this

consider the matrix of (2.1) corresponding to the following selection of parameters:
suppose that ε ∈ (0, 1), and let ai = 1 − ε, an = ε, bi−1 = 1 − ε, and aj = 0, j �=
i, bj = 0, j �= i − 1. We find that wi = 1/[1 + (j − 1)ε + (n − j)ε2] and w1 =
ε/[1 + (j − 1)ε + (n− j)ε2]. Also, applying (2.11), it follows that

q#
i,i =

1

1 + (j − 1)ε + (n− j)ε2

{
−(j − 2) − 2

ε
− ε(n− j)

+
ε

1 + (j − 1)ε + (n− j)ε2

[
(j − 1)(j − 2)

2
+

1

ε

(
j − 2 +

1

ε

)
+ (n− j)ε

]}

+
1

ε
.

Evidently, when ε → 0+ we see that q#
i,i → 0, while ai,iwi → 1. Thus, we observe that

by choosing a sufficiently small ε > 0, ∂ei,i/∂ai,i can be made arbitrarily close to 0.
Next we consider the derivatives of elasticities corresponding to the first row of

A. Fix an index 1 ≤ j ≤ n− 1 and consider ∂e1,j+1/∂a1,j+1. From (3.1) we see that

1

w1

∂e1,j+1

∂a1,j+1
= 2aj+1w

2
1

[
n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
−

n−1∑
i=0

1 − si
1 − bi

j∑
m=1

1

1 − bm

]

−aj+1w1 + 1,

so that

1

w3
1

∂e1,j+1

∂a1,j+1
= 2aj+1

[
n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
−

n−1∑
i=0

1 − si
1 − bi

j∑
m=1

1

1 − bm

]

− aj+1

n−1∑
i=0

1 − si
1 − bi

+

[
n−1∑
i=0

1 − si
1 − bi

]2

.(4.5)
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We define fj+1 by

fj+1(a1, . . . , an, b1, . . . , bn−1) : =
1

w3
1

∂e1,j+1

∂a1,j+1
.(4.6)

To derive the lower bound on fj+1, we need the following two technical lemmas
whose proofs are available from the authors.

Lemma 4.2. Let A be an irreducible stochastic population projection matrix as
given in (2.1) and let Q = I −A. Then ∂fj+1/∂bk > 0, for each k = 1, . . . , n− 1.

Lemma 4.3. Suppose that 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk+1 ≤ 1. Then⎡⎣ k∑
j=1

(1 − sj)

⎤⎦2

≥ (1 − sk+1)

k∑
j=1

(1 − sj)(2k + 1 − 2j),(4.7)

and the equality holds if and only if s1 = s2 = · · · = sk+1.
Lemmas 4.2 and 4.3 lead us to the result below.
Theorem 4.4. Let A be an irreducible stochastic population projection matrix as

given in (2.1), let Q = I −A, and let fj+1 be given by (4.6). Then

fj+1 ≥ (1 − sj+1)

j−1∑
i=0

(1 − si)(2j − 2i + 1).(4.8)

In particular, fj+1 ≥ 0, with equality holding if and only if ai = bi = 0, 1 ≤ i ≤ n−1,
and j + 1 = n.

Proof. By Lemma 4.2, it suffices to show that the inequality holds for fj+1(a1, . . . ,
an, 0, . . . , 0). But in that case we have that

fj+1 = 2aj+1

[
n−1∑
i=1

(1 − si)i−
n−1∑
i=0

(1 − si)j

]
− aj+1

n−1∑
i=0

(1 − si)

+

[
n−1∑
i=0

(1 − si)

]2

= −aj+1

j−1∑
i=0

(1 − si)(2j − 2i + 1) − aj+1

n−1∑
i=j+1

(1 − si)(2j − 2i + 1)

− aj+1(1 − sj) +

[
n−1∑
i=0

(1 − si)

]2

≥ −aj+1

j−1∑
i=0

(1 − si)(2j − 2i + 1) − aj+1(1 − sj) +

[
j∑

i=0

(1 − si)

]2

= −aj+1

j−1∑
i=0

(1 − si)(2j − 2i + 1) − aj+1(1 − sj) +

[
j−1∑
i=0

(1 − si)

]2

+2

j−1∑
i=0

(1 − si) + 1,
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where the inequality follows from the fact that 1 − si − aj+1 ≥ 0, for each 1 ≤ i ≤ j.

But then, using Lemma 4.3, we obtain that

fj+1 ≥ −aj+1

j−1∑
i=0

(1 − si)(2j − 2i + 1) + (1 − sj)

j−1∑
i=0

(1 − si)(2j − 2i + 1)

+2

j−1∑
i=0

(1 − si) + 1 − aj+1(1 − sj)

≥ (1 − sj − aj+1)

j−1∑
i=0

(1 − si)(2j − 2i + 1).(4.9)

Note that if fj+1 = 0, then necessarily aj+1 = 1, which implies that j + 1 = n
and ai = 0, 1 ≤ i ≤ n− 1.

In addition, if a1 = · · · = an−1 = 0 and an = 1, we readily see that fj+1 = 0.

Finally, we consider the derivatives of elasticities corresponding to subdiagonal
entries of A. Applying (3.2) and (4.2), we have that

1

wk+1

∂ek+1,k

∂ak+1,k
= 2ak+1,kq

#
k,k+1 − ak+1,kwk+1 + 1

= 2(1 − bk)q
#
k,k+1 − (1 − bk)w1

1 − sk
1 − bk

+ 1

= 2w1

[
−(1 − sk)

k−1∑
i=1

1

1 − bi

+w1(1 − sk)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
−

n−1∑
i=k

1 − si
1 − bi

]
− (1 − sk)w1 + 1

= w2
1

{
−2(1 − sk)

k−1∑
i=1

1

1 − bi

n−1∑
i=0

1 − si
1 − bi

+2(1 − sk)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
− 2

n−1∑
i=k

1 − si
1 − bi

n−1∑
i=0

1 − si
1 − bi

−(1 − sk)

n−1∑
i=0

1 − si
1 − bi

+

[
n−1∑
i=0

1 − si
1 − bi

]2
⎫⎬⎭

= w2
1

{
2(1 − sk)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
− 2(1 − sk)

k−1∑
i=1

1

1 − bi

n−1∑
i=0

1 − si
1 − bi

−(1 − sk)

n−1∑
i=0

1 − si
1 − bi

+

[
k−1∑
i=0

1 − si
1 − bi

]2

−
[
n−1∑
i=k

1 − si
1 − bi

]2
⎫⎬⎭ .
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Now we define gk by

gk(a1, . . . , an−1, b1, . . . , bn−1)

:= 2(1 − sk)

n−1∑
i=1

1 − si
1 − bi

i∑
m=1

1

1 − bm
− 2(1 − sk)

k−1∑
i=1

1

1 − bi

n−1∑
i=0

1 − si
1 − bi

−(1 − sk)

n−1∑
i=0

1 − si
1 − bi

+

[
k−1∑
i=0

1 − si
1 − bi

]2

−
[
n−1∑
i=k

1 − si
1 − bi

]2

.(4.10)

To establish the lower bound on gk, we need the next two technical lemmas whose
proofs are also available from the authors.

Lemma 4.5. Let A be an irreducible stochastic population projection matrix as
given in (2.1), let Q = I − A and let gk be given by (4.10). Then ∂gk/∂bj > 0, for
bj ∈ [0, 1), 1 ≤ j ≤ n− 1.

Lemma 4.6. Suppose that 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ 1. Then

(1 − s1)

k∑
j=1

(1 − sj)(2j − 1) ≥

⎡⎣ k∑
j=1

(1 − sj)

⎤⎦2

,(4.11)

and the equality holds if and only if s1 = s2 = · · · = sk.
Lemmas 4.5 and 4.6 lead us to the following result.
Theorem 4.7. Let A be an irreducible stochastic population projection matrix as

given in (2.1), let Q = I −A and let gk be given by (4.10). Then

gk ≥ (1 − sk)

n−1∑
i=k

(1 − si)(2i− 2k + 1) −
[
n−1∑
i=k

(1 − si)

]2

+

[
k−1∑
i=0

(1 − si)

]2

− (1 − sk)

k−1∑
i=0

(1 − si)(2k − 2i− 1).(4.12)

In particular, gk ≥ 0, with equality if and only if a1 = · · · = an−1 = 0, an = 1, and
b1 = · · · = bn−1 = 0.

Proof. By Lemma 4.5, we see that

gk(a1, . . . , an−1, b1, . . . , bn−1) ≥ gk(a1, . . . , an−1, 0, . . . , 0).

Note that when b1 = · · · = bn−1 = 0, we have that

gk = 2(1 − sk)

n−1∑
i=1

(1 − si)i− 2(1 − sk)(k − 1)

n−1∑
i=0

(1 − si)

−(1 − sk)

n−1∑
i=0

(1 − si) +

[
k−1∑
i=0

(1 − si)

]2

−
[
n−1∑
i=k

(1 − si)

]2

= (1 − sk)

n−1∑
i=0

(1 − si)(2i− 2k + 1) +

[
k−1∑
i=0

(1 − si)

]2
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−
[
n−1∑
i=k

(1 − si)

]2

= (1 − sk)

n−1∑
i=k

(1 − si)(2i− 2k + 1) −
[
n−1∑
i=k

(1 − si)

]2

+

[
k−1∑
i=0

(1 − si)

]2

− (1 − sk)

k−1∑
i=0

(1 − si)(2k − 2i− 1).

This establishes the lower bound on gk.

To see that gk is nonnegative, we proceed by letting σi = si+k−1, i = 1, . . . , n−k.
Then by Lemma 4.6, we have that

(1 − sk)

n−1∑
i=k

(1 − si)(2i− 2k + 1) −
[
n−1∑
i=k

(1 − si)

]2

= (1 − σ1)

n−k∑
i=1

(1 − σi)(2i− 1) −
[
n−k∑
i=1

(1 − σi)

]2

≥ 0.

On letting τi = si−1, i = 1, . . . , k + 1, we have from Lemma 4.3 that

[
k−1∑
i=0

(1 − si)

]2

− (1 − sk)

k−1∑
i=0

(1 − si)(2k − 2i− 1)

=

[
k∑

i=1

(1 − τi)

]2

− (1 − τk+1)

k∑
i=1

(1 − τi)(2k − 2i + 1) ≥ 0.

Note that if gk = 0, then equality holds in Lemmas 4.6 and 4.3, from which we
deduce that s1 = · · · = sn−1 = 0, and thus a1 = · · · = an−1 = 0 and an = 1. The
sufficiency of that condition to yield gk = 0 is readily established.

The foregoing lemmas and theorems yield the following lower bounds on the
derivative of the elasticity of the Perron eigenvalue for the projection matrix in the
size-classified population model.

Theorem 4.8. Let A be an irreducible stochastic population projection matrix as
given in (2.1). Then, for j = 0, 1, . . . , n− 1,

∂e1,j+1

∂a1,j+1
≥ w3

1(1 − sj+1)

j−1∑
i=0

(1 − si)(2j − 2i + 1) ≥ 0,(4.13)

with ∂e1,j+1/∂a1,j+1 = 0 if and only if ai = bi = 0, 1 ≤ i ≤ n− 1 and j + 1 = n; for



184 S. KIRKLAND, M. NEUMANN, AND J. XU

j = 1, 2, . . . , n− 1,

∂ej+1,j

∂aj+1,j
≥ w2

1wj+1

⎧⎪⎨⎪⎩(1 − sj)

n−1∑
i=j

(1 − si)(2i− 2j + 1) −

⎡⎣n−1∑
i=j

(1 − si)

⎤⎦2

+

[
j−1∑
i=0

(1 − si)

]2

− (1 − sj)

j−1∑
i=0

(1 − si)(2j − 2i− 1)

⎫⎬⎭(4.14)

≥ 0,

with ∂ej+1,j/∂aj+1,j = 0 if and only if a1 = · · · = an−1 = 0, an = 1, and b1 = · · · =
bn−1 = 0.

We note that each of the lower bounds in (4.13) and (4.14) can be extended to
provide a corresponding lower bound on the derivative of the elasticity of the Perron
eigenvalue of a general, not necessarily stochastic, irreducible population projection
matrix as given in (1.1). This extension is obtained via the transformation described
in Remark 2.1 of producing a related stochastic matrix, applying the lower bounds
arising from (4.13) and (4.14), and then appealing to (2.2).
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Abstract. In this paper we are interested in the solution by multigrid strategies of multilevel
linear systems whose coefficient matrices belong to the circulant, Hartley, or τ algebras or to the
Toeplitz class and are generated by (the Fourier expansion of) a nonnegative multivariate polynomial
f . It is well known that these matrices are banded and have eigenvalues equally distributed as f ,
so they are ill-conditioned whenever f takes the zero value; they can even be singular and need a
low-rank correction.

We prove the V-cycle multigrid iteration to have a convergence rate independent of the dimension
even in presence of ill-conditioning. If the (multilevel) coefficient matrix has partial dimension nr at

level r, r = 1, . . . , d, then the size of the algebraic system is N(n) =
∏d

r=1 nr, O(N(n)) operations
are required by our technique, and therefore the corresponding method is optimal.

Some numerical experiments concerning linear systems arising in applications, such as elliptic
PDEs with mixed boundary conditions and image restoration problems, are considered and discussed.

Key words. circulant, Hartley, and τ algebra, Toeplitz class, two-grid and multigrid iterations,
multi-iterative methods, multilevel matrices
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1. Introduction. Let f(x), x = (x1, . . . , xd), be a continuous function on the
d-dimensional Euclidean space R

d, and let 〈 · | · 〉 denote the usual scalar product
between vectors. Henceforth, we suppose that f has period 2π with respect to each
variable and is real valued, so the Fourier coefficients of f ,

aj =
1

(2π)d

∫
[−π,π]d

f(x)e−i〈j|x〉 dx, i2 = −1, j = (j1, . . . , jd) ∈ Z
d,(1.1)

enjoy the relation a−j = āj for every j ∈ Z
d. From the coefficients aj one can build

[35] the sequence {Tn(f)}, n = (n1, . . . , nd) ∈ N
d, of multilevel Toeplitz matrices of

size N(n) =
∏d

r=1 nr. Every matrix Tn(f) is explicitly written as

Tn(f) =
∑

|j|�n−e

ajJ
[j]
n =

∑
|j1|�n1−1

. . .
∑

|jd|�nd−1

a(j1,...,jd)J
[j1]
n1

⊗ · · · ⊗ J [jd]
nd

.

Here ⊗ denotes the usual tensor product, so that A⊗B is the block matrix [aijB]ij ,

e = (1, . . . , 1) ∈ N
d and the relations between two multi-indices (as |j| � n−e) should

be intended componentwise. If n and j are integer numbers, then J
[j]
n ∈ R

n×n is the
matrix whose entry (s, t) equals 1 if s − t = j and is 0 elsewhere; in the case where

n and j are multi-indices, the symbol J
[j]
n denotes the tensor product of all the J

[jr]
nr

for r = 1, . . . , d. From the identity a−j = āj for every j, it follows that the matrices
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Via Valleggio 11, 22100 Como, Italy (marco.donatelli@uninsubria.it, stefano.serrac@uninsubria.it,
serra@mail.dm.unipi.it).

186



OPTIMAL V-CYCLE FOR MULTILEVEL STRUCTURES 187

Tn(f) are Hermitian for every n. It is clear that, if f is a trigonometric polynomial of
degree c = (c1, . . . , cd), then the Fourier coefficient aj equals zero when |j| � c is not
satisfied; in that case the corresponding matrix Tn(f) shows a d-level structure with
bandwidth cr at level r ∈ {1, . . . , d}.

To the same coefficients aj in (1.1) we can also associate matrices belonging to
well-known trigonometric (multilevel) algebras. For instance, the d-level circulant
related to f is defined as

Cn(f) =
∑

|j|�n−e

ajZ
[j]
n =

∑
|j1|�n1−1

. . .
∑

|jd|�nd−1

a(j1,...,jd)Z
j1
n1

⊗ · · · ⊗ Zjd
nd
,

where Zn = J
[−1]
n +en e1

t if n is a scalar and ej denotes the jth vector of the canonical

basis. Analogously to the Toeplitz case, if n and j are multi-indices, then Z
[j]
n repre-

sents the tensor product of all the Zjr
nr

for r = 1, . . . , d. If f is even (with regard to
each variable xr separately) we have aj = a−j ∈ R, i.e., Tn(f) is real and symmetric.
In that case an interesting matrix algebra approximation is provided by the τ algebra
[3]. More specifically we define

τn(f) =
∑

0�j�n−e

bjH
[j]
n =

∑
0�j1�n1−1

. . .
∑

0�jd�nd−1

b(j1,...,jd)H
j1
n1

⊗ · · · ⊗Hjd
nd
,

where Hn = J
[1]
n + J

[−1]
n , the matrix J

[j]
n is defined as before, and the coefficients

bj can be uniquely determined by the coefficients aj through an invertible triangular
linear system (see [24]). A further characterization of the τ algebra is obtained by
observing that every matrix of the class can be written as a Toeplitz plus Hankel
matrix (a Hankel matrix is constant along the antidiagonals): more precisely, we have

τn(f) = Tn(f) −Hn(f),(1.2)

where Hn(f) is the centrosymmetric Hankel matrix generated by f . A Hankel matrix
is such that its entries are constant along any lower-left–upper-right diagonal: with
the same notations we have

Hn(f) =
∑

2e�j�n−e

ajK
[j]
n =

∑
2�|j1|�n1−1

· · ·
∑

2�|jd|�nd−1

a(j1,...,jd)K
[j1]
n1

⊗ · · · ⊗K [jd]
nd

,

(1.3)

where, in the unilevel case, K
[j]
n denotes the matrix of order n whose entry (s, t) equals

1 if s + t = j mod 2(n − 1) and equals zero otherwise: the multilevel version of K
[j]
n

is now defined via (1.3).
A third class of matrices which form an algebra and is of interest in applications is

represented by the Hartley matrices [4]. Unlike circulants and τ matrices, the Hartley
class does not have a generator, but it can be described by using circulant matrices.
In actuality, every matrix belonging to this class can be expressed as the sum of two
independent matrices, the first being symmetric and circulant, the second being the
product of a special permutation matrix J by a skewcirculant matrix. More precisely,
for a Hartley matrix generated by a unilevel function f we set J1,1 = Js,n+2−s = 1,
s = 2, . . . , n, and

Hn(f) = Cn(feven) + JCn(fodd),
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where feven(x) = (f(x) + f(−x))/2 and fodd(x) = (f(x)− f(−x))/2. In this way the
first column of Cn(feven) has αj coefficients such that αj = αn−j ∈ R, j = 1, . . . , n−1,
and the first column of Cn(fodd) has coefficients βj = −βn−j ∈ R, j = 1, . . . , n − 1,
β0 = 0, where α0 = a0 and (αj − iβj)/2 = aj for |j| � 1. We note that its multilevel
version amounts to performing the same even/odd splitting of f with respect to each
variable separately.

Since circulants, τ and Hartley matrices are algebras, they are all simultaneously
diagonalized by a given transform. In our case the involved transforms are all unitary
(or real unitary, i.e., orthogonal) and therefore these algebras are constituted by
normal matrices. More precisely the three classes can be formally defined as follows:

G(Qn) =
{
Qn · Diag (d) ·Q−1

n | d ∈ C
n
}

=
{
Qn · Diag (d) ·QH

n | d ∈ C
n
}
,

where the related transforms Qn (and some other information, such as the grid points

w
[n]
i , the In index range to which i belongs, and the name of the class C, τ,H generi-

cally denoted by A) are listed in the subsequent Table 1.1.

Table 1.1

Basics on our algebras: the unilevel case.

A In w[n] Qn

Circulants C 0, . . . , n− 1 w
[n]
i = 2πi

n
Fn = 1√

n

[
eijw

[n]
i

]n−1

i,j=0

Hartley H 0, . . . , n− 1 w
[n]
i = 2πi

n
Re(Fn) + Im(Fn)

Tau τ 1, . . . , n w
[n]
i = πi

n+1

√
2

n+1

[
sin

(
jw

[n]
i

)]n
i,j=1

Once again, whenever n is a d-index we define Qn the matrix of size N(n) as Qn1
⊗

· · · ⊗Qnd
. The matrices Cn(f), τn(f), and Hn(f) can be written (in order to provide

a uniform approach) as

An(f) = Qn · Diag
(
f
(
w[n]

))
·QH

n ,(1.4)

where A ∈ {C,H, τ}, f is a polynomial of degree less than n, and the vectors w[n] are
defined in the fourth column of Table 1.1 for scalar n and w[n] = w[n1] ×· · ·×w[nd] if
n is a d-index. For instance, in the circulant case we observe Qn = Fn and we write
An(f) = Cn(f) = Fn · Diag

(
f(w[n])

)
· FH

n .
It is immediate to see that Cn(f), τn(f), and Hn(f) are definitely ill-conditioned

if f has zeros in its basic definition set [−π, π]d (they are singular if the zeros contain
a grid point). It is interesting to recall that x = 0 is always a grid point for the
circulants and the Hartley matrices so that Cn(f) and Hn(f) are singular if these
matrices arises from the discretization of constant coefficients differential operators:
in that case it is known that x = 0 is a zero of the symbol and its order is associated
to the maximal order of the involved derivatives (see, e.g., [30]).

In such a case, setting e =
∑N(n)

j=1 ej , the classical Strang circulant preconditioner
(see, e.g., [9]) is replaced by its modified (or stabilized) version (see, e.g., [34]):

C̃n(f) = Cn(f) +
(

min
‖j‖∞=1

f
(
w

[n]
j

)) eet

N(n)
.(1.5)
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Of course the same approach can be followed in the case of the Hartley algebra.

In this paper we are interested in the solution of linear systems with matrices of
the form An(f) for A ∈ {C,H, τ, T} and f trigonometric polynomial. More specifi-
cally we are interested in (iterative) methods that show the best possible asymptotic
complexity. In this respect we define a formal notion of optimality of an iterative
method for a sequence of linear systems of increasing dimensions.

Definition 1.1. Given a sequence of linear systems of increasing dimensions
{Anxn = bn}, we write that an iterative method is optimal if

1. the arithmetic cost of every iteration is at most proportional to the complexity
of a matrix vector product with matrix An,

2. the number of iterations for reaching the solution within a fixed accuracy can
be bounded from above by a constant independent of n.

Such a method would be interesting in the case of the considered matrix al-
gebras A ∈ {C,H, τ} since the cost by direct methods using fast transforms is
O(N(n) logN(n)) while an optimal technique would require just O(N(n)) operations:
we recall that this kind of matrix algebra linear systems are widely used as precon-
ditioners for more complicated problems (dense Toeplitz, differential problems dis-
cretizations etc. [13, 25, 30]) or directly arise in the discretization of image restoration
problems with shift-invariant kernel and suitable boundary conditions (see [20, 29]).

In the case of Toeplitz systems the improvement would be much more striking.
For instance, in the multilevel Toeplitz setting the fast direct techniques are expen-
sive because they are unable to exploit the Toeplitzness at each level. Concerning the
preconditioned conjugate gradient (PCG) method, the matrix algebra preconditioners
lead to optimal solvers only in the unilevel case (see, e.g., [9]). Unfortunately, for mul-
tilevel problems the optimal preconditioning by matrix algebras is simply impossible
in general as proved by the last author and Tyrtyshnikov [32] (see also [21, 22, 26, 33]).
More precisely the number of iterations is an unbounded function as n and it is of the

order of O([N(n)]
d−1
d ), which is very unsatisfactory if d is large.

On the other hand, by using band Toeplitz preconditioners (see, e.g., [13]), it is
possible to reduce the computation with dense Toeplitz systems to the case of Toeplitz
linear systems whose coefficient matrices are generated by nonnegative polynomials.
Therefore it is of special interest to be able to solve in optimal time (i.e., computational
effort linear with respect to the size of the algebraic problem) linear systems whose
coefficient matrix is of the form Tn(f) with nonnegative polynomial f and our proposal
is the multigrid technique. We will give a formal proof of optimality of the V-cycle
multigrid iteration (MGM) in the matrix algebra case while in the Toeplitz case this
optimal behavior is demonstrated only by numerical experiments (for a formal proof
of optimal convergence rate, i.e., independent of n, related to the two-grid method
refer to [27]): our hope is that the theoretical tools introduced in this paper for the
matrix algebra case could be used for proving the V-cycle optimality in the Toeplitz
context as well. We stress that the proof technique introduced in this paper seems to
be new compared with the classical approaches used in the PDEs context (see, e.g.,
the beautiful review [37]). Indeed our tools are totally matrix oriented so that there
is no differential interpretation in the general case: for instance when the symbol
has a zero close to π, then the smoother (i.e., the iteration satisfying the smoothing
property according to Ruge and Stüben [23]) does not make the error smooth; i.e., it
reduces the components in the low frequencies and it does not reduce the components
in the high frequencies.

Finally, we mention that our technique can be easily extended with the same
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linear arithmetic cost to linear systems with coefficient matrices given by An(f) +∑s
t=1 ϑt · q[n]

it

(
q
[n]
it

)H
= An(f +

∑s
t=1 ϑtχw

[n]
it

+2πZ
), where the vector q

[n]
i is the ith

column of Qn, A ∈ {C,H, τ}, and χS denotes the characteristic function of a given
set S. We recall that these examples of coefficient matrices are a generalization of the
stabilized Strang preconditioner displayed in (1.5).

The paper is organized as follows. In section 2 we first introduce the multigrid
procedure by reporting the basic convergence results by Ruge and Stüben [23]; then
we describe our choices for the smoothing and prolongation operators. In section 3 we
show that “level independency” property is not sufficient to reach the optimality, while
in section 4 we prove the optimal convergence rate of our multigrid in the unilevel
case. Section 5 is devoted to the multilevel case, while in section 6 we generalize our
V-cycle algorithm to multilevel Toeplitz matrices. Section 7 contains wide numerical
experimentation that confirms the theoretical analysis, and section 8 is devoted to
concluding remarks, open problems and future work.

2. The multigrid procedure. Let A ∈ C
n×n be a Hermitian positive definite

matrix, b ∈ C
n, m integer with 0 < m < n. Fix integers n0 = n > n1 > n2 > · · · >

nm > 0, take P i
i+1 ∈ C

ni+1×ni full-rank matrices, and consider a class Ri of iterative
methods for ni-dimensional linear systems. The related V-cycle method (see [5, 17])
produces the sequence {x(k)}k∈N according to the rule x(k+1) = MGM(0,x(k),b),
with MGM recursively defined as follows:

x
(out)
i := MGM(i,x

(in)
i ,bi)

If (i = m) Then Solve(Amx
(out)
m = bm)

Else 1 ri := Aix
(in)
i − bi

2 bi+1 := P i
i+1ri

3 Ai+1 := P i
i+1Ai(P

i
i+1)

H

4 yi+1 := MGM(i + 1,0ni+1
,bi+1)

5 x
(int)
i := x

(in)
i − (P i

i+1)
H
yi+1

6 x
(out)
i := Rν

i

(
x

(int)
i

)
.

(2.1)

Step 1 calculates the residual of the proposed solution; steps 2, 3, 4, and 5 define the
recursive coarse grid correction by projection (2) of the residual, sub-grid correction
(3, 4) and interpolation (5), while step 6 performs some (ν) iterations of a “post-
smoother.”

By using the MGM as an iterative technique, at the kth iteration, we obtain

the linear systems Aix
(k)
i = b

(k)
i , i = 0, . . . ,m, where the matrices Ai ∈ C

ni×ni are
Hermitian positive definite. Only the last is solved exactly while all the others are
recursively managed by reduction to low-level system and smoothing. Ri are most of
the time one-point methods (see [23]) with prescribed linear part Ri ∈ C

ni×ni i.e.,

Ri(xi) = Rixi + (Ini −Ri)A
−1
i b

(k)
i , xi ∈ C

ni , i = 0, . . . ,m− 1.(2.2)

If we define the multigrid iteration matrix of level i as MGMi,

⎧⎨⎩MGMm =Onm×nm ,

MGMi =Rν
i ·
[
Ini−

(
P i
i+1

)H(
Ini+1−MGMi+1

)
A−1

i+1P
i
i+1Ai

]
, i = m− 1, . . . , 0,

(2.3)
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it holds that x
(out)
i = MGMix

(in)
i +(Ini

−MGMi)A
−1
i bi, so in the finer grid we have

x(k+1) = MGM0x
(k) + (In0

− MGM0)A
−1
i b, and MGMi depends on i but not on

any x
(k)
i nor on b

(k)
i . The algorithm has essentially two degrees of indetermination:

1. choice of the projectors P i
i+1, i = 0, . . . ,m− 1;

2. choice of the smoothers Ri, i = 0, . . . ,m− 1.
The choice of the projectors P i

i+1 and the calculation of the matrices Ai are performed
before the beginning of the V-cycle procedure (precomputing phase).

Of course m stands for the number of subgrids in the algorithm. We also refer
the choice m = 1 as two-grid method (TGM), so we define the TGM linear action as

TGM0 = Rν
0 ·
[
In0 − (P 0

1

)H
A−1

1 P 0
1A0

]
.(2.4)

The term in square brackets in (2.4) is defined as exact coarse grid correction (CGC0).
It can be defined of course on each grid of the V-cycle algorithm, and hence we agree
to write

CGCi = Ini − (P i
i+1

)H
A−1

i+1P
i
i+1Ai, i = 0, . . . ,m− 1,(2.5)

and

TGMi = Rν
i · CGCi, i = 0, . . . ,m− 1.(2.6)

Specific TGMs and V-cycles have been devised for the τ multilevel algebra [15, 16],
while for multilevel circulants they have been studied in [31].

2.1. Convergence related theorems. Here we recall two theorems [23] con-
cerning the convergence of multigrid iterations. The first one is related to the easier
TGM algorithm; the other refers to the complete (i.e., with m > 1) multigrid pro-
cedure. For the sake of simplicity, in both the theorems we will assume just one
application of the smoother, i.e., ν = 1. By ‖ · ‖2 we denote the Euclidean norm
on C

n and the associated induced norm on C
n×n; if X is positive definite we also

denote ‖ · ‖X = ‖X1/2 · ‖2, and whenever X and Y are both Hermitian matrices the
notation X � Y means that X − Y is positive semidefinite.

Theorem 2.1 (TGM convergence [23]). Let n0, n1 be integers such that n0 >
n1 > 0 and let A ∈ C

n0×n0 be a positive definite Hermitian matrix, b ∈ C
n0 , and

also let R0 be defined as in (2.2). Fix P 0
1 ∈ C

n1×n0 full-rank matrix and let D =
Diag[aii]

n0
i=1 be the main diagonal of A. Suppose that α > 0 exists such that

‖R0x‖2
A � ‖x‖2

A − α ‖x‖2
AD−1A ∀x ∈ C

n0 .(2.7a)

Then for each γ > 0 such that

min
y∈Cn1

‖x − (P 0
1 )Hy‖2

D � γ ‖x‖2
A ∀x ∈ C

n0(2.7b)

it holds that α � γ and

‖TGM0‖A �
√

1 − α/γ < 1.(2.8)

From Theorem 2.1, it follows that {x(k)}k converges to the solution of Ax = b.
Furthermore, when α and γ are independent of n, the sequence {x(k)}k converges
with (at least) a constant error reduction by the factor

√
1 − α/γ independent of the
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dimension n of the system: therefore the corresponding TGM has optimal convergence
rate (i.e., it satisfies the second item in Definition 1.1).

Remark 2.2. Theorem 2.1 still holds if D ∈ C
n0×n0 is replaced by any Hermitian

positive definite matrix X (X = In0 could be a suitable choice): it is enough to repeat
verbatim the proof of Theorem 5.2 in [23] with X in place of D.

Theorem 2.3 (MGM convergence [23]). Let m,n be integers satisfying 0 < m <
n and suppose that A ∈ C

n×n is a positive definite Hermitian matrix and b ∈ C
n;

given now a sequence of m + 1 positive integers n = n0 > n1 > · · · > nm, let
P i
i+1 ∈ C

ni+1×ni be full-rank matrices for each i = 0, . . . ,m − 1. Define A0 = A
and choose a class of iterative methods Ri as in (2.2). If there exists a real positive
number δ satisfying

‖Ri x‖2
Ai

� ‖x‖2
Ai

− δ ‖CGCi x‖2
Ai

∀x ∈ C
ni(2.9)

for every i = 0, . . . ,m− 1, then it holds δ � 1 and

‖MGM0‖A �
√

1 − δ < 1.(2.10)

As in the case of the TGM, here also the sequence {x(k)}k converges to the solution
of Ax = b and when δ is independent of n it converges with at least a constant error
reduction not depending on the dimension of the system and, at most, �2δ−1 ln(ε−1)	
iterations are needed to reduce the error by a factor ε > 0.

We observe that inequality (2.9) is easily guaranteed by the following:

‖Ri x‖2
Ai

� ‖x‖2
Ai

− αi ‖x‖2
A2

i
(αi > 0) ∀x ∈ C

ni ,(2.11a)

‖CGCi x‖2
Ai

� βi ‖x‖2
A2

i
∀x ∈ C

ni .(2.11b)

If δ � αi/βi, then (2.9) holds for every i = 0, . . . ,m − 1 with the choice of δ =
min0�i�m−1{αi/βi}. We refer to (2.11a) as the smoothing property and to (2.11b)
as the approximation property (see [23, 37]). The approximation property depends
exclusively on the choice of projectors (i.e., P i

i+1) but not on smoothers, whereas
smoothing property is not related to P i

i+1. The separate study of these two properties
allows us to cope with the difficult part of the procedure (the verification of condition
(2.11b)) involving the projectors but not depending on the smoothers. Notice that the
direct verification of (2.9) is in principle much more intricate due to the simultaneous
presence of the projectors and of the smoothers in the inequalities.

Remark 2.4. The MGM smoothing property (2.11a) is nothing more than the
TGM smoothing property (2.7a) with D substituted by I, in accordance with Remark
2.2.

In such a situation, optimality is reached if δ is independent from both n and m,
i.e., it suffices to show that a constant value δ exists such that 0 < δ � mini{αi/βi}
is fulfilled for every possible choice of n and m. In this way, the number of iterations
required keeps being uniformly bounded by a constant irrespective of the dimension of
the problem. What is more, since each iteration has a computational cost proportional
to matrix-vector product, Definition 1.1 states that such a kind of MGM is optimal.

2.2. MGM for matrix algebras. We analyze a special instance of the MGM
(2.1), introduced in [15, 16, 31], where the smoother is the relaxed Richardson itera-
tion, namely Ri = Ini

− ωiAi (ωi is relaxing parameter), and on each step we essen-
tially halve the dimension (ni+1 = ni

2 for circulants and Hartley and ni+1 = ni−1
2 for

τ matrices).
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Dealing with circulants or Hartley matrices we start from dimension n0 = 2k0

and define the subgrid dimensions as ni = 2k0−i, while in τ algebra we start with
n0 = 2k0 − 1 and define ni = 2k0−i − 1. The cutting operator is defined by K i

i+1 :
C

ni −→ C
ni+1 and it selects even index components (we recall that the index range

is {0, . . . , ni − 1} in the circulant and Hartley algebras, while it is {1, . . . , ni} in the
τ algebra):

Circulant & Hartley algebra τ algebra

ni = 2k0−i ni = 2k0−i − 1

K i
i+1 =

[
1 0

1 0 ... ...
1 0

]
ni+1×ni

, K i
i+1 =

[
0 1 0

0 1 0... ... ...
0 1 0

]
ni+1×ni

.

(2.12)

We have defined the projector in the form P i
i+1 = K i

i+1·Ani
(pi) while pi is a real valued

polynomial which will be chosen in section 4.2 in order to satisfy the approximation
property (2.11b). Our choices on K i

i+1 brings (see [31]) to K i
i+1Qni =

[
Qni+1

| Qni+1

]
in the case of the circulant and Hartley algebras, while dealing with τ matrices we
have K i

i+1Qni
=
[
Qni+1 |0ni+1| − Jni+1Qni+1

]
with [Jn]h,k equals 1 if h + k = n + 1

and 0 if not. These two equalities play a basic role in maintaining the matrix algebra
structure on subgrids and represent the keystone for proving the following proposition.

Proposition 2.5 (see [27, 31]). Let k0, m be integers such that 0 < m < k0,
f0 and pi, i = 0, . . . ,m − 1, be real 2π-periodic functions (also even in the τ case),
P i
i+1 = K i

i+1 · Ani(pi) with A ∈ {C,H, τ} as in (1.4). Also define A0 = An0(f0) and

Ai+1 = P i
i+1Ai(P

i
i+1)

H
for i = 0, . . . ,m− 1. Then it holds that Ai+1 = Ani+1

(fi+1),
where

fi+1(x) =
1

2

[(
p2
i fi
)(x

2

)
+
(
p2
i fi
)(

π +
x

2

)]
, i = 0, . . . ,m− 1.(2.13)

Moreover each projector P i
i+1 is full-rank if p2

i (x) + p2
i (π + x) > 0 holds true for

every x.
Proposition 2.5 is basic for our purposes because it allows one to relate the func-

tions fi to the matrices Ai in the V-cycle procedure (2.1). Furthermore, we observe
that

h(x) =

k2∑
j=k1

aje
ijx ⇒ h

(x
2

)
+ h

(
π +

x

2

)
= 2

�k2
2 ∑

j=�k1
2 	
a2je

ijx(2.14)

represents a fundamental simplification in checking convergence and in evaluating the
computational costs. By defining Rk[x] =

{∑
|j|�k aje

ijx | aj = ā--j ∈ C
}
, and by as-

suming f(x) ∈ RT0 [x], pi(x) ∈ Rqi [x], we have fi ∈ RTi with Ti+1 = qi+
⌊
Ti

2

⌋
, and, by

induction, we deduce Ti � max{T0; 2qj−1 : 1 � j � i}. Consequently the bandwidth
of Ai is uniformly bounded if there exists a constant T such that T0, qi � T for every
i. Furthermore, if qi = q holds for every i, then Ti ↑ 2q− 1 (monotonic nondecreasing
convergence) if T0 � 2q−1, Ti ↓ 2q (monotonic nonincreasing convergence) otherwise.

The subsequent theorem has been proven in [27, 31], where it has been used for
proving the TGM optimality if a good choice of p0 is performed.
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Theorem 2.6 (see [27, 31]). Let An0
= An(f0) with A ∈ {C,H, τ}, f0 be

nonnegative, 2π-periodic (even in the τ case), and let P 0
1 = K0

1 · An0(p0), with p0

trigonometric polynomial (also even in τ case) such that f0(x
0) = 0 implies

lim
x→x0

p2
0(π + x)

f0(x)
<+∞,(2.15a)

p2
0(x) + p2

0(π + x) > 0 ∀x.(2.15b)

Then inequality (2.7b) in Theorem 2.1 is satisfied.
In what follows we will need a stronger version of (2.15a) to prove the V-cycle

optimality.

3. Level independency does not imply multigrid optimality. An informal
but dangerous (as we will see) way of defining the MGM is as recursive application
of TGM iterations. In particular, if the convergence rate

√
1 − α/γ defined in (2.8)

is independent of the recursion level, we have a property known in literature as “level
independency” [7].

Definition 3.1. Let m,n be integers satisfying 0 < m < n and let us suppose
that we solve a system of dimension n with MGM. Then we have level independency
if the method TGMi induced on each level satisfies

‖TGMi‖Ai � c < 1, i = 0, . . . ,m− 1,

with c pure constant independent of n and m.
In some recent works, the level independency was indicated as a way for obtaining

the V-cycle optimality (see, e.g., [7]). Actually, we will prove that the level indepen-
dency is necessary but not sufficient for the MGM optimality. To explain this fact
intuitively, we observe that to consider the MGM as a recursive TGM application is
equivalent to having the exact knowledge of the error at each level, since the TGM
directly solves the system at the lower level. Indeed, for applying the TGM recur-
sively, we must only decide if the recursive call should be placed before or after the
direct resolution of the lower level system. It follows that in the first case we project
the problem at the lower level as for the MGM, but when we interpolate the solution
(the error) at each level this is exactly known at the lower level and it does not derive
from previous interpolation as for the MGM. In the second case we know exactly the
error that we project at each level, while for the MGM this derives from previous pro-
jections. On the other side, MGM replaces the direct solution of the system with the
recursive call, obtaining a more approximate procedure with respect to the recursive
TGM application. Therefore, the level independency is a necessary but not sufficient
condition for the MGM optimality.

Now we report a whole class of counterexamples to enhance the previous informal
description.

Proposition 3.2. Let A = τn0
(f0), P

i
i+1 = Ki

i+1τni(p), and

f0(x) = (1 − cos(x))q, q ∈ N,

p(x) = µ� q
2 	(1 + cos(x))�

q
2 	, µ ∈ R, µ �= 0,

for i = 0, . . . ,m−1. Then the level independency property holds for the MGM applied
to the system Ax = b, x, b ∈ C

n0 , where P i
i+1 is the projector at the level i.

Proof. Following Definition 3.1 we must prove that ‖TGMi‖Ai � c < 1 with c
absolute constant and, to this purpose, it is enough to prove θi =

√
1 − αi/γi � c < 1
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with c constant and independent of n for every level i = 0, . . . ,m−1. At the moment
we consider for simplicity only µ = ±2, but at the end we will show that we can
extend the proof for every nonzero µ ∈ R. At the first level with f0 and p0 = p we
are in the hypotheses of Theorem 2.6, therefore, at the first level, the TGM converges
with convergence rate θ0 < 1. Using the function relation (2.13) to find fi+1 from fi
and pi, we have to distinguish between q even and odd.
• q even: In this case we obtain f1 = f0 so that p1 = p0 satisfies again the conditions

(2.15) and then θ1 = θ0. Iteratively fi+1 = fi = · · · = f0 with pi = · · · = p0 = p for
1 � i � m− 1 and θi = θ0.

• q odd: Here we have f1 = 2f0, then p1 = p0 satisfies again the conditions (2.15)
and iteratively fi+1 = 2fi = · · · = 2i+1f0 with pi = · · · = p for 1 � i � m−1. Even
if fi changes at each level, in the computation of θi the factor 2i is simplified out
and then θi = θ0 for every i.

If µ �= ±2, as in the case of q odd, we obtain fj = ξjf0, ξ ∈ R and nonzero ξ, but
again θi = θ0.

In conclusion, with c = θ0 we have θi = c < 1 for every level i = 0, . . . ,m − 1,
i.e., the level independency property is satisfied.

Remark 3.3. The previous proposition can be generalized to every function f0

that vanishes at the origin with a zero of finite order. In particular, in this case, the
level independency holds under the same TGM optimality conditions (2.15) and does
not require more restrictive conditions.

Now we present an example where the projectors satisfy the previous proposi-
tion but are not sufficient for ensuring the V-cycle optimality. Moreover we will see
that a slight modification of the proposed projectors will be enough for an optimal
MGM convergence rate. We perform only a Richardson post-smoother iteration with

ω = 1/max(f0) and MGM is stopped when ‖r(k)
0 ‖2 ≤ 10−11‖b‖2. From the fourth

derivative discretization by finite differences and appropriate boundary conditions, we
obtain a system with coefficient matrix Tn(f0), where

f0(x) = (2 − 2 cos(x))2.

We consider its τ version τn0(f0) (which corresponds to the natural τ preconditioner
of Tn0

(f0)). Therefore, defining the projector at each level through the trigonometric
polynomial

p(x) = 2 + 2 cos(x),

we remark that the hypotheses of Proposition 3.2 are fulfilled and then the level in-
dependency property stands. From the numerical application of the corresponding
V-cycle algorithm to the system τn0(f0)x = b with the proposed projector, we ob-
serve that the iteration number grows (almost linearly) as the dimension n (refer to
Table 3.1). Therefore, the proposed method is not optimally convergent while the level
independency holds true. From the same table we can see that leaving unchanged the
post-smoother and increasing the projector degree by 1, it is possible to recover the
MGM optimality. The last column in Table 3.1 stresses as the fundamental choice
the projector and not the smoother, indeed, also increasing the Richardson iteration
number and adding some conjugate gradient (CG) iterations as post-smoother (ac-
celerator), the MGM iteration number diverges as the problem dimension tends to
infinity. We observe a similar behavior in image restoration problems: Compare these
results with section 7.5, especially Table 7.8, and with [6, 18].
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Table 3.1

MGM iteration number in the case of natural τ preconditioner for the monodimensional fourth
derivative.

1 Richardson iteration with ω = 1/max(f0) p(x) = 2 + 2 cos(x)

p(x) = 2 + 2 cos(x) p(x) = (2 + 2 cos(x))2 2 Richardson with
n level independency holds but MGM optimality and ω = 1/max(f0) and

the MGM is not optimal level independency are satisfied 2 CG iterations

27 − 1 283 83 113
28 − 1 510 83 196
29 − 1 899 83 299
210 − 1 1541 83 475

MGM0 spectral radius
n pa(x) pb(x)

15 0.75 0.75
31 0.8629 0.75
63 0.9297 0.75
127 0.9647 0.75
255 0.9823 0.75
511 0.9912 0.75

Fig. 3.1. Spectral radius of MGM0 with p(x) = pa(x) = 2 + 2 cos(x) (level independency but
not optimality) and p(x) = pb(x) = (2 + 2 cos(x))2 (level independency and optimality).

The difference between level independency and MGM optimality is underlined also
from Figure 3.1, where it is shown the spectral radius of the MGM iteration matrix
calculated by using recurrence (2.3). In our V-cycle algorithm, we solve the system at
dimension 7 by a direct method. Therefore, at dimension 15 we have that the MGM
is reduced to the TGM and we notice that the MGM with p(x) = pa(x) = 2+2 cos(x)
has the same spectral radius as the MGM with p(x) = pb(x) = (2 + 2 cos(x))2, due to
the optimality of TGM.

It is starting from these remarks that in the next section we propose an optimal
MGM and we prove its optimal behavior under mild assumptions on the symbol f0.

4. Proof of convergence and optimality: The scalar case. We now show
a way for satisfying the assumptions of Theorem 2.3, in their strong version (2.11a)
and (2.11b). The first inequality (2.11a) is quite simple (i.e., polynomial) so it can be
handled as in [27, 31]. The second is more difficult to show and it represents one of
the main contributions of the paper.

4.1. How to fulfill the smoothing property. We start with a result which is
a slight variation of analogous propositions in [27, 31].

Proposition 4.1. For every i = 0, . . . ,m−1, let Ai = Ani(fi) with A ∈ {C,H, τ}
as in (1.4), fi being nonnegative, and let ωi be such that 0 < ωi < 2/‖fi‖∞. If we
choose αi fulfilling αi � ωi(2 − ωi‖fi‖∞) and if we define Ri = Ini − ωiAi, then

‖Ri x‖2
Ai

� ‖x‖2
Ai

− αi ‖x‖2
A2

i
(4.1)

holds true for every x ∈ C
n.
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Proof. The essential steps for proving (4.1) can be found in [27, 31]. We just
observe that the best bound to αi is 1/‖fi‖∞ and it is obtained by taking ωi = ω∗

i =
1/‖fi‖∞.

4.2. How to fulfill the approximation property. We still have to show how
to satisfy the more intricate MGM hypothesis (2.11b). We will consider the following
set of conditions,

p2
i (x) + p2

i (π + x) > 0, lim sup
x→x0

∣∣∣∣pi(π + x)

fi(x)

∣∣∣∣ < +∞, i = 0, . . . ,m− 1,(4.2)

to hold for every x and where x0 is the unique zero of fi of order 2q. We observe that
the conditions above are stronger than those (2.15) considered for the TGM method:
a qualitative reasoning behind it is contained in section 3 and concerns the fact that
the level independency does not imply the MGM optimality.

It follows that pi must possess a unique zero of the same (or higher) order as f .
We will choose pi as follows:

pC,Hx
0
,q(x) =

[
1 + cos(x− x0)

]q
, pτx

0
,q(x) =

[
cos(x0) + cos(x)

]q
if x0 ∈ {0, π}.

(4.3)

In addition, if f has a zero at x0 /∈ {0, π} and we are in the τ case, then f is
even and also has a zero at 2π − x0: in that case of two zeros we choose pτ±x0

,q(x) =[
cos(x0)+cos(x)

]2q
. Finally, we consider a product of some of these basic polynomials

in the general multiple-zeros case (see also [15, 27, 31]).
We will also use the following factorization result.
Proposition 4.2. Let f be a trigonometric polynomial such that f(x0) = 0

and f(x) > 0 whenever x �≡ x0 mod 2π. Then there exists a positive trigonometric
polynomial ψ such that

f(x) = [1 − cos(x− x0)]
q · ψ(x)(4.4)

and 2q is the order of f at x0.
In the rest of the subsection and in section 4.3 we will focus our attention on

the important case where the symbol has a unique zero at x = 0 (this includes
various discretized boundary values problems) with the exception of Proposition 4.5
and Remark 4.7: the more general case of a zero not at x = 0 will be briefly treated
in sections 4.4 and 4.5.

Proposition 4.2 ensures a suitable factorization for our generating function f0,
i.e., f0(x) = [1 − cos(x)]

q
ψ0(x), ψ0 being a positive trigonometric polynomial, when

dealing with τ matrices. In the case of the circulant and Hartley algebras, we
must consider the one rank correction displayed in (1.5) in order to force the in-
vertibility. Therefore, by exploiting relation (4.4), we have f0(x) + c0χ2πZ(x) =
[1 − cos(x)]

q
ψ0(x) + c0χ2πZ(x). In order to get a uniform lower bound to αi/βi (in

particular to find an upper bound for the left side of (4.8)), it seems convenient to
obtain such a factorization for every generating function fi. We find the desired result
by using Proposition 2.5.

Proposition 4.3. Under the same assumptions of Proposition 2.5, let q be a
positive integer and let us suppose f0(x) = [1 − cos(x)]

q
ψ0(x) + c0χ2πZ(x), with ψ0

being a positive trigonometric polynomial and with c0 = f0(w
[n0]
1 ) in the circulant and

Hartley cases and with c0 = 0 in the τ case; define also pi(x) =
√

2 [1 + cos(x)]
q

+
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di χ2πZ(x) = p(x) + di χ2πZ(x) for each i = 0, . . . ,m − 1. Then each generating
function fi satisfies fi(x) = f̃i(x) + ciχ2πZ(x), f̃i(x) = [1 − cos(x)]qψi(x) with the
sequences {ψi} and {ci} defined as{

ψi+1 = Φq(ψi),

ci+1 = 1
2cip

2
i (0),

i = 0, . . . ,m− 1,

where Φq is an operator such that[
Φq(ψ)

]
(x) =

1

2q+
1
2

[
(pψ)

(x
2

)
+ (pψ)

(
π +

x

2

)]
.(4.5)

Moreover, each f̃i is a trigonometric polynomial that vanishes only at 2πZ with the
same order 2q as f0.

Proof. Taking into account the expression of p(x) =
√

2 [1 + cos(x)]
q
, the result

is a direct consequence of Proposition 2.5 and relation (2.14).
Proposition 4.4. Under the same assumptions of Proposition 2.5, let q be a

positive integer and let us suppose f0(x) = [1 − cos(x)]
q
ψ0(x) + c0χ2πZ(x), with ψ0

being a positive trigonometric polynomial and with c0 = f(w
[n0]
1 ) in the circulant and

Hartley cases and with c0 = 0 in the τ case; also define pi(x) =
√

2 [1 + cos(x)]
q

+
di χ2πZ(x) = p(x)+di χ2πZ(x) for each i = 0, . . . ,m−1. Then we can choose numbers
di such that, setting f̃i(x) = [1−cos(x)]qψi(x), we have fi(x) = f̃i(x)+ciχ2πZ(x) with

ci = 0 in the τ case and with ci = fi(w
[ni]
0 ) = f̃i(w

[ni]
1 ) > 0 in the case of circulants

and Hartley matrices.
Proof. In the τ setting we can choose di = 0. Therefore, since c0 = 0 there

is nothing to prove. In the remaining cases, the result follows from the relations
fi(0) = f̃i(0) + ci = ci, ci+1 = 1

2cip
2
i (0) = 1

2ci(
√

2 2q + di)
2 and from the fact that

c0 = f(w
[n0]
1 ): more specifically we have

di =

√√√√√2fi+1

(
2π

ni+1

)
fi

(
2π
ni

) −
√

2 2q.

Propositions 4.3 and 4.4 will allow us to find bounds for the constants αi and βi

involved in (2.11).
We now have the tools for defining a really recursive V-cycle technique (as ex-

plained in Proposition 4.5) and for proving that we can satisfy the approximation
property (Proposition 4.6).

Proposition 4.5. Let Ai = Ani
(fi), P i

i+1 = Ki
i+1Ani

(pi), with fi being a
nonnegative polynomial (also even in the τ case) and pi satisfying conditions (4.2)
(also even in the τ case).

1. The projected matrix Ai+1 coincides with Ani+1(fi+1), where fi+1 has the
expression reported in (2.13).

2. If x0 ∈ [−π, π] is a zero of fi(x) then fi+1 has a corresponding zero y0 = 2x0.
3. fi and fi+1 have the same number of zeros, i.e., for any zero y0 ∈ [−π, π] of

fi+1 there exists a unique zero of fi such that the relations in the preceding
item holds true.

4. The order of the zero y0 of fi+1 is exactly the same as the one of the zero x0

of fi so that at the lower level the new projector is easily defined in the same
way.
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Proposition 4.6. For every i = 0, . . . ,m − 1, let Ai = Ani
(fi) with A ∈

{C,H, τ} as in (1.4) and let fi be as in Proposition 4.3. Let P i
i+1 = K i

i+1 · Ani(pi)
and let us define CGCi as in (2.5). Assume that pi(x) = p̃i(x) + di χ2πZ(x) with p̃i
fulfilling (4.2) (also even in the τ case) and with di as in Proposition 4.4 (for instance,
take p̃i(x) =

√
2 [1 + cos(x)]

q
as in Proposition 4.3). Then for every i = 0, . . . ,m−1,

there exists a real and positive value βi such that

‖CGCi x‖2
Ai

� βi ‖x‖2
A2

i
, x ∈ C

ni .(4.6)

Proof. Relation (4.6) can be rewritten in matrix form as

CGCH
i Ai CGCi � βiA

2
i .

By straightforward calculation we have CGCH
i Ai CGCi = Ai CGCi, and hence (4.6)

holds if and only if AiCGCi � βiA
2
i is satisfied. By multiplying from both the sides

by A
−1/2
i we get

Ini −A
1/2
i (P i

i+1)
H
[
P i
i+1Ai(P

i
i+1)

H
]−1

P i
i+1A

1/2
i � βiAi,

and then, by defining P̂ i
i+1 = P i

i+1 ·A
1/2
i , we infer

Ini − (P̂ i
i+1)

H
[
P̂ i
i+1(P̂

i
i+1)

H
]−1

P̂ i
i+1 � βiAi,(4.7)

where P̂ i
i+1 = K i

i+1 · Ani

(
p̂i(x)

)
with p̂i(x) = pi(x) · f1/2

i (x). We notice that (4.7)
can be found in [31] while showing the TGM approximation property for the circulant
algebra, and is also contained in the proof of Lemma 3.2 in [27], while showing the
same property in the τ algebra (the Hartley case is totally analogous to circulants).
Thus, by performing a block diagonalization of all the involved matrices (see Lemma
3.2 in [27]), to have (4.6), it is enough to prove

1

p̂2
i (x) + p̂2

i (x + π)

[
p̂2
i (π + x) −p̂i(x)p̂i(π + x)

−p̂i(x)p̂i(π + x) p̂2
i (x)

]
� βi

[
fi(x)

fi(π + x)

]
for every x ∈

⋃
j∈Ini+1

{
1
2w

[ni+1]
j

}
, and once again, by following the proof of Lemma

3.2 in [27], we deduce that (4.6) is guaranteed if

1

p̂2
i (x) + p̂2

i (π + x)
·
(

p̂2
i (x)

fi(π + x)
+

p̂2
i (π + x)

fi(x)

)
� βi ∀x ∈

⋃
j∈Ini+1

{
w

[ni+1]
j

2

}
.

Therefore, in terms of the involved generating functions, we obtain that the following
conditions have to be satisfied:

1

p2
i (x)

fi(π + x)
+

p2
i (π + x)

fi(x)

·
(

p2
i (x)

f2
i (π + x)

+
p2
i (π + x)

f2
i (x)

)
� βi ∀x ∈

⋃
j∈Ini+1

{
w

[ni+1]
j

2

}
.

(4.8)
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Finally, we observe that the first inequality in (4.2) implies the uniform boundedness
(with respect to ni and to x) of the term

1

p2
i (x)

fi(π + x)
+

p2
i (π + x)

fi(x)

,

while the second inequality in (4.2) implies the uniform boundedness (with respect to
ni and to x) of the term (

p2
i (x)

f2
i (π + x)

+
p2
i (π + x)

f2
i (x)

)
,

and therefore the proof is over with βi being the products of the two constants realizing
the above mentioned bounds.

Remark 4.7. The statement in Proposition 4.6, namely relation (4.6), holds
unchanged in the more general setting where the zero x0 is not 0. It is sufficient to
show that Ai is nonsingular and indeed the rest of the proof of Proposition 4.6 will
remain the same. Let Ai = Ani(fi) with A ∈ {C,H, τ} for i = 0, . . . ,m and let x0

be the unique zero of f0 in [0, 2π) (in the τ case f0 is even and has also a zero at
2π − x0).

1. If x0 /∈
⋃

j∈In0
{w[n0]

j } (also 2π − x0 /∈
⋃

j∈In0
{w[n0]

j } in the τ case), then,

by Proposition 4.5, fi vanishes only at xi /∈
⋃

j∈Ini
{w[ni]

j } (also at 2π −
xi /∈

⋃
j∈Ini

{w[ni]
j } in the τ case) and therefore Ai is nonsingular for every

i = 0, . . . ,m.

2. If ∃ j ∈ In0
: x0 = w

[n0]
j (also 2π−x0 = w

[n0]
n+1−j in the τ case), we proceed as

in the case x0 = 0 (see Propositions 4.3 and 4.4). We fix f̃i(x) = (1− cos(x−
xi))

q, c0 = min{f0(w
[n0]
j−1), f0(w

[n0]
j+1)} and fi(x) = f̃i(x) + ci χx0+2πZ(x) (also

fi(x) = f̃i(x) + ci χ−x0+2πZ(x) in the τ case), then, by Proposition 4.5, f̃i
vanishes at xi = w

[ni]
j (also at w

[n0]
n+1−j in the τ case) for i = 0, . . . ,m. The

quantities ci, di and pi(x) are calculated as in Propositions 4.3 and 4.4, where
0 is replaced by x0. In this case Ai is again nonsingular for every i = 0, . . . ,m.

4.3. MGM optimal convergence (i.e., verification of the inf–min con-
dition). In Propositions 4.1 and 4.6 we have proven that for every i (independent
of n = n0) the constants αi and βi are absolute values not depending on n = n0

but only depending on the functions fi and pi. However, in order to fulfill conditions
(2.11a) and (2.11b) with δ independent of n (which in turn imply the MGM optimal
convergence by Theorem 2.3), we should prove the following inf–min condition:

δ = inf
n

min
1�m�φ(n)

min
0�i�m

αi

βi
= inf

n
min

0�i�φ(n)

αi

βi
> 0.(4.9)

Here φ(n) is the maximal number of possible recursion levels and it equals log2(n) for
circulants and Hartley matrices and coincides with log2(n+ 1) for τ matrices. In the
following we will consider the case where the trigonometric polynomial f0 is positive
in the interval (0, 2π) and takes the zero value at the origin, and we will demonstrate
the inf–min condition (4.9).

In the following, for a given function f , we will write Mf = supx |f |, mf = infx |f |
and µ∞(f) = Mf/mf . In (2.11a) we simply find αi

(
ω∗
i = ‖fi‖−1

∞
)

= ‖fi‖−1
∞ �
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1/(2qMψi), while (from p(x) =
√

2[1 + cos(x)]q it follows that the range of p(x) +
p(π + x) is [

√
2 · 2,

√
2 · 2q]) in order to get an upper bound for the left-hand side in

(4.8), if x ∈ (0, 2π) we obtain

p2
i (x)

f2
i (π + x)

+
p2
i (π + x)

f2
i (x)

p2
i (x)

fi(π + x)
+

p2
i (π + x)

fi(x)

=
√

2

1

ψ2
i (π + x)

+
1

ψ2
i (x)

pi(x)

ψi(π + x)
+

pi(π + x)

ψi(x)

�
√

2

2

m2
ψi

p(x) + p(π + x)

Mψi

� Mψi

m2
ψi

so βi = Mψi
/m2

ψi
works fine, while if x = 0 we have also to require 1/fi(π) � βi to

ensure that inequality (2.11b) is satisfied: more precisely, at x = 0 (by (4.8), the case
is of interest only for circulants and Hartley matrices since x = 0 is not a grid point
for τ matrices), we have

pi(0) =
√

2 2q + di,

fi(0) = ci > 0,

pi(π) = 0,

fi(π) > 0,

and therefore (4.8) holds at x = 0 with any constant βi such that 1/fi(π) � βi. Since
(Mψi/m

2
ψi

) · fi(π) � fi(π)/mψi
� 1, it follows that β∗

i = Mψi
/m2

ψi
is the best value.

As a consequence, it follows that

αi

βi
� 1

2qMψi

·
m2

ψi

Mψi

=
1

2qµ2
∞(ψi)

.(4.10)

Therefore, to enforce the inf–min condition (4.9), it is enough to prove the existence
of an absolute constant L such that µ∞(ψi) � L < +∞ uniformly to deduce that
‖MGM0‖A0

�
√

1 − 2−qL−2 < 1: the latter follows from the next proposition.
Proposition 4.8. Under the same assumptions of Proposition 4.3, let ψ0 be

a positive polynomial and let us define ψi = [Φq]
i(ψ) for every i ∈ N, where Φq

is the linear operator defined as in (4.5). Then there exists a positive polynomial
ψ∞ ∈ Rq−1 such that ψi uniformly converges to ψ∞, and moreover there exists a
positive real number L such that µ∞(ψi) � L for every i ∈ N.

Proof. The proof is organized into two parts.
Part A. From the definition of the operator Φq in (4.5) and from the assumptions

on the polynomials pi (see Proposition 4.3), it follows that the positivity (and the
boundedness) of ψ0 implies the positivity (and the boundedness) of ψi for every i ∈ N,
i.e., there exist positive constants Li such that

µ∞(ψi) � Li.(4.11)

Part B. We give a linear algebra proof of the fact that, starting a polynomial
ψ0 such that ψ0(0) > 0, the operator Φq in (4.5) has a strictly positive fixed point
belonging to Rq, and therefore there exists a constant L∞ such that

lim
i→∞

µ∞(ψi) = L∞.(4.12)

Therefore the second result (µ∞(ψi) � L for i ∈ N and for a pure constant L > 0)
will be a straightforward consequence of (4.11) and of (4.12) which, in turn, is a
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consequence of the uniform convergence of the sequence ψi and of the fact that its
limit is a strictly positive function. The latter is what we are going to prove.

From (2.14) it follows that fi ∈ RTi
with Ti+1 = q + �Ti

2  if f0 ∈ RT0
, and hence,

since fi = ψi[1 − cos(x)]q, there exists an index j ∈ N such that ψi ∈ Rq when i � j
and we can suppose ψi ∈ Rq. We demonstrate a bit stronger result, i.e.,{

ψ ∈ Rq

ψ(0) > 0
⇒ ∃ψ∗ ∈ Rq : [Φq]

i(ψ)
uniformly−−−−−−→ ψ∗.

As Φq is linear, by expressing the problem in the basis {e−iqx; . . . ; eiqx} and by de-
noting by Φ̄q the matrix representing Φq in such a basis, the preceding implication is
equivalent to proving that{

a ∈ C
2q+1∑2q+1

j=1 aj > 0
⇒ ∃a∗ ∈ C

2q+1 :
[
Φ̄q

]i
a −→ a∗.(4.13)

If (4.13) holds true, then there exists ψ∗ ∈ Rq (defined by ψ∗(x) =
∑

|j|�q a
∗
j+q+1e

ijx)

such that ψi −→ ψ∗ uniformly and Φq(ψ
∗) = ψ∗. Moreover, from the assumptions on

pi (see Proposition 4.3), we have pi(π) = 0, p(0) = 2q+
1
2 and therefore, by (4.5), we

have

ψi+1(0) = Φq(ψi)(0) =
p(0)

2q+
1
2

ψi(0) = ψi(0).

Thus ψ∗(0) = ψ0(0) > 0. The last condition ensures ψ∗ > 0, because, from ψ∗(x̄) = 0
and from the definition of Φq(·), it follows ψ∗(x̄/2s) = 0 for every s ∈ N (use (4.5)),
and this is clearly impossible because ψ∗ is continuous and therefore

lim
s→∞

ψ∗(x̄/2s) = ψ∗(0) > 0.

We still have to show (4.13). In actuality, (4.13) follows if we demonstrate that Φ̄q

has one eigenvalue equal to 1 with algebraic multiplicity 1 and positive eigenvector
a∗, while all the other eigenvalues λi enjoy the relation |λi| < 1: to this aim we will

use the Perron–Frobenius theorem [19, 36]. Let us look at Φ̄q. We define b
(q)
j , |j| � q,

as the Fourier coefficient of 1

2q+ 1
2
p(x) (i.e., of cos2q(x/2)):

b
(q)
j =

1

2π

∫ π

−π

1

2q+
1
2

p(x)eijx dx =
(2q)!

4q(q − j)!(q + j)!
> 0, b

(q)
j = b

(q)
--j .

It holds that p(x)eikx =
∑k+q

j=k−q b
(q)
j−ke

ijx and hence Φ̄q has (by (2.14)) the following
matrix form:

Φq

(
eikx

)
=2

�k+q
2 ∑

j=�k−q
2 	

b
(q)
2j−ke

ijx ⇒ Φq =2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(q)
--q

... b
(q)
1--q b

(q)
--q

...
...

. . .
. . .

b
(q)
q b

(q)
q--1 b

(q)
1--q b

(q)
--q

. . .
. . .

...
...

b
(q)
q b

(q)
q--1

...

b
(q)
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
--q:q×--q:q

.

(4.14)
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Nonvanishing entries in the kth column are the coefficients 2b
(q)
j such that j ≡

k (mod 2). We observe b
(q)
q = b

(q)
--q = 4−q < 1 and then we have only to check

the behavior of the eigenvalues of the submatrix M with both indices ranging from
−q + 1 to q − 1 (this matrix is the one displayed in the inner box of (4.14)). The
corresponding analysis is now straightforward: the vector of all ones is an eigenvector
of MT related to the eigenvalue 1 (because of the left side in (4.14)); ‖M‖∞ = 1,
Mij � 0 and M is irreducible. Finally, the result follows from the Perron–Frobenius
theorem applied to the matrix M .

We remark that the previous result on the limit polynomial ψ∗ can be refined a
little bit. Indeed, it belongs to Rq−1 (instead of Rq) since the eigenvector a∗ of Φq

related to the dominating eigenvalue λ = 1 is of the form⎛⎝ 0
â
0

⎞⎠ ,

where â is the positive eigenvector of M associated with the dominating eigenvalue
λ = 1.

Theorem 4.9. Let f be a trigonometric polynomial, positive in (0, 2π) and van-
ishing at 0 with order 2q (also even in the τ case); let us fix integers k0,m such that
0 < m < k0, and let us define ni, i = 0, . . . ,m, as in (2.12).

For every i = 0, . . . ,m − 1, define also the following quantities: pi(x) =
√

2
[
1 +

cos(x)
]q

+di χ2πZ(x) with di as Proposition 4.4, K i
i+1 as in (2.12), P i

i+1 = K i
i+1Ani(pi)

with A ∈ {C,H, τ} as in (1.4), and Ri as in (2.2) with Ri = Ini
−Ani

/‖fi‖∞.

If we set A0 = An0
(f + c0χ2πZ) with c0 = f(w

[n0]
1 ) in the circulant and Hartley

cases and with c0 = 0 in the τ case, and we consider b ∈ C
n0 , then the V-cycle

algorithm defined in (2.1) converges to the solution of A0x = b and is optimal (in the
sense of Definition 1.1).

Proof. From Proposition 4.2 we know that

f(x) = [1 − cos(x)]
q · ψ(x)

for some positive polynomial ψ. Now, it is enough to observe that the MGM optimal
convergence stated in Theorem 2.3 is implied by the inf–min condition (4.9) which, in
turn, by (4.10), is implied by the uniform boundedness of the quantities µ∞(ψi) and
the latter has been proven in Proposition 4.8.

4.4. The case of a unique zero at x0 �= 0: Circulant and Hartley al-
gebras. We now consider matrices belonging to the circulant and Hartley algebras,
whose generating function f0 vanishes in a generic point x0. We remark that Propo-
sition 4.2 ensures f0 = [1 − cos(x− x0)]

q
ψ0(x−x0). Consequently, as in the previous

situation (x0 = 0), we obtain a similar result.
Proposition 4.10. Under the same assumptions of Proposition 2.5, let

f0(x) = [1 − cos(x− x0)]
q
ψ0(x − x0) with q positive and integer and let ψ0 be a

positive trigonometric polynomial. By defining xi+1 = 2xi (mod 2π) and pi(x) =√
2 [1 + cos(x− xi)]

q
for every i = 0, . . . ,m − 1, we deduce that the generating func-

tions fi enjoy the following relation:

fi(x) = [1 − cos(x− xi)]
qψi(x− xi).

Proof. It suffices to write fi+1(x) = 1
2 [(p2

i fi)(
x−2xi

2 ) + (p2
i fi)(π + x−2xi

2 )] and to
apply the statement contained in Proposition 4.3.
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In such a situation the functions fi will not converge, but the values µ∞(ψi)
remain unchanged and the latter is enough to prove the MGM optimal convergence
(see (4.10)).

4.5. The case of a unique zero at x0 �= 0: the τ algebra. Since the
generating function f0 must be also even, it follows that the unicity of the zero x0 �= 0
implies that f0 has to vanish at x0 = π. In addition, it is worth mentioning that
when the coefficient matrix is A = τn0

(f0) and f0(π) = 0 and is positive elsewhere
in (0, 2π), from relation (2.13), it follows that the function f1 has a unique zero at 0.
Since the MGM optimality, for functions having a unique zero at the origin, has been
proven (see Theorem 4.9), it easily follows that the MGM optimal convergence stands
for the case of a unique zero at π. Indeed, looking at the MGM applied to τn1

(f1), it
holds that (2.9) is satisfied with

δ̄ independent of n1 =
n0 − 1

2
∀i = 1, . . .m− 1.

Therefore, Theorem 2.3 holds with δ = min{δ0, δ̄}, which is constant and independent
of n0, i.e., the MGM is optimal.

We point out that the case of generating function that vanishes at π with respect
to each variable is particularly important in applications. In fact, certain integral
equations when discretized lead to matrices belonging to this class. For instance,
the signal restoration leads to the case of f(π) = 0, while for the super-resolution
problem and image restoration we have f(π, π) = 0 [8]. Therefore, it is interesting
to stress that the application of the V-cycle algorithm is such that a discretized
integral problem is projected, at the lower level, into another which is spectrally and
structurally equivalent to a discretized differential problem.

Finally, we observe that the case of two zeros x0 and 2π − x0 for x0 /∈ {0, π}
is not different from the case of a unique zero since Proposition 4.2 holds with
[cos(x0) − cos(x)]

2q
in place of [1 − cos(x− x0)]

q
and (4.10) is satisfied as well.

5. The multilevel case. We briefly describe our choice of projectors and smoo-
thers in the multilevel case and we indicate how to generalize the proof of MGM
optimal convergence (for the TGM the optimality has been already proven in [27, 31]).

The smoothing iteration is formally defined as in the unilevel case. The projectors
are constructed as U i

i+1Ani(pi), where ni = ((ni)1, . . . , (ni)d), the polynomial pi is d

variate polynomial and the matrix U i
i+1 is defined as Ki,1

i+1 ⊗ · · · ⊗ Ki,d
i+1 with Ki,j

i+1

being the (ni+i)j×(ni)j unilevel cutting matrix related to A explicitly given in (2.12).
If the coefficient matrix is Ani(fi) with fi having a unique zero at x0 of order 2q, the
matrix Ani(pi) is chosen with pi such that

lim sup
x→x0

∣∣∣∣pi(x̂)

fi(x)

∣∣∣∣ < +∞, x̂ ∈ M(x), i = 0, . . . ,m− 1,(5.1)

where

0 <
∑

x̂∈M(x)∪{x}
p2
i (x̂), i = 0, . . . ,m− 1,(5.2)

with M(x) being the set of the “mirror points” of x introduced for d = 2 in [16]. A
formal definition is the following: x̂ ∈ M(x) if and only if x̂ �= x and ∀j = 1, . . . , d
it holds x̂j ∈ {(x)j , π + (x)j}. For d = 1, it is evident that the unique mirror point
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is π + x, while in the general case the cardinality of M(x) is 2d − 1. Notice that
∀x̂ ∈ M(x) we have M(x̂) = {M(x)\{x̂}} ∪ {x}.

If fi has more than one zero in [0, 2π]d then the corresponding polynomial pi will
be the product of the basic polynomials satisfying (5.1) and (5.2) for any single zero.

Remark 5.1. In the case of more than one zero, relation (5.2) imposes some
restrictions on the zeros of f0. First, the zeros of f0 should be of finite order (by
(5.1)) and this is true in the case of a unique zero, too. Second, if x0 is a zero of
f0 then f(x̂) > 0 for any x̂ ∈ M(x0); otherwise relationship (5.2) cannot be satisfied
with any polynomial p0. As in the unidimensional case the second restriction can be
removed by changing the “form” of the projection that is its smaller dimension.

Proposition 5.2. Let Ai = Ani
(fi), P i

i+1 = U i
i+1Ani(pi), with fi being a

nonnegative polynomial (also even in the τ case) and pi satisfying conditions (5.1)
and (5.2) (also even in the τ case).

1. The projected matrix Ai+1 coincides with Ani+1
(fi+1), where

2df̂i+1(x) =
∑

x̂∈M(x/2)∪{x/2}
fi(x̂)p2

i (x̂)

for x = (x1, . . . , xd) ∈ [−π, π]d.
2. If x0 ∈ [−π, π]d is a zero of fi(x), then fi+1 has a corresponding zero y0 ∈

[−π, π]d where y0
j = 2x0

j with j = 1, . . . , d.

3. fi and fi+1 have the same number of zeros, i.e., for any y0 ∈ [−π, π]d zero of
fi+1 there exists a unique zero of fi such that the relations in the preceding
item holds true.

4. The order of the zero y0 of fi+1 is exactly the same as the one of the zero x0

of fi so that at the lower level the new projector is easily defined in the same
way.

The preceding proposition gives us the necessary tools for talking about the MGM
optimal convergence. Indeed it is easy to verify that the proofs of Propositions 4.1
and 4.6 are directly generalized to the multilevel setting. The difficult part concerns
relation (4.10), which is strongly based on the factorization result of Proposition 4.2.
In actuality, we notice that relation (4.4) is inherently one-dimensional so that the
complete multilevel proof could require a different tool at this point of the reasoning:
in this respect, very recently, a substantial step has been made by the first two authors
by considering an additive representation of the symbols (for more details see [2]).

6. MGM techniques for multilevel Toeplitz matrices. We first observe
that the discretization of elliptic boundary value problems with constant coefficients
and many image restoration problems lead to Toeplitz structures in which the symbol
f = f0 is polynomial, nonnegative with isolated zeros, and even (with respect to every
direction if f0 is multivariate). The latter property suggests that the right starting
point for generalizing the V-cycle algorithm to Toeplitz structures should be the MGM
for τ matrices (see also the beginning of Hackbush’s book [17]).

In the following, we generalize the V-cycle techniques previously defined for the
(multilevel) τ algebra to the (multilevel) Toeplitz class using the relation (1.2) which
characterizes any Toeplitz matrix as its natural τ preconditioner plus a Hankel cor-
rection. In [27] the author presents three different choices of P i

i+1 when the coefficient
matrix An0(f0) is Toeplitz:

(A) P i
i+1 = K i

i+1Tni(pi),



206 A. ARICÒ, M. DONATELLI, AND S. SERRA-CAPIZZANO

(B) P i
i+1 = K i

i+1τni
(pi),

(C) P i
i+1 = K i

i+1[ti]Tni
(pi), i = 0, . . . ,m− 1.

Here pi is the projection trigonometric polynomial defined via the same conditions
as in the τ algebra case for every level i = 0, . . . ,m− 1. For the TGM we have only
i = 0 and p0 is such that the conditions (2.15) are satisfied. On the other hand, for
the multigrid algorithm (see section 4), the polynomials pi are chosen in such a way
that the stronger conditions (4.2) are satisfied. The choice (A) is the most natural,
but unfortunately the lower level matrix Ani+1 = P i

i+1Ani(P
i
i+1)

H is not Toeplitz
unless the degree of pi does not exceed 1. With the choice (B), the optimality of the
TGM with An0 = Tn0(f0) has been proven in [27]. With the choice (C), for every
t � 0, the cutting matrix K i

i+1[t] coincides with the submatrix of K i
i+1 obtained by

deleting its first and last t rows with t = b−1, where b is the degree of pi that is equal
to the degree of p0 for i = 0, . . . ,m − 1 (according to Propositions 4.5 and 5.2, at
each level the order of the zeros of fi is preserved, and therefore the degree of pi can
be maintained constant). This projector is employed in order to preserve the exact
Toeplitz structure at each subsequent level of projection.

It is possible to preserve the exact Toeplitz structure at each level, cutting less
information. In this paper we propose a different choice, i.e.,

(D) P i
i+1 = K i

i+1{t}Tni
(pi),

where t is defined again as the degree of p0 minus 1 (we remind the reader that the
degree of pi is constant with respect to i), while

K i
i+1{t} =

[
0 t
ni+1−t | Kni−2t

ni+1−t | 0 t
ni+1−t

]
∈ R(ni+1−t)×ni .

Where 0βα ∈ R
α×β is the null matrix and Kni−2t

ni+1−t ∈ R
(ni+1−t)×(ni−2t) is the usual

cutting matrix where we put in evidence the dimensions instead of the recursion
levels. We remark that, to apply the MGM recursively, we must start from dimension
n0 = 2k0−1−2t; hence the dimension of problem at each sublevel is ni = 2k0−i−1−2t.
The matrix K i

i+1{t} is the cutting matrix that preserves the Toeplitzness at each
level cutting the lowest possible level of information. Furthermore, we observe that
K i

i+1[t] = K i
i+1{2t} for t � 1, and in addition, as can be experimentally verified, the

number of iterations required by the MGM to reach a fixed precision is bounded from
above by a constant independent of n (optimality). However, the involved constant
bound is much higher with the choice (C) than with the choice (D) and this is due to
the quantity of information that we lose in the involved choices.

Analogously, in the multilevel case, pi is a suitable multivariate nonnegative poly-
nomial of partial degrees ti + 1, with i = 1, . . . , d. Let U i

i+1{t} = Ki
i+1{t1} ⊗ · · · ⊗

Ki
i+1{td}, we define P i

i+1 = U i
i+1{t}Tni(pi), where ni = ((ni)1, . . . , (ni)d). There-

fore, the d-level Toeplitz matrix at MGM recursion level i + 1 is Tni+1(fi+1) =

P i
i+1Tni(fi)(P

i
i+1)

H ∈ R
N(ni+1)×N(ni+1) for i = 0, . . . ,m − 1, where each component

of ni+1 is defined as in the unilevel case.
The definition of the smoothing operators follows the same lines as in section 4.1.

In [27] the TGM smoothing property is proved in the Toeplitz case and, by Remark
2.4, we can extend the same property to MGM.

7. Numerical experiments. In this section we present a wide numerical exper-
imentation both in monodimensional and bidimensional cases. We stress that in both
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Table 7.1

Post-smoother strategies: (a, b, c), where a = iterations of Richardson with ωi = 1/max(fi), b
= iterations of Richardson with ωi = 2/max(fi), c = iterations of CG; i = 0, . . . ,m− 1.

(1, 0, 0) (2, 0, 0) (4, 0, 0) (1, 1, 0) (1, 0, 1)

ρ(MGM0) 0.75 0.5625 0.3164 0.375 nonstationary
# iterations 83 42 21 25 17

situations we obtain similar results (iteration number independent of problem dimen-
sion), so our algorithm performances are not worse for multidimensional problems. In
particular, this property is preserved also for the generalization of our algorithm to
multilevel Toeplitz systems proposed in section 6.

In what follows, the initial guess is x(0) = 0, the vector b is calculated from
the exact solution xi = i/n, i = 1, . . . , n. The operations are executed in double

precision and the termination condition is ‖r(k)
0 ‖2 � ε‖b‖2, where ε = 10−11 in

the monodimensional case and ε = 10−7 in the bidimensional case, since the high
condition number does not allow a more accurate solution even in double precision.
Concerning bidimensional problems, for simplicity, we consider the same dimensions
in both directions. In the monodimensional V-cycle algorithm, the system at the
coarsest level has dimension (23 − 1)× (23 − 1), while in the twodimensional case the
size is (23 − 1)2 × (23 − 1)2.

7.1. On the smoother choice. Our theoretical analysis of convergence and
optimality is done for only one iteration of a Richardson post-smoother with best
parameter ωi = 1/max(fi) for i = 0, . . . ,m− 1. Obviously, by increasing the number
of iterations of the post-smoother or by adding a pre-smoother, the MGM converges
more rapidly. In Table 7.1 we report the MGM spectral radius and the number of
iterations when varying the post-smoother strategy. The problem dimension is not
reported since by the MGM optimality the spectral radius and the number of iterations
does not change for different dimensions. From this table we can see as the MGM
spectral radius decreases, the number of iterations required by the method about
halves when we double the number of iterations of the smoother. The latter behavior
stresses the strength of our MGM, since, by doubling the number of smoothing steps,
the overall cost of a single V-cycle iteration is slightly less than doubled. Furthermore,
from Table 7.1 we observe that the use of a multi-iterative strategy (see [28]) allows
one to increase the MGM convergence speed: here for multi-iterative strategy we mean
a fast iterative solver obtained by the combination of possibly slow basic iterations
but with spectral complementary behavior. Indeed, one step of post-smoother with
Richardson and ωi = 1/max(fi) and one with ωi = 2/max(fi), i = 0, . . . ,m − 1,
lead to a V-cycle iteration which is of the same cost as the one with two iterations of
post-smoother with Richardson and ωi = 1/max(fi) for i = 0, . . . ,m−1: however the
number of iterations for reaching a given accuracy is roughly halved. According to this
strategy, using the CG (not a stationary method!), the number of iterations is further
reduced as reported in the last column of Table 7.1. We notice that the application
of a constant number of CG steps is a nonstationary iteration which reduces to a
specific Richardson method with varying parameter when we have only one CG step.
The important observation is that both Richardson with ωi = 2/max(fi) and one
step (or a few steps) of the CG method are not smoothers but, according to the
terminology of the multi-iterative methods, re intermediate (or residual) iterations. In
actuality, in a V-cycle, the smoother “well approximates” the solution in the subspace
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where the coefficient matrix is well conditioned, the coarse grid correction (CGC)
“well approximates” the solution in the ill-conditioned subspace (if the projector is
properly chosen) and the intermediate or residual iteration takes care of the possible
subspace where both the smoother and the CGC iterations failed to be effective: it
is the spectral complementarity of these basic iterations that makes the whole multi-
iterative procedure fast (see [28]). In the specific case of a V-cycle, we observe that the
action of the smoother and CGC is enough for obtaining an asymptotically optimal
method and therefore the role of the intermediate iteration amounts to accelerating
the global convergence speed (see also [31]).

According to the previous reasoning, in the following, when not differently speci-
fied, we have used one iteration of relaxed Richardson method with weight ‖fi‖−1

∞ as
pre-smoother (a real smoother!) and one CG iteration as post-smoother (a residual
iteration). Notice that the latter V-cycle has the same convergence features (see [31])
of a V-cycle with two steps of post-smoothing (one step of Richardson with weight
‖fi‖−1

∞ and one step of CG): we stress that the combination of the former two basic
iterations is a smoother, i.e., it satisfies the smoothing property in accordance with
Proposition 4.1.

7.2. Elliptic PDEs. Let us consider a d-dimensional problem on the rectangular
domain Ω = [0, 1]d:⎧⎪⎨⎪⎩ (−1)q

d∑
i=1

∂q

∂xq
i

(
a(x)

∂q

∂xq
i

u(x)

)
= g(x), x ∈ Ω, q ≥ 1,

homogeneous B.C. on ∂Ω

(7.1)

where x = (x1, . . . , xd), when discretized on a uniform grid of n = (n1, . . . , nd)
subintervals using centered finite difference of minimal precision order 2, it leads to
a multilevel band N(n) ×N(n) linear system Any = b, that does not belong to the
multilevel Toeplitz class unless a(x) is a constant function. In that case An = Tn(f (q)),
where

f (q)(x) =

d∑
i=1

[
2 − 2 cos(xi)

]q
,(7.2)

from the condition (4.6) and its generalization to the multidimensional case, we can
choose pi = p(q)(x) with

p(q)(x) =

d∏
j=1

[
2 + 2 cos(xj)

]q
which allows us to obtain the optimality of our MGM when applied to a linear system
τn(f (q))y = b.

For the τ algebra, Table 7.2 shows the number of iterations of our MGM when
increasing the dimension n both in the monodimensional and bidimensional case (n =
(n1, n2)). Concerning the circulant algebra, as already stressed, Cn(f (q)) is singular

because f (q) vanishes at the origin. Therefore, we solve the system C̃n(f (q))y = b,

where C̃n(f (q)) is the stabilized version of Cn(f (q)) defined in (1.5). Table 7.3 shows
the number of iterations of our MGM applied to these systems in the τ algebra case.

We remark that our MGM shows an optimal behavior also in the multilevel case,
and indeed a theoretic extension of the result reported in section 4 to the multidi-
mensional context is reported in [2].
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Table 7.2

Tau case: Number of iterations for increasing dimensions N(n) both in the monodimensional
case (N(n) = n) and in the bidimensional case (N(n) = n1n2, n1 = n2).

1D (monodimensional) 2D (bidimensional)
# iterations # iterations

n
f (1) f (2) f (3) n1 · n2 f (1) f (2) f (3)

27 − 1 14 17 33 (26 − 1)2 11 20 37
28 − 1 14 17 33 (27 − 1)2 11 20 37
29 − 1 14 17 33 (28 − 1)2 10 20 37
210 − 1 15 17 33 (29 − 1)2 10 20 36

Table 7.3

Circulant case with stabilization: Number of iterations for increasing dimensions N(n) both in
the monodimensional case (N(n) = n) and in the bidimensional case (N(n) = n1n2, n1 = n2).

1D (monodimensional) 2D (bidimensional)
# iterations # iterations

n
f (1) f (2) f (3) n1 · n2 f (1) f (2) f (3)

27 13 17 31 (26)2 10 19 34
28 14 17 31 (27)2 10 19 34
29 14 17 31 (28)2 10 19 34
210 14 17 31 (29)2 10 19 34

Through the procedure described in section 6 we can also directly solve the system
Tn(f (q))x = b: we must only take care to define the correct dimension to allow the
MGM recursive application. In Table 7.4 the degree of pi is �(q + 1)/2	 instead of
q (refer to section 8), since the columns number (i.e., information) deleted from our
algorithm is proportional to the degree of pi. Furthermore, to recover a practically
optimal behavior we perform νi = 2 + i iterations of pre-smoother and νi = 2 + i
iterations of post-smoother at level i (as proposed in [31]). According to the definition
of the cutting matrix K i

i+1{t}, to apply recursively the MGM, the dimension of the
ith projected system is 2r − ξ, where r ∈ N and ξ = 2 �(q + 1)/2	 − 1. From Table
7.4 we observe that our MGM shows again a practically optimal behavior both in
monodimensional and bidimensional Toeplitz cases and, moreover, we stress that the
cost of every MGM iteration with νi = 2 + i is still linear as the size N(n) of the
coefficient matrix (see the analysis of the computational cost in [31]).

7.3. Independency from the spectral decomposition of the solution. For
our experimentation so far, we obtained the data vector b from the exact solution
xi = i/n, i = 1, . . . , n (initial solution x(0) = 0 ∈ R

n). Here we emphasize that the
behavior of our algorithm does not depend on the particular spectral decomposition
of the exact solution x. We take four different types of solution where the coefficient
matrix of the system is τn(f (2)) and in Table 7.5 we report the iteration number
required by the MGM to converge. From this table we observe a similar behavior for
every different type of solution stressing the robustness of our algorithm.

7.4. Zero not in the origin. We present an example where the generating
function f0 does not vanish at the origin. More explicitly, the symbol

f0(x) = (1 − cos(x− 1))(1 − cos(x + 1)) = (cos(1) − cos(x))2
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Table 7.4

Toeplitz case: Number of iterations for increasing dimensions N(n) both in the monodi-
mensional case (N(n) = n) and in the bidimensional case (N(n) = n1n2, n1 = n2) with
ξ = 2 �(q + 1)/2� − 1, q = 1, 2, 3.

1D (monodimensional) 2D (bidimensional)
# iterations # iterations

n
f (1) f (2) f (3) n1 · n2 f (1) f (2) f (3)

27 − ξ 9 41 53 (26 − ξ)2 6 24 33
28 − ξ 9 44 54 (27 − ξ)2 6 26 33
29 − ξ 10 47 54 (28 − ξ)2 6 27 33
210 − ξ 9 48 55 (29 − ξ)2 6 29 33

Table 7.5

Different type of solution: Number of iterations for increasing dimension n for τn(f (2)).

# iterations for xi =
n i

n
(−1)i cos

(
2iπ
n

)
1

27 − 1 17 15 17 17
28 − 1 17 14 17 17
29 − 1 17 14 17 17
210 − 1 17 14 17 17

is even and for x ∈ [0, 2π) vanishes at 1 and 2π − 1 with order 2. For simplicity, we
consider only the monodimensional τ algebra case, but the same considerations hold
in the Circulant and Hartley algebras as well. According to (4.3), choosing

p0(x) = (cos(1) + cos(x))2

we have an optimal MGM for τn(f0). Fixing x
(1)
0 = 1 and x

(2)
0 = 2π− 1, the position

of the new zeros x
(k)
i of fi, for i = 0, . . . ,m − 1 with k = 1, 2, moves according

to Proposition 4.5 and then the functions pi change at each level i. By applying
the MGM, since we have two zeros of order two, we strengthen the smoothers by
performing two iterations of pre-smoother and post-smoother. In Table 7.6 we report
the number of iterations required for convergence, which is practically constant with
regard to the dimension n, showing an optimal behavior in this case, too.

7.5. Image restoration problems. In the restoration of blurred images with
Dirichlet boundary conditions we solve a system with coefficient matrix Tn(f), where
f(x1, x2) is small and even indefinite when x1 and x2 approach π (see also [6, 18]).
Let S be the true image (for instance a “satellite”) and let us consider the blurred
image

S = Tn(ψ(x1, x2)[4 + 2 cos(x1) + 2 cos(x2)]
3)S,(7.3)

where the matrix Tn(ψ(x1, x2)[4 + 2 cos(x1) + 2 cos(x2)]
3) represents the compactly

supported and spatially invariant “blurring operator.” Here [4+2 cos(x1)+2 cos(x2)]
3

has a zero at (π, π) of order 6 and ψ(x1, x2) is a strictly positive polynomial with
nonnegative Fourier coefficients: in this way the Fourier coefficients of ψ(x1, x2)[4 +
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Table 7.6

Zero not in the origin: Number of iterations increasing the dimension for τn((cos(1) − cos(x))2).

dimension 27 − 1 28 − 1 29 − 1 210 − 1

# iterations 18 27 28 26

Table 7.7

“Satellite” restoration: Error behavior in ‖ · ‖2.

# iterations 1 10 20 30 42

error norm 8.271856E-01 4.522643E-03 4.490511E-04 5.478008E-05 4.781925E-06

2 cos(x1) + 2 cos(x2)]
3 are nonnegative as reported in the following mask:

0 0 0 0 0.0002 0 0 0 0
0 0 0 0.0007 0.0033 0.0007 0 0 0
0 0 0.0010 0.0098 0.0260 0.0098 0.0010 0 0
0 0.0007 0.0098 0.0508 0.1022 0.0508 0.0098 0.0007 0

0.0002 0.0033 0.0260 0.1022 0.1829 0.1022 0.0260 0.0033 0.0002
0 0.0007 0.0098 0.0508 0.1022 0.0508 0.0098 0.0007 0
0 0 0.0010 0.0098 0.0260 0.0098 0.0010 0 0
0 0 0 0.0007 0.0033 0.0007 0 0 0
0 0 0 0 0.0002 0 0 0 0

Therefore, the associated Toeplitz sequence is asymptotically very ill-conditioned (∼
[N(n)]3) and, despite this bad spectral behavior, the proposed multigrid method is
optimal as emphasized by the linear convergence reported in Table 7.7. The considered
choice is made in such a way that the resulting blur operator is a band approximation
of the classical Gaussian blur whose Fourier coefficients are positive, symmetric and
decay exponentially and whose generating function is close to zero in a neighborhood
of (π, π) and is positive elsewhere. Furthermore, the presence of the term ψ(x1, x2) > 0
leads to a larger bandwidth so that the resulting blurring effect is more realistic.

As in the monodimensional case described in section 4.5, in the multidimensional
case also, our discretized integral problem is projected at the lower level into a dis-
cretized differential problem, so that the optimal behavior holds as shown in section
7.2 and Table 7.7. We consider the blurred image without noise and we solve the
system (7.3) with the same smoother choice performed in section 7.2 for the Toeplitz
case.

We stress that the regularization is not necessary since the image and the point
spread function (PSF) are noise free and the conditioning of the blur operator is
only polynomial with the size of the matrix. In Figure 7.1 we report the sequence of
“satellite” image, the true image S, the blurred image S, and the restored image with
our MGM after 42 iterations.

Finally, we remark that in the case of noise the regularized systems (Tn(f) +
µI)S = S with µ > 0 (see [6]) have a better conditioning than in the case of µ = 0:
therefore, our multigrid procedure, which is optimal for µ = 0, will be robust since
the number of iterations will be bounded by a constant independent both of N(n)
and of µ > 0. In the first line of Table 7.8 we report the number of iterations for the
restoration of the blurred satellite affected by 2% of noise with varying µ and with our
projector. The second line of that table is obtained by using the same V-cycle with
the same smoothers and with the classical projector used in the PDEs context [17]
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True Image (dim: 253 × 253). Blurred Image. Restored Image after 42

iterations.

Fig. 7.1. Sequence of satellite images.

Table 7.8

Number of iterations for the satellite restoration with 2% of noise with varying µ.

µ 10−1 10−2 10−3 10−4

p(x) = (2 − 2 cos(x1))2(2 − 2 cos(x2))2 7 28 67 94
our projector

p(x) = (2 + 2 cos(x1))(2 + 2 cos(x2)) 7 32 216 1806
linear interpolation

and by Huckle et al. [18] and R. Chan, T. Chan, and W. Wan [6] in image restora-
tion: it is evident that our choice improves the convergence behavior substantially by
maintaining the same computational cost. However, in the numerics with Gaussian
blur in [6, 18] the authors obtained reasonably good results by applying the “wrong”
prolongation operator: the reason is that, as smoothers, they used very sophisticated
and costly solvers like PCG and FGMRES (flexible GMRES) with cosine/circulant
preconditioners. Therefore the success of the whole procedure is mainly due to these
auxiliary solvers which are reasonably effective on their own. Future work should try
to combine their approach (with sophisticated smoothers) and the “correct” prolon-
gation operators indicated in the present paper.

8. Concluding remarks, open problems, and future work. In this paper
we have proposed a proof technique (based on matrix inequalities and on the Perron–
Frobenius theorem) which has been successful for a rigorous convergence analysis of
the V-cycle procedure when applied to unilevel linear systems from algebras. We
have also presented some algorithmic proposals for multilevel and Toeplitz structures:
the numerical results (on discretized differential and integral problems) indicate an
optimal convergence rate of our V-cycle procedures, but still we have to provide a
theoretical analysis in the multilevel and Toeplitz settings.

Therefore future work should include the following directions:
• Toeplitz extension of the theory (for the TGM this has been done in [27]);
• multilevel extension of the theory (for matrix algebras see [2] while for mul-

tilevel Toeplitz structures only the TGM analysis is available [27]);
• multiple zero case (the TGM analysis and the numerical results are available

[7, 15, 16, 18, 27, 31]: the MGM theory should be easy but tedious following
the approach in the present paper).

Moreover, from an experimental viewpoint it is evident that conditions (2.15) are
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sufficient for the level independency and for the TGM optimality but they are not
enough for the MGM optimality (see section 3). We have proven conditions (4.2) to
be sufficient for the MGM optimality. However, from our numerics and from [31], we
know that conditions (4.2) can be replaced by

lim
x→x0

p2
i (π + x)

fi(x)
= 0,

p2
i (x) + p2

i (π + x) > 0 ∀x

by preserving the MGM optimal convergence rate (the latter are much weaker than
(4.2) and just a little bit stronger than (2.15)!). Future work should also try to answer
the previous question.
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Abstract. We consider the reduction of a symmetric indefinite matrix pair (A,B), with B
nonsingular, to tridiagonal-diagonal form by congruence transformations. This is an important
reduction in solving polynomial eigenvalue problems with symmetric coefficient matrices and in
frequency response computations. The pair is first reduced to symmetric-diagonal form. We describe
three methods for reducing the symmetric-diagonal pair to tridiagonal-diagonal form. Two of them
employ more stable versions of Brebner and Grad’s pseudosymmetric Givens and pseudosymmetric
Householder reductions, while the third is new and based on a combination of Householder reflectors
and hyperbolic rotations. We prove an optimality condition for the transformations used in the
third reduction. We present numerical experiments that compare the different approaches and show
improvements over Brebner and Grad’s reductions.
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1. Introduction. Motivation for this work comes from the symmetric polyno-
mial eigenvalue problem (PEP)

(λmAm + λm−1Am−1 + · · · + A0)u = 0,(1.1)

where the Ai, i = 0:m, are n × n symmetric matrices. λ is called an eigenvalue and
u �= 0 is the corresponding right eigenvector. The standard way of dealing with the
PEP in practice is to reformulate it as a generalized eigenvalue problem (GEP)

Ax = λBx,(1.2)

of size mn. This process is called linearization, as the GEP is linear in λ. Symmetry
in the problem is maintained with an appropriate choice of linearization. For example,
we can take

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 A0

... A0 A1

...
...

...
0 A0 Am−2

A0 A1 · · · Am−2 Am−1

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 A0 0
... A0 A1

...

0 A0

...
...

A0 A1 · · · Am−2 0
0 · · · · · · 0 −Am

⎤⎥⎥⎥⎥⎥⎥⎦
and x = [uT , λuT , . . . , λm−1uT ]T . The resulting A and B are symmetric but not
definite, and in general the pair (A,B) is indefinite.

∗Received by the editors September 16, 2002; accepted for publication (in revised form) by I. S.
Dhillon November 14, 2003; published electronically September 14, 2004. This work was supported
by Engineering and Physical Sciences Research Council grant GR/R45079 and Nuffield Foundation
grant NAL/00216/G.

http://www.siam.org/journals/simax/26-1/41478.html
†Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK (ftisseur@ma.

man.ac.uk, http://www.ma.man.ac.uk/˜ftisseur/).

215
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The first step in most eigensystem computations is the reduction of the coeffi-
cient matrices, in a finite number of operations, to a simple form. Only then is an
iterative procedure applied. A symmetric indefinite pair (A,B) can be reduced to
Hessenberg-triangular form and the resulting generalized eigenvalue problem solved
by the QZ algorithm. This approach is numerically stable, but unfortunately the
reduction to Hessenberg-triangular form destroys the symmetry. Moreover, in finite
precision arithmetic there is no guarantee that the set of left and right eigenvectors
computed via the QZ algorithm will coincide, a property possessed by GEPs with real
symmetric matrices. Also, by preserving symmetry, storage and computational costs
can be reduced.

The tridiagonal-diagonal reduction of a pair (A,B) is the most compact form
we can obtain in a finite number of steps. Such reductions have been proposed by
Brebner and Grad [5] and by Zurmühl and Falk [26] for nonsingular B. They re-
quire nonorthogonal transformations and can be unstable. Once (A,B) is reduced to
tridiagonal-diagonal form the eigenvalues and eigenvectors can be obtained by apply-
ing, for example, an HR iteration or associated iterations [5], [6], [16], [25], Uhlig’s
DQR algorithm [24], or, if one is interested in the eigenvalues only, Aberth’s method
can be used in an efficient way [1]. A robust tridiagonal-diagonal reduction is therefore
of prime importance before one can consider using any of the methods cited above. We
note that Garvey et al. [8] have considered a less compact form that allows the second
matrix to be in tridiagonal form. One feature of their approach is that no assumption
is made on the nonsingularity of the two matrices. The simultaneous tridiagonaliza-
tion is convenient if one needs to solve linear systems of the form (A− ωB)x = b for
many values of ω, as is required in frequency response computations [8], but it is less
attractive than the tridiagonal-diagonal form for eigenvalue computations.

Three different tridiagonal-diagonal reductions for indefinite pairs (A,B) with B
nonsingular are described in this paper. They all consist of two stages. The first,
common to all, is the reduction of the symmetric indefinite pair (A,B) to symmetric-
diagonal form (C, J) with the aid of a block LDLT factorization of B. During the
second stage, C is tridiagonalized using a sequence of congruence transformations
that preserve the diagonal form of the second matrix J . Each of the three reductions
proposed in this paper uses different types of transformations. These transformations
are not necessarily orthogonal, so they may be unstable in finite precision arithmetic.
We describe several techniques that can be used to make them more robust and to
improve stability during the reduction process: in particular, pivoting and zeroing
strategies in order to minimize the condition numbers of the transformations, and
mixed application of hyperbolic rotations.

The paper is organized as follows. Section 2 sets up notations and definitions.
It is shown that if the tridiagonal-diagonal reduction exists, it is determined up to
signs by the first column of the transformation matrix. Section 3 describes the first
stage of the reduction, that is, the reduction of (A,B) to symmetric-diagonal form
(C, J). The description is accompanied by an error analysis. The second stage of the
reduction is described in section 4. Three algorithms are proposed. The first two are
an improvement over Brebner and Grad’s pseudosymmetric Givens and pseudosym-
metric Householder methods [5]. The third algorithm is based on transformations
used to compute hyperbolic QR factorizations in indefinite least square problems [3].
Numerical comparisons of these algorithms and comparisons to Brebner and Grad’s
reductions are given in the last section.

2. Background material. Unless otherwise specified, ‖ · ‖ denotes the 2-norm.
We denote by diagnq (±1) the set of all n×n diagonal matrices with q diagonal elements
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equal to 1 and n − q equal to −1. A matrix J ∈ diagnq (±1) for some q is called a
signature matrix.

Let J , J̃ ∈ diagnq (±1). A matrix H ∈ R
n×n is said to be (J, J̃)-orthogonal

if HTJH = J̃ . Note that (J, J̃)-orthogonal matrices are sometimes called (J, J̃)-

hyperexchange or (J, J̃)-hypernormal matrices in the signal processing literature [17].
We recall that a tridiagonal matrix is unreduced if none of its next-to-diagonal

elements (that is, the elements on the first subdiagonal and the first superdiagonal)
is zero.

The following result is related to the implicit Q theorem [11]. A more general
form can be found in [18, Thm. 2.2].

Theorem 2.1. If C ∈ R
n×n admits a representation of the form

QTCQ = T,(2.1)

where T is unreduced tridiagonal and Q is (J, J̃)-orthogonal, then the columns of Q
and the next-to-diagonal elements of T are determined up to signs by the first (or last)
column of Q.

We give the proof since we need to refer to it later in the text. This is a construc-
tive proof that describes a Lanczos process.

Proof. Let J̃ = diag(σ̃i), σ̃i = ±1, i = 1:n, and

T =

⎡⎢⎢⎢⎢⎢⎢⎣

α1 β2

β2 α2 β3

β3
. . .

. . .

. . . αn−1 βn

βn αn

⎤⎥⎥⎥⎥⎥⎥⎦ .

We assume that q1 is given and normalized such that σ̃1 = qT1 Jq1. This yields

α1 = qT1 Cq1.

Using the (J, J̃)-orthogonality of Q, equation (2.1) can be rewritten as

JCQ = QJ̃T.(2.2)

Equating the first column on each side of (2.2) gives

p1 := JCq1 − α1σ̃1q1 = β2σ̃2q2.

From the (J, J̃)-orthogonality of Q we get σ̃2 = β−2
2 pT1 Jp1, which implies

σ̃2 = sign(pT1 Jp1), β2 = ±
√
|pT1 Jp1|,

so that q2 = σ̃2β
−1
2 p1 is determined up to the sign chosen for β2. The second diagonal

element of T is uniquely determined by

α2 = qT2 Cq2.

Hence, the construction of q2, α2, β2, and σ̃2 requires just the knowledge of p1. Now
suppose that the first j < n columns of Q and the leading j× j principal submatrices
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of T and J̃ are known. Then by equating the jth columns on each side of (2.2) we
obtain

pj := JCqj − σ̃jαjqj − σ̃j−1βjqj−1 = σ̃j+1βj+1qj+1.

Using once again the (J, J̃)-orthogonality of Q we have

σ̃j+1 = sign(pTj Jpj), βj+1 = ±
√
|pTj Jpj |.(2.3)

Hence

qj+1 = σ̃j+1β
−1
j+1pj , αj+1 = qTj+1Cqj+1.(2.4)

Again, βj+1 and qj+1 are determined up to a sign. By induction on j all columns of
Q and all next-to-diagonal elements of T are determined, up to a sign by q1.

The proof is similar if qn, the last column of Q is chosen in place of q1.
For a particular q1, the proof shows that if, for some j ≤ n, pTj Jpj = 0, the

reduction breaks down. If pj = 0 then βj+1 = 0. We can carry on the construction
with a new qj+1 chosen to be J-orthogonal to the previous qk, k = 1: j. If pTj Jpj = 0

but pj �= 0 then the breakdown is serious and there is no (J, J̃)-orthogonal matrix Q
with this given q1 that satisfies (2.1). In this case, q1 is called exceptional.

The construction of the quantities qj+1, αj+1, βj+1, and σ̃j+1 in (2.3) and (2.4)
corresponds to a modification of the Lanczos process for symmetric matrices and
therefore provides a numerical method for the reduction of a symmetric-diagonal pair
to tridiagonal-diagonal form. We will instead consider methods based on a finite
sequence of unified rotations or unified Householder reflectors or a mix of hyperbolic
rotations and Householder reflectors. But before describing the tridiagonalization
process we first consider the reduction of the symmetric indefinite pair (A,B) to
symmetric-diagonal form.

3. Reduction to symmetric-diagonal form. Since B is indefinite we use a
block LDLT factorization [13, Chap. 11]

PTBP = LDLT ,(3.1)

where P is a permutation matrix, L is unit lower triangular and D is diagonal with
1×1 or 2×2 blocks on its diagonal. This factorization costs n3/3 operations plus the
cost of determining the permutation matrix. There are several possible choices for P
(see [13, sect. 11.1] for a detailed description and stability analysis). We opt for the
symmetric rook pivoting strategy [13, sect. 9.1], as it yields a factor L with bounded
elements. Let

D = X|Λ|1/2J |Λ|1/2XT , J ∈ diagnq (±1),(3.2)

be the eigendecomposition of D, where X is orthogonal and Λ is the diagonal matrix
of eigenvalues. Note that X has the same structure as D with the 1 × 1 blocks equal
to 1 and the 2 × 2 blocks can be chosen to be Jacobi rotations of the form[

c s
−s c

]
, c2 + s2 = 1.

The pair (C, J) with

C = MTAM, M = PL−TX|Λ|−1/2(3.3)
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is congruent to (A,B) and is in symmetric-diagonal form.
The following pseudocode constructs C, J , and the transformation matrix M in

(3.3). We assume that a function computing a LDLT factorization with rook pivoting
is available. For example, we can use the Matlab function ldlt−symm from Higham’s
Matrix Computation Toolbox [12].

function [C, J,M ] = sym−diag(A,B)
% Compute C, J , and M so that MT (A,B)M = (C, J)
% is a symmetric-diagonal pair.
Compute the factorization PTBP = LDLT

X = I
for k = 1 : n− 1

if D(k + 1, k) �= 0
τ = 0.5(D(k + 1, k + 1) −D(k, k))/D(k + 1, k)
if τ ≥ 0

t = 1/(τ +
√

1 + τ2)
else

t = −1/(−τ +
√

1 + τ2)
end

c = 1/
√

1 + t2, s = tc
X[k: k + 1, k: k + 1] =

[
c

−s
s
c

]
α = D(k, k) −D(k + 1, k)t
β = D(k + 1, k + 1) + D(k + 1, k)t

D(k: k + 1, k: k + 1) =
[
α
0

0
β

]
end

end
J = sign(D),
C = |D|−1/2XTL−1(PAPT )L−TX|D|1/2
M = PL−TX|D|−1/2

We now give a rounding error analysis of this reduction. We use the standard
model of floating point arithmetic [13, sect. 2.2]:

fl(x op y) = (x op y)(1 + δ)±1, |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff.
Let L̂D̂L̂T be the computed factorization in (3.1). Using a general result on the

stability of block LDLT factorization [13, Thm. 11.3], we have

PT (B + ∆B1)P = L̂D̂L̂T , |∆B1| ≤ p(n)u(|B| + P |L̂||D̂||L̂T |PT ) + O(u2)(3.4)

with p a linear polynomial.
Slapničar [22] shows that when a Jacobi rotation is used to compute the decom-

position H = GJGT of a symmetric H ∈ R
2×2 and J ∈ diag(±1), the computed

decomposition ĜĴĜT satisfies

ĜĴĜT = H + ∆H, |∆H| ≤ α|G||GT |u,

with α a small integer constant. Using this result we obtain for the computed eigen-
decomposition (3.2)

X̂|Λ̂|1/2Ĵ |Λ̂|1/2X̂T = D̂ + ∆D̂, |∆D̂| ≤ α̃u|X̂| |Λ̂| |X̂T |(3.5)
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with α̃ a small integer constant. Combining (3.4) with (3.5), we have

PT (B + ∆B)P = L̂X̂ |Λ̂|1/2Ĵ |Λ̂|1/2X̂T L̂T ,

where

|∆B| ≤ p′(n)u(|B| + P |L̂| |X̂| |Λ̂| |X̂T | |L̂T |PT ) + O(u2).

This is the best form of bound we could expect. Note that if rook pivoting is used
then all the entries of L are bounded by 2.78 [13, sect. 11.1.3].

Using standard results [13] on the componentwise backward error in solving tri-
angular systems and componentwise backward errors in the product of matrices we
find, after some algebraic manipulations, that the computed Ĉ satisfies

Ĉ = |Λ̂|−1/2X̂T L̂−1PT (A + ∆A)PL̂−T X̂|Λ̂|−1/2,

where

|∆A| ≤ γn

(
P |L̂||L̂−1||A|(I + |L̂−T ||L̂T |PT )

+P |L̂||X̂||X̂T ||L̂−1||A||L̂−T |(I + |X̂T ||X̂|)|L̂T |PT
)

with γn = nu/(1 − nu). Taking the ∞-norm gives

‖∆A‖∞ ≤ γ̃nκ∞(L)2‖A‖∞,(3.6)

with γ̃n = cnu/(1 − cnu), c being a small integer constant.
This is the same form of normwise backward error result as we obtain for the

reduction of a symmetric definite pair (A,B) with B positive definite using a Cholesky
decomposition of B [7]. If rook pivoting is used in the block LDLT factorization then
[13, Prob. 8.5]

κ∞(L) = ‖L‖∞‖L−1‖∞ ≤ 3.78n−1
(
1 + 2.78(n− 1)

)
,

and so ‖∆A‖∞ in (3.6) is bounded independently of B. For the definite case, if
complete pivoting in the Cholesky factorization is used, we have the smaller bound
κ∞(L) ≤ n2n−1.

4. Reduction to tridiagonal-diagonal form. Given a symmetric-diagonal
pair (C, J) with J ∈ diagnq (±1), this section deals with the construction of a nonsin-
gular matrix Q such that

QTCQ = T, QTJQ = J̃ ,(4.1)

with T symmetric tridiagonal and J̃ ∈ diagqn(±1). We denote by σi and σ̃i the ith

diagonal element of J and J̃ , respectively.
Brebner and Grad [5] propose two methods: a pseudosymmetric Givens method

and a pseudosymmetric Householder method. Both reduce the pseudosymmetric1

matrix JC to pseudosymmetric tridiagonal form T̃ = J̃T with J̃ ∈ diagnq (±1) and T
symmetric tridiagonal. Their reduction is equivalent to reducing C−λJ to symmetric

1A matrix M is pseudosymmetric if M = NJ where N = NT and J = diag(±1). Equivalently,
MJ (or JM) is symmetric.
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tridiagonal-diagonal form T − λJ̃ using a sequence of Givens and hyperbolic trans-
formations or a sequence of hyperbolic Householder transformations. The first two
reductions described below are based on similar ideas. They contain several improve-
ments over Brebner and Grad’s reductions that make them more stable. The third
reduction is new and based on a combination of Householder reflectors and hyperbolic
rotations.

4.1. Reduction by unified rotation. The term unified rotation was intro-
duced by Bojanczyk, Qiao, and Steinhardt [4]. Unified rotations include both or-
thogonal and hyperbolic rotations. Given a 2 × 2 signature matrix J = diag(σ1, σ2),
unified rotations have the form

G =

[
c σ2

σ1
s

−s c

]
∈ R

2×2, σ1c
2 + σ2s

2 = σ̃1, σ̃1 = ±1.(4.2)

If we define σ̃2 = σ2σ̃1/σ1 then GTJG = diag(σ̃1, σ̃2) ≡ J̃ , that is, G is (J, J̃)-
orthogonal. Thus G is a Givens rotation when J = ±I and a hyperbolic rotation
when J �= ±I. Hyperbolic rotations are said to be of type 1 when J = J̃ and of type 2
when J = −J̃ . Let x = [x1, x2]

T �= 0 be such that xTJx �= 0. Choosing

c = x1/
√
|xTJx|, s = x2/

√
|xTJx|

gives Gx = [ρ, 0]T with ρ = (σ̃1/σ1)
√
|xTJx| and σ̃1 = sign(xTJx).

The following pseudocode, inspired by [4, Alg. 2] constructs c and s and guards
against the risk of overflow.

function [c, s, J̃ ] = u−rotate(x, J)
% Given x = [x1, x2]

T and J = diag(σ1, σ2), compute c and s defining the
% unified rotation G such that Gx has zero second element and G is

% (J, J̃)-orthogonal.

γ = σ2/σ1, J̃ = J
if x2 = 0
s = 0, c = 1, return

end
if |x1| = −γ|x2|

No unified rotation exists—abort.
end
if |x1| > |x2|
t = x2/x1, τ = 1 + γ t2

c = sign(x1)/
√
τ , s = ct

else
t = x1/x2, τ = γ + t2

s = sign(x2)/
√
|τ |, c = st

end

if τ < 0, J̃ = −J̃ , end
Bojanczyk, Brent, and Van Dooren [2] noticed that how hyperbolic rotations

are applied to a vector is crucial to the stability of the computation. Consider the
computation of y = Gx with σ2/σ1 = −1:

y1 = cx1 − sx2,(4.3)

y2 = −sx1 + cx2.(4.4)



222 FRANÇOISE TISSEUR

We call (4.3)–(4.4) the direct application of G to a vector x. When σ1 = σ̃1 (i.e., for
hyperbolic rotations of type 1), we compute y1 from (4.3). Solving (4.3) for x1 gives

x1 =
y1

c
+

s

c
x2,(4.5)

which allows (4.4) to be rewritten as

y2 = −s

c
y1 +

(
−s2

c
+ c

)
x2 = −s

c
y1 +

x2

c
.(4.6)

Note that (4.5) and (4.6) can be rewritten as[
x1

y2

]
= G̃

[
y1

x2

]
, G̃ =

[
1/c s/c
−s/c 1/c

]
,

and G̃ is an orthogonal Givens rotation. As multiplication of a vector by a Givens
rotation is a stable process, this suggests that the computation of y2 is likely to be more
stable using (4.6) than using (4.4). We call (4.3), (4.6) the mixed application of G to
a vector x. Similar formulas can be derived for hyperbolic rotations of type 2. Finally
we note that the two matrices G and G̃ are related by the exchange operator, G =
exc(G̃). The exchange operator has a number of interesting mathematical properties;
see Higham [14]. In particular, it maps J-orthogonal matrices to orthogonal matrices
and vice-versa.

We express the application of unified rotations as follows.
function B = r−apply(c, s, J, J̃ , B)

% Apply hyperbolic rotation defined by c, s, J , and J̃ to 2 × n matrix B.

γ = J(2, 2)/J(1, 1), σ̃1 = J̃(1, 1)
for j = 1:n

x = B(1, j)
B(1, j) = cB(1, j) + γsB(2, j)
if γ = 1

B(2, j) = −sx + cB(2, j) % Givens rotation
elseif σ1 = σ̃1

B(2, j) = −(s/c)B(1, j) + B(2, j)/c % Rotation of type 1
else

B(2, j) = −(c/s)B(1, j) − x/s % Rotation of type 2
end

end
The importance of applying hyperbolic rotations to a vector or a matrix in a mixed
way is illustrated in section 6.1.

Unified rotations can be used for reducing C − λJ to tridiagonal-diagonal form
in a way similar to how Givens rotations are used to tridiagonalize a symmetric
matrix (Givens method) [10], [19]. Assume that at the beginning of step j the matrix
C = (cij) is tridiagonal as far as its first j−1 rows and columns are concerned. At the
jth step, we introduce zeros in the matrix C in positions (i, j) and (j, i), j+2 ≤ i ≤ n
using n − j − 1 unified rotations. The zeroing operations can be done, for example,
in the natural order j + 2, j + 3, . . . , n or the reverse order. The element in position
(i, j) is annihilated by a unified rotation in the plane (k, i), where k is chosen so that
k < j, k �= i and ckj �= 0. The signature matrix is modified each time a hyperbolic
rotation of type 2 is applied. The matrix Q which accumulates the product of all the
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unified rotations satisfies

QTCQ = T, QTJQ = J̃ ∈ diagnq (±1).

The number of rotations required is of order n2/2. The reduction fails if at some stage
σi|cij | = σk|ckj | �= 0, where σj denotes the jth diagonal elements of J .

For the standard case (J = I), the most popular choices for the rotation plane
(k, i) are k = j + 1 or k = i − 1, either choice yielding a perfectly stable reduction.
However, when J �= I, the choice of k is crucial for the stability of the reduction.
Indeed, using a result of Ostrowski [15, p. 224] one can show that inherent relative
errors in a symmetric matrix A can be magnified by as much as κ(Q)2 in passing to
QTAQ for any nonsingular Q [8]. Clearly, κ(G) = 1 for Givens rotations, but for
hyperbolic rotations [4]

κ(G) =
|c| + |s|∣∣|c| − |s|

∣∣ ,(4.7)

which can be arbitrarily large. Hence it is advisable to use as few hyperbolic rotations
as possible.

Recall that at stage j of the reduction we need to zero all the elements in rows
j + 2 up to n of the jth column. First, we perform all possible Givens rotations in
planes (�, i) with σ� = σi, j +1 ≤ � < i ≤ n. At this point, either the stage is finished
or there are two nonzero entries left in positions (j + 1, j) and (i, j) with i such that
j+1 < i ≤ n and σj+1 = −σi. Then a single hyperbolic rotation in the plane (j+1, i)
does the final elimination. This strategy has two main advantages. First, it reduces
the number of hyperbolic rotations used during the reduction process to at most n−2.
Secondly, it minimizes the risk of having two hyperbolic rotations acting in the same
plane. This tends to reduce the growth of rounding errors and increases the chance
that the largest condition number of the individual transformations will be of the
same order of magnitude as the condition number of the overall transformation Q.
The complete algorithm is summarized as follows.

Algorithm 4.1 (tridiagonalization by unified rotations). Given an n× n sym-
metric matrix C and a signature matrix J ∈ diagnq (±1), the following algorithm over-

writes C with the tridiagonal matrix T = QTCQ and J with QTJQ ∈ diagnq (±1), Q
being the product of unified rotations.

for j = 1:n− 2
ih = 0, i = n
while i > j + 1 or ih > 0

if i > j + 1
Find largest k, j + 1 ≤ k ≤ i, such that Jii = Jkk.
rot = [k i]

else
rot = [j + 1 ih], ih = 0

end
if rot(1) = rot(2)

ih = rot(1)
else

[c, s, Jtemp] = u−rotate(C(rot, j), J(rot, rot))
C(rot, j:n) = r−apply(c, s, J(rot, rot), Jtemp, C(rot, j:n))
C(j:n, rot) = r−apply(c, s, J(rot), Jtemp, C(j:n, rot))T

C(i, j) = 0; C(j, i) = 0, J(rot, rot) = Jtemp
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end
i = i− 1

end
end

The major differences between Algorithm 4.1 and Brebner and Grad’s pseudosym-
metric Givens algorithm [5] are that in the latter algorithm there is no particular
strategy to minimize the number of hyperbolic rotations used and the hyperbolic
rotations are applied directly to CJ (instead of as in function r−apply above).

4.2. Reduction by unified Householder reflectors. Unified Householder re-
flectors [4] include standard orthogonal Householder transformations [11] together
with hyperbolic Householder reflectors [20], [21]. Given a signature matrix J =
diag(σi), a unified Householder matrix has the form

H = H(J, k, v) = P
(
J − 2vvT

vTJv

)
, vTJv �= 0,(4.8)

where P is a permutation matrix in the (1, k)-plane.
For any vector x such that xTJx �= 0, the unified Householder vector v can be

chosen so that H maps x onto the first column of the identity matrix. Let k be such
that eTk Jek = σk := sign(xTJx) and let

v = Jx + σksign(xk)|xTJx|1/2ek.(4.9)

Then it is easy to check that vTJv �= 0 and that Hx = −σksign(xk)|xTJx|1/2e1. Note
also that PTH is J-orthogonal.

The application of a hyperbolic Householder matrix to a vector can be done either
directly, as

Hx = P

(
Jx− 2vTx

vTJv
v

)
,

or, as for hyperbolic rotations, in a mixed way making use of the orthogonal matrix
exc(H). Stewart and Stewart [23] show that both approaches are mixed-forward
backward stable. We use the first approach since it yields simpler coding.

In [4] it is shown that

σ−1
min(H) = σmax(H) =

vT v

|vTJv| +

√(
vT v

vTJv

)2

− 1.(4.10)

For J = I, σmin = σmax = 1 and for J �= I the ratio vT v/vTJv can be arbitrarily
large. Fortunately, there is some freedom in the choice of the plane (1, k) for the
permutation P . Choosing k so that

eTk Jek = sign(xTJx) and |xk| is maximized

minimizes the ratio vT v/vTJv and therefore minimizes κ(H). This is the pivoting
strategy proposed in [4], [23].

The following pseudocode inspired by [4, Alg. 3] determines the permutation
matrix P and constructs the unified Householder vector.

function [v, k, β, α] = u−house(x, J)
% Determine the permutation P in the (1, k) plane and compute v, α, and β
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% such that H = P (J − βvvT ) satisfies Hx = −αe1 with PTH J-orthogonal.
if xTJx = 0

No hyperbolic Householder exists—abort.
end
m = ‖x‖∞, x = x/m
if J = ±I

k = 1
else

Find k so that |xk| is maximized and sign(xT
k Jxk) = Jkk.

end
α = Jkksign(xk)|xTJx|1/2
v = Jx + αek
β = 2/(vTJv)
α = mα

The symmetric matrix C can be reduced to tridiagonal form while keeping the
diagonal form of J by n−2 unified Householder transformations. Each transformation
annihilates the required part of a whole column and whole corresponding row. The
complete algorithm is summarized below.

Algorithm 4.2 (tridiagonalization by unified Householder reflectors). Given
an n × n symmetric matrix C and a signature matrix J ∈ diagnq (±1), the following

algorithm overwrites C with the tridiagonal matrix T = QTCQ and J with QTJQ ∈
diagnq (±1), Q being the product of unified Householder reflectors.

for j = 1:n− 2
ind = j + 1:n
[v, k, β, α] = u−house(C(ind, j), J(ind, ind))
Swap rows and columns j + 1 and j + k of C.
C(ind, j) = −αe1, C(j, ind) = C(ind, j)T

p = βJ(ind, ind)C(ind, ind)v
w = p− β2(vTC(ind, ind)v)v/2
C(ind, ind) = J(ind, ind)C(ind, ind)J(ind, ind) − wvT − vwT

end

Note that the reduction fails if at some stage j, xTJx = 0, where x = C(j+1:n, j).
Algorithm 4.2 differs from the pseudosymmetric Householder algorithm in [5] in

that, for the latter algorithm, Brebner and Grad use a rank-one update H of the form
H = I−2JvvT , where v can have complex entries even though H is real. This vector
is not computed but, instead, the transformation H is computed element by element
and applied explicitly to CJ , which is a costly operation. Also, no pivoting is used to
reduce the condition number of the transformations.

4.3. Reduction by a mix of Householder reflectors and hyperbolic ro-
tations. Here we adapt an idea developed by Bojanczyk, Higham, and Patel [3] for
hyperbolic QR factorizations of rectangular matrices. We propose a tridiagonalization
that uses a combination of Householder reflectors and hyperbolic rotations. As hy-
perbolic rotations are not norm-preserving, we aim to use a minimal number of them.

Assume for notational simplicity that J = diag(Ip,−Iq) ∈ diagnq (±1) and par-

tition x ∈ R
n so that xp = x(1: p) and xq = x(p + 1:n). We first define a (J, J̃)-

orthogonal matrix that maps x into the first column of the identity matrix. Let Hp

and Hq be two Householder matrices defined so that

Hpxp = −‖xp‖e1, Hqxq = −‖xq‖e1.
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Next we define a 2 × 2 hyperbolic rotation such that[
c −s
−s c

] [
‖xp‖
‖xq‖

]
=

[
α
0

]
, α ∈ R,

and build from it an n × n hyperbolic rotation G in the (1, p + 1) plane. Then the
matrix

S = G

[
Hp 0
0 Hq

]
(4.11)

maps x into the first column of the identity matrix and satisfies J̃ ≡ STJS ∈
diagnq (±1). Note that J̃ = J when G is a hyperbolic rotation of type 1 and if G

is a hyperbolic rotation of type 2 then J̃ and J are identical except in position (1, 1)
and (p+1, p+1), where their signs differ. From (4.11) and (4.7), the condition number
of S is given by

κ(S) =
‖xp‖ + ‖xq‖∣∣‖xp‖ − ‖xq‖

∣∣ .(4.12)

Unlike for the tridiagonalization via unified Householder matrices, we have no free
parameters that can be used to minimize κ(S). The next result shows that κ(S) is
already of optimal condition relative to unified Householder matrices.

Theorem 4.3. Let H be a unified Householder reflector as in (4.8) and let S be
a combination of Householder reflectors and a hyperbolic rotation as in (4.11), both
mapping a vector x to a multiple of e1, the first column of the identity matrix. Then

κ(S) ≤ κ(H).

If R denotes the matrix which accumulates the product of the Givens rotations and
the hyperbolic rotation mapping x to a multiple of e1 as described in section 4.1, then

κ(R) = κ(S).

Proof. Let H = P (J − βvvT ), where

β = 2/vTJv, v = Jx + σksign(xk)|xTJx|1/2ek(4.13)

for some k such that eTk Jek = σk = sign(xTJx) and P is a permutation in the
(1, k)-plane. Assume that J = (Ip,−Iq) and partition v and x accordingly:

vp = v(1: p), xp = x(1: p),
vq = v(p + 1: p + q), xq = x(p + 1: p + q).

From (4.10),

κ(H) =
σmax(H)

σmin(H)
=

(
vT v +

√
(vT v)2 − (vTJv)2

vTJv

)2

=

(
‖vp‖ + ‖vq‖
‖vp‖ − ‖vq‖

)2

.

Suppose that κ(H) < κ(S). There is no loss of generality in assuming that ‖xp‖ >
‖xq‖. Using the expression for κ(S) in (4.12) we have

(‖xp‖ + ‖xq‖)(‖vp‖ − ‖vq‖)2 > (‖xp‖ − ‖xq‖)(‖vp‖ + ‖vq‖)2,
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or equivalently,

2‖xp‖‖vp‖‖vq‖ − ‖xq‖‖vp‖2 − ‖xq‖‖vq‖2 < 0.(4.14)

Since ‖xp‖ > ‖xq‖, sign(xTJx) > 0 and hence 1 ≤ k < p. From (4.13), ‖vq‖ = ‖xq‖
and

‖vp‖2 = 2‖xp‖2 − ‖xq‖2 + 2|xk|(‖xp‖2 − ‖xq‖2)1/2 = ‖xp‖2(2µ− α),

where µ = 1 + |xk|(1−α)1/2/‖xp‖ and α = ‖xq‖2/‖xp‖2. Using these expressions for
‖vp‖ and ‖vq‖ in inequality (4.14) leads to

f(µ) = 3µ2 − 4µα + α2 < 0,

which is satisfied for α
3 < µ < α < 1. But by the definition of µ, 1 ≤ µ ≤ 1+(1−α)1/2

and for these values of µ, f(µ) ≥ 0. Hence κ(H) ≥ κ(S).
The equality κ(R) = κ(S) is obvious.
Assume that (C, J) has been permuted so that J = diag(Ip,−Iq). Again, as in

the previous section, we can transform C to tridiagonal form while preserving the
diagonal form of J by n − 2 transformations of the form (4.11). The key point in
the reduction is that at each step the part of the signature matrix involved in the
transformation is of the form diag(Ip̃j ,−Iq̃j ), p̃j + q̃j = n − j. Note that if we reach
the stage where p̃j = 0 or q̃j = 0 then the rest of the reduction is carried out with
orthogonal Householder matrices only.

This reduction uses at least min(p− 1, q) hyperbolic rotations and at most n− 2.
The smallest number min(p−1, q) occurs when all the transformations in the reduction
process are derived from hyperbolic rotations of type 1. The largest number, n − 2,
happens if hyperbolic rotations of type 2 are used at each step of the reduction. Note
that the reduction fails if at some stage j, ‖xp̃j‖ = ‖xq̃j‖ �= 0.

Algorithm 4.4 (tridiagonalization by mixed Householder reflectors-hyperbolic
rotations). Given an n×n symmetric matrix C and a signature matrix J = (Ip,−Iq),
the following algorithm overwrites C with the tridiagonal matrix T = QTCQ and
J with QTJQ ∈ diagnq (±1), Q being the product of mixed Householder reflectors–
hyperbolic rotations.

for j = 1:n− 2
p = max(0, p− 1)
if p > 1

ind = j + 1: j + p
[v, k, β, α] = u−house(C(j + 1: j + p, j), J(ind, ind))
C(ind, j:n) = C(ind, j:n) − βv(vTC(ind, j:n))
C(j:n, ind) = C(j:n, ind) − β(C(j:n, ind)v)vT

end
if q > 1

ind = (j + p + 1:n)
[v, k, β, α] = u−house(C(ind, j), J(ind, ind))
C(ind, j:n) = C(ind, j:n) − βv(vTC(ind, j:n))
C(j:n, ind) = C(j:n, ind) − β(C(j:n, ind)v)vT

end
if p > 0 and q > 0

rot = [j + 1, j + p + 1]
[c, s, Jtemp] = u−rotate(C(rot, j), J(rot, rot))
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C(rot, j:n) = r−apply(c, s, J(rot, rot), Jtemp, C(rot, j:n))
C(j:n, rot) = r−apply(c, s, J(rot), Jtemp, C(j:n, rot)T ))T

C(i, j) = 0; C(j, i) = 0
if J(rot, rot) = −Jtemp

p = p + 1, q = q − 1
J(rot, rot) = Jtemp

end
end

end
We cannot conclude from Theorem 4.3 that Algorithms 4.1 and 4.4 are more sta-

ble than Algorithm 4.2 since at step k of the tridiagonalization process the column of
C to be annihilated is not the same for each reduction. However, intuitively, we may
expect Algorithms 4.1 and 4.4 to behave better than Algorithm 4.2.

5. Monitoring condition numbers and preventing breakdown. If serious
breakdown occurs during the reduction to tridiagonal-diagonal form (see the end of
section 2) then we can permute C and start again. This is equivalent to restarting the
Lanczos process described in the proof of Theorem 2.1 with a new vector q1. Of course,
the major disadvantage with this approach is that all the previous computation is lost.
We take an alternative approach, based on an idea from Geist, Lu, and Wachpress [9]
for curing breakdown occurring in the tridiagonalization of nonsymmetric matrices.

If breakdown occurs at step j of the reduction process or if the condition number
of the next transformation is too large, we apply a unified rotation G̃ on the two first
rows and columns of the current C. This brings nonzero values in positions (3, 1) and
(1, 3). This bulge in the tridiagonal form is chased down the matrix from position
(3, 1) to (4, 2) and so on via j−2 unified rotations. This chasing procedure costs O(j)
operations and the result is a new column j in C. The whole procedure may be tried
again if some large condition numbers occurs before the reduction is completed.

In our implementation the unified rotation G̃ is generated randomly but with the
constraint that κ(G̃) = O(1).

6. Numerical experiments. Our aim in this section is to investigate the nu-
merical properties of the tridiagonal-diagonal reduction algorithms just described. We
name our Matlab implementations

• trd−ur: tridiagonalization by unified rotations (Algorithm 4.1),
• trd−uh: tridiagonalization by unified Householder reflectors (Algorithm 4.2),
• trd−hr: tridiagonalization by mixed Householder reflectors-hyperbolic rota-

tions (Algorithm 4.4).
Given a symmetric matrix C and a signature matrix J we formed explicitly, during

the course of the reduction, the transformation Q such that T = QTCQ is tridiagonal
and J̃ = QTJQ is a signature matrix. The following quantities were computed:

• the scaled residual error and departure from (J, J̃)-orthogonality

R =
‖QTCQ− T‖
‖C‖‖Q‖2

, O =
‖QTJQ− J̃‖

‖Q‖2
,(6.1)

• κ(Q), the condition number of the transformation Q,
• the largest condition numbers,

κG = max
k

κ(Gk), κH = max
k

κ(Hk), κS = max
k

κ(Sk),

of the transformations used to zero parts of the matrix C. Here G, H, and S
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Fig. 6.1. Residuals and condition numbers for 20 random matrices. Results from trd−BG1 are
marked with “o” and results from trd−ur are marked with “∗.”

refer to unified rotation, unified Householder reflector, and a combination of
two Householder reflectors and one hyperbolic rotation, respectively.

6.1. Tridiagonalization by unified rotations. We first compare trd−ur to
an implementation of Brebner and Grad’s pseudosymmetric Givens method named
trd−BG1. We ran a set of tests with matrices of the form

C = randn(n); C = C+C’; J = mysign(randn(n));

where mysign is a sign function defined so that mysign(0) = 1. The residual R and

the departure from (J, J̃)-orthogonality O as defined in (6.1) are plotted on the top left
and right in Figure 6.1 for twenty random matrices of size n = 50. Results obtained
by trd−BG1 are plotted with “o” and we use “∗” for results from trd−ur. On this
set of matrices, the residuals R and O from trd−ur are smaller than the ones from
trd−BG1 by a factor as large as 107 for R and 104 for O. For a given test problem
(C, J), trd−BG1 and trd−ur both compute the same Q, but the construction of Q
differs since it is obtained by a different sequence of transformations. The left-hand
plot at the bottom of Figure 6.1 helps to compare the largest condition numbers κG of
the individual transformations used by each algorithm during the reduction process.
It shows that κG is nearly always smaller for trd−ur. Not surprisingly, large values of
κG correspond to test problems with large values of R and O. The right-hand plot at
the bottom of Figure 6.1 compares both algorithms’ ratios κG/κ(Q). Interestingly, for
trd−ur, κG is always smaller than the condition number of the overall transformation
Q whereas κG is in general larger than κ(Q) for trd−BG1. The four plots on Figure 6.1
illustrate the numerical superiority of our tridiagonalization using unified rotations
over Brebner and Grad’s pseudosymmetric Givens method. The improvements are
due to the way we apply the rotations and our zeroing strategy.
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Table 6.1

Comparison between explicit and implicit application of hyperbolic rotations to matrices.

Rd Rm κ(Q) κG Ed Em cond(λ)

2 × 10−12 2 × 10−15 3.02 2 × 103 4 × 10−10 2 × 10−13 4 × 102

To emphasize the fact that how hyperbolic rotations are applied to a matrix may
be crucial to the stability of the computation we use the direct search maximization
routine mdsmax of the Matlab Matrix Computation Toolbox [12] to maximize both
ratios Rd/Rm and Rm/Rd. The subscripts d and m stand for direct and mixed,
respectively, depending on how the hyperbolic rotations are applied to C during the
course of the reduction. We used trd−BG1 with an option on how to apply the
rotations. We found that for some matrix pairs (C, J), Rd 
 Rm but when Rm is
larger than Rd, Rm

<∼ Rd always. Table 6.1 provides some relevant quantities for a
5 × 5 pair (C, J) generated by mdsmax. We also compared the eigenvalues λi of the

initial pair (C, J) with those λ̃i of (T, J̃) and their corresponding relative condition
numbers cond(λi),

cond(λi) =
‖xi‖‖yi‖

|λi| |y∗i Jxi|
,

where xi and yi are the corresponding right and left eigenvectors. We denote by

E = max
i=1:n

|λi − λ̃i|
|λi|

the largest relative error for the computed eigenvalues. For this particular example,
Rd ≈ 103Rm. Since κ(Q) = O(1), it is reasonable to expect R = O(u) which is
clearly not the case when direct application of unified rotations is used. The table
also shows that a large value for the residual Rd directly affects the accuracy to which
the eigenvalues are computed from (T, J̃).

6.2. Tridiagonalization by unified Householder reflectors. We now com-
pare trd−uh to an implementation of Brebner and Grad’s pseudosymmetric House-
holder method named trd−BG2. The main numerical difference between the two
algorithms is that trd−uh uses a pivoting strategy aimed to reduce the condition
numbers of the unified Householder reflectors. We ran a sequence of tests similar to
the ones described in section 6.1. Results are plotted in Figure 6.2 for twenty random
test problems of dimension 50. These plots clearly illustrate that the pivoting strategy
helps to reduce the residuals and the departure from (J, J̃)-orthogonality. For this set
of examples, R and O are reduced on average by a factor 102 and 10, respectively;
the reduction factor is as large as 103 for R and as large as 102 for O. As expected,
κH for trd−uh is always smaller than κH for trd−BG2 by a factor as large as 103.
Recall that small κH are essential for the stability of the reduction.

6.3. Comparison of the three reductions. For a particular symmetric-diagonal
pair (C, J) with J = diag(Ip,−Iq) we know that, from Theorem 2.1, the three algo-
rithms produce up to signs the same matrix Q and tridiagonal matrix T . They differ
numerically in the way Q is formed.

We generated a large set of problems with matrices C of the form

C = randn(n); C = C+C’
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Fig. 6.2. Residuals and condition numbers for 20 random matrices. Results from trd−BG2 are
marked with “o” and results from trd−uh are marked with “∗.”

and

C = gallery(’randsvd’,n); C = C+C’

and also matrices C = QTTQ obtained from random tridiagonal matrices T and
random J-orthogonal matrices Q with prescribed condition numbers. Higham’s algo-
rithm [14] was used to generate the random Q.

We ran extensive tests with these types of problems. Here is a summary of our
findings.

• As expected, trd−ur, trd−uh yield residuals of the same order of magnitude.
• 80% of the time, trd−uh has residuals of the same order of magnitude as
trd−hr or trd−ur.

• In 20% of the cases where the residuals have different orders of magnitude,
trd−uh appears the least stable. On average, the residuals and departure

from (J, J̃)-orthogonality are 10 times larger with trd−uh than with trd−ur
or trd−hr.

• Most of the time, κG and κS are smaller than κH , which is consistent with the
previous bullet. Large condition numbers for the individual transformations
directly affect the residuals.

• When κ(Q) is large the (J, J̃)-departure from orthogonality of Q tends to be
larger with trd−uh than with the two others algorithms.

This battery of tests seems to indicate that amongst the three reductions trd−uh is
the least stable. Since trd−ur is nearly twice more costly than trd−hr, we suggest to
use the latter, that is, to use a combination of Householder reflectors and hyperbolic
rotations (Algorithm 4.4) to reduce a symmetric-diagonal pair to tridiagonal-diagonal
form. We would like to emphasize that in most instances the three algorithms all
produce residuals close to what we would expect from a stable algorithm.
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Abstract. We analyze the residuals of GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 856–859], when the method is applied to tridiagonal Toeplitz matrices.
We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled
Jordan blocks. This problem has been studied previously by Ipsen [BIT, 40 (2000), pp. 524–535]
and Eiermann and Ernst [Private communication, 2002], but we formulate and prove our results
in a different way. We then extend the (lower) bidiagonal Jordan blocks to tridiagonal Toeplitz
matrices and study extensions of our bidiagonal analysis to the tridiagonal case. Intuitively, when a
scaled Jordan block is extended to a tridiagonal Toeplitz matrix by a superdiagonal of small modulus
(compared to the modulus of the subdiagonal), the GMRES residual norms for both matrices and the
same initial residual should be close to each other. We confirm and quantify this intuitive statement.
We also demonstrate principal difficulties of any GMRES convergence analysis which is based on
eigenvector expansion of the initial residual when the eigenvector matrix is ill-conditioned. Such
analyses are complicated by a cancellation of possibly huge components due to close eigenvectors,
which can prevent achieving well-justified conclusions.
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1. Introduction. Consider solving a linear algebraic system Ax = b, real or
complex, where A is an N by N nonsingular matrix with GMRES [9]. Starting from
an initial guess x0, this method computes the initial residual r0 = b − Ax0 and a
sequence of iterates, x1, x2, . . . so that the nth residual rn = b−Axn satisfies

‖rn‖ = ‖pn(A)r0‖ = min
p∈πn

‖p(A)r0‖,(1.1)

where πn denotes the set of polynomials of degree at most n with value one at the
origin and ‖·‖ denotes the 2-norm. It is easy to see from (1.1) that (in exact arithmetic)
the GMRES algorithm terminates, i.e., computes the solution x, in at most N steps.
We also wish to point out that, unless there is a well-justified reason for choosing a
nonzero initial approximation, one should consider x0 = 0 (see [8]).

Suppose that the vectors r0, Ar0, . . . , A
nr0 generating the (n + 1)st Krylov sub-

space Kn+1(A, r0) = span{r0, Ar0, . . . , A
nr0} are linearly independent. Then rn is a

nonzero vector and GMRES cannot terminate before the step n+1. Denote by Kn+1

the matrix of the Krylov vectors,

Kn+1 = [r0, Ar0, . . . , A
nr0] ≡ [r0,WnRn] ,(1.2)
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where Wn has orthonormal columns and Rn is upper triangular.
In [5, Theorem 2.1] Ipsen shows that rn is determined by the first row of the

Moore–Penrose pseudoinverse of Kn+1,

rTn = ‖rn‖2 eT1 K
+
n+1.(1.3)

Based on this result she argues that as long as the matrix Kn+1 is well-conditioned,
the decrease of the GMRES residual norms in the steps 1 to n must be slow. Then
she applies this relation to analyze the GMRES behavior for scaled Jordan blocks [5,
Theorem 3.1].

In [6, pp. 1505–1506], it is shown that

rTn = ‖rn‖2 eT1 [r0,Wn]+ ,(1.4)

which refines Ipsen’s argument about the relation between ill-conditioning of the
Krylov matrix and convergence of the GMRES residual norms. The proofs in [6]
are based on the elementary geometrical interpretation of the pseudoinverse (orthog-
onality relations).

In this paper we study the GMRES residuals for linear systems with tridiagonal
Toeplitz matrices T . We start with results analogous to those of Ipsen for scaled
Jordan blocks, and then we analyze their extensions. We are particularly interested
in the case when the entries on the superdiagonal of T are significantly smaller in
modulus (absolute value) than the entries on the subdiagonal. This represents an
example of very large eigenvector conditioning (even infinite when the matrix reduces
to a scaled Jordan block); i.e., we deal with highly nonnormal matrices. Rather
than applying a worst-case analysis based on properties of the matrix T only, we
exploit the structure of T and relate the GMRES convergence to the structure and
numerical values of the entries of the initial residual r0. This allows qualitative as
well as quantitative statements about the influence of T as well as r0 on the GMRES
residuals. In proofs, we follow, as in [6, pp. 1505–1506], the elementary orthogonality
idea.

Analytic results for scaled Jordan blocks and general tridiagonal Toeplitz matrices
are given in sections 2 and 3, respectively. Section 4 shows numerical experiments,
and section 5 contains concluding remarks. In this paper we do not consider rounding
errors, i.e., we assume exact arithmetic.

2. Scaled Jordan blocks. For given nonzero parameters γ and λ, consider an
N by N scaled Jordan block J ,

J = γS + λI ≡ γ(S + τI) , τ ≡ λ

γ
,(2.1)

where I is the identity and S = [e2, . . . , eN , 0] is the down shift matrix (ej denotes
the jth vector of the standard Euclidean basis). The scaling does not affect GMRES
convergence; it is used for convenience only. The GMRES residual norms for systems
with scaled Jordan blocks have been studied in [2] and in [5, section 3]. Here we study
the same problem, but we formulate and prove our results differently from [2, 5].

Theorem 2.1. Suppose that GMRES is applied to a system with the matrix
J = γ(S + τI) and the initial residual r0 = [ρ1, . . . , ρN ]T . Let ρl be the first nonzero
entry of r0. Then for n = 0, 1, . . . , N − l the GMRES residuals satisfy

rTn = ‖rn‖2 [1,−τ, . . . , (−τ)n] [r0, Sr0, . . . , S
nr0]

+ ,(2.2)
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‖rn‖ ≥
( n∑

j=0

|τ |2j
)− 1

2

σmin ([r0, Sr0, . . . , S
nr0]) ,(2.3)

and rN−l+1 = 0, where σmin(X) denotes the minimal singular value of the matrix X.
Furthermore, for n = 0, 1, . . . , N − l,

‖rn‖ ≤ (n + 1)
1
2 ‖r0‖

( n∑
j=0

|τ |2j
)− 1

2

.(2.4)

Proof. Since Kn+1(J, r0) = Kn+1(S, r0) and ρl �= 0, it is easy to see that for
n = 0, 1, . . . , N − l the matrices [r0, Jr0, . . . , J

nr0] have full column rank. Hence, for
n = 0, 1, . . . , N − l, (1.3) (see also [6, Theorem 2.1]) shows that

rTn = ‖rn‖2 eT1 [r0, Jr0, . . . , J
nr0]

+ ≡ ‖rn‖2 gTn .(2.5)

The identity [r0, Jr0, . . . , J
nr0]

+ [r0, Jr0, . . . , J
nr0] = I gives

gTn [r0, Jr0, . . . , J
nr0] = eT1 .

We next prove, by induction,

gTn [r0, Sr0, . . . , S
nr0] = [1,−τ, . . . , (−τ)n] .(2.6)

Clearly,

0 = gTn Jr0 = γ gTnSr0 + λ gTn r0 = γ gTnSr0 + λ , i.e., gTnSr0 = −τ,

and the general step,

0 = gTn J
kr0 = gTn (γS + λI)kr0

= gTn

(
k∑

j=0

(
k
j

)
γk−jλjSk−j

)
r0

= γkgTnS
kr0 +

k∑
j=1

(
k
j

)
γk−jλj(−τ)k−j

= γkgTnS
kr0 − (−λ)k +

k∑
j=0

(
k
j

)
(−λ)k−jλj

= γkgTnS
kr0 − (−λ)k,

from which gTnS
kr0 = (−τ)k. Multiplying (2.6) from the right by the pseudoinverse

[r0, Sr0, . . . , S
nr0]

+ and using the fact that gn lies in the range of [r0, Sr0, . . . , S
nr0]

proves (2.2). Then (2.3) follows in an obvious way. To show (2.4), we denote the N
by n + 1 matrix on the left-hand side and the vector on the right-hand side of (2.6)
by R and t, respectively. Then, using (2.5),

‖rn‖ = ‖gn‖−1 ≤ ‖R‖ ‖t‖−1

≤ ‖R‖F ‖t‖−1

≤ (n + 1)
1
2 ‖r0‖ ‖t‖−1 ,

where ‖ · ‖F denotes the Frobenius norm of a matrix.
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Writing (2.6) for the maximal n = N − l in a transposed form gives the upper
triangular system for the nonzero entries of gN−l = [0, . . . , 0, χl, χl+1, . . . , χN ],⎡⎢⎢⎢⎣

ρl ρl+1 . . . ρN
ρl . . . ρN−1

. . .
...
ρl

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

χl

χl+1

...
χN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
−τ
...

(−τ)N−l

⎤⎥⎥⎥⎦ .(2.7)

The identity (2.5) now immediately implies the following.
Corollary 2.2. With the assumptions and notation of Theorem 2.1,

rN−l = ‖rN−l‖2 gN−l and ‖rN−l‖ = ‖gN−l‖−1,(2.8)

where the nonzero entries of gN−l are determined from (2.7) by back substitution.
Theorem 2.1 and Corollary 2.2 show how the GMRES residuals depend on J

(particularly on the ratio of λ and γ) and the structure of r0. The bound (2.4) is
interesting for large values of |τ | only, i.e., for diagonally dominant matrices J . In
the following examples we give explicit formulas for the nth GMRES residual and its
norm for some specific initial residuals.

Example 2.3. Suppose that r0 = el is the lth standard basis vector. Then for
n = 0, 1, . . . , N − l, [r0, Sr0, . . . , S

nr0] = [el, el+1, . . . , el+n]. Hence (2.2) yields

rTn = ‖rn‖2 [0, . . . , 0, 1,−τ, . . . , (−τ)n, 0, . . . , 0] ,

where rTn has l − 1 leading and N − n − l trailing zeros, respectively. Taking norms
on both sides shows that

‖rn‖ =

( n∑
j=0

|τ |2j
)− 1

2

,(2.9)

i.e., that equality holds in (2.3) with σmin ([r0, Sr0, . . . , S
nr0]) = 1. We see that for

r0 = el, the GMRES residual norms suffer from slow convergence until the very last
step whenever |τ | ≤ 1. In their unpublished note [2], Eiermann and Ernst give a proof
of (2.9) as well as a slightly weaker form of (2.4) based on a formula for the GMRES
minimizing polynomial. They also point out that (2.9) is equivalent to the identity

min
p∈πn

{ n∑
j=0

∣∣∣∣p(j)(τ)

j!

∣∣∣∣2} =

( n∑
j=0

|τ |2j
)−1

,

where p(j)(τ) denotes the jth derivative of the polynomial p(τ). This can be of interest
independent of the GMRES context.

Example 2.4. Consider the particular case r0 = e ≡ [1, 1, . . . , 1]T . Then for
n = 1, 2, . . . , N − 1,

[e, Se, . . . , Sne]+ =

[
e1, −e1 + e2, . . . , −en−1 + en, −en +

1

N − n
Sn e

]T
,

which can easily be verified using the four Moore–Penrose conditions; see, e.g., [11,
p. 102]. The GMRES residuals are therefore given by
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rTn
‖rn‖2

= [1,−τ, . . . , (−τ)n] [e, Se, . . . , Sne]+

=

[
1 + τ,−(τ + τ2), . . . , (−1)n−1(τn−1 + τn),

(−τ)n

N − n
, . . . ,

(−τ)n

N − n

]
,

and hence

‖rn‖ =

(
|1 + τ |2

n−1∑
k=0

|τ |2k +
|τ |2n
N − n

)− 1
2

.

Similarly to the case r0 = el, the GMRES residual norms converge for r0 = e slowly
until the very last step whenever |τ | ≤ 1. Unlike in the case r0 = el, for r0 = e the
GMRES convergence depends on the sign of the real part of τ . In particular,

‖rn‖ =
(

N−n
4n(N−n)+1

) 1
2

for τ = 1,

‖rn‖ = (N − n)
1
2 for τ = −1.

Thus the stagnation is more severe when τ = −1 (recall that ‖r0‖ = N
1
2 ).

These examples demonstrate that if |τ | ≤ 1, then slow convergence of the GMRES
residual norms can typically be expected.

3. Tridiagonal Toeplitz matrices. Given nonzero parameters γ, λ, and µ,
consider an N by N tridiagonal Toeplitz matrix T ,

T = γS + λI + µST ≡ γ (S + τI + ζST ) , τ ≡ λ

γ
, ζ ≡ µ

γ
.(3.1)

Adding a nonzero superdiagonal µST to J in (2.1) causes the resulting matrix T to
have N distinct eigenvalues,

σk = λ + µζ−
1
2 ωk , ωk ≡ 2 cos

kπ

N + 1
, k = 1, . . . , N,(3.2)

with the corresponding normalized eigenvectors given by

yk = νk [∆uk] , k = 1, . . . , N,(3.3)

where

uk =

(
2

N + 1

) 1
2
[
sin

kπ

N + 1
, . . . , sin

Nkπ

N + 1

]T
,

∆ = diag
(
ζ−

1
2 , ζ−1, . . . , ζ−

N
2

)
,

νk =

⎛⎝ 2

N + 1

N∑
j=1

ζ−j sin2 jkπ

N + 1

⎞⎠− 1
2

;

see, e.g., [10, pp. 113–115]. Please note that the matrix U = [u1, . . . , uN ] represents the
real orthonormal and symmetric eigenvector matrix of any N by N symmetric (pos-
sibly complex) tridiagonal Toeplitz matrix. The eigenvector matrix Y = [y1, . . . , yN ]
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of T is, apart from the normalization, obtained from U by scaling the rows by the

powers of ζ−
1
2 . Hence the condition number of Y equals max(|ζ| 1−N

2 , |ζ|N−1
2 ).

When |γ| ≈ |µ|, meaning |ζ| ≈ 1, then Y is well-conditioned and one may base
the GMRES convergence analysis on the eigenvalues of T and the components of r0
in the direction of the individual eigenvectors of T .

This paper is motivated by the application of GMRES to convection-diffusion
problems with dominating convection [7]. Then the interesting case is characterized
by |γ| ≈ |λ| � |µ|, meaning |τ | ≈ 1 and |ζ| � 1. The principal question is, To
what extent does the behavior of the GMRES residual for T and a given r0 resemble
the behavior of the GMRES residual for the corresponding J and the same r0? We
focus on this question but we also present some general statements valid for arbitrary
nonzero values of γ, λ, and µ.

We would like to stress the following subtle point: When |ζ| is small, the matrix
T can be viewed as a small perturbation of the matrix J . It is therefore tempting to
conclude that for each given r0 the Krylov subspaces generated by T and J are in
some sense close to each other. This would imply that generally the GMRES residual
norms for J and r0 are close to the GMRES residual norms for T and r0. However,
it is well known that a small perturbation of a general matrix does not ensure a
small change of the Krylov subspace, not even when the matrix is symmetric positive
definite. (An instructive example is given below.) It is the structure of J and T that
makes such arguments applicable and our analysis possible.

3.1. Explicit mapping. The standard approach to GMRES convergence anal-
ysis is based on the eigendecomposition T = Y DY −1, D = diag (σ1, . . . , σN ), giving

‖rn‖ = ‖Y pn(D)Y −1r0‖ = min
p∈πn

‖Y p(D)Y −1r0‖(3.4)

≤ ‖Y ‖ ‖Y −1‖ ‖r0‖ min
p∈πn

max
k

|p(σk)|;(3.5)

see [3, Theorem 5.4] and [9, Proposition 4]. The resulting worst-case bound (3.5)
frequently is the basis for discussions of GMRES convergence. However, it does not
take into account the fact that for some initial residuals GMRES may behave very
differently than for others. In practical problems we work with some particular initial
residuals and we are rarely interested in the worst-case behavior. Moreover, when the
eigenvector matrix Y is ill-conditioned, then some components of the vector Y −1r0
can be very large, potentially much larger than ‖r0‖. On the other hand, the norm
of the linear combination Y [pn(D)Y −1r0] in (3.4) is bounded from above by ‖r0‖.
This linear combination therefore can contain a significant cancellation, which is not
reflected in the minimization problem (3.5). Hence the principal weakness of (3.5) in
case of ill-conditioned eigenvectors is not the potentially large multiplicative factor

‖Y ‖ ‖Y −1‖, in our case equal to max(|ζ| 1−N
2 , |ζ|N−1

2 ). The principal weakness is rather
the minimization problem itself. In general, any description of GMRES convergence
using the possibly large coordinates Y −1r0 of r0 in the eigenvector basis, and the
mapping from Y −1r0 to the nth GMRES residual rn, should be applied with proper
care for the cancellation that might occur in the presence of close eigenvectors. For
more discussion on this topic, see [7] and [12]. In the following we will show the
difference when the mapping from Y −1r0 to rn is replaced by the mapping from r0
to rn.

Let us examine the identity

rn = pn(T ) r0 = ∆Upn(D)U∆−1r0 .(3.6)
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We interpret pn(T ) as the mapping from r0 to rn, and we denote, for simplicity,

pn(T ) = Cn. The entries c
(jk)
n of Cn, j, k = 1, 2, . . . , N , are given by

c(jk)
n = eTj Cn ek = eTj ∆Upn(D)U∆−1ek = ζ

k−j
2 uT

j pn(D)uk .(3.7)

The jth entry of rn can be expressed as

eTj rn = eTj Cnr0 =

N∑
k=1

c(jk)
n ρk.(3.8)

Note that since T is tridiagonal, the matrices Tn and thus the matrices Cn, for
n = 0, 1, . . . , N − 1, in general have exactly n nonzero subdiagonals and n nonzero

superdiagonals. In particular, c
(jk)
n = 0 for |j − k| > n.

Theorem 3.1. For each n until GMRES terminates the mapping Cn from r0
to rn represents a banded matrix with 2n + 1 nonzero diagonals. We denote the
column vectors formed by the entries of each diagonal (ordered from the most outer
subdiagonal to the most outer superdiagonal) by

c(−n)
n , c(−n+1)

n , . . . , c(0)n , . . . , c(n−1)
n , c(n)

n .

Then the subdiagonals and superdiagonals are related by

c(d)n = ζd c(−d)
n ,(3.9)

and the nth GMRES residual can therefore be written in the form

rn = Cnr0 =

n∑
d=0

[Sdr0] 	
[

0d

c
(−d)
n

]
+ ζ

n∑
d=1

ζd−1[(ST )dr0] 	
[

c
(−d)
n

0d

]
,(3.10)

where a	b denotes the element-by-element multiple (Hadamard product) of the vectors
a and b, and 0d denotes the zero vector of length d.

Proof. For a given n, and d fixed between 1 and n, the vector c
(−d)
n representing the

dth subdiagonal consists of the entries c
(j,j−d)
n , j = d + 1, . . . , N . The manipulations

c(j,j−d)
n = ζ−

d
2 uT

j pn(D)uj−d

= ζ−d ( ζ
d
2 uT

j−d pn(D)uj )

= ζ−dc(j−d,j)
n

finish the proof of (3.9). Relation (3.10) is an obvious consequence of (3.9).
When |ζ| � 1, the strictly upper triangular part of the mapping Cn is much

less significant than its lower triangular part (including the main diagonal). The
significance of the superdiagonals is exponentially decreasing with the distance from
the main diagonal. Since the proof of Theorem 3.1 does not use that pn is the
GMRES polynomial, the statement can be reformulated for any matrix polynomial
p(T ), where T is a tridiagonal Toeplitz matrix.

Using (3.8),

‖rn‖2 =

N∑
j=1

|eTj rn|2 =

N∑
j=1

∣∣∣∣∣
N∑

k=1

c(jk)
n ρk

∣∣∣∣∣
2

.(3.11)
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Since C0 = I, this formula for n = 0 reduces to

‖r0‖2 =

N∑
j=1

∣∣∣∣∣
N∑

k=1

c
(jk)
0 ρk

∣∣∣∣∣
2

=

N∑
k=1

|ρk|2 .(3.12)

A comparison of (3.11) and (3.12) shows that the decrease of the GMRES residual

norms is controlled by the behavior of the individual entries c
(jk)
n defined in (3.7).

Moreover,

‖rn‖ ≤ ‖r0‖ ‖Cn‖ ≤ ‖r0‖ ‖Cn‖F .(3.13)

These bounds are different from the usual worst-case convergence bounds in that Cn

is determined by pn, which depends on the particular r0.
The individual entries of the matrices Cn do not decrease monotonically, but their

behavior is typically very different from the behavior of the entries of the mapping
Y pn(D) from Y −1r0 to rn in (3.4). We do not quantify this in a statement but instead
present a qualitative argument and experiments. The only term that can seemingly

make c
(jk)
n large is ζ

k−j
2 . When, e.g., |ζ| � 1, then for j > k this factor becomes large.

However, c
(jk)
n are the entries of the matrix Cn = pn(T ). Therefore we may expect

that the individual nonzero c
(jk)
n are of moderate size, and mostly decreasing (although

possibly very slowly) with n, which makes the inequalities (3.13) reasonable. The fact
that each iteration step n introduces a new nonzero subdiagonal in the mapping from
r0 to rn hints that when |γ| ≈ |λ| � |µ|, i.e., |τ | ≈ 1 � |ζ|, the GMRES convergence
may be slow.

We emphasize that these considerations about Cn and convergence of GMRES
are based on the particular tridiagonal Toeplitz structure of T . On the other hand,
when the components of Y −1r0 are large, any approach based on Y pn(D) can hardly
lead to a well-justified insight, even when the special structure of T is exploited.

In Figure 3.1 we plot the values log10 (|c(jk)
n |), j, k = 1, . . . , 15, for n = 2, 6, 10, 14,

computed when GMRES is applied to the 15 by 15 matrix T1 = S + I + 0.01ST and
the initial residual r0 = e. Corresponding results for T1 and r0 = rand(15, 1) are
shown in Figure 3.2 (rand is the pseudorandom number generator in MATLAB), and
Figure 3.3 shows results for the diagonally dominant matrix T2 = S+2I+0.01ST and
r0 = e. In Figure 3.4 we plot the respective GMRES residual norms and in Figure 3.5
the values ‖Cn‖F , representing an upper bound on ‖rn‖/‖r0‖; cf. (3.13).

In Figures 3.1 to 3.3 we see a decrease of |c(jk)
n | on the superdiagonals of Cn that

is exponential in the distance from the main diagonal. Hence in the individual sums

|
∑N

k=1 c
(jk)
n ρk |2, j = 1, . . . , N , on the right-hand side of (3.11) only the terms for

j ≥ k play a significant role.

For T1 and r0 = e as well as r0 = rand(15, 1), the significant entries c
(jk)
n maintain

approximately the same orders of magnitude throughout the GMRES iteration. Cor-
respondingly, the residual norms (solid and dash-dot curves in Figure 3.4) decrease
very slowly until the very last step. The initial residual r0 = e presents a case that

yields almost a perfect plateau of significant |c(jk)
n | in every step. The variation of

the entries in r0 = rand(15, 1) causes a larger variation among the absolute values of
the significant entries of Cn. For T2 and r0 = e, GMRES converges faster (cf. the
dashed curve in Figure 3.4) since all significant entries of Cn decrease noticeably in
magnitude in every step. A comparison of Figure 3.4 and Figure 3.5 illustrates that
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Fig. 3.1. The values log10 (|c(jk)
n |) for j, k = 1, . . . , N and n = 2 (top left), 6 (top right),

10 (bottom left), 14 (bottom right), computed when GMRES is applied to the 15 by 15 matrix
T1 = S + I + 0.01ST and r0 = e.

the inequalities (3.13) are for our data quite sharp, and, consequently, that there is
no significant cancellation among the individual terms in (3.11).

In the following subsection we develop an analogue of Theorem 2.1 for tridiagonal
Toeplitz matrices.

3.2. Extension of the bidiagonal analysis. For each scaled (lower bidiagonal)
Jordan block J and each r0 it is easy to see when GMRES terminates: if ρl is the
first nonzero entry of r0, then GMRES applied to J and r0 terminates in exactly
N − l + 1 steps, giving rN−l �= 0 and rN−l+1 = 0. For a tridiagonal Toeplitz matrix
T with nonzero sub- and superdiagonal, the situation is more complicated. Here the
total number of GMRES steps for a given nonzero pattern of r0 can depend on the
actual numerical values of its nonzero entries. However, since we are not interested in
conditions for termination of GMRES in a given number of steps, we will not specify
this number and merely assume that it is greater than N − l.

Theorem 3.2. Suppose that GMRES is applied to a system with the matrix
T = γ(S + τI + ζST ) and the initial residual r0 = [ρ1, . . . , ρN ]T . Let ρl be the first
nonzero entry of r0. Moreover, suppose that r0 has at least N − l nonzero components
in the directions of the individual eigenvectors of the matrix T (GMRES does not
terminate in the first N − l steps). Then for n = 0, 1, . . . , N − l the GMRES residuals
satisfy

rTn = ‖rn‖2 [1,−τ, . . . , (−τ)n] [r0, (S + ζST )r0, . . . , (S + ζST )nr0]
+ ,(3.14)

‖rn‖ ≥
( n∑

j=0

|τ |2j
)− 1

2

σmin

(
[r0, (S + ζST )r0, . . . , (S + ζST )nr0]

)
.(3.15)
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Fig. 3.2. The values log10 (|c(jk)
n |) for j, k = 1, . . . , N and n = 2 (top left), 6 (top right),

10 (bottom left), 14 (bottom right), computed when GMRES is applied to the 15 by 15 matrix
T1 = S + I + 0.01ST and r0 = rand(15, 1).
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Fig. 3.3. The values log10 (|c(jk)
n |) for j, k = 1, . . . , N and n = 2 (top left), 6 (top right),

10 (bottom left), 14 (bottom right), computed when GMRES is applied to the 15 by 15 matrix
T2 = S + 2I + 0.01ST and r0 = e.
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Fig. 3.4. Residual norms ‖rn‖/‖r0‖ of GMRES applied to T1 = S + I + 0.01ST and r0 = e
(solid), T1 and r0 = rand(15, 1) (dash-dot), T2 = S + 2I + 0.01ST and r0 = e (dashed).
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Fig. 3.5. The values ‖Cn‖F for T1 = S+I+0.01ST and r0 = e (solid), T1 and r0 = rand(15, 1)
(dash-dot), T2 = S + 2I + 0.01ST and r0 = e (dashed).

Proof. For n = 0, 1, . . . , N− l, the matrix [r0, T r0, . . . , T
nr0] has full column rank.

The rest is similar to the proof of Theorem 2.1, with T and S + ζST taking over the
roles of J and S, respectively. Indeed,

rTn = ‖rn‖2 eT1 [r0, T r0, . . . , T
nr0]

+ ≡ ‖rn‖2 gTn ,

from which we receive gTn [r0, T r0, . . . , T
nr0] = eT1 . Then

0 = gTnTr0 = γgTn (S + ζST ) r0 + λgTn r0, i.e., gTn (S + ζST ) r0 = −τ,
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and an induction shows that in fact gTn (S + ζST )kr0 = (−τ)k for k = 1, 2, . . .. Hence

gTn [r0, (S + ζST )r0, . . . , (S + ζST )nr0] = [1,−τ, . . . , (−τ)n] .(3.16)

Now note that

gn ∈ span{r0, T r0, . . . , Tnr0} = span{r0, (S + ζST )r0, . . . , (S + ζST )nr0} .

A multiplication of (3.16) from the right with

[r0, (S + ζST )r0, . . . , (S + ζST )nr0]
+

yields (3.14). The lower bound (3.15) is a direct consequence.
Consider, for simplicity, the iteration step n = N − l. The principal difference

between the cases with J and T is in the form of (2.7) and (3.16). The system of
equations (3.16) is for l �= 1 underdetermined, and its system matrix is constructed
from r0 in a much more complicated way than in (2.7). However, the system matrix
in (3.16) can be written in the form

[r0, Sr0, . . . , S
N−lr0]

T + ζ
[
0, ST r0, . . . , ζ

−1
{
(S + ζST )N−l − SN−l

}
r0
]T

≡ [O,R] + ζP ,(3.17)

where O denotes the N−l+1 by l−1 zero matrix, and R denotes the upper triangular
matrix described in (2.7). The columns of PT are given by

pj = ζ−1
{

(S + ζST )j − Sj
}
r0 for j = 0, 1, . . . , N − l.(3.18)

Since S and ST do not commute, (S + ζST )j cannot be evaluated by the binomial
theorem. However, for j = 1, . . . , N − l, this expression can be formally written as

(S + ζST )j = Σj,0 + ζΣj,1 + · · · + ζj−1Σj,j−1 + ζjΣj,j .

Here Σj,k denotes the sum of all possible matrix products involving j − k times the
matrix S and k times the matrix ST . In particular, Σj,0 = Sj and Σj,j = (ST )j .
Consequently, for j = 1, . . . , N − l,

pj =
(
Σj,1 + ζΣj,2 + · · · + ζj−2Σj,j−1 + ζj−1Σj,j

)
r0 .(3.19)

Note that the matrix Σj,k is, for 1 ≤ j ≤ N−l and 1 ≤ k ≤ j, the sum of ( j
k ) products

of shift matrices and that ‖Σj,k‖ ≤ ( j
k ). Therefore, assuming |ζ| � (j − 1)−1,

‖pj‖ ≤ ‖r0‖
j∑

k=1

|ζ|k−1

(
j
k

)
= j ‖r0‖ (1 + O(|ζ| j)),

where O(z) is bounded from above by z multiplied by a constant (here close to one).

When |ζ| � (N − l)−
3
2 ,

‖P‖ ≤ (N − l)
1
2 max

j
‖pj‖ ≤ (N − l)

3
2 ‖r0‖

(
1 + O

(
(N − l)−

1
2

))
.

The matrix (3.17) can then be considered a small perturbation of the upper triangular
system matrix in (2.7), extended by a zero block.
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We will now use this perturbation idea for analyzing when GMRES applied to
T and r0 behaves similarly to GMRES applied to J and r0. As mentioned above,
this phenomenon depends in a complicated way on the initial residual r0; cf. (3.16)
and (3.17). Any general result with a nontrivial quantitative meaning can therefore
be expected to reflect this complicated nature. In the following we have chosen to
preserve a quantitative character of the bounds at the price of an assumption on R−1P .

We will use the following notation. The residual for GMRES applied to J with r0
and the auxiliary vector obtained as a solution of (2.7) will be denoted by r

(J)
n and

g
(J)
n , respectively. Analogously, r

(T )
n , respectively, g

(T )
n , will denote the residual for

GMRES applied to T with r0, respectively, the minimum norm solution of (3.16). As
above, let r0 = [ρ1, . . . , ρN ]T with ρl being its first nonzero entry. As in Theorem 3.2
we will assume that GMRES applied to T with r0 does not terminate in the first N− l
steps. Then from (3.16),

g
(T )
N−l = ([O,R] + ζP )

+
[1,−τ, . . . , (−τ)N−l]T

=
(
[O, I] + ζR−1P

)+
R−1[1,−τ, . . . , (−τ)N−l]T

=
(
[O, I] + ζR−1P

)+
g
(J)
N−l .

Taking norms,

‖[O, I] + ζR−1P‖−1 ‖g(J)
N−l‖ ≤ ‖g(T )

N−l‖ ≤ ‖([O, I] + ζR−1P )+‖ ‖g(J)
N−l‖ .(3.20)

Assuming that |ζ| ‖R−1P‖ < 1,

‖([O, I] + ζR−1P )+‖ ≤ (1 − |ζ| ‖R−1P‖)−1 .

Considering that ‖r(T )
N−l‖ = 1/‖g(T )

N−l‖ and ‖r(J)
N−l‖ = 1/‖g(J)

N−l‖, we proved the follow-
ing theorem.

Theorem 3.3. Using the previous notation and the assumptions of Theorem 3.2,

let |ζ| ‖R−1P‖ < 1. Then the GMRES residuals r
(T )
N−l and r

(J)
N−l satisfy the inequalities(

1 + |ζ| ‖R−1P‖
)
‖r(J)

N−l‖ ≥ ‖r(T )
N−l‖ ≥

(
1 − |ζ| ‖R−1P‖

)
‖r(J)

N−l‖ ,(3.21)

where R represents the matrix formed by the last N − l + 1 columns of the matrix
[r0, Sr0, . . . , S

N−lr0]
T and P = [0, ST r0, . . . , ζ

−1{(S + ζST )N−l − SN−l} r0]T .
The main point can be summarized in the following way. Suppose that a scaled

Jordan block J is extended to a tridiagonal Toeplitz matrix T by a superdiagonal of
sufficiently small modulus (compared to the modulus of the subdiagonal). Assume
that GMRES for T and r0 terminates no earlier than GMRES for J and r0. Then
the convergence of GMRES for T and r0 will be comparable to the convergence of
GMRES for J and r0. We next consider two examples illustrating our results.

Example 3.4. Suppose that r0 = e1. Then for J as well as for T the GMRES
algorithm terminates in step N . Thus, whenever |ζ| ‖R−1P‖ < 1, the inequalities
(3.21) hold with l = 1. Note that for r0 = e1 we have R = I and ‖r0‖ = 1, so that

(1 + |ζ| ‖P‖) ‖r(J)
N−1‖ ≥ ‖r(T )

N−1‖ ≥ (1 − |ζ| ‖P‖) ‖r(J)
N−1‖

≥ (1 − |ζ|(N − 1)
3
2 (1 + O((N − 1)−

1
2 ))) ‖r(J)

N−1‖ ,

when |ζ| � (N − 1)−
3
2 .
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Example 3.5. For r0 = e ≡ [1, 1, . . . , 1]T we can see one of the main differences be-
tween the application of GMRES to linear systems with J and with a general extension
of J to the tridiagonal Toeplitz matrix T : for any nonzero γ and λ, dim KN (J, e) = N ,
and hence GMRES with J and r0 = e terminates in step N . For certain nonzero val-
ues of λ, γ, and µ, however, dim KN (T, e) < N , and hence for certain matrices T and
r0 = e the GMRES algorithm terminates earlier than in step N .

The prime example for the latter case is given by a symmetric T , i.e., γ = µ. The
normalized eigenvectors of each such matrix are given in (3.3) with ∆ = I. These
vectors represent discrete sine functions and thus they satisfy certain symmetries. In
particular, simple technical manipulations show that

uT
k e =

(
2

N + 1

) 1
2

N∑
j=1

sin

(
jkπ

N + 1

)

=

(
2

N + 1

) 1
2 cos

(
kπ

2(N+1)

)
− cos

(
(2N+1)kπ
2(N+1)

)
2 sin

(
kπ

2(N+1)

)
=

(
2

N + 1

) 1
2 cos

(
kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) (
1 − (−1)k

)
= 0 if k is even.

When uT
k r0 = 0, the initial residual r0 has no component in the direction of the

eigenvector uk of T . For a symmetric T and r0 = e, GMRES will therefore terminate
in step N/2 or (N + 1)/2 when N is even or odd, respectively. A similar result holds
for γ = −µ.

In general, however, the normalized eigenvectors of a tridiagonal Toeplitz matrix
T are given by νk[∆uk]. The components of r0 = e in the direction of the individual
eigenvectors of T are generally given by

ν−1
k (uT

k ∆−1 e) = ν−1
k

(
2

N + 1

) 1
2

N∑
j=1

ζ
j
2 sin

(
jkπ

N + 1

)

for k = 1, . . . , N . If |ζ| �= 1, then the initial residual r0 = e usually has a nonzero
component in the direction of each of the individual eigenvectors of T . This implies
that a very small additive perturbation of a symmetric, even positive definite, tridi-
agonal Toeplitz matrix by εS (or by εST ) may cause GMRES (with r0 = e) to iterate
twice as long until it terminates.

Here we are mainly interested in the case |ζ| � 1. Then GMRES for J and
r0 = e, and usually also for T and r0 = e, terminates in step N . If |ζ| ‖R−1P‖ < 1,
then (3.21) holds with l = 1. Since R−1 = I − ST , we get ‖R−1‖ ≤ 2, and since

‖r0‖ = N
1
2 , the lower bound in (3.21) yields

‖r(T )
N−1‖ ≥ (1 − |ζ| ‖(I − ST )P‖) ‖r(J)

N−1‖

≥ (1 − 2|ζ|N2(1 + O((N − 1)−
1
2 ))) ‖r(J)

N−1‖ ,

when |ζ| � (N − 1)−
3
2 . Numerical examples for this bound are given in section 4.
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4. Numerical experiments. The numerical experiments in this section illus-
trate main points presented and discussed above.

Experiment 4.1. We use the 15 by 15 matrices

J = S + I,

T1 = S + I + 0.01ST ,

T2 = S + I + 0.03ST ,(4.1)

T3 = S + I + 0.05ST ,

T4 = S + I + 0.999ST ,

and r0 = e. Since dim KN (J, e) = N , and dim KN (Tj , e) = N for all j, GMRES with
each of the five matrices and r0 = e terminates in step N . The relevant values for the
application of the bound (3.21) are given in the following table:

j ζj ‖R−1
j Pj‖ ζj ‖R−1

j Pj‖ 1 − ζj ‖R−1
j Pj‖

1 0.01 25.58 0.256 0.744
2 0.03 29.50 0.885 0.115
3 0.05 34.33 1.716 �
4 0.999 5.1e+04 5.1e+04 �

For j = 1, 2, we have ζj ‖R−1
j Pj‖ < 1, so that the bounds (3.21) are applicable with

l = 1. The � for j = 3, 4 indicates that since ζj ‖R−1
j Pj‖ > 1, the lower bound in

(3.21) is not applicable.
Figures 4.1 and 4.2 show the GMRES residual norms. Since τ = 1, GMRES

converges slowly when applied to J (solid). For T1 (dash-dot) and T2 (dotted), the
GMRES residual norms are very close to the ones for J . The correspondence between

‖r(J)
14 ‖ and ‖r(Tj)

14 ‖, j = 1, 2, is even closer than predicted by the bounds (3.21). It is
also noteworthy that although this bound is not applicable for T3, the residual norms
in this case (dots) are very close to the ones for J as well. The results for T4 (dashed)
show that for a larger perturbation (here ζ4 = 0.999) the (N − 1)st GMRES residual
norm for a tridiagonal Toeplitz matrix can differ significantly from the corresponding
one for the Jordan block.

Experiment 4.2. In Figure 4.3 we used the 15 by 15 matrices

J = S + I,

T4 = S + I + 0.999ST (as in Experiment 4.1),

T5 = S + I + ST ,

and r0 = e. This experiment demonstrates the difference in the GMRES residual norm
curves for T4 (dash-dot) and T5 (dotted), despite the fact that T4 = T5 − 0.001ST

is only a small perturbation of the symmetric matrix T5. It is interesting to observe
that until termination of GMRES for T5 the convergence curves are very close to each
other.

Experiment 4.3. Our last experiment comes from the streamline upwind Petrov–
Galerkin (SUPG) discretization of a convection-diffusion model problem with domi-
nating convection. This model problem with rectangular domain, regular grid, and a
constant grid aligned convection motivated our work, leading to the results presented
in this paper. Here we use it for a short illustration.



248 J. LIESEN AND Z. STRAKOŠ
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Fig. 4.1. Residual norms ‖rn‖/‖r0‖ of GMRES applied to the five different 15 by 15 matrices
given in (4.1) and the initial residual r0 = e.
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Fig. 4.2. Close-up of Figure 4.1.

As explained in [1, 2] and [7], the SUPG discretized model operator can be writ-
ten as an N2 by N2 block-diagonal matrix with N by N nonsymmetric tridiagonal
Toeplitz blocks Tj = γj(S + τjI + ζjS

T ), j = 1, . . . , N , on its diagonal. Example
values for |τj | and |ζj |, as well as the corresponding quantities related to (3.21) with
N = 15 and r0 = e1, are given in Table 4.1.
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Fig. 4.3. Residual norms ‖rn‖/‖r0‖ of GMRES applied to 15 by 15 matrices J = S+ I (solid),
T5 = S + I + ST (dotted), T4 = T5 − 0.001ST (dash-dot), and the initial residual r0 = e.

Table 4.1

Example values derived from the SUPG discretized convection-diffusion model operator.

j |τj | |ζj | ‖R−1
j Pj‖ |ζj | ‖R−1

j Pj‖
1 1.0052 0.0010 13.0002 0.0134
2 1.0209 0.0042 13.0040 0.0544
3 1.0481 0.0096 13.0211 0.1252
4 1.0881 0.0176 13.0708 0.2303
5 1.1431 0.0286 13.1874 0.3774
6 1.2162 0.0432 13.4295 0.5808
7 1.3116 0.0623 13.8989 0.8663
8 1.4348 0.0870 14.7740 1.2847
9 1.5925 0.1185 16.3739 1.9402
10 1.7923 0.1585 19.2798 3.0551
11 2.0409 0.2082 24.5496 5.1108
12 2.3392 0.2678 34.0035 9.1077
13 2.6735 0.3347 50.1498 16.7855
14 3.0033 0.4007 74.1263 29.6989
15 3.2564 0.4513 99.9102 45.0870

Figure 4.4 shows the GMRES residual norm curves for the matrices Tj , j =
1, . . . , 15, and r0 = e1. For small j we have |τj | ≈ 1, which leads to very slow
convergence of GMRES for the corresponding scaled Jordan blocks and r0 = e1.
Simultaneously there holds |ζj | � 1, so that the convergence for the respective tridi-
agonal Toeplitz matrices Tj with the same r0 is comparably slow. With increasing j,
both |τj | and |ζj | increase, and the speed of convergence of GMRES for Tj (as well
as for the corresponding Jordan blocks) and r0 = e1 increases significantly. The slow
convergence of GMRES for the matrices Tj with small indices j translates into an ini-
tial phase of slow convergence of GMRES for the SUPG discretized model operator.
The detailed exposition is beyond the scope of this paper, and we refer an interested
reader to [7].
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Fig. 4.4. Residual norms ‖rn‖/‖r0‖ of GMRES applied to 15 by 15 matrices Tj , j = 1, . . . , 15,
representing the tridiagonal Toeplitz blocks on the diagonal of a SUPG discretized convection-
diffusion model operator (see [7]) with the initial residuals r0 = e1.

5. Conclusions and outlook. Consider GMRES convergence for a matrix A
and a given initial residual r0. Let B be a small perturbation of A. Does the as-
sumption that B is sufficiently close to A guarantee that the GMRES residuals for A
and r0 are at every iteration step close to the GMRES residuals for B and r0? A
related question, although in a different context and without the dependence on the
initial residual, which we consider vital, was recently also considered by Huhtanen and
Nevanlinna [4]. Motivated by applications in convection-diffusion problems [7], our
paper studies this question for A ≡ J = γS + λI and B ≡ T = J + µST , and for this
particular matrix A and its particular perturbation B it gives an affirmative answer.
In general, however, the answer is complicated, which is documented by a nonsym-
metric perturbation of a symmetric tridiagonal Toeplitz matrix. To what extent our
results can be applied to GMRES convergence analysis of more general problems, e.g.,
when there exists a well-conditioned transformation of the system matrix into a block
diagonal form with tridiagonal blocks, remains the subject of further work.
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Abstract. We propose a minimax scaling procedure for second order polynomial matrices that
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1. Introduction. The quadratic eigenvalue problem (QEP) is the calculation of
the roots of the determinant of the polynomial matrix

P (λ) = λ2P2 + λP1 + P0,(1.1)

where P2, P1, P0 ∈ C
n×n. A recommended method to solve it, is to reduce it to a

generalized eigenvalue problem (GEP), which is the calculation of the roots of the
determinant of the following pencil:

λB −A = λ

[
I 0
0 P2

]
−
[

0 I
−P0 −P1

]
.(1.2)

Indeed, one easily verifies that

det(P (λ)) ≡ det(λB −A).

But if the matrices Pi, i = 0, 1, 2, have norms

γ2 := ‖P2‖2, γ1 := ‖P1‖2, γ0 := ‖P0‖2

that differ a lot in order of magnitude, then it was shown in [3, Table 5.1] that the
QZ algorithm applied to (1.2) may yield very poor backward errors in the coefficients
of the polynomial matrix (1.1).

In this note we relate this to the scaling problem of the polynomial matrix (1.1)
and we indicate that the computed eigenpairs of P (λ) gain a lot in accuracy when
using the QZ algorithm on an appropriate scaling of the pencil (1.2).
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2. Scaling of second order polynomial matrices. In section 3 of [2], the
author considers the scaled QEP defined by

P̂ (µ)x ≡ (µ2P̂2 + µP̂1 + P̂0)x = 0(2.1)

with µ = λ/α, P̂2 = α2P2, P̂1 = αP1 and P̂0 = P0, where α is a scaling factor,
and investigates the possibility of using this scaling of the QEP (1.1) to improve the
backward error of the solution obtained via the GEP formulation (1.2). The paper [2]
does not solve this scaling problem (the Conclusions section mentions it as an open
problem) but instead it derives a sufficient condition to verify the backward stability
for the QEP. Here we restate this theorem without a proof (see Theorem 7 in [2]).

Theorem 2.1 (see [2]). If ‖Pi‖2 = 1, i = 0, 1, 2, then solving the GEP (1.2)
with a backward stable algorithm (e.g., the QZ algorithm) for the GEP is backward
stable for the QEP: there exist perturbations ∆i, i = 0, 1, 2 with norms of the order of
the machine precision ε, such that [λ2(P2 + ∆2) + λ(P1 + ∆1) + (P0 + ∆0)]ξ = 0 for
every computed eigenpair (λ, ξ).

Remark. Theorem 2.1 is similar to a result given in an earlier paper [4], for a
pencil (1.1) with ‖A‖2 ≈ ‖B‖2 ≈ 1. It is shown there that for any perturbations
‖δA‖2 ≈ ‖δB‖2 ≈ ε (e.g., the backward errors resulting from the QZ algorithm) there
exist transformations S := I + E and T := I + F such that

S[λ(A + δA) − (B + δB)]T = λ

[
I 0
0 (P2 + ∆2)

]
−
[

0 I
−(P0 + ∆0) −(P1 + ∆1)

]
,

where ∆0,∆1,∆2, E, and F have norms of the order of the machine precision. �
The above results suggest that a good scaling strategy for the QEP (1.1) is to

scale P2, P1, and P0 so that their 2-norms are all close to 1. Consider modifying the
polynomial matrix P (λ) = λ2P2 + λP1 + P0 as follows:

µα = λ; P̃ (µ) ≡ P (λ)β = µ2
(
P2α

2β
)

+ µ (P1αβ) + (P0β)(2.2)

which yields a corresponding matrix pencil

µB̃ − Ã = µ

[
I 0

0 P̃2

]
−
[

0 I

−P̃0 −P̃1

]
(2.3)

with coefficient matrices P̃2 = P2α
2β, P̃1 = P1αβ, P̃0 = P0β of respective 2-norms

γ̃2 = γ2α
2β, γ̃1 = γ1αβ, γ̃0 = γ0β. One should thus try to minimize the maximum

distance

min
α,β

max
{
|βα2γ2 − 1|, |βαγ1 − 1|, |βγ0 − 1|

}
.(2.4)

If we substitute α̂ := α
√
γ2/γ0, β̂ := βγ0, and γ̂ := γ1/

√
γ2γ0, then this reduces to

min
α̂,β̂

max
{
|β̂α̂2 − 1|, |β̂α̂γ̂ − 1|, |β̂ − 1|

}
.

At the optimum, all three quantities will be equal since otherwise we can decrease the
maximum by adapting β̂ and α̂. Hence we must have

|β̂α̂2 − 1| = |β̂α̂γ̂ − 1| = |β̂ − 1|.
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Since at least two of the quantities inside | · | must also have equal signs, one of the
following three relations must hold at the optimum:

α̂2 = 1, or α̂γ̂ = 1, or α̂ = γ̂.

By mere comparison, one then finds that the optimum α̂∗ is given by the first choice,
which finally yields

α̂∗ = 1, β̂∗ = 2/(1 + γ̂).

In terms of the original variables we thus have

α∗ =
√
γ0/γ2, β∗ = 2/(γ0 + γ1

√
γ0/γ2)

and the new values for the scaled norms are

γ̃0 = γ̃2 = 2/(1 + γ̂), γ̃1 = 2γ̂/(1 + γ̂),

while

max {|γ̃2 − 1|, |γ̃1 − 1|, |γ̃0 − 1|} = |(1 − γ̂)/(1 + γ̂)|.

We point out that bounding (2.4) also implies bounding the normwise backward
error of the matrices P̃i. Indeed, one easily checks that ‖Ã‖2 ≤ 2 and ‖B̃‖2 ≤

√
5.

When running the QZ algorithm on µB̃ − Ã we will have—according to the above
remark—equivalent absolute backward errors ∆̃i, i = 0, 1, 2 with norms of the order
of the machine precision ε. The structured relative backward errors will therefore be
of the order of

‖∆̃0‖2/‖P̃0‖2 ≈ ‖∆̃2‖2/‖P̃2‖2 ≈ ε(1 + γ̂), ‖∆̃1‖2/‖P̃1‖2 ≈ ε(1 + γ̂)/γ̂,(2.5)

and max
{
1 + γ̂, 1 + γ̂−1

}
can thus be seen as a growth factor between unstructured

relative backward errors on the pencil µB̂−Â and structured relative backward errors
on the second order polynomial matrix P̂ (µ) = µ2P̂2 + µP̂1 + P̂0. In the numerical
examples section we indeed show that the backward error of an approximate eigenpair
(ξ, λ) computed with this optimal scaling strategy improves a lot. Moreover, if γ̂ = 1
(this is, when γ2

1 = γ0γ2) then the normwise backward error will be of the order of
the machine precision according to Theorem 2.1.

Remark. One could consider a more general type of scaling

µB̃ − Ã =

[
�1I 0
0 �2I

]
(αµB −A)

[
r1I 0
0 r2I

]
(2.6)

involving 5 parameters, �1, �2, r1, r2, and α, but this is in fact the same problem.
Dividing �1, �2 and multiplying r1, r2 by a common factor yields the same solution, so
we can choose r1 = 1. Moreover, setting one block norm equal to 1 in both B̃ and Ã
does not modify relative block norms in each individual block, so we can set α�1r1 = 1
and �1r2 = 1. This then yields the parametrization �1 = 1/α, �2 = β, r1 = 1, r2 = α,
which is exactly the problem we studied above.

We point out that in [1] the more general problem of optimal scaling of companion
pencils is considered, but the technique and results are quite different. One could also
consider other GEPs with the same generalized eigenvalues as (1.2) (see [3]), but the
proposed scaling would then probably have to be adapted.
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3. Numerical examples. When applying the QZ algorithm to µB̃ − Ã, each
computed eigenpair µ, ξ satisfies (µB̃ − Ã)ξ ≈ 0. Both subvectors ξ1 := ξ(1 : n),
ξ2 := ξ(n + 1 : 2n) should be proportional to each other and will yield P (λ)ξi ≈ 0,
where λ = µα. The normwise backward errors ∆i, i = 0, 1, 2, that are compatible with
the computed eigenpair

[λ2(P2 + ∆2) + λ(P1 + ∆1) + (P0 + ∆0)]ξj = 0

can be bounded using the residuals P (λ)ξj . In [3] it is shown that the smallest
normwise backward error satisfies

max
i=0,1,2

‖∆i‖2/‖Pi‖2 = η(ξj , λ) ≡ ‖P (λ)ξj‖
(|λ|2‖P2‖ + |λ|‖P1‖ + ‖P0‖)‖ξj‖

for j = 1, 2.

In the following examples, we use these quantities as measure for the backward error
for each eigenpair computed by the QZ algorithm. The quantities ηs(ξj , λ), j =
1, 2, on the other hand, refer to the computed eigenvector/eigenvalue pairs obtained
after scaling. All computations were performed using MATLAB/Version 6.0 on a
Compaq/DS20 workstation. The machine precision is 1.1 × 10−16.

Example 1. We first consider the nuclear power plant problem in [3]. The back-
ward errors of the computed eigenpairs corresponding to the smallest and largest
eigenvalues in modulus, and the corresponding scaled backward errors are shown in
Table 3.1. In this example, the 2-norms of the matrices P2, P1, P0 are of the order
of 108, 1010, and 1013, respectively. After applying the optimal scaling presented in
section 2, their 2-norms are reduced to γ̃0 = γ̃2 ≈ 1.18, γ̃1 ≈ 0.821, respectively. For
this example γ̂ = 0.697, which implies that the scaled backward errors should be of
the order of the machine precision.

Table 3.1

Backward errors for Example 1.

|λ| η(ξ1, λ) η(ξ2, λ) ηs(ξ1, λ) ηs(ξ2, λ)
17.7 3e-5 6e-8 3e-15 1e-16
361 2e-11 2e-11 1e-18 2e-18

Example 2. Here we tested randomly generated second order polynomial ma-
trices P (λ) with ‖P2‖2 = O(105), ‖P1‖2 = O(103), ‖P0‖2 = O(10−3), and n = 10,
respectively. The absolute values of computed eigenvalues range between O(10−2) and
O(10−7) and in Table 3.2 we give the backward errors of the 5 eigenpairs of smallest
modulus, computed without and with scaling. With the optimal scaling, the 2-norms
of the scaled coefficient matrices P̃2, P̃1, and P̃0 are reduced to γ̃0 = γ̃2 ≈ 2.13×10−2,
γ̃1 ≈ 1.98, respectively. For this example γ̂ = 93.01, which means that after scaling
we should not lose more than one or two digits of accuracy, which is confirmed in the
experiments.

Example 3. In this example we tested randomly generated second order polyno-
mial matrices P (λ) with ‖P2‖2 ≈ 5.54×10−5, ‖P1‖2 ≈ 4.73×103, ‖P0‖2 ≈ 6.01×10−3,
and n = 10, respectively. The absolute values of computed eigenvalues range between
O(10−7) and O(108). In Table 3.3 we give the backward errors of the 5 eigenpairs
of smallest modulus without and with scaling. The scaled 2-norms are reduced to
γ̃0 = γ̃2 ≈ 2.44× 10−7, γ̃1 ≈ 2.00, respectively, and γ̂ ≈ 8.19× 106. This implies that
after scaling we should not lose more than six digits of accuracy.

Example 4. Here we also tested randomly generated second order polynomial
matrices P (λ) in (1.1) with ‖P2‖2 ≈ 5.03 × 105, ‖P1‖2 ≈ 6.53 × 10−3, ‖P0‖2 ≈
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Table 3.2

Backward errors for Example 2.

|λ| η(ξ1, λ) η(ξ2, λ) ηs(ξ1, λ) ηs(ξ2, λ)
2.40e-7 5e-8 4e-7 5e-16 3e-15
4.04e-7 6e-8 3e-7 1e-15 3e-15
6.47e-7 3e-8 8e-8 4e-16 2e-15
6.70e-7 2e-8 6e-8 9e-16 3e-15
1.22e-6 5e-9 7e-9 3e-16 2e-15

Table 3.3

Backward errors for Example 3.

|λ| η(ξ1, λ) η(ξ2, λ) ηs(ξ1, λ) ηs(ξ2, λ)
2.09e-7 2e-7 1e-6 6e-11 2e-10
5.71e-7 2e-7 5e-7 2e-10 2e-10
7.44e-7 2e-7 6e-7 3e-11 3e-11
1.37e-6 2e-7 1e-7 3e-11 2e-11
1.62e-6 2e-7 1e-7 7e-12 5e-12

6.06 × 103, and n = 10, respectively. The absolute values of computed eigenvalues
range between O(10−2) and O(10−1). In Table 3.4 we give the backward errors of the
5 eigenpairs of smallest modulus without and with scaling. The scaled 2-norms are
now γ̃0 = γ̃2 ≈ 2.00, γ̃1 ≈ 2.37 × 10−7, respectively, and the backward errors of the
computed eigenpairs are reported in Table 3.4. In this case, γ̂ ≈ 1.18 × 10−7 which
means that after scaling we should not lose more than six digits of accuracy.

Table 3.4

Backward errors for Example 4.

|λ| η(ξ1, λ) η(ξ2, λ) ηs(ξ1, λ) ηs(ξ2, λ)
1.72e-2 2e-13 1e-11 7e-16 3e-15
7.21e-2 1e-12 6e-12 5e-16 6e-16
1.06e-1 1e-12 5e-12 6e-16 6e-16
1.13e-1 1e-12 2e-12 3e-16 5e-16
1.55e-1 2e-12 2e-12 5e-16 6e-16

As shown in all of these examples, the backward errors are all significantly im-
proved by the scaling: we gain up to 10 digits of accuracy! Also the computable
quantity γ̂ gives an upper bound on the backward error which is often a good es-
timate as well, except for the last example where the accuracy is much better than
predicted.
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Abstract. An n× n sign pattern A is spectrally arbitrary if given any self-conjugate spectrum
there exists a matrix realization of A with that spectrum. If replacing any nonzero entry of A by
zero destroys this property, then A is a minimal spectrally arbitrary sign pattern. Several families
of sign patterns are presented that, for all n ≥ 3, each contain an n×n minimal spectrally arbitrary
sign pattern. These are the first families proven to have this property, and they improve previously
known results. Furthermore, all 3×3 minimal spectrally arbitrary sign patterns are determined, it is
proved that any irreducible n×n spectrally arbitrary sign pattern must have at least 2n− 1 nonzero
entries, and it is conjectured that the minimum number of nonzero entries is 2n.
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1. Introduction. A sign pattern is a square matrix with entries in {+,−, 0}.
If A is a sign pattern and A is a real matrix for which each entry has the same
sign as the corresponding entry of A, then A is said to be a realization of A, and
we write A ∈ A. This convention is also used for zero-nonzero patterns A. A sign
pattern B = [bij ] is a superpattern of a sign pattern A = [aij ] if bij = aij whenever
aij �= 0. Similarly, B is a subpattern of A if bij = 0 whenever aij = 0. Note
that each sign pattern is a superpattern and a subpattern of itself. An n × n sign
pattern A is spectrally arbitrary if for each real monic polynomial r(x) of degree n,
there exists some A ∈ A with characteristic polynomial pA(x) = r(x). Thus, A is
spectrally arbitrary if, given any self-conjugate spectrum, there exists A ∈ A with
that spectrum. A sign pattern A is minimally spectrally arbitrary if it is spectrally
arbitrary but is not spectrally arbitrary if any nonzero entry of A is replaced by zero.
If A is an n × n sign pattern or zero-nonzero pattern, then A allows nilpotency if
there exists some A ∈ A with characteristic polynomial pA(x) = xn. Note that each
spectrally arbitrary sign pattern must allow nilpotency, must be inertially arbitrary
(as explained below Theorem 2.5), and must also be potentially stable. These are
three important sign pattern problems that are considered in the literature (see, for
example, [1, 3, 4, 5, 7, 8, 9]).

In [8, Theorem 2.6], it is proved that a p-striped sign pattern—that is, an n × n
(n ≥ 2) sign pattern having p (1 ≤ p ≤ n−1) columns all of whose entries are positive
and n−p columns all of whose entries are negative—is spectrally arbitrary. The proof
is based on constructions using a Soules matrix, and gives (as far as we are aware)
the first spectrally arbitrary sign pattern for all n ≥ 2.
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Each p-striped sign pattern is full, and current interest is in determining minimal
spectrally arbitrary patterns. In section 2, an n×n (n ≥ 3) irreducible sign pattern Vn

is presented and proved to be minimally spectrally arbitrary. To our knowledge, no
such family of minimal spectrally arbitrary sign patterns has been presented previ-
ously. Each of these sign patterns is a Hessenberg matrix and all superpatterns of
these sign patterns are shown to be spectrally arbitrary. This strengthens results
in [5].

In section 3, the family of sign patterns Vn is extended to a larger family of
n× n irreducible sign patterns Wn(k) with each superpattern shown to be spectrally
arbitrary. This provides an alternate proof that every p-striped pattern is spectrally
arbitrary [8]. The sign pattern Wn(k) is not necessarily minimally spectrally arbitrary.
However, the minimal spectrally arbitrary sign patterns that are contained in Wn(k)
are characterized.

The family of sign patterns Vn is generalized in another way in section 4 by
introducing a family of zero-nonzero patterns V∗

n(I). It is shown that if V∗
n(I) allows

nilpotency, then V∗
n(I) determines an n × n irreducible sign pattern Vn(I) that is

minimally spectrally arbitrary with each superpattern being spectrally arbitrary. Two
families of irreducible minimal spectrally arbitrary patterns that arise in this manner
are described.

Two sign patterns A and B are equivalent if B may be obtained from A by
some combination of negation, transposition, permutation similarity, and signature
similarity. Note that if A and B are equivalent, then A is spectrally arbitrary if and
only if B is spectrally arbitrary. In section 5, the family of spectrally arbitrary 3 × 3
sign patterns is characterized explicitly (up to equivalence).

In the concluding section 6, it is proved that any n × n irreducible spectrally
arbitrary sign pattern must contain at least 2n− 1 nonzero entries. It is conjectured
that it must in fact contain at least 2n nonzero entries.

2. Hessenberg sign patterns Vn. Results throughout rely heavily upon the
following lemma, which is stated as Observations 10 and 15 in [1] and is proved using
the implicit function theorem. Let x1, . . . , xn be real variables, and for each i =
1, . . . , n, let αi = αi(x1, . . . , xn) be a real function of (x1, . . . , xn) that is continuous

and differentiable in each xj . The Jacobian J = ∂(α1,... ,αn)
∂(x1,... ,xn) is the n× n matrix with

(i, j) entry equal to ∂αi

∂xj
for 1 ≤ i, j ≤ n.

Lemma 2.1 (see [1]). Let A be an n × n sign pattern, and suppose that there
exists some nilpotent A ∈ A with at least n nonzero entries, say ai1j1 , . . . , ainjn . Let
X be the matrix obtained by replacing these entries in A by variables x1, . . . , xn, and
let

pX(x) = xn − α1x
n−1 + α2x

n−2 − · · · + (−1)n−1αn−1x + (−1)nαn.

If J = ∂(α1,... ,αn)
∂(x1,... ,xn) is nonsingular at (x1, . . . , xn) = (ai1j1 , . . . , ainjn), then every

superpattern of A is spectrally arbitrary.

Example 2.2. Let A =
[

+
+

−
−

]
. Then A =

[
1
1
−1
−1

]
∈ A is nilpotent. Let X =[

x1

1
−1
x2

]
. Then

pX(x) = x2 − α1x + α2,
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where α1 = x1 + x2 and α2 = x1x2 + 1. Thus

J =
∂(α1, α2)

∂(x1, x2)
=

[
1 1
x2 x1

]
and detJ = x1 − x2.

At (x1, x2) = (1,−1), detJ = 2 �= 0. By Lemma 2.1, A is spectrally arbitrary, and
it is easily seen that it is minimal. Note that up to equivalence, A is the unique
(minimal) spectrally arbitrary 2 × 2 sign pattern.

Given a sign pattern A, let D(A) be its associated digraph. For any digraph D,
let G(D) denote the underlying multigraph of D, i.e., the graph obtained from D by
ignoring the direction of each arc. The following lemma is well known and can be
proved by induction. We use this to normalize an n × n matrix A ∈ A by fixing up
to n− 1 entries to have magnitude 1.

Lemma 2.3. Let A be an n× n sign pattern and let A ∈ A. If T is a subdigraph
of D(A) such that G(T ) is a forest, then A has a realization that is positive diagonally
similar to A such that each entry corresponding to an arc of T has magnitude 1. In
particular, if A is irreducible, then G(D(A)) contains a spanning tree, and A must
therefore have a realization with at least n− 1 off-diagonal entries in {−1, 1} that is
positive diagonally similar to A.

Let n ≥ 3, and consider the n× n Hessenberg sign pattern

Vn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ − 0 0 0 0
+ 0 − 0 0 0
... 0 0

. . . 0 0
+ 0 0 0 − 0
+ 0 0 0 0 −
+ 0 0 0 0 −

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 2.4. For n ≥ 3, the pattern Vn is a minimal spectrally arbitrary
pattern.

Proof. Let

r(x) = xn − r1x
n−1 + r2x

n−2 − · · · + (−1)n−1rn−1x + (−1)nrn

be a fixed but arbitrary real monic polynomial of degree n. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 −1 0 0 0 0
a2 0 −1 0 0 0
... 0 0

. . . 0 0
an−2 0 0 0 −1 0
an−1 0 0 0 0 −1
an 0 0 0 0 −t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The characteristic polynomial of A is

pA(x) = xn − α1x
n−1 + α2x

n−2 − · · · + (−1)n−1αn−1x + (−1)nαn,

where α1 = a1 − t, and αi = ai − tai−1 for i = 2, . . . , n. Set a1 = r1 + t. For each
i = 2, . . . , n, set

ai = ti +

i∑
j=1

rjt
i−j .
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Then α1 = a1 − t = r1 + t− t = r1, and for i = 2, . . . , n,

αi = ai − tai−1 =

⎛⎝ti +

i∑
j=1

rjt
i−j

⎞⎠− t

⎛⎝ti−1 +

i−1∑
j=1

rjt
i−1−j

⎞⎠ = ri.

Thus, αi = ri for all i = 1, . . . , n, i.e., pA(x) = r(x). For all t > 0 sufficiently large,
each aj > 0 (1 ≤ j ≤ n) and thus A ∈ Vn. Hence, Vn is spectrally arbitrary.

By Lemma 2.3, each matrix with sign pattern Vn is positive diagonally similar
to a matrix A in the above form. If one of the −1 entries in columns 2, . . . , n − 1
of A is replaced by zero, then the resulting matrix is necessarily singular. Similarly, if
t = 0 or the −1 entry in column n of A is replaced by zero, then the resulting matrix
is necessarily nonsingular. If ai = 0 for some 1 ≤ i ≤ n, then αi ≤ 0. Thus, Vn is
minimally spectrally arbitrary.

Set t = 1 in the matrix A from the above proof. If a1 = · · · = an = 1, then A

is nilpotent. The Jacobian J = ∂(α1,... ,αn)
∂(a1,... ,an) has 1 in each diagonal position, −t = −1

in each subdiagonal position, and zeros elsewhere. Thus, detJ = 1 �= 0. Hence, the
theorem below follows from Lemma 2.1.

Theorem 2.5. For n ≥ 3, any superpattern of Vn is a spectrally arbitrary pat-
tern.

An n × n sign pattern A is inertially arbitrary if given a nonnegative triple of
integers (n1, n2, n3) with n1 + n2 + n3 = n, there exists some A ∈ A that has n1

eigenvalues with positive real part, n2 eigenvalues with negative real part, and n3

eigenvalues with zero real part. Note that if a sign pattern is spectrally arbitrary,
then it is also inertially arbitrary. Recently, several families of sign patterns have
been shown to be inertially arbitrary (see [5, 8, 9]). The sign patterns described in [5]
are superpatterns of the pattern Vn. It follows from Theorem 2.5 that these sign
patterns are not only inertially arbitrary but indeed spectrally arbitrary.

3. Non-Hessenberg sign patterns Wn(k). We now define a general class
of n × n sign patterns that includes the Hessenberg patterns Vn. Let n ≥ 3 and
0 ≤ k ≤ n−2 be given. Define Wn(k) to be the n×n sign pattern with positive signs
throughout the first column and in the entries

{(j, j + 1) : j = 1, . . . , k};

negative signs in the entries

{(j, j + 1) : j = k + 1, . . . , n− 1}, {(j, n) : j = 1, . . . , k}, and (n, n);

and zeros elsewhere. For k ≥ 1, let Wn(k) ∈ Wn(k) have values a1, . . . , an in column 1;
−b1, . . . ,−bk in the first k entries of column n; −bn in the (n, n) entry; and all entries
on the superdiagonal have magnitude 1. For example, the sign pattern W7(3) and a
realization W7(3) are

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + 0 0 0 0 −
+ 0 + 0 0 0 −
+ 0 0 + 0 0 −
+ 0 0 0 − 0 0
+ 0 0 0 0 − 0
+ 0 0 0 0 0 −
+ 0 0 0 0 0 −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1 0 0 0 0 −b1
a2 0 1 0 0 0 −b2
a3 0 0 1 0 0 −b3
a4 0 0 0 −1 0 0
a5 0 0 0 0 −1 0
a6 0 0 0 0 0 −1
a7 0 0 0 0 0 −b7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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respectively. Then matrix Wn(k) ∈ Wn(k) has characteristic polynomial

xn − α1x
n−1 + α2x

n−2 − · · · + (−1)n−1αn−1x + (−1)nαn,

where

α1 = a1 − bn,

αi = (−1)i−1(ai + ai−1bn − bi−1an) for i = 2, . . . , k + 1,

αi = (−1)k(ai − ai−1bn) for i = k + 2, . . . , n.

Proposition 3.1. For each pair n ≥ 3 and 0 ≤ k ≤ n− 2, the pattern Wn(k) is
a spectrally arbitrary pattern, and any superpattern of Wn(k) is spectrally arbitrary.

Proof. Since the patterns Wn(0) are the Hessenberg patterns Vn, the result for
k = 0 follows from Theorem 2.5.

Let 1 ≤ k ≤ n−2 be given. Note that Wn(k) is nilpotent if a1 = · · · = an = bn = 1
and b1 = · · · = bk = 2. Now set b1 = · · · = bk = 2 and bn = 1, leaving a1, . . . , an as
variables. Then the terms of the characteristic polynomial of Wn(k) are

α1 = a1 − 1,

αi = (−1)i−1(ai + ai−1 − 2an) for i = 2, . . . , k + 1,

αi = (−1)k(ai − ai−1) for i = k + 2, . . . , n.

The Jacobian J = ∂(α1,... ,αn)
∂(a1,... ,an) is a matrix with ±1 entries on the main diagonal and

on the subdiagonal, and (i, n) entries equal to (−1)i2 for i = 2, . . . , k+1. Thus, J has
determinant of the form ±1 + 2c for some integral constant c, and the result follows
from Lemma 2.1.

Corollary 3.2 (see [8, Theorem 2.6]). For n ≥ 2, every n × n p-striped sign
pattern is spectrally arbitrary.

Proof. The case n = 2 is proved in Example 2.2. Suppose that n ≥ 3, and
consider the n × n p-striped sign pattern with precisely p = k + 1 ≤ n − 1 positive
columns for some k ≥ 0. By permutation similarity, it may be assumed that the first
k + 1 columns are positive. This p-striped sign pattern is a superpattern of Wn(k),
and the result follows by Proposition 3.1.

If k = 0, then Wn(0) = Vn is a minimal spectrally arbitrary pattern. For k = 1,
Wn(1) is minimally spectrally arbitrary, since at least one of the coefficients αi has
fixed sign if any of the variables a1, . . . , an, b1, bn are set to zero. This is not necessarily
true for values k ≥ 2. For such k, let Ik denote the family of subsets I ⊆ {2, . . . , k}
such that I does not contain two consecutive integers i, i + 1, and {1, . . . , k + 1}\I
does not contain three consecutive integers i, i+ 1, i+ 2. Note that the set of all even
integers and the set of all odd integers in {2, . . . , k} both are members of Ik. For
I ∈ Ik, set ai = 0 for each i ∈ I, and let the resulting sign pattern and matrix be
denoted by WI

n(k) and W I
n(k), respectively.

Theorem 3.3. For each pair n ≥ 4 and 2 ≤ k ≤ n − 2, the family of minimal
spectrally arbitrary subpatterns of Wn(k) consists of the patterns WI

n(k), where I ∈ Ik.
Furthermore, any superpattern of these patterns is spectrally arbitrary.

Proof. Let I ∈ Ik, and set an = bn = 1 in W I
n(k). Then W I

n(k) is nilpotent if and
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only if the following coefficients all equal 0:

α1 = a1 − 1,

αi = (−1)i−1(ai−1 − bi−1) for i ∈ I,

αi = (−1)i−1(ai − bi−1) for i− 1 ∈ I, i ∈ {2, . . . , k + 1}\I,
αi = (−1)i−1(ai + ai−1 − bi−1) for i− 1, i ∈ {1, . . . , k + 1}\I,
αi = (−1)k(ai − ai−1) for i ∈ {k + 2, . . . , n}.

Note that W I
n(k) is nilpotent if ai = 1 for all variables ai appearing in the equations

above, and for each i ∈ {2, . . . , k + 1}, the variables bi−1 = 2 if both i and i +
1 are contained in {1, . . . , k + 1}\I, and bi−1 = 1 otherwise. The Jacobian J =

∂(α1,... ,αn)
∂(a1,b1,... ,bk,ak+1,... ,an−1)

is the direct sum of a lower-triangular k × k matrix and an

upper-triangular (n − k) × (n − k) matrix, with ±1 entries on the main diagonal.
The determinant of J has magnitude 1, so J is nonsingular. By Lemma 2.1, WI

n(k)
is spectrally arbitrary, and each superpattern of WI

n(k) is also spectrally arbitrary.
By the definition of Ik, if any variable ai, where i ∈ {2, . . . , k}\I, is set to 0, then
either ai−1 or ai+1 also equals 0, and the sign of αi or αi+1 is fixed. Thus, WI

n(k) is
a minimal spectrally arbitrary sign pattern.

Suppose that W is a minimal spectrally arbitrary subpattern of Wn(k) with real-
ization W obtained by setting some of the variables spectrally arbitrary, no coefficient
αi has fixed sign. Thus, none of the variables a1, ak+1, . . . , an, b1, . . . , bk, bn equals 0.
Furthermore, no two consecutive variables ai−1 and ai can both equal zero. Suppose
that i, i+ 1, i+ 2 are three consecutive integers contained in {1, . . . , k + 1} such that
ai, ai+1, ai+2 �= 0. If the entry ai+1 is replaced by a zero, then the resulting sign
pattern is also spectrally arbitrary, contradicting the minimality of W. It follows that
W = WI

n(k), where I = {i : 2 ≤ i ≤ k, ai = 0}.
4. Sign patterns Vn(I). For n ≥ 3, consider the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 −1 0 0 0 0
a1 0 −1 0 0 0
a2 0 0 −1 0 0
... 0 0 0 −1 0

an−2 0 0 0 0 −1
an−1 bn−2 bn−3 · · · b1 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,(4.1)

where the entries a0, b0, and an−1 are nonzero, and precisely one of ai and bi for each
i = 1, . . . , n − 2 is nonzero. The zero-nonzero pattern determined by A is denoted
by V∗

n(I), where I = {i : ai = 0}. The matrix A has characteristic polynomial

pA(x) = xn − α0x
n−1 + α1x

n−2 − · · · + (−1)n−1αn−2x + (−1)nαn−1,

where

α0 = a0 + b0,

αi = ai + bi +

i−1∑
j=0

ajbi−1−j for i = 1, . . . , n− 2,

and αn−1 = an−1 +

n−2∑
j=0

ajbn−2−j .
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Define si = ai+bi for i = 0, · · · , n−2 and sn−1 = an−1. Since ∂αi

∂sj
is zero whenever

j > i, the Jacobian J = ∂(α0,... ,αn−1)
∂(s0,... ,sn−1)

is lower triangular. The diagonal entries ∂αi

∂si

each equal 1, so the Jacobian has determinant 1 and is therefore nonsingular.

For nilpotency to hold, each coefficient αi for i = 0, . . . , n− 1 must vanish, i.e.,

0 = a0 + b0,

0 = a1 + b1 + a0b0,

0 = a2 + b2 + a0b1 + a1b0,(4.2)

...

0 = an−2 + bn−2 + a0bn−3 + a1bn−4 + · · · + an−3b0,

0 = an−1 + a0bn−2 + a1bn−3 + · · · + an−2b0.

An induction argument using these equations shows that any nilpotent A ∈ V∗
n(I),

parameterized as in (4.1), satisfies ai = cit
i+1 for i = 0, . . . , n − 1 and bi = dit

i+1

for i = 0, . . . , n − 2 for some constants c0, . . . , cn−1, d0, . . . , dn−2, t. If c0 and t are
positive, then the sign of ai for i = 0, . . . , n−1 and the sign of bi for i = 0, . . . , n−2 are
uniquely determined. Thus, if V∗

n(I) allows nilpotency, then this determines uniquely
a sign pattern with a positive (1, 1) entry and negative superdiagonal, denoted Vn(I),
which allows nilpotency. By Lemma 2.1, Vn(I) is a spectrally arbitrary pattern, and
each superpattern of Vn(I) is spectrally arbitrary. It is not difficult to show that Vn(I)
is an irreducible minimal spectrally arbitrary pattern. The preceding discussion gives
the following result.

Lemma 4.1. If V∗
n(I) allows nilpotency, then Vn(I) exists and is minimally spec-

trally arbitrary, and each superpattern of Vn(I) is spectrally arbitrary.

Note that V∗
n(φ) allows nilpotency (let a0 = · · · = an−1 = 1 and b0 = −1) and

that Vn(φ) = Vn.

Lemma 4.2. For I ⊆ {1, . . . , n−2}, let IC = {1, . . . , n−2}\I. Then V∗
n(I) allows

nilpotency if and only if V∗
n(IC) allows nilpotency. Also, if V∗

n(I) allows nilpotency,
then V∗

n′(I ′) allows nilpotency for all 3 ≤ n′ ≤ n, where I ′ = {i ∈ I : i ≤ n′ − 2}.
Proof. Note that V∗

n(I) and V∗
n(IC) are equivalent by transposition and per-

mutation similarity. This proves the first statement of the lemma. If V∗
n(I) allows

nilpotency, then equations (4.2) are satisfied by some A ∈ V∗
n(I). In particular, the

first n′ equations are satisfied, so V∗
n′(I ′) also allows nilpotency.

There are a large number of spectrally arbitrary patterns arising from patterns
V∗
n(I) but they do not generally seem to fall into easily described categories. Numerical

evidence suggests that for n ≥ 4, precisely 2n−3 + 2 of the 2n−2 patterns V∗
n(I) allow

nilpotency. The following theorems with I = {k} and I = {i : 1 ≤ i ≤ n− 2 is odd},
respectively, describe two classes, Vn(k) = Vn({k}) and Valt

n , of minimal spectrally
arbitrary sign patterns arising from V∗

n(I).

Let n ≥ 3 and 1 ≤ k ≤ n−2 be given and define Vn,k to be the n×n sign pattern
with negative signs in the entries

{(j, j + 1) : j = 1, . . . , n− 1}, {(j, 1) : j = k + 2, . . . , n}, and (n, n) ;

positive signs in the entries

{(j, 1) : j = 1, . . . , k} and (n, n− k) ;
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and zeros elsewhere. Note that Vn,k has the same zero-nonzero pattern as V∗
n(k). To

illustrate,

V5,1 =

⎡⎢⎢⎢⎢⎣
+ − 0 0 0
0 0 − 0 0
− 0 0 − 0
− 0 0 0 −
− 0 0 + −

⎤⎥⎥⎥⎥⎦ and V5,2 =

⎡⎢⎢⎢⎢⎣
+ − 0 0 0
+ 0 − 0 0
0 0 0 − 0
− 0 0 0 −
− 0 + 0 −

⎤⎥⎥⎥⎥⎦ .

Theorem 4.3. Let k ≥ 1 and k + 2 ≤ n < 2k + 1
2 (
√

1 + 8k + 3) be given. Then
Vn(k) exists and is identical to Vn,k. Furthermore, it is a minimal spectrally arbitrary
pattern, and any superpattern of Vn(k) is spectrally arbitrary.

Proof. Let A be as in (4.1), and set

ai =

⎧⎪⎨⎪⎩
1 for i = 0, . . . , k − 1,

k − i for i = k, . . . , 2k,
1
2 (i2 − i) + 2(k2 − ik) for i = 2k + 1, . . . , n− 1

and

bi =

⎧⎪⎨⎪⎩
−1 for i = 0,

1 for i = k,

0 for otherwise .

The polynomial 1
2 (x2 − x) + 2(k2 − xk) has roots 2k + 1

2 ± 1
2

√
1 + 8k. Thus, the

inequality

n− 1 < 2k +
1

2
+

1

2

√
1 + 8k

implies that 1
2 (i2− i)+2(k2− ik) < 0 for all 2k+1 ≤ i ≤ n−1. Hence, A ∈ V∗

n(k) and
A ∈ Vn,k. To prove Theorem 4.3, it suffices, by Lemma 4.1, to show that A is nilpotent,
i.e., that the entries of A satisfy equations (4.2). Certainly, a0 + b0 = 1 − 1 = 0 and

ai + bi + a0bi−1 + · · · + ai−1b0 = ai + ai−1b0 = 1 − 1 = 0

for all i = 1, . . . , k − 1. Also,

ak + bk + a0bk−1 + · · · + ak−1b0 = bk + ak−1b0 = 1 − 1 = 0.

Since b0 = −1 and bj = 0 for j = k + 1, . . . , n− 2, on letting bn−1 = 0, the remaining
equations have the form

0 = ai + bi + a0bi−1 + · · · + ai−1b0 = ai + ai−1−k − ai−1,

where k + 1 ≤ i ≤ n− 1. For k + 1 ≤ i ≤ min{2k, n− 1},

ai + ai−(k+1) − ai−1 = k − i + 1 − (k − i + 1) = 0.

If n− 1 ≤ 2k, then the proof is concluded. Suppose that n ≥ 2k + 2. The inequality

n < 2k + 2 +
1

2
(
√

1 + 8k − 1) ≤ 3k + 2,
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implies that n− 1 ≤ 3k. Thus

ai + ai−1−k − ai−1 =
1

2
(i2 − i) + 2(k2 − ik) + k − (i− 1 − k)

−
(

1

2
((i− 1)2 − (i− 1)) + 2(k2 − (i− 1)k)

)
= 0

for all i = 2k + 1, . . . , n− 1. This concludes the proof.
To illustrate Theorem 4.3, consider the case k = 1. Since

2k +
1

2
(
√

1 + 8k + 3) = 5,

it follows from Theorem 4.3 that V3(1) and V4(1) exist and are minimal spectrally
arbitrary patterns such that all of their superpatterns are spectrally arbitrary pat-
terns. Since V∗

5 (1) does not allow nilpotency, V5(1) does not exist. On the other hand,
5 < 4 + 1

2 (
√

17 + 3), so V5(2) exists and is equal to V5,2. Thus for n = 5, V5(k) exists
if and only if the inequality in Theorem 4.3 holds. In general, this is not true. For
instance, the pattern V∗

8 (2) allows nilpotency, as demonstrated by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 −1 0 0 0
−2 0 0 0 0 −1 0 0
−2 0 0 0 0 0 −1 0
−1 0 0 0 0 0 0 −1
1 0 0 0 0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ V∗

8 (2).

However, n �< 2k + 1
2 (
√

1 + 8k + 3) for n = 8 and k = 2. Note also that the above
sign pattern is not equal to V8,2.

A second class of sign patterns arising from patterns V∗
n(I) is as follows. Let

n ≥ 4, and let Valt
n be the n× n sign pattern with positive signs in the positions{

(4j + 1, 1) : 0 ≤ j ≤
⌊
n− 1

4

⌋}
and

{
(n, n− (4j + 1)) : 0 ≤ j ≤

⌊
n− 2

4

⌋}
;

negative signs in the positions

{(j, j + 1) : 1 ≤ j ≤ n− 1},{
(4j + 3, 1) : 0 ≤ j ≤

⌊
n− 3

4

⌋}
,{

(n, n− (4j + 3)) : 0 ≤ j ≤
⌊
n− 4

4

⌋}
, and (n, n) ;

and zeros elsewhere. To illustrate,

Valt
7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − 0 0 0 0 0
0 0 − 0 0 0 0
− 0 0 − 0 0 0
0 0 0 0 − 0 0
+ 0 0 0 0 − 0
0 0 0 0 0 0 −
− + 0 − 0 + −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Valt

8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − 0 0 0 0 0 0
0 0 − 0 0 0 0 0
− 0 0 − 0 0 0 0
0 0 0 0 − 0 0 0
+ 0 0 0 0 − 0 0
0 0 0 0 0 0 − 0
− 0 0 0 0 0 0 −
− 0 + 0 − 0 + −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Theorem 4.4. For n ≥ 4, let I consist of all odd integers i ≤ n − 2. Then
Vn(I) exists and is identical to Valt

n . Furthermore, it is a minimal spectrally arbitrary
pattern, and any superpattern of Vn(I) is spectrally arbitrary.

Proof. Let A be as in (4.1), and assume that n is odd. Let ai = bj = 0 for all odd
i ≤ n − 2 and all even j such that 2 ≤ j ≤ n − 2, let b0 = −1, and define bn−1 = 0.
For all 0 ≤ i ≤ n−1

2 , let a2i = (−1)iCi, where Ci = 1
i+1

(
2i
i

)
is the ith Catalan number

(see, for example, [10, 11] and note that C0 = 1). Also, let b2i+1 = a2i = (−1)iCi for
all 0 ≤ i ≤ n−3

2 . Then A ∈ V∗
n(I) and A ∈ Valt

n . To conclude the proof, it is sufficient,
by Lemma 4.1, to show that A is nilpotent. Certainly, a0 + b0 = 0. For each i ≥ 0,
the Catalan number Ci+1 satisfies the recursive identity

Ci+1 =

i∑
j=0

CjCi−j

(see [11, p. 117]). Thus, for 0 ≤ i ≤ n−3
2 ,

a2i+1 + b2i+1 + a2ib0 + · · · + a0b2i = b2i+1 − a2i = 0

and

a2i+2 + b2i+2 + a2i+1b0 + · · · + a0b2i+1 = a2i+2 +

i∑
j=0

a2ja2(i−j) =

(−1)i+1Ci+1 +

i∑
j=0

(−1)jCj(−1)i−jCi−j = (−1)i
(
− Ci+1 +

i∑
j=0

CjCi−j

)
= 0.

The equations (4.2) are all satisfied, so A is nilpotent.

Assume that n is even. Let ai = bj = 0 for all odd i ≤ n− 2 and all even j such
that 2 ≤ j ≤ n − 2, and let b0 = −1. For all 0 ≤ i ≤ n−2

2 , let a2i = (−1)iCi. Let
an−1 = an−2, and let b2i+1 = a2i = (−1)iCi for all 0 ≤ i ≤ n−4

2 . Then A ∈ V∗
n(I)

and A ∈ Valt
n . To conclude the proof, it is sufficient, by Lemma 4.1, to show that A

is nilpotent. Certainly, a0 + b0 = 0. For 0 ≤ i ≤ n−4
2 ,

a2i+1 + b2i+1 + a2ib0 + · · · + a0b2i = b2i+1 − a2i = 0

and

a2i+2 + b2i+2 + a2i+1b0 + · · · + a0b2i+1 = a2i+2 +

i∑
j=0

a2ja2(i−j)

= (−1)i+1Ci+1 +

i∑
j=0

(−1)jCj(−1)i−jCi−j = (−1)i
(
− Ci+1 +

i∑
j=0

CjCi−j

)
= 0.

Furthermore,

an−1 + an−2b0 + · · · + a0bn−2 = an−1 − an−2 = 0.

The equations (4.2) are all satisfied, so A is nilpotent.
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5. All minimal 3 × 3 spectrally arbitrary patterns. In the proof of Theo-
rem 5.2, it will be shown that a 3×3 irreducible sign pattern (with at least one positive
and one negative diagonal entry) is spectrally arbitrary if and only if it allows nilpo-
tency. Our approach to deciding whether or not a 3×3 sign pattern allows nilpotency
is different and more explicit than that in [3, Theorem 4.1]. First, the following lemma
is given, which precludes certain 3 × 3 patterns from allowing nilpotency.

Lemma 5.1. Let A be the sign pattern determined by any n × n matrix A with
nonzero entries aii for i = 1, . . . , n; ai,i+1 for i = 1, . . . , n−1; and an1 (i.e., D(A) is
a directed n-cycle with a loop at each vertex). Then A allows nilpotency if and only
if n = 2.

Proof. The characteristic equation of A is

0 = λn −
n∑

i=1

aiiλ
n−1 +

∑
1≤i<j≤n

aiiajjλ
n−2 − · · · + (−1)n

n∏
i=1

aii − an1

n−1∏
i=1

ai,i+1.

If A is to be nilpotent, then

0 =

n∑
i=1

aii,

0 =
∑

1≤i<j≤n

aiiajj ,

...

0 =
∑

1≤i1<i2<···<in−1≤n

ai1i1ai2i2 · · · ain−1in−1
.

The aii are roots of the equation (x− a11)(x− a22) · · · (x− ann) = 0, which is

xn + (−1)n
n∏

i=1

aii = 0

by the above equations.
If n = 2, then this can be satisfied with the two real numbers ±

√
|a11a22|, i.e.,

a11 = a and a22 = −a. But for n ≥ 3, the equation cannot be satisfied for n real
values, thus A does not allow nilpotency.

Theorem 5.2. The family of 3 × 3 minimal spectrally arbitrary sign patterns
consists of the sign patterns that are equivalent to one of the patterns T3, U3, V3,
and W3 in Figure 5.1. Furthermore, every 3 × 3 spectrally arbitrary sign pattern is
equivalent to a superpattern of one of these four patterns.

⎡⎣ + − 0
+ 0 −
0 + −

⎤⎦ ⎡⎣ + − +
+ − 0
+ 0 −

⎤⎦ ⎡⎣ + − 0
+ 0 −
+ 0 −

⎤⎦ ⎡⎣ + + −
+ 0 −
+ 0 −

⎤⎦
T3 U3 V3 W3 = W3(1)

Fig. 5.1. The minimal 3 × 3 spectrally arbitrary patterns.
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Proof. In [1], it is shown that T3 and U3 are minimal spectrally arbitrary patterns
and that each superpattern of these two patterns is also spectrally arbitrary. By
Theorem 2.5, Proposition 3.1, and the comments following Corollary 3.2, the patterns
V3 and W3 are both minimal spectrally arbitrary patterns, and each superpattern of
these two patterns is also spectrally arbitrary. Since it is easily shown that there are
no reducible 3 × 3 spectrally arbitrary patterns, to conclude the proof it is necessary
to demonstrate that the patterns that are equivalent to these four patterns and their
superpatterns are the only (irreducible) 3 × 3 spectrally arbitrary patterns. This is
done by proving that each 3 × 3 sign pattern not equivalent to any superpattern of
T3, U3, V3, or W3 does not allow nilpotency and, thus, is not a spectrally arbitrary
pattern. There are many such sign patterns and a detailed account for each pattern
would be quite tedious. Fortunately, this number can be reduced as follows. Up to
equivalence, each irreducible 3×3 spectrally arbitrary pattern has one of the following
forms: ⎡⎣ + # #

+ # #
0 + −

⎤⎦ ⎡⎣ + # #
+ # #
+ # −

⎤⎦ ,

where each # denotes either a plus, minus, or zero entry. Of 34 + 35 = 324 possible
sign patterns, 78 are reducible and 115 are equivalent to superpatterns of one or
more of the patterns T3, U3, V3, and W3. Of the remaining 131 patterns, there
are 71 patterns A such that for any matrix A ∈ A, the characteristic polynomial
pA(x) = x3 − α1x

2 + α2x − α3 contains a coefficient α1, α2, or α3 that has a fixed
sign, regardless of the specific matrix A. Such patterns cannot allow nilpotency.

The remaining 60 patterns fall into four general classes described below. By
Lemma 2.3, it may be assumed that any two of the nonzero strictly upper triangular
entries of any given irreducible 3 × 3 matrix both have magnitude 1.

The first of the four classes consists of the four patterns⎡⎣ + 0 −
+ − 0
0 + −

⎤⎦ ,

⎡⎣ + 0 +
+ − 0
0 + −

⎤⎦ ,

⎡⎣ + 0 −
+ + 0
0 + −

⎤⎦ , and

⎡⎣ + 0 +
+ + 0
0 + −

⎤⎦ .

By Lemma 5.1, such sign patterns do not allow nilpotency.
For the second class, consider

A =

⎡⎣ + + +
+ + +
+ + −

⎤⎦ with A =

⎡⎣ a d g
b e h
c f −j

⎤⎦ ∈ A.

The matrix A has the characteristic polynomial

pA(x) = x3 + (j − a− e)x2 + (ae− aj − bd− cg − ej − fh)x

+ aej + ahf − bdj − bgf − cdh + cge.

Assuming that A allows nilpotency, then values of a, b, . . . , j exist such that A is
nilpotent, i.e., pA(x) = x3. In this case, j = a + e, which implies that

0 = ae− aj − bd− cg − ej − fh

= −a2 − ae− bd− cg − e2 − fh < 0,
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a contradiction. Thus, A does not allow nilpotency. The same conclusion is valid if
one or more of the entries b, c, d, f , g, or h is equal to 0, and/or both b and d, both c
and g, and/or both f and h are nonpositive. These sign patterns and their equivalent
patterns account for 35 of the remaining 60 patterns.

For the third sign pattern class, consider

A =

⎡⎣ + − −
+ − +
+ + −

⎤⎦ with A =

⎡⎣ a −d −1
b −e h
c f −j

⎤⎦ ∈ A.

The matrix A has the characteristic polynomial

pA(x) = x3 + (e + j − a)x2 + (bd + cd + ej − ae− aj − fh)x

+ afh + bf + bdj + ce + ch− aej.

To show that A does not allow nilpotency, assume that pA(x) = x3 for appropriate
values of a, b, . . . , j. It must hold that a = e + j, so

c = ae + aj + fh− bd− ej = e2 + ej + fh + j2 − bd.

Thus the constant term gives

0 = −bd2h− bde + e3 + bdj + bf + de2h + dehj + dfh2 + dhj2 + 2efh + fhj,

so

b =
de2h + dehj + dfh2 + dhj2 + e3 + 2efh + fhj

d2h + de− dj − f
.

Since a, b, . . . , j > 0, it follows that d2h + de− dj − f > 0. However,

c = e2 + ej + fh + j2 − bd

=
−defh− 2dfhj − dj3 − e2f − efj − f2h− fj2

d2h + de− dj − f
< 0,

a contradiction, so A does not allow nilpotency. The same arguments are valid if any
of d, f , and h equal 0 such that d + f > 0. These sign patterns and their equivalent
patterns account for 8 of the 60 patterns.

For the fourth class, let

A =

⎡⎣ + − 0
+ − +
+ + −

⎤⎦ with A =

⎡⎣ a −1 0
b −e 1
c f −j

⎤⎦ ∈ A.

Assuming that A allows nilpotency, it is possible to assign values to a, b, . . . , j such
that the characteristic polynomial

pA(x) = x3 + (e + j − a)x2 + (b + ej − ae− aj − f)x + af + bj + c− aej

equals x3. If this is true, then a = j + e, so

b = ae + aj − ej + f = e2 + j2 + ej + f
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and

0 = af + bj + c− aej = c + ef + 2fj + j3 > 0,

a contradiction. Thus, A does not allow nilpotency. The same arguments and con-
clusion are true if c or f equals 0. The cases⎡⎣ + − −

+ − 0
0 + −

⎤⎦ ,

⎡⎣ + − −
+ − +
0 + −

⎤⎦ ,

⎡⎣ + + 0
+ + −
0 + −

⎤⎦ , and

⎡⎣ + + +
+ + −
0 + −

⎤⎦
are proven to not allow nilpotency in the same way. The sign patterns above and
their equivalent patterns account for 13 of the 60 patterns.

It may be verified by inspection that every one of the 60 sign pattern belongs to
one of the four classes above, no members of which allow nilpotency. This concludes
the proof.

6. Concluding remarks. Since our interest is on minimal spectrally arbitrary
patterns, we address the question of the least number of nonzero entries required by
such a pattern.

Conjecture 6.1. For n ≥ 2, an n × n sign pattern that is spectrally arbitrary
has at least 2n nonzero entries.

Conjecture 6.1 is verified for n = 2 by Example 2.2, and Theorem 5.2 verifies
the conjecture for n = 3 (since there are no 3 × 3 reducible spectrally arbitrary sign
patterns). For all n ≥ 3, this bound is realized by Vn (Theorem 2.4). It is also realized
by the antipodal tridiagonal sign pattern Tn in [1, 2] for all values of n for which Tn

is known to be spectrally arbitrary (i.e., 2 ≤ n ≤ 16).
Let Q[X] be the set of polynomials with rational coefficients and finite degree.

A set S ⊆ R is algebraically independent if, for all s1, . . . , sn ∈ S and each nonzero
polynomial p(x1, . . . , xn) ∈ Q[X], p(s1, . . . , sn) �= 0 (see [6, p. 316] for further details).
Let Q(S) denote the field of rational expressions{

p(s1, . . . , sm)

q(t1, . . . , tn)
: p(x1, . . . , xm), q(x1, . . . , xn) ∈ Q[X], s1, . . . , sm, t1, . . . , tn ∈ S

}
,

and let the transcendental degree of S be

tr.d.S = sup{|T | : T ⊆ S, T is algebraically independent}.

The following theorem very nearly verifies Conjecture 6.1.
Theorem 6.2. For n ≥ 2, an irreducible n × n sign pattern that is spectrally

arbitrary has at least 2n− 1 nonzero entries.
Proof. Let A be an irreducible n × n spectrally arbitrary sign pattern with

nA nonzero entries. Choose a set {α1, . . . , αn} ⊆ R that is algebraically indepen-
dent. By Lemma 2.3, A has a realization A = [aij ] with characteristic polynomial

pA(x) = xn − α1x
n−1 + · · · + (−1)nαn

and n − 1 (off-diagonal) entries with magnitude 1. Since for each 1 ≤ i ≤ n, αi is a
polynomial in the entries {aij : 1 ≤ i, j ≤ n} with rational coefficients, it follows that
Q(α1, . . . , αn) ⊆ Q(aij : 1 ≤ i, j ≤ n), so

n = tr.d.Q(α1, . . . , αn) ≤ tr.d.Q(aij : 1 ≤ i, j ≤ n) ≤ nA − (n− 1).



MINIMAL SPECTRALLY ARBITRARY SIGN PATTERNS 271

Thus, nA ≥ 2n− 1.
It is clear from the proof of Theorem 5.2 that a 3 × 3 irreducible sign pattern

(with at least one positive and one negative diagonal entry) allows nilpotency if and
only if it is a spectrally arbitrary pattern. This is not generally true, as the following
4 × 4 sign pattern demonstrates. Let

A =

⎡⎢⎢⎣
+ + 0 0
0 0 + 0
0 − 0 +
− 0 0 −

⎤⎥⎥⎦ with A =

⎡⎢⎢⎣
a 1 0 0
0 0 1 0
0 −c 0 1
−b 0 0 −d

⎤⎥⎥⎦ ∈ A.

By Lemma 2.3, it may be assumed without loss of generality that each realization
of A has the form of A above. The characteristic polynomial of A is

pA(x) = x4 − (a− d)x3 − (ad− c)x2 − (a− d)cx− acd + b.

If (a − d)c = 0, then a − d = 0, so pA(x) cannot equal x4 − αx3 for any nonzero α.
Thus, A does not allow the spectrum {0, 0, 0, α} for any nonzero α, and thus A is
not spectrally arbitrary. However, A does allow nilpotency, since A is nilpotent for
a = b = c = d = 1.
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Abstract. In this paper, we study the projection onto the intersection of an affine subspace and a
convex set and provide a particular treatment for the cone of positive semidefinite matrices. Among
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1. Introduction.

1.1. To find the best approximation. We propose a method to solve the
following problem: to project a point, in a Euclidean space, onto the intersection of
a closed convex set K and of an affine subspace. We are particularly interested in the
case where K is a cone, more specifically the cone of symmetric positive semidefinite
matrices. We call this latter problem semidefinite least-squares (sdls).

Semidefinite least-squares problems arise in different fields of numerical and ap-
plied mathematics. For instance, a “good” approximation of a covariance matrix
between n assets, which plays a key role in portfolio risk analysis, could be obtained
from a first estimate by solving a semidefinite least-squares (this is developed in sub-
section 5.4). Semidefinite least-squares also occur in robust quadratic optimization
and numerical linear algebra (preconditioning of linear system and error analysis of
Jacobi methods for the symmetric eigenvalue problem; see [DH00]).

Our aim is to propose an algorithm based on Lagrangian duality to solve the
above-mentioned least-squares problem. This paper is organized as follows. We focus,
in section 2, on the case where there are no affine constraints: using tools from convex
analysis, we recover known properties of distance functions. In section 3, we introduce
affine constraints and we show that their dualization yields a dual problem which is
convex and differentiable. A quasi-Newton algorithm is proposed in section 4 to solve
this last problem. Computational results, comparison with existing methods, and
applications of the semidefinite version of this algorithm are presented in section 5.

1.2. Basic notation. The general framework of this paper is a Euclidean space,
say R

p, equipped with a scalar product 〈·, ·〉. We will denote by || · || the associated
norm. We consider, in particular, the space of n×n symmetric matrices Sn, equipped,
for instance, with the Frobenius scalar product

∀X,Y ∈ Sn 〈X,Y 〉 = tr(XY ) =

n∑
i,j=1

XijYij ,
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where tr(X) is the trace of the matrix X. We give below a short glossary of symbols:
• the closed convex cone of positive semidefinite matrices is denoted by S+

n ; we
use the notation X � 0 to express that X lies in S+

n ;
• the adjoint of a linear mapping A is denoted by A∗;
• for any vector x in R

n, Diagx denotes the diagonal matrix with the vector
x on the main diagonal; its adjoint operator diag: Sn → R

n is diag(A) =
[a11, . . . , ann]�.

1.3. Formulation. The problems we will focus on can be expressed as follows.
Let K be a closed convex set of R

p. Let a vector b ∈ R
m and a linear operator

A : R
p −→ R

m be given. We want to compute the projection of a vector c ∈ R
p onto

the closed convex subset of R
p formed by the intersection of K and the affine subspace

defined by A and b. Our goal is to design an algorithm to solve⎧⎨⎩ inf 1
2 ||x− c||2,

Ax = b ,
x ∈ K .

(1.1)

Each component function of A can be expressed as a scalar product: there exist m
elements ai ∈ R

p such that A(x) = [〈a1, x〉, . . . , 〈am, x〉]�. Therefore an equivalent
formulation is (for b, ai, and c given)⎧⎨⎩ inf 1

2 ||x− c||2,
〈ai, x〉 = bi , i = 1, . . . ,m,
x ∈ K .

The first remark is that, if the feasible domain is nonempty, there exists a unique x�

which achieves the above infimum. In what follows, we assume this to be the case;
therefore we use the notation min rather than inf for this least-squares problem.

To end this introduction, we specify the framework of this paper. Our first mo-
tivation is to solve efficiently semidefinite least-squares (i.e., when K = S+

n ), which
section 5 is devoted to. Although the material of this paper can be developed with a
general closed convex set K (see Remarks 2.3 and 4.3(ii)), we restrict ourselves to the
case where K is a closed convex cone. This allows us to introduce adapted tools, to
simplify calculus and to stay closer to semidefinite least-squares.

2. Projection onto a closed convex cone. To begin with, we isolate the
problem of computing the projection pK(c) of a fixed c ∈ R

p onto a closed convex
cone K, with a special study for K = S+

n . The aim of this section is twofold:

(1) to recall results we will need;

(2) to draw connections between these results and tools from convex analysis.

2.1. Moreau theorem and Moreau regularization. The projection onto a
cone K enjoys properties which come close to those of the projection onto a subspace.
The set playing the role of the orthogonal subspace is the polar cone Ko of K:

Ko := {s ∈ R
p : 〈s, x〉 ≤ 0 for all x ∈ K} .

A first observation is that Ko is also closed and convex. There is a decomposition
result which generalizes the decomposition of a vector space as the direct sum of a
(closed) subspace and its orthogonal (see [HUL01, Chap. A]).

Theorem 2.1 (Moreau decomposition). Let K be a closed convex cone. For the
three elements x, x1, and x2 in R

p, the two properties below are equivalent:
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(i) x = x1 + x2 with x1 ∈ K, x2 ∈ Ko and 〈x1, x2〉 = 0,

(ii) x1 = pK(x) and x2 = pKo(x).

We turn now to variational properties of the half-squared distance to K, which
will be needed in section 3:

dK : R
p −→ R,

x �−→ min
y∈K

1
2 ||x− y||2 .(2.1)

We start by observing that there is another useful expression of dK. By definition,
the above minimum is reached at the unique point pK(x). Then Theorem 2.1 yields

dK(x) =
1

2
||x− pK(x)||2 =

1

2
||pKo(x)||2 .(2.2)

The following properties are not new, and can be proved with basic tools. Here,
we show that they are straightforward applications of properties of Moreau–Yosida
regularization [HUL93, Chap. XV]. For a convex function f on R

p, we define the
Moreau–Yosida regularization of f to be the function

x �−→ min
y∈Rp

{
f(y) +

1

2
||x− y||2

}
.

Theorem 2.2. Let K be a closed convex cone in R
p. Then the function dK(x)

defined by (2.1) is a convex differentiable function from R
p to R, whose gradient is

∇dK(x) = pKo(x) .(2.3)

Furthermore the gradient function is 1-Lipschitz continuous.
Proof. Let IK be the indicator function of K (whose values are 0 on K and +∞

elsewhere). The theorem is just Theorem 4.1.4 of [HUL93, Chap. XV] written in our
case, since dK can be interpreted as the Moreau–Yosida regularization of IK:

dK(x) = min
y∈Rp

{
IK(y) +

1

2
||x− y||2

}
.

We get, in particular, ∇dK(x) = x−pK(x) = pKo(x) (by Theorem 2.1). The Lipschitz
property is clear here since the gradient is a projection.

Remark 2.3. Note that the above result is valid when k is a general closed convex
set, but then the expression (2.3) of the gradient is replaced by ∇dK(x) = x− pK(x)
which is again 1-Lipschitz.

2.2. Projection onto S+
n . In this subsection, we consider the semidefinite least-

squares problem without any affine constraint. We recall a crucial theorem for our
purposes: an explicit formula for the projection onto S+

n .
We need more notation. We denote by λi(C) the (real) eigenvalues of C ∈ Sn,

and rank them in nonincreasing order

λ1(C) ≥ λ2(C) ≥ · · · ≥ λn(C);

λ(C) will stand for [λ1(C), . . . , λn(C)]�. The symmetric matrix C is diagonalizable
in an orthonormal basis of R

n formed by eigenvectors of C: C = PC(Diagλ(C))P�
C .
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We will often drop the dependence on C from our notation. We denote by C+ the
“positive semidefinite part” of C (negative eigenvalues are set to zero):

C+ := P

⎡⎢⎣ max{λ1, 0}
. . .

max{λn, 0}

⎤⎥⎦P� ;(2.4)

likewise the “negative semidefinite part” is denoted by C−.
Theorem 2.4. Let C ∈ Sn. Then the projection pS+

n
(C) of C onto S+

n is the
matrix C+, defined by (2.4). Likewise the projection pS−

n
(C) of C onto the polar cone

(S+
n )o = S−

n is C−.
A direct proof of this result is proposed in [Hig88]. It is worth mentioning that this

theorem is also a straightforward application of Theorem 2.1 (see [HUL01, Exercise
A.15]), the key being that C+ ∈ S+

n , C− ∈ S−
n and 〈C+, C−〉 = 0.

Remark 2.5. The space Sn is frequently equipped with a weighted version of the
Frobenius norm

||X||W = ||W 1/2XW 1/2||,

where W is a positive definite matrix. It is easy to express the projection (in the
sense of the weighted scalar product) of C ∈ Sn onto S+

n as

W−1/2(W 1/2CW 1/2)+W
−1/2.

3. Lagrangian duality. We propose in this section a Lagrangian dualization of
(1.1). The idea is to treat in two different ways the two different kinds of constraints:
on one hand affine constraints in R

p and on the other hand convex constraints. The
technique is to dualize only affine constraints, forming a partial Lagrangian.

All the present paper relies upon the next statement. It motivates the develop-
ments of previous sections and will give birth to computational methods.

Theorem 3.1. Consider the following least-squares problem in (Rp, || · ||):

(primal)

{
min 1

2 ||x− c||2,
x ∈ K, Ax = b ,

which is our primal problem. Form the partial Lagrangian depending on two variables
(the primal variable x which lies in K ⊂ R

p and the dual variable y which lies in the
constraint space R

m)

L(x; y) :=
1

2
||c− x||2 − y�(Ax− b) .(3.1)

Define the corresponding dual function

θ(y) := min
x∈K

L(x; y)(3.2)

and the dual problem on the constraint space R
m

(dual)

{
sup θ(y),
y ∈ R

m .

The dual function has the following expressions:

θ(y) = − 1
2 ||pK(c + A∗y)||2 + 1

2 ||c||
2

+ y�b

= −dKo(c + A∗y) + 1
2 ||c||

2
+ y�b .

(3.3)
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Proof. Let us transform the partial Lagrangian to isolate the function dK of (2.1):

L(x; y) = 1
2 ||c− x||2 − 〈A∗y, x〉 + y�b

= 1
2 ||(c + A∗ y) − x||2 − ( 1

2 ||A∗y||2 + 〈c,A∗ y〉) + y�b

= 1
2 ||(c + A∗ y) − x||2 − ( 1

2 ||A∗y + c||2 − 1
2 ||c||

2
) + y�b .

Now get an expression of θ. For any fixed y ∈ R
m:

θ(y) := minx∈K L(x; y)

= dK(c + A∗y) − 1
2 ||A∗y + c||2 + 1

2 ||c||
2

+ y�b .

Simplify with (2.2):

θ(y) = 1
2 ||pKo(c + A∗y)||2 − 1

2 ||A∗y + c||2 + 1
2 ||c||

2
+ y�b

= − 1
2 ||pK(c + A∗y)||2 + 1

2 ||c||
2

+ y�b

= −dKo(c + A∗y) + 1
2 ||c||

2
+ y�b .

We therefore obtain the expected formulations of θ.
Notice that we know the unique point in K which achieves the minimum in (3.2)

for y ∈ R
p. In the remainder of the paper, we denote it by x(y):

x(y) := argmin
x∈K

L(x; y) = pK(c + A∗y) .(3.4)

In other words there holds

θ(y) = L(x(y); y) .(3.5)

The dual function θ inherits the properties of dKo studied in section 2.
Theorem 3.2. The function θ of (3.3) satisfies the properties below:

(i) θ is concave,

(ii) θ is differentiable,

(iii) ∇θ is Lipschitz continuous and is given by

∇θ(y) = −A{pK(c + A∗ y)} + b(3.6)

Proof. The dual function, as a minimum of affine functions of y, is concave by
construction. Besides, with equation (3.3), according to results on dKo (Theorem 2.2
for Ko), θ is differentiable, its gradient is

∇θ(y) = −A{∇dKo(c + A∗ y)} + b

= −A{pK(c + A∗ y)} + b ,

which is the required result.
The dual function has a strong structure which will be used for algorithmic per-

spectives. The dual problem reduces to the convex-differentiable optimization problem{
inf 1

2 ||pK(c + A∗y)||2 − y�b,

y ∈ R
m .

Example 1 (semidefinite least-squares). In the case K = S+
n , the key point is that

we have an easy-to-compute formulation of the projection (Theorem 2.4). The dual
problem is here {

min ||(C + A∗y)+||2 − b�y

y ∈ R
m .
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4. A dual algorithm. We want to solve the primal problem, i.e., to find x� ∈ K
closest to c ∈ R

p while satisfying affine constraints. The structure of the primal is not
easy to use directly. On the other hand, its dual problem is more strongly structured
(Theorem 3.2) and thus opens the way to a possible resolution procedure.

We assume in this section that there is a solution y� to the dual problem: the dual
function is bounded from above and its supremum is actually a maximum, achieved
at y�. We are therefore in the following primal-dual situation

(primal)

{
min 1

2 ||x− c||2
x ∈ K, Ax = b

(dual)

{
max θ(y)
y ∈ R

m .
(4.1)

with θ expressed by (3.3).

4.1. From dual to primal solution. In this subsection, we suppose that we
are able to get efficiently y�. We show that in this case the primal problem is indeed
solved. We start by mentioning that each value of the dual function gives a lower
bound on the primal objective function: from the weak duality theorem (see [HUL93,
Chap. XII]), there holds

θ(y) ≤ 1

2
||c− x||2(4.2)

for all dual-feasible points (i.e., y ∈ R
m) and for all primal-feasible points (i.e., x ∈ K

such that Ax = b).
Theorem 4.1. Assume the existence of a dual solution y�. Then the solution x�

of the primal problem is given by

x� = pK(c + A∗y�) .(4.3)

Proof. From Theorem 3.2, θ is concave and differentiable, then at y� which
achieves its maximum, its gradient is zero. By equations (3.4) and (3.6), this re-
sults in Ax(y�) = b, i.e., x(y�) is primal-feasible. Then we have by (3.5)

θ(y�) = L(x(y�); y�) =
1

2
||c− x(y�)||2.(4.4)

By (4.2), θ(y�) is a lower bound of the objective function of the primal. Equation
(4.4) means that this lower bound is reached at the primal-feasible x(y�). Thus that
point is the minimum and

x� = x(y�) = pK(c + A∗y�) ,

which ends the proof.
This theorem says that there is no duality gap between the primal and the dual.

This is expressed by equation (4.4): the values of the primal function at its minimum
and of the dual at its maximum are the same.

A particular case yielding both existence of y� and absence of a duality gap is
the primal Slater condition (see [HUL93, Chap. XII]), expressing that feasibility of
the primal constraints is preserved despite perturbations of b. It corresponds to the
existence of a point strictly feasible of the primal: there exists x satisfying Ax = b
and lying in the interior of K, assumed nonempty.
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4.2. Computing a dual solution. The regularity properties of θ allow the use
of any classical algorithm to minimize it; for instance, a quasi-Newton algorithm is
considered as most efficient.

Algorithm 1. Consider the pair of primal-dual problems (4.1). Let a black-box
perform the following task:

(i) compute A∗y for given y ∈ R
m;

(ii) compute Ax for given x ∈ R
p;

(iii) compute pK(z) for given z ∈ R
p.

Use a quasi-Newton optimization code to maximize θ on R
m. With the help of the

above black-box, this code generates a maximizing sequence (yk)k together with the
corresponding:

(i) xk = pK(c + A∗yk) ;

(ii) ∇θ(yk) = −Axk + b ;

(iii) θ(yk) = − 1
2 ||xk||2 + y�b.

To implement the above algorithm the only thing we basically need is to compute
pK. In other words, the key point to solve our problem (i.e., to compute the projection
onto the intersection of K with an affine hyperplane) is to know how to solve the
problem without affine constraints (i.e., to compute the projection onto K). This
means the algorithm is efficient when the difficulty is due to the addition of affine
constraints. For instance, this is the case for semidefinite least-squares, where we
have the easy-to-compute expression (2.4) of the projection.

An instance of quasi-Newton known to be convergent when the objective function
is convex and has a Lipschitz gradient is the so-called BFGS with Wolfe line-search
(Theorem 4.9 of [BGLS03]). Here is a convergence result.

Theorem 4.2. Let A be surjective and the Slater assumption hold. Then Algo-
rithm 1 gives an approximation of x�: for any ε>0, there is k such that ||xk − x�||≤ε.

Proof. From the Slater assumption and the surjectivity of A, the dual optimal set
is bounded [HUL93, Chap. VII], and then each level-set is bounded [HUL93, Chap. IV].
The sequence (yk) is thus bounded. Take ε > 0. Since θ is continuous on R

m, there
exists a dual solution y� and k large enough such that ||yk − y�|| ≤ ε/||A∗||. Now
from Lipschitzian property of the projection we can write

||x� − xk|| = ||pK(c + A∗y�) − pK(c + A∗yk)|| ≤ ||A∗|| ||y� − yk|| ≤ ε .

This ends the proof.
We mention that the so-called limited memory quasi-Newton method can also be

used. It avoids the need to store an m ×m matrix, thus accommodating very large
values (see [BGLS03, sects. 1.2.2 and 6.3]).

Remark 4.3. To conclude this section, we mention two possible extensions.

(i) Observe that the dual of {
min 1

2 ||x− c||2,
x ∈ K, Ax ≤ b,

is (by an easy adaptation of the proof of Theorem 3.1){
max θ(y),
y ∈ R

m, yi ≥ 0 for all i = 1, . . . ,m.

Thus Algorithm 1 can solve such problems with inequality constraints, whenever
the quasi-Newton algorithm accepts box-constraints.
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(ii) We also add that this approach can even be used for problems when K is a
general closed convex set. The method can be adapted to treat the projection
on the intersection of a convex set K and an affine subspace, if one knows how
to project onto K. In fact, θ is always a concave differentiable function, whose
gradient is

∇θ(y) = −Ax(y) + b

with x(y) = argminx∈K L(x; y). All these results come from [HUL01, Chap. D.4.4].

5. Semidefinite least-squares. In this section, we focus on the case where
K = S+

n . Semidefinite least-squares is a very important subclass of the general least-
squares problem (1.1). For instance, the computation of a “good” approximation
of the covariance matrix of n assets can be expressed as a semidefinite least-squares
problem (see subsection 5.4). Recall that an optimization program is written under
a semidefinite least-squares form if there are a matrix C ∈ Sn, a vector b ∈ R

m and
a linear operator A : Sn −→ R

m such that

(sdls)

⎧⎨⎩min 1
2 ||X − C||2,

AX = b,
X � 0 .

If A is expressed via its m component functions, (sdls) can be formulated with the
help of m symmetric matrices:⎧⎨⎩min 1

2 ||X − C||2,
〈Ai, X〉 = bi , i = 1, . . . ,m,
X � 0 .

We present, in subsections 5.1 and 5.2, known methods to solve (sdls): interior points
and alternative projections. We also give a dual interpretation of the latter. We then
show that Algorithm 1 is a good alternative to these methods.

5.1. Semidefinite approach. A natural idea to attack (sdls) directly is to
phrase it as a semidefinite program. The problem can actually be seen as a quadratic-
semidefinite program and then efficient interior-points methods for SDP programming
are available (see [Tod01] for a review).

The (nonlinear) objective function can actually be pushed into constraints:⎧⎪⎪⎨⎪⎪⎩
min t,
||X − C|| ≤ t,
AX = b,
X � 0,

(5.1)

a problem expressed as a quadratic-semidefinite program [BTN01]. Thus powerful
interior-points methods solvers can be used. However the number of variables is
O(n2) and this approach is presented as impractical for large n in [Hig02, subsect.
3.3]. Tests that we ran with sedumi [Stu99] confirm this point.

However, it should be mentioned that putting (5.1) in sedumi format requires the
introduction of artificial variables and constraints. Adapted interior-points variants
may exist. Note that [Tak03] provides one for sparse matrices.
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5.2. Alternating projections method. Another interesting method is pro-
posed in [Hig02] to solve particular instances of semidefinite least-squares (and it
could be easily generalized to any semidefinite least-squares). Here A is the diag-
operator: we want to solve ⎧⎨⎩min 1

2 ||X − C||2 ,
Xii = 1 , i = 1, . . . , n ,
X � 0 .

(5.2)

Introducing the notation

U = {X ∈ Sn : Xii = 1},(5.3)

the idea of the so-called alternating projection method is to repeat the operation

X ← pS+
n

(pU (X)).(5.4)

Besides, the so-called Dykstra’s correction [Dyk83] is used in [Hig02]. All together
the algorithm is as follows.

Algorithm 2 (Algorithm 3.3 of [Hig02]). For C∈Sn, this algorithm solves (5.2):
∆S0 = 0, Y0 = C
for k = 1, 2, . . .

Rk = Yk−1 − ∆Sk−1 % Dykstra’s correction
Xk = pS+

n
(Rk)

∆Sk = Xk −Rk

Yk = pU (Xk)
end

The alternating projection method has actually a dual interpretation in this case.
Theorem 5.1 below says that it is just the standard gradient optimization algorithm
applied to the dual of (5.2), namely yk+1 = yk + ∇θ(yk). In fact, recalling formula
(3.6), the gradient algorithm can be expressed as follows.

Algorithm 3. This algorithm maximizes θ(y) = −||pS+
n

(C + A∗y)||2 + b�y on
R

n, by the gradient method (with constant stepsize equal to 1):
y1 = 0,
for k = 1, 2, . . .

X̄k = pS+
n

(C + A∗yk)

yk+1 = yk + (−AX̄k + b)
end

In view of (5.2), we have here b = [1, . . . , 1]�, A = diag, A∗ = Diag, and we observe
that AA∗ = Im.

Theorem 5.1. The sequence (X̄k) generated by Algorithm 3 is the same as (Xk)
generated by Algorithm 2.

Proof. First, observe that the projection of X ∈ Sn on U is

pU (X) = X −A∗(AX − b).(5.5)

Let us prove by recurrence that

X̄k = Xk and Rk = C + A∗yk for all k ≥ 0 .(5.6)
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This is true for k = 1 since R1 = C, y1 = 0, and X̄1 = X1 = pS+
n

(C). Suppose now
that it holds for k; then

Rk+1 = Yk − ∆Sk

= Yk −Xk + Rk

= −A∗(AXk − b) + Rk

= −A∗(AX̄k − b) + C + A∗yk
= C + A∗(yk − (AX̄k − b))
= C + A∗yk+1 .

[definition of Rk+1]

[definition of ∆Sk]

[(5.5) and definition of Yk]

[recurrence assumptions]

[definition of yk+1]

Hence Xk+1 = pS+
n

(Rk+1) = pS+
n

(c + A∗yk+1) = X̄k+1, and the theorem is
proved.

As a result, the method of alternative projections (Algorithm 2) and our proposal
(Algorithm 1) are well comparable: both are optimization algorithms to maximize the
dual function, the former does this by the (simple) gradient method with constant
step size while the latter uses the (sophisticated) quasi-Newton approach.

5.3. Numerical results. For illustration, Algorithm 1 has been applied to ins-
tances of (5.2). We ran three types of experiments:

(i) We solve (5.2) with random dense matrices C (random Cij ∈ [−1, 1] and
Cii = 1) of sizes from 100×100 to 3000×3000.

(ii) We take a matrix X� in U∩S+
n (where U is defined by (5.3)) of size 1000×1000

and we perturb it to create a matrix C such that X� is the projection of C.
We then test Algorithm 1 with this C.

(iii) We fix the size (500×500) and we take matrices with increasing entries on
the diagonal.

The algorithm has been coded in Fortran and we use the lapack library for numerical
algebra. Note that the computation of the projection onto S+

n is nothing more than
an eigensystem computation: we use symmetric QR algorithm of lapack. In our
experiments, the stopping test is

1√
n
||∇θ(yk)|| =

1√
n
||AXk − b|| ≤ 10−7 .

The performance measures have been obtained on a machine of the Intel P4 2 GHz
processor family with 512 Mbytes of memory. The system runs under Linux Redhat
8.0 and uses the gnu compilation chain.

First experiment. The results with random matrices are as follows.

matrix sizes cpu time nb of iterations
100 × 100 0.2 s 14
300 × 300 3.3 s 14
500 × 500 16.3 s 17
800 × 800 1 min 10 s 17

1000 × 1000 2 min 05 s 18
1500 × 1500 7 min 35 s 18
2000 × 2000 17 min 41 s 19
3000 × 3000 1h 08 min 14 s 19

Some observations are worth mentioning:
• Computation on matrices up to 200× 200 takes less than one second and the

algorithm copes very well with larger matrices (one hour for a 3000 × 3000
dense matrix).
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• For these kinds of matrices (with Cij ∈ [−1, 1]), the typical number of iter-
ations ranges between 10 and 20, almost independently of the problem size.
The experimental computational cost is O(n3).

• The bulk of the work is the spectral decomposition. Better cpu time could
be obtained along the lines of Corollary 3.5 of [Hig02], by avoiding the com-
putation of the full eigensystem. We have not implemented this idea.

Second experiment. Now we give an idea of the behavior of the algorithm by
tracing the error between the exact solution and the current iterate. To construct a
synthetic example, one can proceed as follows. Take a matrix X� in U ∩ S+

n . Then
set C := X� + δX, where δX lies in the normal cone to U ∩ S+

n at X�, so that X�

solves (5.2).
By calculus rules of [HUL01, Chap. A], the normal cone to U ∩ S+

n at X� is the
sum of U⊥ (normal “cone” to the subspace U) and of S−

n ∩X⊥ (normal cone to S+
n

at X�). It suffices to choose an X� such that constructing a matrix in S−
n ∩ X⊥ is

easy. For example, take 1 ≤ � ≤ n and consider the matrix

X� :=

[
E�

In−�

]
,

where In−� is the (n− �)×(n− �) identity matrix and E� is the �× � matrix with all
entries equal to 1. Then it is easy to see that a suitable matrix is

C :=

[
�

�−1E�

In−�

]
+ D,

where D is an arbitrary diagonal matrix.
Figure 5.1 shows the evolution of the distance of the current iterate Xk to the

solution (which is X� by construction) for an instance where n = 1000, � = 500, and
Dii is a random number in [−10, 10]. The algorithm converges in 56 iterations (and
58 diagonalizations). Note that the run takes more iterations than the 1000×1000-
instance of the first experiment (18 iterations). This fact is underlined by the third
experiment.

Fig. 5.1. Evolution of ||Xk −X�||2.
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Fig. 5.2. Influence of the remoteness of C.

Third experiment. When the entries of C get larger, C gets more remote from the
target U ∩ S+

n . One can think that computing the projection of C then takes more
iterations. The aim of this experiment is to quantify the phenomenon, which turns
out to be fairly significant. In Figure 5.2, C is constructed as in the second experiment
with n = 500, � = 250, and random Dii ∈ [−d, d] (we increase d from 0 to 20000).

5.4. Calibration of covariance matrices. In this subsection we outline the
problem of finding a “good” approximation Q̄ of the theoretical covariance matrix Q
between n assets: it turns out to be a semidefinite least-squares problem. Another
problem of that kind is computing the nearest correlation matrix [Hig02]. To have a
good approximation Q̄ is important in portfolio management: this matrix is used to
have a robust estimation of the “ex-ante” risk of any possible portfolio among these
n assets.

For instance, portfolio managers often look for portfolios minimizing the financial
risk while having a fixed return. They want to solve a portfolio selection problem of
the following type: ⎧⎨⎩

min x�Qx ,
x�r ≥ β ,
xi ∈ [0, 1],

∑n
i=1 xi = 1.

(5.7)

This is the famous portfolio selection problem of Markowitz (Nobel prize winner in
1990). The covariance matrix Q (which is positive semidefinite) is used to estimate
the risk. Under the classical economic assumption that there is no rewarding risk-
less investments (no-arbitrage assumption), Q is definite positive. Let Q̃ be a first
estimate of the true covariance matrix Q: for instance Q̃ can be the empirical estimate
after k days. The point is that Q̃ has a bad condition number:

• When the number of observations k is too small, Q̃ is rank-deficient (some
investments are considered with no risk; it is not consistent with the no-
arbitrage assumption).

• When there are different levels of risks in the portfolio, Q̃ is ill conditioned
(the condition number of Q̃ is typically greater than 107 if there are stocks,
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options, and monetary products in the portfolio; it reaches 1017 for hedge
funds).

We may impose X � αIn for some selected α > 0 to avoid too low-risk portfolios: we
thus guarantee “cautious” risk evaluations, and stability of the portfolio selected by
(5.7). Eventually we are led to the so-called calibration of covariance matrix problem,
which is a shifted (sdls): ⎧⎪⎪⎨⎪⎪⎩

min 1
2 ||X − Q̃||2,

X � αIn ,

〈In, X〉 = tr(Q̃) ,
〈Ai, X〉 = σ2

i ,

where σ2
i represent “ex-post” volatilities of well-chosen portfolios. The constraint

〈In, X〉 = tr(Q̃) enforces the conservation of the empirical total risk. We solve real-
life instances of this problem (provided to us by raise partner) with Algorithm 1;
the results are quite similar to those of subsection 5.3.

We end with a remark. The material developed in this section can be easily
extended to the Frobenius norm with weights (see Remark 2.5). This is of little impact
in theory but more in practice: for instance, the covariance between some assets are
sometimes more relevant than others, so we want to ensure in the calibration process
of the covariance matrix that the relevance is properly emphasized.

Acknowledgments. My primary thanks go to Claude Lemaréchal for his ad-
vice and his everyday help. I am indebted to François Oustry and raise partner

(especially Nabil Layäıda). I also want to thank the editor and the two referees for
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Springer-Verlag, Berlin, 2001.

[Stu99] J. F. Sturm, Using Sedumi 1.02, a Matlab toolbox for optimization over symmetric
cones, Optm. Meth. Soft., 11/12 (1999), pp. 625–653.
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Abstract. Some inverse eigenvalue problems for matrices with Toeplitz-related structure are
considered in this paper. In particular, the solutions of the inverse eigenvalue problems for Toeplitz-
plus-Hankel matrices and for Toeplitz matrices having all double eigenvalues are characterized, re-
spectively, in close form. Being centrosymmetric itself, the Toeplitz-plus-Hankel solution can be
used as an initial value in a continuation method to solve the more difficult inverse eigenvalue prob-
lem for symmetric Toeplitz matrices. Numerical testing results show a clear advantage of such an
application.
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1. Introduction. An inverse eigenvalue problem concerns the reconstruction of
a matrix from assigned spectral data. This inverse problem arises in a remarkable vari-
ety of applications ranging from applied mechanics and physics to numerical analysis.
See [6], which includes an extensive survey of such structured problems, including
Jacobi, Toeplitz, nonnegative, and stochastic inverse problems.

Two types of inverse eigenvalues problems are considered in this paper. The
first one concerns the construction of a Toeplitz-plus-Hankel matrix with prescribed
spectrum. The second one concerns the construction of a Toeplitz matrix with double
eigenvalues. Both problems are solved in closed form.

The first problem has already been studied in [1], where it was shown that, given
n real values,

λ1, λ2, . . . , λn,(1.1)

there are exactly n! different τ -class matrices, i.e., symmetric and centrosymmetric
matrices with Toeplitz-plus-Hankel structure with (1.1) as eigenvalues. In this paper,
by exploiting the properties of the Chebyshev polynomials [27], we first construct n

idempotent rank-one Toeplitz-plus-Hankel matrices C
(n)
k , k = 0, 1, . . . , n − 1, such

that C
(n)
k

T
C

(n)
j = 0, k �= j, where 0 is the zero matrix of order n. Hence, given the n

values (1.1), any linear combination

n∑
k=1

λΠ(k)
C

(n)
k−1,(1.2)

where Π(·) is any one of the n! permutations of the set of indexes {1, 2, . . . , n}, solves
the Toeplitz-plus-Hankel inverse eigenvalue problem (TpHIEP). Such a construction
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can be used to undertake the second problem of building Toeplitz matrices whose
eigenvalues have multiplicity 2.

The question of solvability of Toeplitz inverse eigenvalue problem (TIEP) with
distinct eigenvalues has been addressed by Landau [23], yielding the proof of the
existence of a (regular) Toeplitz matrix with distinct eigenvalues. Unfortunately, his
proof is not constructive. Alternatively, iterative schemes such as Newton’s method [3]
or algebraic procedures [24, 29] have been successfully introduced to solve numerically
the problem. More recently, a continuation technique based on the solution of an
isospectral flow has been proposed in [4] for solving TIEP. The flow evolves in the space
of symmetric and centrosymmetric matrices and has Toeplitz matrices as equilibria.
Although there is no rigorous proof, methods based on this idea seems to converge
numerically to a regular Toeplitz matrix if a symmetric centrosymmetric matrix is
used as the initial value. In this paper, we also examine the dynamical behavior of
the flow approach when (1.2) is used as the initial value.

The paper is organized as follows. In section 2, we briefly review some properties of
the Chebyshev polynomial of first kind, which will be used to determine the solutions
of TpHIEP. Taking into account recent results on the distribution of the eigenvalues
of symmetric Toeplitz matrices [29], the matrices (1.2) are imbedded in section 3
into matrices of double size in order to construct a solution for the TIEP where all
eigenvalues have double multiplicity. In section 4 we study the convergence behavior
of isospectral flow described in [12] if the matrix (1.2) is used as an initial value,
followed by the conclusions.

2. Inverse eigenvalue problem for Toeplitz-plus-Hankel matrices. In
this section we consider the inverse eigenvalue problem for Toeplitz-plus-Hankel
matrices.

In particular, given the n values (1.1), known λ1, λ2, . . . , λn, we show how to
construct n! symmetric Toeplitz-plus-Hankel matrices, with eigenvalues (1.1).

We introduce the Chebyshev polynomials of first kind,

Pk(x) = cos kθ, x = cos θ, k ∈ N,

and the orthonormalized Chebyshev polynomials,

P̃k(x) = γkPk(x), with γk =

⎧⎨⎩
√

1
π if k = 0,√
2
π if k > 0.

The zeros of P̃k, k > 0, are given by

ζ
(k)
j = cos θ

(k)
j , θ

(k)
j =

2j − 1

k

π

2
, j = 1, . . . , k.(2.1)

The polynomials P̃k satisfy the orthogonality relationship∫ 1

−1

P̃j(x)P̃k(x)
dx√

1 − x2
=

π

n

n∑
i=1

P̃j(ζ
(n)
i )P̃k(ζ

(n)
i ) = δj,k, k, j < n.(2.2)

From (2.2), it follows that the so-called Chebyshev–Vandermonde matrices

Vn =

√
π

n

⎡⎢⎢⎢⎢⎣
P̃0(ζ

(n)
1 ) P̃1(ζ

(n)
1 ) . . . P̃n−1(ζ

(n)
1 )

P̃0(ζ
(n)
2 ) P̃1(ζ

(n)
2 ) . . . P̃n−1(ζ

(n)
2 )

...
...

. . .
...

P̃0(ζ
(n)
n ) P̃1(ζ

(n)
n ) . . . P̃n−1(ζ

(n)
n )

⎤⎥⎥⎥⎥⎦ , n ∈ N,(2.3)
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are orthogonal. We remark that the matrices Vn, n ∈ N are better known as the
discrete cosine transform II of order n [26, 31].

Proposition 2.1. For k = 0, . . . , n− 1, define

q
(n)
k

def
= Vn(:, k + 1).

Then the symmetric idempotent rank-one matrices

C
(n)
k = q

(n)
k (q

(n)
k )T , k = 0, . . . , n− 1,

are Toeplitz-plus-Hankel.
Proof. Let αj =

√
π
nγj , j = 0, . . . , n− 1. Since

cosα cosβ =
1

2
(cos(α + β) + cos(α− β)) ,(2.4)

the (i, j) entry of C
(n)
k is given by

C
(n)
k (i, j) =

α2
k

2
cos

(
k

2i− 1

n

π

2

)
cos

(
k

2j − 1

n

π

2

)
=

α2
k

2

(
cos

(
k

2i− 1 − (2j − 1)

n

π

2

)
+ cos

(
k

2i− 1 + 2j − 1

n

π

2

))
=

α2
k

2

(
cos

k|i− j|π
n

+ cos
k(i + j − 1)π

n

)
.

Write

T
(n)
k

def
=

α2
k

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos kπ
n

. . . cos k(n−2)π
n cos k(n−1)π

n

cos kπ
n 1 cos kπ

n

. . . cos k(n−2)π
n

. . .
. . .

. . .
. . .

. . .

cos k(n−2)π
n

. . .
. . . 1 cos kπ

n

cos k(n−1)π
n cos k(n−2)π

n

. . . cos kπ
n 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

H
(n)
k

def
=

α2
k

2

⎡⎢⎢⎢⎢⎢⎣
cos kπ

n cos k2π
n . .

. cos k(n−1)π
n cos knπ

n

cos k2π
n . .

.
. .

. cos knπ
n cos k(n+1)π

n

. .
.

. .
.

. .
.

. .
.

. .
.

cos k(n−1)π
n cos knπ

n . .
.

. .
. cos k(2n−2)π

n

cos knπ
n cos k(n+1)π

n . .
. cos k(2n−2)π

n cos k(2n−1)π
n

⎤⎥⎥⎥⎥⎥⎦

=
α2
k

2

⎡⎢⎢⎢⎢⎢⎣
cos kπ

n cos k2π
n . .

. cos k(n−1)π
n (−1)k

cos k2π
n . .

.
. .

. (−1)k cos k(n−1)π
n

. .
.

. .
.

. .
.

. .
.

. .
.

cos k(n−1)π
n (−1)k . .

.
. .

. cos k2π
n

(−1)k cos k(n−1)π
n . .

. cos k2π
n cos kπ

n

⎤⎥⎥⎥⎥⎥⎦ .(2.5)

Then it follows that C
(n)
k = T

(n)
k + H

(n)
k .
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We remark that columns of the orthogonal matrix

Wn =

[√
2

n

(
cos

(i− 1/2)(2j − 1)π

2n + 1

)]n

i,j=1

,

related to the Chebyshev polynomial of the third kind, can be used to solve the
TpHIEP.

Proposition 2.2. The matrix

Un =

√
2

n

⎡⎢⎢⎢⎢⎢⎢⎣
sin(θ

(n)
1 ) sin 2(θ

(n)
1 ) . . .

√
1
2 sinn(θ

(n)
1 )

sin(θ
(n)
2 ) sin 2(θ

(n)
2 ) . . .

√
1
2 sinn(θ

(n)
2 )

...
...

. . .
...

sin(θ
(n)
n ) sin 2(θ

(n)
n ) . . .

√
1
2 sinn(θ

(n)
n )

⎤⎥⎥⎥⎥⎥⎥⎦ , n ∈ N,(2.6)

is orthogonal, with θ
(n)
j defined in (2.1). Moreover, let

u
(n)
k

def
= Un(:, k), k = 1, . . . , n.

Then the symmetric rank-one matrices

G
(n)
k = u

(n)
k (u

(n)
k )T , k = 1, . . . , n,

are Toeplitz-minus-Hankel.
Proof. The matrix Un is orthogonal because the following relation holds:

Un = ΣnVnJn,

where

Jn =

⎡⎣ 0 1

. .
.

1 0

⎤⎦ and Σn = diag(1,−1, . . . , (−1)i+1, . . . , (−1)n+1).

Furthermore, the matrices G
(n)
k are Toeplitz-minus-Hankel because

sinα sinβ =
1

2
(cos(α− β) − cos(α + β)) .

We recall that a vector x ∈ R
n is symmetric if Jnx = x and x is skew-symmetric if

Jnx = −x. Thus we note that q
(n)
k is symmetric when k is even and skew-symmetric

when k is odd; whereas u
(n)
k is symmetric when k is odd and skew-symmetric when k

is even.
The inverse eigenvalue problem for matrices with Toeplitz-plus-Hankel structure

can now be solved in closed form as follows.
Proposition 2.3. Given λi ∈ R, i = 1, . . . , n, the matrix

AC =

n−1∑
k=0

λk+1C
(n)
k(2.7)
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is Toeplitz-plus-Hankel. Moreover,

ACq
(n)
k−1 = λkq

(n)
k−1,(2.8)

i.e., λk, for each k = 1, . . . , n, is an eigenvalue of AC with corresponding eigenvector

q
(n)
k−1.

Proof. The matrix AC is Toeplitz-plus-Hankel because it is the sum of the

Toeplitz-plus-Hankel matrices C
(n)
k , k = 0, . . . , n− 1. Moreover

ACq
(n)
k−1 =

n−1∑
j=0

λj+1C
(n)
j q

(n)
k−1 =

n−1∑
j=0

λj+1

(
(q

(n)
j )Tq

(n)
k−1

)
q

(n)
j = λkq

(n)
k−1

since q
(n)
j , j = 0, . . . , n−1, are the columns of the orthogonal Chebyshev–Vandermonde

matrix (2.6).
Proposition 2.4. Given λi ∈ R, i = 1, . . . , n, the matrix

AG =

n∑
k=1

λkG
(n)
k(2.9)

is Toeplitz-minus-Hankel. Moreover,

AGu
(n)
k = λku

(n)
k ,(2.10)

i.e., λk, for each k = 1, . . . , n, is an eigenvalue of AG with corresponding eigenvector

u
(n)
k .

We note that the matrix (2.7) or (2.9) is but one of the n! possible choices. In

fact, any matrix of the form
∑n

k=1 λΠ(k)C
(n)
k−1 or

∑n
k=1 λΠ(k)G

(n)
k−1 solves the TpHIEP,

where Π(·) is any one of the n! permutations of the set of indexes {1, 2, . . . , n}.
We observe further that, for any λ1, . . . , λn, the matrices AC and AG are also

centrosymmetric. So the inverse eigenvalue problem for centrosymmetric matrices is
solved as well in our context.

3. Inverse Toeplitz eigenvalue problem for eigenvalues having double
multiplicity. In this section we show how to construct a Toeplitz matrix with pre-
scribed double eigenvalues. Our idea is to imbed the matrices (2.7) and (2.9) into a
Toeplitz matrix of double size.

Before doing it, let us introduce the following results [29]. Let (t0, t1, . . . , tn−1)
T

a vector and let Tn
def
=

(
t|i−j|

)n
i,j=1

an n-dimensional Toeplitz symmetric matrix.

Theorem 3.1. Suppose that n = 2m and µ is an eigenvalue of

A
def
=

[
t|i−j| + tn−i−j+1

]m
i,j=1

with associated unit eigenvector x. Then µ is an even eigenvalue of Tn, with associated
symmetric unit eigenvector

p =
1√
2

[
Jmx
x

]
.

Theorem 3.2. Suppose that n = 2m and µ is an eigenvalue of

B =
[
t|i−j| − tn−i−j+1

]m
i,j=1

,
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with associated unit eigenvector y. Then µ is an odd eigenvalue of Tn with associated
skew-symmetric unit eigenvector

q =
1√
2

[
−Jmy

y

]
.

Given n real numbers λi ∈ R, i = 1, . . . , n, we can now solve the following
inverse Toeplitz eigenvalue problem: Given n real numbers λi ∈ R, i = 1, . . . , n, find
a symmetric Toeplitz matrix T2n of order 2n such that λi, i = 1, . . . , n, are double
eigenvalues of T2n.

This inverse eigenvalue problem represents a rare but challenging scenario for
Toeplitz matrices. Existing numerical methods such as the Newton iteration are
known to fail unless the parity is taken into account by evenly assigning half of the
spectrum into even and the other half into odd eigenvalues. Here we face the problem
by exploiting the previous results on TpHIEP.

Let u
(n)
0

def
= [Un(1 : n, n)], Ũn

def
= [u

(n)
0 ,u

(n)
1 , . . . ,u

(n)
n−1], and Λn = diag(λ1, . . . ,

λn). Let us consider

AC =

n−1∑
k=0

λk+1T
(n)
k +

n−1∑
k=0

λk+1H
(n)
k

def
= T + H.

Let

ÃG
def
= T − H =

n−1∑
k=0

λk+1T
(n)
k −

n−1∑
k=0

λk+1H
(n)
k =

n−1∑
k=0

λk+1u
(n)
k (u

(n)
k )T .

Let

T2n
def
=

[
T JH

(JH)T T

]
.

Applying Theorem 3.1, we see that

1√
2
T2n

[
JnVn

Vn

]
=

1√
2

[
JnVn

Vn

]
Λn.

Moreover, applying Theorem 3.2, we see that

1√
2
T2n

[
−JnŨn

Ũn

]
=

1√
2

[
−JnŨn

Ũn

]
Λn.

Thus, if

Q2n =
1√
2

[
JnVn −JnŨn

Vn Ũn

]
and ∆2n =

[
Λn

Λn

]
,

then

T2n = Q2n∆2nQ
T
2n.
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4. Initial guesses for continuation methods for TIEP. The solution to
TpHIEP can help to solve the general TIEPs. We briefly recall some theoretical back-
ground on which continuation methods for TIEP given in [12] is based. The technique
essentially amounts to numerically approximating the solution of the isospectral flow:

X ′(t) = [k(X(t)), X(t)], t > 0, X(0) = X0 = XT
0 ,(4.1)

where k(X) = (kij(X))nij is defined as

ki,j =

⎧⎨⎩
xi+1,j − xi,j−1 if 1 ≤ i < j ≤ n,

0 if 1 ≤ i = j ≤ n,
xi−1,j − xi,j+1 if 1 ≤ j < i ≤ n.

(4.2)

If the initial value X0 is a symmetric and centrosymmetric matrix, the flow remains
in the space of symmetric and centrosymmetric matrices where Toeplitz matrices are
critical points of (4.1). In [12] it is shown that the convergence strongly depends
on the choice of the starting matrix X0. In fact, a condition for the convergence
of the isospectal flow is that both the initial guess and matrix, a regular Toeplitz
matrix, have the (same) eigenvalues alternating in parity when they are arranged in
descending order.

The centrosymmetric Toeplitz-plus-Hankel matrices (2.7) and the centrosymmet-
ric Toeplitz-minus-Hankel matrices (2.9) can be considered as a choice for the starting
values of the isospectral flow. Given λ1 > λ2 > · · · > λn and taking into account par-

ity features of the vectors q
(n)
k and u

(n)
k , the matrices AC and AG in (2.7) and (2.9),

automatically share the correct eigenvector-eigenvalue parity assignment, respectively.

5. Numerical tests. In this section we give some numerical results on the con-
vergence behavior of the isospectral flow (4.1) if the matrices AC and AG in (2.7)
and (2.9) are used as initial values. The performance is compared with the one when
the Jacobi centrosymmetric matrix is considered as initial guesses. The fourth order
method with step h = 0.01 described in [12] has been used. We will refer to equi-
librium when the difference between two successive approximations of the solution of
the flow (4.1) is less than 1e− 8. In all figures we report the history of the 2-norm of
the annihilator k(X(t)) defined in (4.2). Since k(X(t)) vanishes when a matrix is a
Toeplitz one, the evolution of its norm indicates how the flow tends towards a matrix
with Toeplitz structure.

Example 1. Consider the case with eigenvalues (λ1, λ1, λ2, λ2, λ3, λ3), where
λ1 = 4+

√
11, λ2 = 3, λ3 = 4−

√
11. In this case, the inverse eigenvalues problem

is theoretically solved by the matrix with double eigenvalues predicted in section 3
and identified by its first row

(3.6667, 0.3861, 1.8250 − 0.7722, 1.8250, 0.3861).

Note that the isospectral flow (4.1) attains a different Toeplitz matrix with the first
row given by

(3.6667, 1.9148, 0.3333, −0.0000, −0.3333, −1.9148).

In this case, the best choice for the initial value is AG, as shown in Figure 5.1 (left).
We will consider now eigenvalues with very different sizes:

(λ1, . . . , λ6) = (0.01, 0.1, 1, 10, 100, 1000).
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Fig. 5.1. Convergence for n = 6.
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Here we used a smaller stepsize h = 0.001 to obtain convergence. The isospectral flow
(4.1) converges to the Toeplitz matrix with the first row given by

(185.1848, 181.0587, 169.8355, 154.1471, 136.6688, 119.3399).

In Figure 5.1 (right), the history of the convergence indicates AC as the best initial
value.

Example 2. In the following examples we show the convergence of the algorithm
for problems of size n with eigenvalues randomly chosen.1 We set n = 10, 20, 30, 40.
In Figure 5.2 (first two rows), it can be seen that the isospectral flow converge mono-
tonically in all cases, but choosing the Jacobi matrix as starting matrix is the worst
strategy. We now consider larger dimensional cases by setting n = 50, 60. In Fig-
ure 5.2 (last row), we report the history of convergence only for starting values AC,
AG since the flow, starting with Jacobi centrosymmetric matrix, does not converge.
These examples seems to suggest that the choice of AC or AG allows us also to
manage large-dimensional problems without any additional costs.

6. Conclusions. Some inverse eigenvalue problems for Toeplitz-related struc-
ture matrices are considered in this paper. In particular, exploiting the properties of
the Chebyshev polynomials, all n! symmetric centrosymmetric Toeplitz-plus-Hankel
matrices having (1.1) as eigenvalues are constructed. The closed form formula enables
the construction of symmetric Toeplitz matrices with double eigenvalues. Further-
more, the closed formula seems to provide suitable starting values for a flow procedure
that solves TIEP in the most general form. Our numerical tests confirm that the use
of these starting values improve the convergence of the underlying methods.

Acknowledgment. The author would like to thank the anonymous referees for
their constructive and detailed suggestions that improved significantly the paper in
terms of presentations.
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1. Introduction. An increasing number of signal processing problems involves
the manipulation of quantities of which the elements are addressed by more than
two indices. In the literature these higher-order equivalents of vectors (first order)
and matrices (second order) are called higher-order tensors, multidimensional matri-
ces, or multiway arrays. For a lot of applications involving higher-order tensors, the
existing framework of vector and matrix algebra appears to be insufficient and/or
inappropriate. The algebra of higher-order tensors is called multilinear algebra.

Rank-related issues in multilinear algebra are thoroughly different from their ma-
trix counterparts. Let us first introduce some definitions. A rank-1 tensor is a tensor
that consists of the outer product of a number of vectors. For an Nth-order tensor A
and N vectors U (1), U (2), . . . , U (N), this means that ai1i2...iN = u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

for

all values of the indices, which will be concisely written as A = U (1) ◦U (2) ◦ · · · ◦U (N).
An n-mode vector of an (I1 × I2 × · · · × IN )-tensor A is an In-dimensional vector
obtained from A by varying the index in and keeping the other indices fixed. The
n-rank of a higher-order tensor is the obvious generalization of the column (row) rank
of matrices: it equals the dimension of the vector space spanned by the n-mode vec-
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tors. An important difference with the rank of matrices is that the different n-ranks
of a higher-order tensor are not necessarily the same. The n-rank will be denoted as
rankn(A) = Rn. Even when all the n-ranks are the same, they can still be different
from the rank of the tensor, denoted as rank(A) = R; A having rank R generally
means that it can be decomposed in a sum of R, but not less than R, rank-1 terms;
see, e.g., [34].

Example 1. Consider the (2 × 2 × 2)-tensor A defined by⎧⎨⎩
a111 = a112 = 1,
a221 = a222 = 2,
a211 = a121 = a212 = a122 = 0.

The 1-mode vectors are the columns of the matrix(
1 0 1 0
0 2 0 2

)
.

Because of the symmetry, the set of 2-mode vectors is the same as the set of 1-mode
vectors. The 3-mode vectors are the columns of the matrix(

1 0 0 2
1 0 0 2

)
.

Hence, we have that R1 = R2 = 2 but R3 = 1.
Example 2. Consider the (2 × 2 × 2)-tensor A defined by{

a211 = a121 = a112 = 1,
a111 = a222 = a122 = a212 = a221 = 0.

The 1-rank, 2-rank, and 3-rank are equal to 2. The rank, however, equals 3, since

A = E2 ◦ E1 ◦ E1 + E1 ◦ E2 ◦ E1 + E1 ◦ E1 ◦ E2,

in which

E1 =

(
1
0

)
, E2 =

(
0
1

)
is a decomposition in a minimal linear combination of rank-1 tensors (a proof is given
in [17]).

The scalar product 〈A,B〉 of two tensors A,B ∈ R
I1×I2×...×IN is defined in a

straightforward way as 〈A,B〉 def
=

∑
i1

∑
i2
. . .

∑
iN

ai1i2...iN bi1i2...iN . The Frobenius-

norm of a tensor A ∈ R
I1×I2×...×IN is then defined as ‖A‖ def

=
√
〈A,A〉. Two tensors

are called orthogonal when their scalar product is zero.
In [19] we discussed a possible multilinear generalization of the singular value de-

composition (SVD). The different n-rank values can easily be read from this decom-
position. In [20] we examined some techniques to compute the least-squares approx-
imation of a given tensor by a tensor with prespecified n-ranks. On the other hand,
in [19] we emphasized that the decomposition that was being studied, is not necessar-
ily rank-revealing. This is a drawback of unitary (orthogonal) tensor decompositions
in general. In this paper we will study the decomposition of a given tensor as a linear
combination of a minimal number of possibly nonorthogonal, rank-1 terms. This type
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of decomposition is often called “canonical decomposition” (CANDECOMP) or “par-
allel factors” model (PARAFAC). It is a multilinear generalization of diagonalizing a
matrix by an equivalence or congruence transformation. However, it has thoroughly
different properties, e.g., as far as uniqueness is concerned.

Section 2 is a brief introduction to the subject, with a formal definition of the
CANDECOMP-concept and an overview of the main current computational tech-
niques. In this section we will also mark out the problem that we will consider in
this paper (we will make some specific assumptions concerning the linear indepen-
dence of the canonical components). In section 3 we discuss a preprocessing step that
allows us to reduce the dimensionality of the problem. In section 4 we establish a
computational link between the tensor decomposition and the simultaneous diagonal-
ization of a set of matrices by equivalence or congruence; this problem might also be
looked at as a simultaneous matrix eigenvalue decomposition (EVD). The fact that
the CANDECOMP usually involves nonorthogonal factor matrices is numerically dis-
advantageous. By reformulating the problem as a simultaneous generalized Schur
decomposition (SGSD), the unknowns are restricted to the manifold of orthogonal
matrices in section 5. In section 6 we discuss the advantage of working via a simulta-
neous matrix decomposition as opposed to working via a single EVD; this section also
contains a first-order perturbation analysis of the SGSD. Techniques for the actual
computation of the SGSD are considered in section 7. In section 8 it is explained how
the original CANDECOMP-components can be retrieved from the components of the
SGSD. In section 9 the different techniques are illustrated by means of a number of
numerical experiments.

This paper contains the following new contributions:
• In the literature one finds that, in theory, the CANDECOMP can be com-

puted by means of a matrix EVD (under the uniqueness assumptions specified
in section 2) [38, 43, 5, 42]. We show that one can actually interpret the ten-
sor decomposition as a simultaneous matrix decomposition. The simultaneous
matrix decomposition is numerically more robust than a single EVD.

• We show that the CANDECOMP can be reformulated as an orthogonal si-
multaneous matrix decomposition—the SGSD. The reformulation in terms of
orthogonal unknowns allows for the application of typical numerical proce-
dures that involve orthogonal matrices. The SGSD as such already appeared
in [48]. The difference is that in this paper it is applied to unsymmetric,
instead of symmetric, matrices. This generalization may raise some confu-
sion. It might, for instance, be tempting to consider also a simultaneous lower
triangularization, in addition to a simultaneous upper triangularization.

• We derive a Jacobi-algorithm for the computation of the SGSD. The formula
for the determination of the rotation angle is an explicit solution for the case
of rank-2 tensors.

• The way in which the canonical components are derived from the components
of the SGSD is more general and more robust than the procedure proposed
in [48].

• We derive necessary and sufficient conditions for the uniqueness of a number
of simultaneous matrix decompositions: (1) simultaneous diagonalization by
equivalence or congruence, (2) simultaneous EVD of nonsymmetric matrices,
(3) simultaneous Schur decomposition (SSD).

• We conduct a first-order perturbation analysis of the SGSD.
Before starting with the next section, we add a comment on the notation that is

used. To facilitate the distinction between scalars, vectors, matrices and higher-order
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tensors, the type of a given quantity will be reflected by its representation: scalars
are denoted by lower-case letters (a, b, . . . ; α, β, . . . ), vectors are written as capitals
(A, B, . . . ) (italic shaped), matrices correspond to bold-face capitals (A, B, . . . ) and
tensors are written as calligraphic letters (A, B, . . . ). This notation is consistently
used for lower-order parts of a given structure. For instance, the entry with row index
i and column index j in a matrix A, i.e., (A)ij , is symbolized by aij (also (A)i = ai
and (A)i1i2...iN = ai1i2...iN ); furthermore, the ith column vector of a matrix A is
denoted as Ai, i.e., A = [A1A2 . . .]. To enhance the overall readability, we have made
one exception to this rule: as we frequently use the characters i, j, r, and n in the
meaning of indices (counters), I, J , R, and N will be reserved to denote the index
upper bounds, unless stated otherwise.

2. The canonical decomposition. The CANDECOMP or PARAFAC model
is defined as follows.

Definition 2.1 (CANDECOMP). A canonical decomposition or parallel factors
decomposition of a tensor A ∈ R

I1×I2×···×IN is a decomposition of A as a linear
combination of a minimal number of rank-1 terms:

A =

R∑
r

λr U
(1)
r ◦ U (2)

r ◦ · · · ◦ U (N)
r .(2.1)

The decomposition is visualized for third-order tensors in Figure 2.1.
The terminology originates from psychometrics [10] and phonetics [26]. Later

on, the decomposition model was also applied in chemometrics [1]. Recently, the
decomposition drew the attention of researchers in signal processing [14, 16, 45, 46].
A good tutorial of the current state of the art in psychometrics and chemometrics is
[3].

A
= + . . . ++

U
(1)
1

λ1 λ2 λR

U
(1)
2 U

(1)
R

U
(2)
1 U

(2)
2 U

(2)
R

U
(3)
1 U

(3)
2 U

(3)
R

Fig. 2.1. Visualization of the CANDECOMP for a third-order tensor.

The decomposition can be considered as the tensorial generalization of the di-
agonalization of matrices by equivalence transformation (unsymmetric case) or by
congruence transformation (symmetric case). However, its properties are thoroughly
different from its second-order counterparts.

A first striking difference with the matrix case is that the rank of a real-valued
tensor in the field of complex numbers is not necessarily equal to the rank of the same
tensor in the field of real numbers [35]. Second, even if nonorthogonal rank-1 terms
are allowed, the minimal number of terms is not bounded by min{I1, I2, . . . , IN} in
general (cf. Example 2); it is usually larger and depends also on the tensor order. The
determination of the maximal attainable rank value over the set of (I1×I2×· · ·×IN )-
tensors is still an open problem in the literature. In [14] an overview of some partial re-
sults, obtained for super-symmetric tensors in the context of invariant theory, is given.
(A real-valued tensor is called super-symmetric when it is invariant under arbitrary
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index permutations.) The paper includes a tensor-independent rank upper-bound, an
algorithm to compute maximal generic ranks and a complete discussion of the case of
super-symmetric (2 × 2 × · · · × 2)-tensors.

The uniqueness properties of the CANDECOMP are also very different from (and
much more complicated than) their matrix equivalents. The theorems of [14] allow one
to determine the dimensionality of the set of valid decompositions for generic super-
symmetric tensors. The deepest result concerning uniqueness of the decomposition for
third-order real-valued tensors is derived from a combinatorial algebraic perspective
in [34]. The complex counterpart is concisely proved in [45]. The result is generalized
to arbitrary tensor orders in [47]. In [6] complex fourth-order cumulant tensors are
addressed. Here we will restrict ourselves to some remarks of a more general nature,
that are of direct importance to this paper. From the CANDECOMP-definition it is
clear that the decomposition is insensitive to

• a permutation of the rank-1 terms,

• a scaling of the vectors U
(n)
r , combined with the inverse scaling of the coeffi-

cients λr.
Apart from these trivial indeterminacies, uniqueness of the CANDECOMP has been
established under mild conditions of linear independence (see further for a precise
formulation of the conditions imposed in this paper). Contrarily, the decomposition
of a matrix A in a sum of rank(A) rank-1 terms is usually made unique by impos-
ing stronger (e.g., orthogonality) constraints. In addition, for an essentially unique
CANDECOMP the number of terms R can exceed min{I1, I2, . . . , IN}.

Example 3. Consider the (2 × 2 × 2)-tensor A defined by{
a111 = a121 = −a212 = −a222 = 3,
a221 = a112 = −a211 = −a122 = 1.

The CANDECOMP of this tensor is given by

A = X1 ◦ Y1 ◦ Z1 + X2 ◦ Y2 ◦ Z2,(2.2)

in which

X1 = Z2 =

(
1
1

)
, Z1 = X2 =

(
1
−1

)
, Y1 =

(
1
2

)
, Y2 =

(
2
1

)
.

Apart from the trivial indeterminacies described above, this decomposition is unique,
as will become clear in section 4. The reason is that the matrices X = (X1 X2),
Y = (Y1 Y2), and Z = (Z1 Z2) are each nonsingular.

On the other hand, consider the first “matrix slice” of A (cf. Figure 4.1):

A1 =

(
a111 a121

a211 a221

)
=

(
3 3
−1 1

)
.

Due to (2.2), we have that

A1 = X1Y
T
1 + X2Y

T
2 = X · YT ,

but this decomposition is not unique. As a matter of fact, one can write

A1 = (XF) · (YF−T )T = X̃ · ỸT ,
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for any nonsingular (2×2) matrix F. One way to make this decomposition essentially
unique, is to claim that the columns of X̃ and Ỹ are orthogonal. The solution is then
given by the SVD of A1.

It is a common practice to look for the CANDECOMP-components by straight-
forward minimization of the quadratic cost function

f(Â) = ‖A − Â‖2(2.3)

over all rank-R tensors Â, which we will parametrize as

Â =

R∑
r

λ̂r Û
(1)
r ◦ Û (2)

r ◦ · · · ◦ Û (N)
r .(2.4)

It is possible to resort to an alternating least-squares (ALS) algorithm, in which the
vector estimates are updated mode per mode [10]. The idea is as follows. Let us
define

Û(n) def
= [Û

(n)
1 Û

(n)
2 . . . Û

(n)
R ],

Λ̂
def
= diag{(λ̂1, λ̂2, . . . , λ̂R)},

in which diag{·} is a diagonal matrix, containing the entries of its argument on the

diagonal. If we now imagine that the matrices Û(m), m �= n, are fixed, then (2.3) is

merely a quadratic expression in the components of the matrix Û(n) · Λ̂; the estima-
tion of these components is a classical linear least-squares problem. An ALS iteration
consists of repeating this procedure for different mode numbers: in each step the esti-
mate of one of the matrices U(1),U(2), . . . ,U(N) is optimized, while the other matrix
estimates are kept constant. Overflow and underflow can be avoided by normalizing

the estimates of the columns U
(n)
r (1 � r � R; 1 � n � N) to unit-length.

For R = 1, the ALS algorithm can be interpreted as a generalization of the power
method for the computation of the best rank-1 approximation of a matrix [20]. For
R > 1, however, the canonical components can in principle not be obtained by means
of a deflation algorithm. The reason is that the stationary points of the higher-order
power iteration generally do not correspond to one of the terms in (2.4), and that
the residue is in general not of rank R − 1 [32]. This even holds when the rank-
1 terms are mutually orthogonal [33]. Only when each of the matrices {U(n)} is
column-wise orthonormal, the deflation approach will work, but in this special case,
the components can be obtained by means of a matrix SVD [19].

Because the cost function is monotonically decreasing, one expects that the ALS
algorithm converges to a (local) minimum of f(Â). If the CANDECOMP-model
is only approximately valid, the risk of finding a spurious local optimum can be
diminished by repeating the optimization for a number of randomly chosen initial
values. The decision on whether the global optimum has been found or not usually
relies on heuristics. The process of iterating over different starting values can be
time-consuming. In addition, if the directions of some of the n-mode vectors in
the CANDECOMP-model (1 � n � N) are close, then it seems unlikely that this
configuration is found from a random start [14]. Some alternative initializations are
discussed in [11]. The rank itself is usually determined by repeating the procedure
for different values of R, and comparing the results. An alternative, also based on
heuristics, is the evaluation of split-half experiments [27].
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ALS iterations can be very slow. In addition, it is sometimes observed that the
algorithm moves through a “swamp”: the algorithm seems to converge, but then the
convergence speed drastically decreases and remains small for several iteration steps,
after which it may suddenly increase again. The nature of swamps and how they
can be avoided forms a topic of ongoing research [41, 36]. To cope with the slow
convergence, a number of acceleration methods have been proposed [26, 28, 31]. One
could make use of a prediction technique, in which estimates of previous iteration
steps are extrapolated to forecast new estimates [3].

In [40] a Gauss–Newton method is described, in which all the CANDECOMP-
factors are updated simultaneously; in addition, the inherent indeterminacy of the
decomposition has been fixed by adding a quadratic regularization constraint on the
component entries.

On the other hand, setting the gradient of f to zero and solving the resulting
set of equations, is computationally hard as well: a set of R(I1 + I2 + . . . IN ) −
R(N − 1) polynomial equations of degree 2N − 1, in R(I1 + I2 + . . . IN ) −R(N − 1)
independent unknowns, has to be solved (to determine this dimensionality, imagine
that the indeterminacy has been overcome by incorporating the factor λr (1 � r � R)
in one of the vectors of the rth outer product, and by fixing one nonzero entry in the
other vectors).

An interesting alternative procedure, which works under a number of assumptions
among which the most restrictive is that R � min{I1, I2}, has been proposed in [38].
Similar results have been proposed in [43, 5, 42]. It was explained that, if (2.1) is
exactly valid, the decomposition can be found by a simple matrix EVD. When A is
only known with limited accuracy, a least-squares matching of both sides of (2.1) can
now be initialized with the EVD result. This technique forms the starting point for
the developments in section 4.

Some promising computation schemes, at this moment only formulated in terms
of (super-symmetric) cumulant tensors, have been developed as means to solve the
problem of higher-order-only independent component analysis. In [7] Cardoso shows
that under mild conditions the matrices in the intersection of the range of the cumulant
tensor and the manifold of rank-1 matrices take the form of an outer product of a
steering vector with itself; consequently MUSIC-like [44] algorithms are devised. In [6]
the same author investigates the link between symmetry of the cumulant tensor and
the rank-1 property of its components. The problem is subsequently reformulated in
terms of a matrix EVD.

The decomposition of a dataset as a sum of rank-1 terms is sometimes called
the factor analysis problem. With the decomposition, one aims at relating the dif-
ferent rank-1 terms to the different “physical mechanisms” that have contributed to
the dataset. We repeat that factor analysis of matrices is, as such, essentially un-
derdetermined. The extra conditions (maximal variance, orthonormality, etc.) that
are usually imposed to guarantee uniqueness, are often physically irrelevant. In a
wide range of parameters, this is not the case for the higher-order decomposition; the
weaker conditions of linear independence to ensure uniqueness often have a physical
meaning. This makes the CANDECOMP of higher-order tensors to an important
signal processing tool.

In this paper, we will study the special but important case of an (I1 × I2 × I3)-
tensor A with rank R � min{I1, I2} and 3-rank R3 � 2. (If R3 = 1, then the
different matrices obtained from A by fixing the index i3 are proportional, and the
CANDECOMP reduces to the diagonalization of one of these matrices by congruence
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or equivalence.) We assume that

(i) the set {U (1)
r }(1�r�R) is linearly independent (i.e., no vector can be written

as a linear combination of the other vectors),

(ii) the set {U (2)
r }(1�r�R) is linearly independent,

(iii) the set {U (3)
r }(1�r�R) does not contain collinear vectors (i.e., no vector is a

scalar multiple of an other vector).

Roughly speaking, we address the case in which the number of rank-1 terms is
bounded by the second largest dimension of A (like in classical matrix decomposi-
tions). Conditions (i)–(iii) are generically satisfied, i.e., only in a set of Lebesgue
measure zero they do not hold. In typical applications one has the prior knowledge
that these assumptions are valid. Classical (not overcomplete) independent compo-
nent analysis can be formulated in terms of this model [13, 49]. Conditions (i)–(iii) are
required for the uniqueness of the solution. All the examples in the tutorial [3] belong
to our class of interest. In chemometrical applications such as the ones described in
[42], the conditions do not pose any problem. For instance, I1 and I2 correspond to
the length of emission-excitation spectra and R is the number of chemical components.

If the rank of A is higher than Rmax = min{I1, I2}, then our method will still
try to fit a rank-Rmax model to the data. Contrary to the matrix case, this does not
simply correspond to discarding the rank-1 terms that have the smallest norm.

It can be verified that conditions (i)–(iii) are sufficient to make the CANDECOMP
essentially unique [38] (see also sections 4 and 6). The exposition is restricted to real-
valued third-order tensors for notational convenience. The generalization to higher
tensor orders is straightforward. The method then applies to tensors of which the
rank R � min{I1, I2} and at least one of the n-ranks Rn, for n � 3, satisfies Rn � 2.
Conditions (i)–(iii) should be rephrased as the following:

(i) the set {U (1)
r }(1�r�R) is linearly independent,

(ii) the set {U (2)
r }(1�r�R) is linearly independent,

(iii) and at least one of the sets {U (n)
r }(1�r�R) for n � 3 does not contain

collinear vectors.

Apart from section 7.2, the generalization to complex-valued tensors is also
straightforward. An outline of the exposition is presented as Algorithm 1. In this
algorithm we assume that a value of R is given or that the rank has been estimated
as rank1(A) = rank2(A) (see next section).

3. Dimensionality reduction. Under the assumptions specified in the pre-
vious section, we have that R1 = rank1(A) = R = rank2(A) = R2 and that
R3 = rank3(A) = rank(U(3)). To understand this, remark that (2.1) implies that
the n-mode vectors of A are the columns of the matrix

A(n) = U(n) · Λ · (U(m) � U(l))T ,

in which � is the Kathri–Rao or columnwise Kronecker product and (n,m, l) is an
arbitrary permutation of (1, 2, 3). Hence, conditions (i)–(iii) imply that the dimension
of the n-mode vector space, which equals the rank of A(n), is equal to rank(U(n)).

If R < max{I1, I2}, or R3 < I3, then an a priori dimensionality reduction of
A ∈ R

I1×I2×I3 to a tensor B ∈ R
R×R×R3 decreases the computational load of the

actual determination of the CANDECOMP (step 1 in Algorithm 1). Before starting
the actual exposition, we briefly address this issue. Suppose that A and B are related



A CANDECOMP ALGORITHM 303

Algorithm 1

CANDECOMP by SGSD

In: A ∈ R
I1×I2×I3 , R.

Out: {U (1)
r }(1�r�R), {U (2)

r }(1�r�R), {U (3)
r }(1�r�R), {λr}(1�r�R) such that A �∑R

r λr U
(1)
r ◦ U (2)

r ◦ U (3)
r .

(1. Perform an initial best rank-(R,R,R3) approximation of A: maximize

g(X(1),X(2),X(3)) = ‖A ×1 X(1)T ×2 X(2)T ×3 X(3)T ‖2 over column-
wise orthonormal X(1) ∈ R

I1×R, X(2) ∈ R
I2×R and X(3) ∈ R

I3×R3 ;

max(g(X(1),X(2),X(3))) = g(X
(1)
max,X

(2)
max,X

(3)
max). B = A ×1 X

(1)T

max ×2

X
(2)T

max ×3 X
(3)T

max . Continue for B with steps 2, 3, 4, (5) below. Â =

B̂ ×1 X
(1)
max ×2 X

(2)
max ×3 X

(3)
max. (section 3.) (Perform step 5 for Â.))

2. Associate to A a linear mapping fA from R
I3 to R

I1×I2 (see (4.1)).
Determine {Vk}(1�k�K) such that the range of fA is spanned by
V1,V2, . . . ,VK .

3. Compute orthogonal Q,Z and (approximately) upper triangular
{Rk}(1�k�K) from the SGSD of (5.1)–(5.3):

- extended QZ-iteration (section 7.1, [48]), or
- Jacobi-type iteration (section 7.2, [17, 18]).

4. Compute U(1) and U(2) from {Rk}(1�k�K) and {Vk}(1�k�K) (and Q ,

Z). Compute U(3) from U(1), U(2) and A. (Detailed outline in section 8.)
(5. Minimize f(Â) = ‖A − Â‖2 (section 2).)

by

ai1i2i3 =
∑

r1r2r3

x
(1)
i1r1

x
(2)
i2r2

x
(3)
i3r3

br1r2r3(3.1)

for all index values, where X(1) ∈ R
I1×R, X(2) ∈ R

I2×R and X(3) ∈ R
I3×R3 , which we

will write concisely as

A = B ×1 X(1) ×2 X(2) ×3 X(3).(3.2)

If X(1), X(2), X(3) each have mutually orthonormal columns, then the optimal rank-R
approximation B̂ of B and the optimal rank-R approximation Â of A are related in
the same way:

Â = B̂ ×1 X(1) ×2 X(2) ×3 X(3),(3.3)

since “n-mode multiplication” with the columnwise orthonormal matrices X(1), X(2),
X(3) does not change the cost function f (2.3). If the CANDECOMP-model is exactly
satisfied, then any orthonormal basis of the mode-1, mode-2, and mode-3 vectors of
A gives a suitable X(1), X(2), X(3), respectively. In practice, however, R = R1 = R2

and R3 will be estimated as the number of significant mode-1 / mode-2 and mode-3
singular values of A (see [19]). An optimal rank-(R,R,R3) approximation of A, before
computing the optimal rank-R approximation, can then be realized. For techniques
we refer to [20].

4. CANDECOMP and simultaneous EVD. Without loss of generality we
assume that I1 = I2 = R (if I1 > R or I2 > R, we can always do a dimensionality
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reduction, as explained in the previous section). We start the derivation of our com-
putation scheme with associating to A a linear transformation of the vector space R

I3

to the matrix space R
I1×I2 , in the following way:

V = fA(W ) = A×3 W ⇐⇒ vi1i2 =
∑
i3

ai1i2i3wi3 ,(4.1)

for all index values. Substitution of (4.1) in (2.1) shows that the image of W can
easily be expressed in terms of the CANDECOMP-components:

V = U(1) · D · U(2)T ,(4.2)

in which we have used the following notations:

U(n) def
= [U

(n)
1 U

(n)
2 . . . U

(n)
In

],(4.3)

D
def
= diag{(λ1, λ2, . . . , λR)} · diag{U(3)TW}.(4.4)

Any matrix in the range of the mapping fA can be diagonalized by equivalence with
the matrices U(1) and U(2). (If A does not change under permutation of its first two
indices, then any matrix in the range can be diagonalized by congruence with the
matrix U(1) = U(2).) If the range is spanned by the matrices V1, V2, . . . , VK , then
we should solve the following simultaneous decomposition:

V1 = U(1) · D1 · U(2)T ,(4.5)

V2 = U(1) · D2 · U(2)T ,(4.6)

...

VK = U(1) · DK · U(2)T ,(4.7)

in which D1,D2, . . . ,DK are diagonal. A possible choice of {Vk}(1�k�K) consists of
the “matrix slices” {Ai}(1�i�I3), obtained by fixing the index i3 to i (see Figure 4.1);
the corresponding vectors {Wi}(1�i�I3) are the canonical unit vectors. An other
possible choice consists of the K dominant left singular matrices of the mapping in
(4.1). In both cases, the cost function

f̃(Û(1), Û(2), {D̂k}) =
∑
k

‖Vk − Û(1) · D̂k · Û(2)T ‖2

corresponds to the CANDECOMP cost function (2.3). The latter choice follows nat-
urally from the analysis in section 3 [20].

For later use, we define

Ũ(3) =

⎛⎜⎜⎜⎝
(D1)11 (D1)22 . . . (D1)RR

(D2)11 (D2)22 . . . (D2)RR

...
...

...
(DK)11 (DK)22 . . . (DK)RR

⎞⎟⎟⎟⎠(4.8)

= [W1W2 . . .WK ]
T · U(3) · diag{(λ1, λ2, . . . , λR)}.(4.9)

If the CANDECOMP-model is exactly satisfied, then its terms can be computed
from two of the equations in (4.5)–(4.7). Let us assume that the matrix V1 has
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A

A1

A2

AI3

= + . . . ++

U
(1)
1

λ1 λ2 λR

U
(1)
2 U

(1)
R

U
(2)
1 U

(2)
2 U

(2)
R

U
(3)
1 U

(3)
2 U

(3)
R

Fig. 4.1. Definition of matrix slices for the computation of the CANDECOMP by simultaneous
diagonalization.

full rank (this is the case for a generic choice of W1). Combination of the first two
equations then leads to the following EVD:

V2 · V−1
1 = U(1) · (D2 · D−1

1 ) · U(1)−1
.(4.10)

Remember that we assumed in section 2 that U(3) does not contain collinear columns.
As a consequence, the pair ((D1)ii(D2)ii)=λi(W

T
1 U

(3)
i WT

2 U
(3)
i ) and ((D1)jj(D2)jj)=

λj(W
T
1 U

(3)
j WT

2 U
(3)
j ) is generically not proportional, for all i �= j. Hence the diagonal

elements of D2 ·D−1
1 are mutually different and the EVD (4.10) reveals the columns

of U(1), up to an irrelevant scaling and/or permutation. Once U(1) is known, U(2)

can be obtained, up to a scaling of its columns, as follows. From (4.5)–(4.7) we have

VT
1 · U(1)−T

= U(2) · D1,(4.11)

VT
2 · U(1)−T

= U(2) · D2,(4.12)

...

VT
K · U(1)−T

= U(2) · DK .(4.13)

Hence, if we denote the rth column of VT
k ·U(1)−T

as Bkr, then U
(2)
r can be estimated

as the dominant left singular vector of [B1rB2r . . . BKr]. Finally, the matrix U(3) ·
diag{(λ1, λ2, . . . , λR)} is found by solving the CANDECOMP-model as a linear set of
equations, for given matrices U(1) and U(2). (Note that the assumptions that we have
made for identifiability in section 2 indeed allow to obtain the CANDECOMP in an
essentially unique way.) If the CANDECOMP-model is only approximately satisfied,
then the estimates can be used to initialize an additional optimization algorithm for
the minimization of cost function (2.3) (cf. step 5 in Algorithm 1). This EVD-
approach is a variant of the techniques described in [38, 43, 5, 42].

It is intuitively clear, however, that it is preferable to exploit all the available
information by taking into account all the equations in (4.5)–(4.7). This leads to a
simultaneous EVD:

V2 · V−1
1 = U(1) · (D2 · D−1

1 ) · U(1)−1
,(4.14)

V3 · V−1
1 = U(1) · (D3 · D−1

1 ) · U(1)−1
,(4.15)

...

VK · V−1
1 = U(1) · (DK · D−1

1 ) · U(1)−1
.(4.16)

We will further discuss the advantages in section 6.
In this paper, we propose a reliable technique to deal with (4.5)–(4.7) simultane-

ously (steps 2–4 in Algorithm 1).
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5. CANDECOMP and SGSD. The fact that the unknown matrices U(1) and
U(2) are basically arbitrary nonsingular matrices, makes them hard to deal with in
a proper numerical way. In this section, we will reformulate the problem in terms
of orthogonal unknowns. Therefore, we can make an appeal to the technique estab-
lished in [48], where the symmetric equivalent of (4.5)–(4.7) was encountered in the
derivation of an analytical constant modulus algorithm.

Introducing a QR-factorization U(1) = QT R′ and an RQ-decomposition U(2)T =
R′′ ZT leads to a set of matrix equations that we will call a simultaneous generalized
Schur decomposition (a set of two of the equations below is called “Generalized Schur
Decomposition” [24]):

Q · V1 · Z = R1 = R′ · D1 · R′′,(5.1)

Q · V2 · Z = R2 = R′ · D2 · R′′,(5.2)

...

Q · VK · Z = RK = R′ · DK · R′′,(5.3)

in which Q,Z ∈ R
R×R are orthogonal and R′,R′′,R1,R2, . . . ,RK ∈ R

R×R are upper
triangular. If the CANDECOMP model is exactly satisfied, the new problem consists
of the determination of Q and Z such that R1,R2, . . . ,RK are each upper triangular.
In practice, this is only possible in an approximate sense. For instance, one could
maximize the function g, given by

g(Q,Z) = ‖Q · V1 · Z‖2
UF + ‖Q · V2 · Z‖2

UF + · · · + ‖Q · VK · Z‖2
UF ,(5.4)

in which ‖ · ‖UF denotes the Frobenius-norm of the upper triangular part of a matrix.
So we will determine Q and Z as the orthogonal matrices that make R1,R2, . . . ,RK

simultaneously as upper triangular as possible. Equivalently, one may minimize

h(Q,Z) = ‖Q · V1 · Z‖2
LFs + ‖Q · V2 · Z‖2

LFs + · · · + ‖Q · VK · Z‖2
LFs(5.5)

=
∑
k

‖Vk‖2 − g(Q,Z),(5.6)

in which ‖ · ‖LFs denotes the Frobenius-norm of the strictly lower triangular part of
a matrix. The decomposition is visualized in Figure 5.1.

In section 7 we will discuss two algorithms for the computation of the SGSD. In
section 8 we will explain how U(1) and U(2) can be calculated once Q and Z have
been estimated.

Remark 4. At first sight the unsymmetric case allows for the derivation of an
additional set of equations if we substitute a QL-factorization U(1) = Q̃T L′ and an

LQ-decomposition U(2)T = L′′ Z̃T in (4.5)–(4.7) (L′ and L′′ are lower triangular).
This leads to a simultaneous lower triangularization of the matrices V1,V2, . . . ,VK .
Both approaches are in fact equivalent because they simply correspond to a differ-
ent permutation of the columns of U(1) and U(2), which cannot be determined in
advance. Since the aim of the algorithms that will be discussed in section 7 is only
to find matrices Q and Z that correspond to an arbitrary column permutation (not
necessarily the one that happens to globally minimize the cost function h in the pres-
ence of noise), both formulations may in practice lead to results that are close but
not exactly equal.

Remark 5. In [49] an alternative scheme, in which one directly works with the
components of (4.5)–(4.7), instead of going via a SGSD, was formulated for the sym-
metric case, i.e., U(1) = U(2) = U. Before continuing with the actual exposition, let
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...

VK

V1

=

=

=

Q

Q

Q

Z

Z

Z

V2

Fig. 5.1. Visualization of a SGSD.

us briefly address this approach. It is an ALS strategy, with the particular problem
that for two of the modes the components are equal. The technique is called the
“AC–DC” algorithm, standing for “alternating columns–diagonal centers”. Let us
associate with (4.5)–(4.7) the following weighted cost function:

c(U,D1,D2, . . . ,DK) =

K∑
k=1

wk‖Vk − U · Dk · UT ‖2.(5.7)

Note that for wk = 1 (1 � k � K) and {Vk}(1�k�K) equal to the matrix slices
{Ai}(1�i�I3) defined in Figure 4.1, this cost function corresponds to the obvious
CANDECOMP cost (2.3). In the technique one alternates between updates of
{Dk}(1�k�K), given U (DC-phase) and updates of U, given {Dk}(1�k�K) (AC-phase).
It is clear that a DC-step amounts to a linear least-squares problem. In [49] it is shown
that the conditional update of a column of U amounts to the best rank-1 approxima-
tion of a symmetric (I × I)-matrix (I = I1 = I2). An AC-phase then consists of one,
or more, updates of the different columns of U.

6. Single vs. simultaneous decomposition and perturbation analysis.
Before introducing some algorithms for the computation of the SGSD, we will discuss
in this section some advantages of the simultaneous decomposition approach over the
computation of a single EVD (cf. [38, 43, 5, 42]). In this context, we will also provide
a first-order perturbation analysis of the SGSD.

6.1. Uniqueness. First, let us reconsider (4.14)–(4.16). One could solve these
EVDs separately, and retain the solution that leads to the best CANDECOMP-
estimate. However, it is safer from a numerical point of view to solve (4.14)–(4.16)
simultaneously, in some optimal sense, especially when the perturbation of the matri-
ces {Vk}(1�k�K) (with respect to their ideal values in an exact CANDECOMP) may
have caused eigenvalues to cross each other. This is illustrated in the next example;
a symmetric version of the example can be found in [4].
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Example 6. Consider the following matrix pair:

M1 =

⎛⎜⎜⎝
1 − ε 0 0 0

0 1 + ε 0 0
0 0 2 1
0 0 0 3

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎝
2 1 0 0
0 3 0 0
0 0 1 − ε 0
0 0 0 1 + ε

⎞⎟⎟⎠ ,

in which ε ∈ R is small. For ε = 0, the two matrices have a common eigenmatrix:

E =

⎛⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ .

If ε �= 0, E still nearly diagonalizes V1 and V2:

M1 · E = E · diag{[1 1 2 3]} + O(ε), M2 · E = E · diag{[2 3 1 1]} + O(ε).

On the other hand, for ε �= 0, the distinct eigenmatrices E1 and E2, of V1 and V2,
respectively, are not suitable for diagonalization of the other matrix:

M1 · E2 = E2 · diag{[1 1 2 3]} + O(1), M2 · E1 = E1 · diag{[2 3 1 1]} + O(1).

For a simultaneous EVD we have the following uniqueness theorem.
Theorem 6.1. For given matrices M1, M2, . . . , ML ∈ R

R×R, the simultaneous
decomposition

M1 = U · D1 · U−1,(6.1)

M2 = U · D2 · U−1,(6.2)

...

ML = U · DL · U−1,(6.3)

with U ∈ R
R×R nonsingular and D1, D2, . . . , DL ∈ R

R×R diagonal, is unique up to
a permutation and a scaling of the columns of U if and only if all the columns of the
matrix

D =

⎛⎜⎜⎜⎝
(D1)11 (D1)22 . . . (D1)RR

(D2)11 (D2)22 . . . (D2)RR

...
(DL)11 (DL)22 . . . (DL)RR

⎞⎟⎟⎟⎠
are distinct.

Proof. Consider Y = DT ·X, for X ∈ R
L. The ith and jth entry of Y are distinct

if X is not perpendicular to Di −Dj . Because Di �= Dj , the kernel of DT
i −DT

j is a
subspace of dimension L − 1. Let K be the union of the kernels for all i �= j and let
X̃ ∈ R

L \ K. The EVD of
∑

l x̃lMl is given by

∑
l

x̃lMl = U ·
(∑

l

x̃lDl

)
· U−1 = U · diag{DT · X̃} · U−1.

Because all eigenvalues are distinct, the eigenmatrix U is unique up to a permutation
and a scaling of its columns. On the other hand, if columns of D are equal, it
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is not possible to discriminate between different eigenvectors in the corresponding
eigenspace.

The equivalent for unitary diagonalization is given in [2].

Because of the link between (4.5)–(4.7) and (4.14)–(4.16), the CANDECOMP is
essentially unique when U(1) and U(2) are nonsingular and U(3) does not contain
collinear columns, as put forward in section 2.

Theorem 6.1 shows that a simultaneous EVD is much more robust than a single
EVD. It is well known that, when eigenvalues are close, the eigenvectors in a single
EVD may be strongly affected by small perturbations [30]. The reason is that for co-
inciding eigenvalues only the corresponding eigenspace is defined; different directions
in this subspace will emerge as eigenvectors for different infinitesimal perturbations.
When this happens for one or more of the matrices in a simultaneous EVD, the other
matrices may still allow to identify the actual eigenvectors. We may conclude that,
under the conditions of section 2, the CANDECOMP is likely to be stable.

Different permutations of the canonical components will correspond to entirely
different matrices Q and Z in the SGSD (5.1)–(5.3). However, these in turn lead to
different matrices R and R′′ such that, eventually, U(1) and U(2) are still subject
to the same indeterminacies. In other words, the uniqueness condition has not been
weakened by formulating the problem in terms of orthogonal unknowns Q, Z.

It is worth mentioning that, for arbitrary matrices V1, V2, . . . , VK (not satisfying
our CANDECOMP model), the uniqueness conditions of a S(G)SD are much more
severe. In general, only one sequence of (generalized) Schur vectors is possible. For
convenience, we will illustrate this only for the SSD (which, in our application, would
arise from substitution of the QR-factorization of U(1) in (4.14)–(4.16)). We have the
following theorem.

Theorem 6.2. Let the matrices M1, M2, . . . , ML ∈ R
R×R satisfy the SSD

M1 = Q · R1 · QT ,(6.4)

M2 = Q · R2 · QT ,(6.5)

...

ML = Q · RL · QT ,(6.6)

with Q = [Q1Q2 . . . QR] ∈ R
R×R orthogonal and R1, R2, . . . , RL ∈ R

R×R upper
triangular. An equivalent simultaneous decomposition, in terms of Q̃ and {R̃l}1�l�L,

in which the diagonal of (R̃l) subsequently contains (Rl)11, (Rl)22, . . . , (Rl)I−1,I−1,
(Rl)JJ , (Rl)I+1,I+1, . . . ,(Rl)J−1,J−1, (Rl)II , (Rl)J+1,J+1, . . . , (Rl)KK (1 � l � L),
exists if and only if the following matrix is rank deficient:⎛⎜⎜⎜⎝

M1 − (R1)JJ I [Q1 . . . QI−1] 0 · · · 0
M2 − (R2)JJ I 0 [Q1 . . . QI−1] · · · 0

...
...

...
. . .

...
ML − (RL)JJ I 0 0 · · · [Q1 . . . QI−1]

⎞⎟⎟⎟⎠ .(6.7)

Proof. Let us first answer the simple question of which diagonal entry could be
permuted to position (1, 1). There is a common eigenvector, other than Q1, if and
only if there exists a J > 1 such that all the equations

(Ml − (Rl)JJ I)X = 0, 1 � l � L,
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have a common solution. This is the condition specified by the theorem for I = 1.
One can verify that the upper triangular structure can be maintained for new matrices
R̃1, R̃2, . . . , R̃L and Q̃ when the entries at position (J, J) are permuted to position
(1, 1) and the old entries at positions (1, 1), (2, 2), . . . , (J − 1, J − 1) are shifted one
place down on the diagonal. (The strictly upper diagonal entries of rows 1 to J have
to be recomputed.)

In general, the entries at position (J, J) can be brought in Ith position if and only
if there exists a vector X �= 0 and scalars bli, 1 � l � L, 1 � i � I − 1, such that

(Ml − (Rl)JJ I)X =

I−1∑
i=1

bli Qi, 1 � l � L.

This is a set of homogeneous linear equations of which the unknowns are the coeffi-
cients of X and the scalars {bli}. The coefficient matrix is given by (6.7).

Moreover, for noisy data, different permutations of the canonical components will
lead to matrices Q, Z that yield different values of the cost function h defined in (5.6).

6.2. First-order perturbation analysis. To increase our understanding of the
stability of the SGSD, let us now conduct a first-order perturbation analysis.

Theorem 6.3. Consider the function g(Q,Z) in (5.4) and let the matrices
R1,R2, . . . ,RK be defined by (5.1)–(5.3). The gradients of g, with respect to Q and
Z, over the manifold of orthogonal matrices, are given by

∇Qg = 2 skew

(∑
k

upp(Rk)R
T
k

)
· Q,(6.8)

∇Zg = 2Z · skew

(∑
k

RT
k upp(Rk)

)
,(6.9)

in which skew(·) is the skew-symmetric and upp(·) the upper triangular part of a
matrix.

Proof. We will prove this result by resorting to the framework established in
[15, 22]. The gradient of g with respect to Q can be determined by assuming that Q
has a velocity Q̇ on the manifold of orthogonal matrices and expressing the evolution
of g:

ġ = 〈∇Q g, Q̇〉(6.10)

(see, e.g., [15, p. 48]; the formula corresponds to a chain rule for the derivation).
First we express the function g as

g(Q,Z) =
K∑

k=1

〈Q · Vk · Z,upp(Q · Vk · Z)〉.

Assuming that Q is time dependent, the derivative with respect to the time coordinate
is given by (taking into account that upp(·) is a linear operation)

ġ =

K∑
k=1

[〈Q̇ · Vk · Z,upp(Q · Vk · Z)〉 + 〈Q · Vk · Z,upp(Q̇ · Vk · Z)〉]

= 2

K∑
k=1

〈Q̇ · Vk · Z,upp(Q · Vk · Z)〉.
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With a property of the scalar product, we obtain

ġ = 2

K∑
k=1

〈Q̇,upp(Q · Vk · Z) · ZT · VT
k 〉.

The right term is proportional to the gradient of g over R
R×R. To ensure that Q

stays on the manifold of orthogonal matrices, we claim additionally that

Q̇ = Ω · Q,

in which Ω ∈ R
R×R is skew-symmetric [22, p. 307]. Now the inner product can be

written in the form of (6.10):

ġ = 2

K∑
k=1

〈Ω,upp(Q · Vk · Z) · ZT · VT
k · QT 〉

=

〈
Ω, 2

K∑
k=1

skew{upp(Q · Vk · Z) · ZT · VT
k · QT }

〉

=

〈
Ω · Q, 2

K∑
k=1

skew{upp(Q · Vk · Z) · ZT · VT
k · QT } · Q

〉
,

which proves (6.8). The gradient with respect to Z can be found in an analogous
way.

Theorem 6.4. Consider a first-order perturbation of the matrices in the SGSD
(5.1)–(5.3): Vk(ε) = Vk(0) + εBk (1 � k � K). As a first-order approximation, the
maximum of g(Q,Z) is then obtained for

Q(ε) = (I + εΛ + o(ε)) · Q(0),

Z(ε) = Z(0) · (I + εΩ + o(ε)),

in which Λ,Ω ∈ R
R×R are skew-symmetric matrices that satisfy the following set of

linear equations: ∑
k

lows(RkΩ + Ek + ΛRk) · RT
k = 0,(6.11) ∑

k

RT
k · lows(RkΩ + Ek + ΛRk) = 0,(6.12)

where lows(·) is the strictly lower triangular part of a matrix and

Ek = Q(0) · Bk · Z(0), 1 � k � K.

Proof. Again, we will work in the framework of [15, 22]. Let us start from (5.1)–
(5.3). If the matrices Ak have a velocity Ȧk = Bk, then Q evolves in such a way that
the identity ∇Qg ≡ 0 holds. Taking the form of the gradient (6.8) into account, we
should have that

skew

(∑
k

upp(Rk)R
T
k

)
≡ 0.(6.13)
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Taking the derivative with respect to the time coordinate yields

skew

(∑
k

upp(Q̇ · Ak · Z + Q · Ȧk · Z + Q · Ak · Ż)RT
k

+upp(Rk)(Ż
T · AT

k · QT + ZT · ȦT
k · QT + ZT · AT

k · Q̇T )

)
= 0.

To ensure that Q and Z stay on the manifold of orthogonal matrices, we claim that

Q̇ = Ω · Q,

Ż = Z · Λ,

in which Ω,Λ ∈ R
R×R are skew-symmetric. If (5.1)–(5.3) are exactly satisfied, then

upp(Rk) = Rk. Substitution of Ek = Q · Bk · Z then yields

skew

(∑
k

Rk · Ω · RT
k − upp(Rk · Ω) · RT

k + Ek · RT
k − upp(Ek) · RT

k

+Λ · Rk · RT
k − upp(Λ · Rk) · RT

k

)
= 0

or

skew

(∑
k

lows(RkΩ + Ek + ΛRk)R
T
k

)
= 0.

We may drop “skew” because its argument is strictly lower triangular. Equation
(6.12) is obtained by starting from the identity ∇Zg ≡ 0.

Remark 7. For matrices Ak that do not allow for an exact upper triangularization,
the derivation can be taken over provided that upp(Rk) is not simplified to Rk.

Remark 8. Note that the expressions derived in this section may be used to
develop routines for the computation of the SGSD by means of an optimization over
the (product of two) manifold(s) of orthogonal matrices. We refer to [22].

By the summation in (6.11) and (6.12) the perturbation is to some extent “aver-
aged” over the different matrices Ak. When components of Q and Z are ill conditioned
for a subset of {Ak}, this may be compensated by the other matrices.

7. Algorithms for the SGSD.

7.1. Extended QZ-iteration. For the actual computation of the SGSD, an ex-
tended QZ-iteration was proposed in [48]. One alternates between updates of Q and
Z in such a way that the cost function h in (5.6) is approximately optimized. In each
step, the estimate of Q (given Z, or vice-versa) is obtained as a product of matrices
H1H2 . . .HR−1, that form the equivalent of Householder matrices for the computation
of a simple QR-decomposition [24]. For instance, as far as Q is concerned, H1 max-
imally reduces (in least-squares sense) the below-diagonal norm of the first columns
of the instantaneous estimates of R1,R2, . . . ,RK . After multiplication with H1, H2

minimizes the below-diagonal norm of the second columns, without further affecting
the first rows, and so on. H1 is determined through an SVD of an (R × K)-matrix
(actually only the left singular vector corresponding to the largest singular value, and
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its orthogonal complement, have to be computed), the determination of H2 involves
an SVD of an ((R− 1) ×K)-matrix, and so on.

Because of the high computational cost, it makes sense to initialize the algorithm
with matrices Q(0) and Z(0) defined by two of the equations (5.1)–(5.3). If these two
joint decompositions are well conditioned, then Q(0) and Z(0) may be close to the
optimum; if not, then the extended QZ-iteration may involve more work than just a
fine tuning of a good initialization.

The resulting scheme is observed to find a good estimate of the global optimum in
a limited number of steps, if the CANDECOMP-model is exactly satisfied. However,
even moderate perturbations can cause the algorithm to end up in good estimates of
the theoretical matrices Q and Z that do not globally minimize the cost function. It
is also possible that at some point in the iteration (e.g., initially, or after approximate
convergence), the algorithm starts to increase the value of h. The reason for this
behavior is that the way in which Q and Z are computed does not imply monotonic
convergence in terms of h: for instance, it is possible that the matrix H1 increases the
Frobenius-norm of the part of columns 2 to R − 1 below the diagonal. Nevertheless,
these aspects do not seem to pose major problems in practice: over several hundreds
of simulations, we have only once obtained a meaningless result.

7.2. Jacobi iteration. In [17, 18] we derived a Jacobi-type algorithm for the
computation of the SGSD. Here, Q and Z are found as a sequence of elementary
Jacobi-rotation matrices. In a step (i, j), Q and Z are multiplied by elementary
rotation matrices, affecting rows and columns i and j. These rotation matrices are
such that they maximize the function g in (5.4). It turns out that the determination
of a Jacobi-rotation pair basically amounts to rooting a polynomial of degree 8. One
sweeps over all the possible pairs (i, j), and then iterates over such sweeps.

The iteration can be initialized with matrices Q(0) and Z(0), obtained from the
generalized Schur decomposition corresponding to two of the equations in (5.1)–

(5.3) [24]. Assume that at iteration step l + 1, the estimates Q(l), Z(l), and R
(l)
1 , . . . ,

R
(l)
K are available. Let Gij ∈ R

R×R represent an elementary Givens rotation matrix
that affects rows i and j, i.e., Gij equals the identity matrix, except for the entries

(Gij)ii = (Gij)jj = cosα,

(Gij)ji = −(Gij)ij = sinα,

in which α is the rotation angle (assume that j > i). An update of Q(l) takes
the form of Q(l+1) = Gij · Q(l). Similarly, an update of Z(l) takes the form of

Z(l+1) = Z(l) ·G′
ij

T
, where the Givens rotation matrix G′

ij is defined in the same way

as Gij , in terms of an angle β. At the same time R
(l)
1 ,R

(l)
2 , . . . ,R

(l)
K are updated as

R
(l+1)
1 = Gij ·R(l)

1 ·G′
ij

T
, R

(l+1)
2 = Gij ·R(l)

2 ·G′
ij

T
, . . . , R

(l+1)
K = Gij ·RK

(l) ·G′
ij

T
.

At iteration step l, the maximization of the function g in (5.4) is equivalent to
the minimization of

h(α, β) =

K∑
k=1

[
(R

(l+1)
k )2ji +

j−1∑
r=i+1

((R
(l+1)
k )2ri + (R

(l+1)
k )2jr)

]
(7.1)

(the other entries do not affect the norm of the strictly lower diagonal parts). The
function h is given in explicit form by

h(α, β) =

K∑
k=1

5∑
n=1

hkn(α, β),(7.2)
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in which

hk1(α, β) = sin2 α

×[cos2 β (R
(l)
k )2ii + sin2 β (R

(l)
k )2ij − 2 sinβ cosβ (R

(l)
k )ii(R

(l)
k )ij ],(7.3)

hk2(α, β) = 2 sinα cosα
{

cos2 β (R
(l)
k )ii(R

(l)
k )ji + sin2 β (R

(l)
k )ij(R

(l)
k )jj

− sinβ cosβ [(R
(l)
k )ij(R

(l)
k )ji + (R

(l)
k )ii(R

(l)
k )jj ]

}
,(7.4)

hk3(α, β) = cos2 α

×[cos2 β (R
(l)
k )2ji + sin2 β (R

(l)
k )2jj − 2 sinβ cosβ (R

(l)
k )ji(R

(l)
k )jj ],(7.5)

hk4(α, β) = (sin2 α + cos2 α)

×
j−1∑

r=i+1

[cos2 β (R
(l)
k )2ri + sin2 β (R

(l)
k )2rj − 2 sinβ cosβ (R

(l)
k )ri(R

(l)
k )rj ],(7.6)

hk5(α, β) = (sin2 β + cos2 β)

×
j−1∑

r=i+1

[cos2 α (R
(l)
k )2jr + sin2 α (R

(l)
k )2ir + 2 sinα cosα (R

(l)
k )ir(R

(l)
k )jr].(7.7)

Setting the partial derivatives of h, with respect to α and β, equal to zero, leads to a
set of biquadratic equations in tanα and tanβ:

b1(β) tan2 α + b2(β) tanα− b1(β) = 0,(7.8)

b3(β) tan2 α + b4(β) tanα + b5(β) = 0,(7.9)

in which bn(β) =
∑K

k=1 bkn(β), with

bk1(β) = tan2 β

{
(R

(l)
k )2ij − (R

(l)
k )2jj +

j−1∑
r=i+1

[(R
(l)
k )2ir − (R

(l)
k )2jr]

}
+2 tanβ [(R

(l)
k )ji(R

(l)
k )jj − (R

(l)
k )ii(R

(l)
k )ij ]

+

{
(R

(l)
k )2ii − (R

(l)
k )2ji +

j−1∑
r=i+1

[(R
(l)
k )2ir − (R

(l)
k )2jr]

}
,(7.10)

bk2(β) = tan2 β

[
(R

(l)
k )ij(R

(l)
k )jj +

j−1∑
r=i+1

(R
(l)
k )ir(R

(l)
k )jr

]
− tanβ [(R

(l)
k )ij(R

(l)
k )ji + (R

(l)
k )ii(R

(l)
k )jj ]

+

[
(R

(l)
k )ii(R

(l)
k )ji +

j−1∑
r=i+1

(R
(l)
k )ir(R

(l)
k )jr

]
,(7.11)

bk3(β) = (tan2 β − 1)

[
(R

(l)
k )ii(R

(l)
k )ij +

j−1∑
r=i+1

(R
(l)
k )ri(R

(l)
k )jr

]

+ tanβ

{
(R

(l)
k )2ij − (R

(l)
k )2ii +

j−1∑
r=i+1

[(R
(l)
k )2rj − (R

(l)
k )2ri]

}
,(7.12)

bk4(β) = (tan2 β − 1) [(R
(l)
k )ij(R

(l)
k )ji + (R

(l)
k )ii(R

(l)
k )jj ]
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+2 tanβ [(R
(l)
k )ij(R

(l)
k )jj − (R

(l)
k )ii(R

(l)
k )ji],(7.13)

bk5(β) = (tan2 β − 1)

[
(R

(l)
k )ji(R

(l)
k )jj +

j−1∑
r=i+1

(R
(l)
k )ri(R

(l)
k )rj

]

+ tanβ

{
(R

(l)
k )2jj − (R

(l)
k )2ji +

j−1∑
r=i+1

[(R
(l)
k )2rj − (R

(l)
k )2ri]

}
.(7.14)

The global minimum of h(α, β) can be determined by computing the various solutions
of (7.8)–(7.9) and selecting the one corresponding to the smallest value in (7.2).

For the solution of the set of biquadratic equations, let us first consider the special
case where (7.8) is linear in tanα: b1(β) = 0. The only ways in which a root β0 of
b1 can lead to a solution of (7.8)–(7.9) are (a) tanα = 0 and additionally b5(β0) = 0
and (b) α is a solution of (7.9), for β = β0, which additionally satisfies b2(β0) = 0.

Now let us investigate the general case, i.e., b1(β) �= 0. Substitution of the square
roots of (7.8) in (7.9) (considered as quadratic expressions in the unknown tanα) then
leads to the following polynomial of degree 8 in tanβ:

b21(β)b23(β) + b21(β)b25(β) − b1(β)b2(β)b4(β)b5(β) + 2b21(β)b3(β)b5(β)

+ b22(β)b3(β)b5(β) − b21(β)b24(β) + b1(β)b2(β)b3(β)b4(β) = 0.(7.15)

For the roots of this polynomial, the corresponding value of tanα that gives a solution
to (7.8)–(7.9), can be found from

(b2(β)b3(β) − b1(β)b4(β)) tanα− b1(β)(b3(β) + b5(β)) = 0.(7.16)

The computational cost is in line with results obtained for other simultaneous
matrix decompositions. A Jacobi-rotation for a simultaneous real symmetric EVD
can be computed by rooting a polynomial of degree 2 [8, 9]. For an SSD (Q = Z),
polynomials are of degree 4 [25].

The Jacobi-result is an explicit solution for the CANDECOMP of rank-2 tensors.
Apart from this result, a Jacobi-sweep is more expensive than an extended QZ-step
if not min{R,K}  8.

If the simultaneous equivalence transformation of (4.5)–(4.7) is not exactly sat-
isfied, different permutations of the CANDECOMP components may cause the cor-
responding orthogonal factors Q and Z to yield values of the function g that are
somewhat different. There is no guarantee that the Jacobi-algorithm will converge
to the solution with that specific column ordering that leads to the global optimum.
Apart from the reordering of columns, there is no formal evidence that the two-sided
Jacobi-algorithm cannot get stuck in a local optimum; local or global convergence is
still an open problem for the computation of other simultaneous matrix decomposi-
tions as well [4, 8, 9, 12, 23, 48]. We have not observed convergence to a local optimum
in any of our simulations for the unsymmetric CANDECOMP-problem. For the case
where U(1) = U(2), a meaningless result has been obtained for one out of hundreds
of simulations. In this odd case, the problem could be overcome by reinitializing the
algorithm.

8. Estimation of the canonical components from the components of
the SGSD. In this section we will explain how the matrices U(1) and U(2) can be
estimated, once Q and Z are known. How U(3) may subsequently be estimated was
explained in section 4. This corresponds to step 4 in Algorithm 1. Computation of
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the SGSD is in general only equivalent to least-squares fitting of the CANDECOMP-
model if that model is exactly valid. The estimates obtained so far may then be used
to initialize an additional optimization algorithm for the minimization of cost function
(2.3), as also mentioned in section 4 (step 5 in Algorithm 1).

In [48] a procedure has been proposed that works under the assumption that the
columns of U(3) are linearly independent (and sufficiently well conditioned). Hence
this technique can be used only when K � R. The solution is obtained via the
computation of the pseudoinverse of a (K ×R) matrix and the estimation of the best
rank-1 approximation of R (R×R) matrices.

We will derive a new technique that works under the assumptions established
in section 2. This technique is also computationally less demanding. It essentially
requires solving R(R−1)/2 overdetermined sets of K linear equations in 2 unknowns.

We will estimate R′ and R′′ from (5.1)–(5.3) and then combine them with Q
and Z to obtain U(1) and U(2). If we assume that the main diagonals of R′ and R′′

contain only entries equal to 1 (we can make this assumption because the columns of
U(1) and U(2) can be determined only up to a scaling factor), then Dk = diag{Rk}
(1 � k � K), in which diag{·} now denotes the diagonal part of a matrix. The strictly
upper diagonal elements of R′ and R′′ can be estimated by subsequently solving in a
least-squares sense the equations related to the entries of {Rk}(1�k�K) at positions
(R− 1, R), (R− 2, R− 1), (R− 2, R), . . . , (1, 2), (1, 3), . . . , (1, R) in (5.1)–(5.3) with
respect to the unknowns r′R−1,R and r′′R−1,R, r′R−2,R−1 and r′′R−2,R−1, r′R−2,R, and
r′′R−2,R, . . . , r′1,2 and r′′1,2, r

′
1,3 and r′′1,3, . . . , r′1,R and r′′1,R, respectively. For instance,

with the entries at position (R− 1, R) corresponds the equation⎛⎜⎜⎜⎝
(R1)R,R (R1)R−1,R−1

(R2)R,R (R2)R−1,R−1

...
...

(RK)R,R (RK)R−1,R−1

⎞⎟⎟⎟⎠
(

r′R−1,R

r′′R−1,R

)
=

⎛⎜⎜⎜⎝
(R1)R−1,R

(R2)R−1,R

...
(RK)R−1,R

⎞⎟⎟⎟⎠ .

Note that, according to the third working assumption made in section 2, the columns
of the matrix on the left-hand side of this equation should be linearly independent.

For the computation of U(3), remark that (4.5)–(4.7) correspond to a CANDE-
COMP of a tensor V ∈ R

R×R×K , with entries vijk = (Vk)ij , of which the component

matrices are U(1), U(2) and the matrix Ũ(3) defined in (4.8). Let V(R2×K) ∈ R
R2×K ,

with entries

(V(R2×K))(i−1)R+j,k = (Vk)ij ,

be a matrix representation of V. (4.5)–(4.7) can be reformulated as

V(R2×K) = (U(1) � U(2)) · Ũ(3)T .(8.1)

Ũ(3) can be computed from this (possibly overdetermined) set of linear equations.
Finally, U(3) follows from (4.9).

To conclude, let us give an outline of the computation of U(1), U(2), and U(3)

from the results of the SGSD (5.1)–(5.3). This scheme details step 4 in Algorithm 1.

4.1 Computation of R′ and R′′.
Set diag{R′} = diag{R′′} = I.
for i = R− 1, R− 2, . . . , 1
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for j = i + 1, i + 2, . . . , R⎛⎜⎜⎜⎝
(R1)jj (R1)ii
(R2)jj (R2)ii

...
...

(RK)jj (RK)ii

⎞⎟⎟⎟⎠
(

r′ij
r′′ij

)
=

⎛⎜⎜⎜⎜⎝
(R1)ij −

∑j−1
p=i+1 r

′
ip (R1)pp r

′′
pj

(R2)ij −
∑j−1

p=i+1 r
′
ip (R2)pp r

′′
pj

...

(RK)ij −
∑j−1

p=i+1 r
′
ip (RK)pp r

′′
pj

⎞⎟⎟⎟⎟⎠
end

end
4.2 U(1) = QT · R′. U(2) = Z · (R′′)T .
4.3 Compute Ũ(3) from (8.1). Compute U(3), modulo a scaling of its columns,

from (4.9).

9. Numerical experiments. In this section we illustrate the performance of the
algorithms proposed in this paper by means of a number of numerical experiments.
These experiments are helpful to understand and evaluate the different methods, given
that a rigorous mathematical analysis of their convergence properties often proves to
be extremely tough (as is witnessed by the fact that only very few related results are
available [4, 50]).

In a first series of experiments we will compare the accuracy of both techniques
presented in section 7 and check whether an additional direct optimization of the cost
function f , defined in (2.3), is needed (step 5 in Algorithm 1). We will also show that
the extended QZ-iteration is not simply based on the minimization of cost function
h, defined in (5.6).

Tensors A ∈ R
3×3×3, of which the canonical components will afterwards be esti-

mated, are generated in the following way:

A = Ã/‖Ã‖ + σN Ñ/‖Ñ ‖,(9.1)

in which Ã exactly satisfies the CANDECOMP-model:

Ã = U
(1)
1 ◦ U (2)

1 ◦ U (3)
1 + U

(1)
2 ◦ U (2)

2 ◦ U (3)
2 + U

(1)
3 ◦ U (2)

3 ◦ U (3)
3 .(9.2)

The components in (9.1)–(9.2) are generated as follows. First consider the (3 × 3)-
matrices U(1), U(2), and U(3), defined by (4.3). The entries of 3 (3× 3)-matrices are
randomly taken from a uniform distribution on the interval [0, 1). U(2) and U(3) are
derived from two of these matrices by replacing their singular values by 3, 2, 1, while
keeping the singular vectors. U(1) is generated in the same way but three different sets
of singular values will be considered: 3, 2, 1; 30, 15, 1; 100, 50, 1. The entries of Ñ
are drawn from a zero-mean unit-variance Gaussian distribution. For each particular
choice of U(1), U(2), U(3), and Ñ , the scalar σN is varied between 1e− 3 and 1.

For each of the sets of singular values of U(1), 50 independent samples of Ã are
realized; for each of them 7 logarithmically equidistant values of σN are considered.
In each Monte Carlo simulation the following algorithms are run: (a) the Jacobi-
algorithm, discussed in section 7.2; (b) a least-squares matching of both sides of (2.3),
for which the leastsq command of the Optimization Toolbox 1.0 of MATLAB 4.2 has
been used, initialized with the result of (a); and (c) the extended QZ-iteration, de-
scribed in section 7.1. The algorithm (a) is terminated if a full sweep no longer allows
the reduction of the cost function h(Q,Z) with at least 0.01%. The same termination
criterion is used for a Q-step followed by a Z-step in the extended QZ-iteration. For
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the least-squares matching (b) a minimal precision of 1e− 5 for the optimal values of
the cost function f , defined in (2.3), and the corresponding components is presumed;
the MATLAB routine maximally performs 2100 iteration steps.

To evaluate the accuracy of the different algorithms we will consider the quality
of the estimate Û(1) of U(1); at this point the columns of U(1) are normalized to
unit-length. In Figure 9.1 the error is plotted as a function of the noise level σN .
For a given noise level and a given algorithm, this error measure has been computed
as the average, over the different Monte Carlo simulations, of the Frobenius-norm
‖Û(1) − U(1)‖; the ordering of the columns of Û(1) that corresponds to the ordering
of the columns of U(1), has been determined as the ordering that minimizes the error;
we also scale the columns of Û(1) in the optimal way. Algorithms (a), (b), and (c)
correspond to solid, dotted, and dash-dot curves, respectively. The upper, middle,
and lower curves correspond to a condition number of U(1), equal to 100, 30 and 3,
respectively.
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Fig. 9.1. The mean value of ‖Û(1) −U(1)‖, as a function of the noise level σN , for the Jacobi-
algorithm (solid), with additional least-squares matching (dotted) and the extended QZ-algorithm
(dashdot). The upper, middle, and lower curves correspond to a condition number κ of U(1), equal
to 100, 30, and 3, respectively.

Figure 9.1 displays the expected performance degradation as the noise level and/or
the condition number of U(1) increases. The number of simulations is high enough
to give a good picture: the variance of the error, divided by its squared value ranges
from at least 4e− 6 (σN = 1e− 3) to typically 2.5e− 2 (σN = 1). We notice that on
the average, the accuracy of methods (a) and (c) is comparable. The figure also shows
that an additional least-squares matching routine generally improved the accuracy,
but that the marginal improvement became smaller as the CANDECOMP factors
were better conditioned. For well-conditioned problems, no direct optimization of f
is needed.

In Figure 9.2 we have plotted the mean value of the cost function h in (5.6) for the
algorithms (a) and (c). The figure shows that the extended QZ-iteration indeed does
not minimize cost function h; this effect is more outspoken as the condition number
of U(1) is larger. On the other hand, it is clear from the discussion in section 7.1 that,
in the absence of noise, the theoretical solution is a stationary point of the extended
QZ-algorithm; in Figure 9.1 we see that the algorithm was still reliable in the presence
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Fig. 9.2. The mean value of h, defined in (5.6), as a function of the noise level σN , for the
Jacobi-algorithm (solid) and the extended QZ-algorithm (dashdot). The upper, middle, and lower
curves correspond to a condition number κ of U(1), equal to 100, 30, and 3, respectively.

of noise.

In a second series of experiments we illustrate the convergence behavior of meth-
ods (a) and (c). For each of the sets of singular values of U(1) (3, 2, 1; 30, 15, 1; 100,
50, 1), 100 independent samples of A are realized as before, with σN = 0. The differ-
ent algorithms are now terminated if the instantaneous value of h has been reduced
below 1e− 14.

In Figure 9.3 we have plotted the average evolution of the value of h as a function
of the iteration step l (for the scenarios with condition number κ = 3, 30, 100) and for
algorithm (a) (only with condition number κ = 3, as will be motivated immediately).
For these curves, the convergence speed is quasi-linear. The curves for the extended
QZ-iteration have only been marginally affected by the chosen value of κ. On the
other hand, it makes less sense to plot an average curve for the Jacobi-method in the
cases where κ = 30 or 100, as the results can be strongly data-dependent. Namely,
the convergence is still good in most cases, but for some particular instances of A,
the algorithm is observed to move through a swamp: apparently, like ALS iterations,
Jacobi-iterations can be affected by swamps, although for well-conditioned problems
they seem to form a minor issue. The extended QZ-algorithm appears to be less
vulnerable, as the typical swamp behavior has only been observed for one instance
of A (κ = 100). Rather than plotting the remaining mean convergence curves, we
show in a histogram how many iterations were needed to terminate the algorithm
in the different Monte Carlo simulations, for the various set-ups (see Figure 9.4,
in which we have taken as a convention that experiments in which more than 100
iterations were needed, are added to the final histogram bin). Concerning Figures 9.3
and 9.4, we finally remark that for 5 instances of A, the extended QZ-algorithm
was observed to start by increasing the value of h to some extent, before actual
convergence.

With respect to Figure 9.4 we conclude that for good condition numbers, the
Jacobi-algorithm requires less iterations than the extended QZ-iteration. However,
when the condition number increases, the risk increases that the Jacobi-algorithm
requires a higher number of iterations. In this respect, we should also keep in mind
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Fig. 9.3. The evolution of h, defined in (5.6), as a function of the iteration step l, for the
Jacobi-algorithm (solid) and the extended QZ-algorithm (dashdot). The parameter κ is the condition
number of U(1).
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Fig. 9.4. Histogram of 100 Monte Carlo simulations, showing the number of iterations required
to reduce the value of h (see (5.6)) below 1e−14, for methods (a) (Jacobi-algorithm) and (c)(extended
QZ-algorithm), and a condition number κ of U(1), equal to 3, 30, or 100. Experiments in which
more than 100 iterations were needed have been added to the final histogram bin.

that for small tensors the computational complexity of a Jacobi-iteration step is higher
than that of an extended QZ-iteration step; for larger tensor sizes, the extended QZ-
iteration steps are more complex (as is clear from the discussion in section 7).

Figure 9.5 is an example of an ALS iteration moving through a “swamp.” After 5
iterations the convergence speed becomes almost equal to zero, and after 70 iterations
it starts to increase again. It is clear that tolerances have to be set very tight in order
to reach the global optimum. This type of convergence is not uncommon. The figure
was obtained for a (2 × 2 × 4) tensor of the form (9.1), with the condition numbers
of U(1), U(2), and U(3) equal to 2 and σN = 1e − 2. Note that in this case (7.15)
provides an explicit expression for the solution.

In the following experiment we will compare the performance of the simultaneous
generalized Schur approach with other techniques. In each of 50 Monte Carlo runs,
a tensor A ∈ R

2×2×10 of the form (9.1) is generated. The singular values of U(2) are
taken equal to 2, 1. For U(1) three different sets of singular values are considered:
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Fig. 9.5. Example of a “swamp”-type convergence curve for ALS iterations. f is the cost
function defined in (2.3) and l the iteration step.

2,1; 10,1; 100,1. The entries of U(3) are generated as u
(3)
ij = 1 + gij/50, in which gij

is drawn from a Gaussian distribution with unit variance. For each particular choice
of U(1), U(2), U(3), and Ñ , the scalar σN is varied between 1e − 4 and 1e − 2. In
this way, σN ranges from a level where the eigenvalues in (4.10) are subject only to a
small perturbation to a level where there is a certain risk that these eigenvalues have
crossed each other.

In Figure 9.6 we compare the mean value of ‖Û(1)−U(1)‖ obtained with a SGSD
to the one obtained from the EVD of the matrix V2 · V−1

1 (cf. [38, 43, 5, 42]). It
is clear that the SGSD is more accurate than a single EVD, because it takes all the
matrices Vk into account. However, the technique is more sensitive to the condition
number of U(1). In the case of an ill-conditioned matrix U(1), the performance may
considerably degrade when the noise level is high; as such, this effect cannot be
examined by means of the first-order perturbation analysis in section 6. Note that
the EVD may yield complex eigenvalues and eigenvectors for low signal-to-noise ratios.
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Fig. 9.6. The mean value of ‖Û(1) −U(1)‖, as a function of the noise level σN , for the SGSD
(solid) and for a single EVD (dashed). The condition number κ of U(1) is equal to 2 (◦), 10 (×),
or 100 (+).
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Fig. 9.7. The mean value of ‖Û(1) −U(1)‖, as a function of the noise level σN , for the SGSD,
followed by an ALS iteration (solid) and for an EVD followed by an ALS iteration (dashed). The
condition number κ of U(1) is equal to 2 (◦), 10 (×), or 100 (+).

In Figure 9.7 we display the accuracy obtained when the results of Figure 9.6 are
used to initialize an ALS routine. The iteration was terminated when∥∥∥∥∥∥∥

⎛⎜⎝ Û
(1)
k+1

Û
(2)
k+1

Û
(3)
k+1

⎞⎟⎠−

⎛⎜⎝ Û
(1)
k

Û
(2)
k

Û
(3)
k

⎞⎟⎠
∥∥∥∥∥∥∥ < 1e− 4,

in which Û
(i)
k is the estimate of U(i) at iteration step k. We see that, even after

an ALS iteration, the EVD approach remains less accurate than the simultaneous
generalized Schur approach. In additional simulations we observed that this is less
the case when U(3) is better conditioned.

In Figure 9.8 we put the result obtained by the SGSD and the enhanced result
obtained by an extra ALS iteration next to each other. It turns out that the perfor-
mance degradation that is linked to a bad condition number of U(1) (as mentioned
in the discussion of Figure 9.6), can be mitigated by an additional ALS iteration. If
there is no such problem, then an extra ALS iteration is not required.

In Figure 9.9 we compare the ALS-enhanced SGSD result to the best result ob-
tained by ALS iteration, starting from 10 random initializations. Remarkably enough,
ALS gives better results when the condition number of U(1) increases. The SGSD
turns out to be more accurate than the direct ALS approach. In additional simula-
tions we observed that the difference in performance decreases when U(3) is better
conditioned.

In Figure 9.10 we plot the total CPU time, over 50 Monte Carlo runs and 10
random initializations per run, required by the ALS routine. Analysis of the data
showed that, for a given value of κ and σN , not more than 2 out of 3 initializations
led to an estimation error ‖Û(1) −U(1)‖ that was more than twice its minimal value
over all runs and initializations. This ratio depended little on the particular value
of κ and σN . This means that we actually did not have to start from 10 random
initializations; 5 initializations would have been sufficient and the computational cost
can be divided by two. Nevertheless, this remains much more expensive than a SGSD



A CANDECOMP ALGORITHM 323

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

10
0

σN

es
ti

m
a
ti

o
n

er
ro

r

Fig. 9.8. The mean value of ‖Û(1) − U(1)‖, as a function of the noise level σN , obtained by
the SGSD (solid), and by a subsequent ALS iteration (dashed). The condition number κ of U(1) is
equal to 2 (◦), 10 (×), or 100 (+).
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Fig. 9.9. The mean value of ‖Û(1) − U(1)‖, as a function of the noise level σN , for the
ALS-enhanced SGSD (solid) and direct ALS starting from 10 random initializations (dashed). The
condition number κ of U(1) is equal to 2 (◦), 10 (×), or 100 (+).

(overall CPU time approximately 1 s, independent of κ and σN ) or a simple EVD
(CPU time in the order of magnitude of 1e − 2 s) (the latter merely consists of
MATLAB’s function eig applied to a (2 × 2) matrix).

Figure 9.11 shows the CPU time required by the ALS iteration that was initialized
by means of the SGSD or the EVD. Fewer computations were needed for the SGSD.
The figure also shows that each of these two special initializations led to fewer ALS
iterations than an average random start.

Whenever in this section we have used ALS iterations for the optimization of cost
function f , we have also tried the general-purpose Levenberg–Marquardt algorithm
[39] (we used the command lsqnonlin of the Optimization Toolbox 2.0 of MATLAB
5.3). In the last series of experiments, Levenberg–Marquardt gave consistently much
less accurate results than ALS, even when the tolerance on the value of f was set as
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Fig. 9.10. Total CPU time, over 50 Monte Carlo runs and 10 random initializations per run,
required by the ALS routine. The condition number κ of U(1) is equal to 2 (◦), 10 (×), or 100 (+).
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Fig. 9.11. Total CPU time, over 50 Monte Carlo runs, required by the ALS iteration following
a SGSD (solid) or a single EVD (dashed). The condition number κ of U(1) is equal to 2 (◦), 10
(×), or 100 (+).

sharp as 1e−10. For well-conditioned problems, the accuracy of Levenberg–Marquardt
and ALS may be comparable. However, in this case, Levenberg–Marquardt is typically
an order of magnitude more expensive than ALS.

Finally, we have applied Algorithm 1 to a real-life dataset. It concerns a real-
valued (5× 10× 13)-tensor representing the displacements of 13 points of the tongue
of 5 test persons while pronouncing 10 vowels. A detailed description of these data
and their analysis by means of a CANDECOMP can be found in [29]. The dataset
can be downloaded from [21].

First, we observed that the two dominant 1-mode, 2-mode, and 3-mode singu-
lar values [19] explain 94.5%, 95.4%, and 96.0%, respectively, of the “energy” in the
dataset. Therefore we performed a dimensionality reduction by calculating the best
rank-(2, 2, 2) approximation of the data tensor before starting the actual CANDE-
COMP computations, as explained in section 3. The approximation was obtained by
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means of a higher-order orthogonal iteration, initialized with the truncated HOSVD
[20]. The stop criterion consisted of checking if the adjustment of each of the compo-
nent matrices in an iteration step was below 1e− 4 (Frobenius-norm). The algorithm
converged in 5 steps. The approximation contained 92.6% of the energy.

Next, we looked for the least-squares approximation of the (2×2×2)-core tensor by
a sum of two rank-1 components. We resorted to the Jacobi-technique of section 7.2,
in which the solution was found by rooting a polynomial of degree 8. The error of the
fit was in the order of the numerical accuracy of MATLAB. Backtransformation to
the original dimensionality by multiplication with the best rank-(2, 2, 2) components
yielded the best rank-2 approximation of the original dataset. Further enhancement by
an additional minimization of cost function (2.3) was not possible (step 5 in Algorithm
1); otherwise, the rank-(2, 2, 2) approximation would not have been optimal or the
core tensor would not have been rank-2.

The cosine of the angle in R
5×10×13 between the original data tensor and its rank-

2 approximation was equal to 0.962, which was even slightly better than the result
of [29] (0.956); the latter result had been obtained by repeating ALS iterations for
different rank estimates and different starting values, and cross-examining the results.
On a SUN Ultra 2 Sparc and using MATLAB 4.2c, our computations took 0.2+0.04s
of CPU-time, which was a drastic improvement [37].

10. Conclusion. In this paper we have investigated the computation of the
CANDECOMP, under the assumptions made in section 2. Currently, the calculation
of the factors mostly takes the form of an ALS descent algorithm, possibly initialized
with an estimate obtained by a matrix EVD. For well-conditioned problems ALS it-
erations are reliable. However, for some ill-conditioned problems the results are less
satisfactory. In this paper the CANDECOMP is computed via a simultaneous diag-
onalization, by equivalence or congruence, of a set of matrices. Since we take all the
available information into account, this is numerically more reliable than the calcula-
tion of a single EVD. Diagonalization by a simultaneous congruence transformation
was encountered as well in the derivation of an analytical constant modulus algo-
rithm [48], where it was translated into a SGSD and subsequently solved by means of
an extended QZ-iteration scheme. In this paper, we have also proposed a Jacobi-type
algorithm. In this context we have derived the explicit solution for the case of rank-2
tensors. The behavior of the different algorithms was illustrated and their perfor-
mance compared by means of some numerical experiments. In this paper we have
also studied necessary and sufficient conditions for the uniqueness of some simultane-
ous matrix decompositions; in addition, we have performed a first-order perturbation
analysis of the SGSD.

Acknowledgment. The authors wish to thank Dr. J. Dehaene (K.U.Leuven)
for explaining the basic principles underlying the derivation in section 6.2.
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Abstract. In this paper, we address the problem of constructing a reduced order system of
minimal McMillan degree that satisfies a set of tangential interpolation conditions with respect
to the original system under some mild conditions. The resulting reduced order transfer function
appears to be generically unique and we present a simple and efficient technique to construct this
interpolating reduced order system. This is a generalization of the multipoint Padé technique which
is particularly suited to handle multiinput multioutput systems.
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1. Introduction. Model reduction of large-scale dynamical systems has received
a lot of attention during the last decade: it is a crucial tool in reducing the compu-
tational complexity of, e.g., analysis and design of micro-electro-mechanical systems
(MEMS) [13], in simulation of electronic devices [5], in weather prediction [6], and in
control of partial differential equations [12].

The construction of the reduced order model typically passes via the derivation of
one or two projective subspaces of the state space in which the original system is mod-
elled. There are several approaches to find such projective subspaces. In this paper,
we focus on an approach related to tangential interpolation of the rational transfer
function, which therefore only works for linear time invariant systems. Tangential
interpolation of given input/output data has already been treated in the literature
[3], [4]. Here, we address the case where these data are themselves obtained from tan-
gential information of a given (large-scale) transfer function, which to our knowledge
has not been considered.

In this paper, we consider p×m strictly proper transfer functions T (s), i.e., where
lims→∞ T (s) = 0. This implies that the point at infinity is a zero of T (s). For this
reason, a separate treatment of the point at infinity is required.

We begin with some definitions which will allow us to formalize the problem of
tangential interpolation. We say that a rational matrix function R(s) is O(λ− s)k in
s with k ∈ Z if its Taylor expansion about the point λ can be written as follows:
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R(s) = O(λ− s)k ⇐⇒ R(s) =

+∞∑
i=k

Ri(λ− s)i,(1.1)

where the coefficients Ri are constant matrices. If Rk �= 0, then we say that R(s) =
Θ(λ− s)k. As a consequence, if R(s) = Θ(λ− s)k and k is strictly negative, then λ is
a pole of R(s), and if k is strictly positive, then λ is a zero of R(s). Analogously, we
say that R(s) is O(s−1)k if the following condition is satisfied:

R(s) = O(s−1)k ⇐⇒ R(s) =

+∞∑
i=k

Ris
−i,(1.2)

where the coefficients Ri are constant matrices. It should be stressed that, in general,
R(s) being O(s)−k is not equivalent to R(s) being O(s−1)k.

We must also use the well-established concept of a zero of a system (see, e.g.,
[14]) and the following related definition.

Definition 1.1. Suppose that T (s) is a p×m rational function. The zeros of the
numerator polynomials not equal to zero in the Smith–McMillan form of the transfer
function T (s) are called the zeros of T (s). An m× 1 polynomial vector y(s) is a right
zero direction of order k at λ if y(λ) �= 0 and

T (s)y(s) = O(λ− s)k.(1.3)

Analogously, a 1×p polynomial vector x(s) is a left zero direction of T (s) when x∗(s)
is a right zero of T ∗(s). The order of a zero is defined as the maximum order of the
zero directions at this point.

For MIMO systems, a zero can also be a pole. If λ is not a pole of T (s), only the
k first Taylor coefficients of y(s) about λ are important. If λ is a pole of T (s), the
situation is more complicated. Indeed, assume that λ is a pole of order p of T (s) and
that y(s) has an expansion about λ; then

T (s)y(s) =

⎛⎝ +∞∑
i=−p

Ti(λ− s)i

⎞⎠⎛⎝ ∞∑
j=0

yj(λ− s)j

⎞⎠ .(1.4)

We see that the first k + p terms in the Taylor expansion of y(s) are important to
ensure that the product (1.4) has a zero of order k. This case will not be discussed in
this paper, but a few remarks will be made to indicate how it complicates the problem.

We now present the concept of tangential interpolation that will be considered in
this paper. Three concepts are defined, namely left, right, and two-sided tangential
interpolation. Interpolation at the point at infinity is considered as a special case.

Let z be a finite point in the complex plane. Let T (s) and T̂ (s) be two p × m
strictly proper transfer functions that do not have a pole at s = z.

Left tangential interpolation. Let x(s) be a 1×p polynomial vector of degree
β−1 and not equal to zero at s = z. We say that T̂ (s) interpolates T (s) at (z, x(s)) if

x(s)(T (s) − T̂ (s)) = O(z − s)β .(1.5)

Let x(s) be a 1× p polynomial vector in s−1, of degree β − 1 in s−1 and not equal to
zero at s = ∞. We say that T̂ (s) interpolates T (s) at (∞, x(s)) if

x(s)(T (s) − T̂ (s)) = O(s−1)β+1.(1.6)
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Right tangential interpolation. Let y(s) be a m × 1 polynomial vector of
degree δ − 1 and not equal to zero at s = z. We say that T̂ (s) interpolates T (s) at
(z, y(s)) if

(T (s) − T̂ (s))y(s) = O(z − s)δ.(1.7)

Let y(s) be a m × 1 polynomial vector in s−1, of degree δ − 1 in s−1 and not equal
to zero at s = ∞. We say that T̂ (s) interpolates T (s) at (∞, y(s)) if the following
condition is satisfied:

(T (s) − T̂ (s))y(s) = O(s−1)δ+1.(1.8)

Two-sided tangential interpolation. Let x(s) be a 1 × p polynomial vector
of degree β− 1 and not equal to zero at s = z. Let y(s) be a m× 1 polynomial vector
of degree δ− 1 and not equal to zero at s = z. We say that T̂ (s) interpolates T (s) at
(z, x(s), y(s)) if the following condition is satisfied:

x(s)(T (s) − T̂ (s))y(s) = O(z − s)β+δ.(1.9)

Let x(s) be a 1× p polynomial vector in s−1, of degree β − 1 in s−1 and not equal to
zero at s = ∞. Let y(s) be a m×1 polynomial vector in s−1, of degree δ−1 in s−1 and
not equal to zero at s−1 = 0. We say that T̂ (s) interpolates T (s) at (∞, x(s), y(s)) if
the following condition is satisfied:

x(s)(T (s) − T̂ (s))y(s) = O(s−1)β+δ+1.(1.10)

The objective of this paper is the following. We are given a transfer function T (s)
and a set of tangential interpolation conditions of the type (1.5) to (1.10) in a number
of points of the complex plane, and we want to construct the transfer function of
minimal McMillan degree that satisfies these interpolation conditions. In order to
make the problem more precise, we need to introduce the following concepts.

Definition 1.2. Let z1, . . . , zkleft
be points in the complex plane, not necessarily

distinct or finite. For each finite zα, a 1× p polynomial vector xα(s) of degree βα − 1
and not equal to zero at s = zα is given:

xα(s) =

βα−1∑
j=0

x[j]
α (zα − s)j , x[0]

α �= 0.(1.11)

If zα = ∞, then a 1 × p polynomial vector in s−1, xα(s) of degree βα − 1 in s−1 and
not equal to zero at s = ∞ is given:

xα(s) =

βα−1∑
j=0

x[j]
α s−j , x[0]

α �= 0.(1.12)

The left interpolation set Ileft is defined as follows:

Ileft
.
=

{
(z1, x1(s)) , . . . ,

(
zkleft

, xkleft
(s)

)}
.(1.13)

The size of Ileft, written s(Ileft), is defined as follows:

s(Ileft)
.
=

kleft∑
i=1

βi.(1.14)
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Finally, the set of interpolation points of Ileft, written p(Ileft) is defined as follows:

p(Ileft) = {z1, . . . , zkleft
}.(1.15)

Analogously, a right tangential interpolation set

Iright
.
=

{
(w1, y1(s)) , . . . ,

(
wkright

, ykright
(s)

)}
,(1.16)

with the points w1, . . . , wkright
arbitrarily chosen in C∪∞ and each m×1 polynomial

vector yα(s), 1 ≤ α ≤ kright of degree δα − 1 in s if wα is finite (of degree δα − 1 in
s−1 otherwise) defined with the same conventions as above.

Let Il be a left tangential interpolation set. Let Ir be a right tangential interpola-
tion set. The set

I = {Il, Ir}(1.17)

is called a tangential interpolation set. The set of interpolation points of I, written
p(I), is defined by

p(I)
.
= p(Il) ∪ p(Ir).(1.18)

Let T (s) be a transfer function, then we say that the tangential interpolation set I is
T (s)-admissible if T (s) has m inputs and p outputs and no point belonging to p(I) is
a pole of T (s), i.e., no interpolation point is a pole of T (s).

Let the tangential interpolation set I = {Il, Ir} be defined as above. If some

zα ∈ Il is equal to some wγ ∈ Ir, say ξα,γ = zα = wγ , then define x
(f)
α (s) to be the

polynomial vector of size 1× p of degree f obtained by keeping the first f terms in the

Taylor expansion of xα(s) about zα, and analogously for y
(g)
γ (s):

x(f)
α (s)

.
=

f−1∑
j=0

x[j]
α (zα − s)j , y(g)

γ (s)
.
=

g−1∑
j=0

y[j]
γ (wγ − s)j .(1.19)

Use the same notation if zα or wγ is equal to ∞:

x(f)
α (s)

.
=

f−1∑
j=0

x[j]
α s−j , y(g)

γ (s)
.
=

g−1∑
j=0

y[j]
γ s−j .(1.20)

We are now able to define the tangential interpolation problem.
Definition 1.3. Let T (s) and T̂ (s) be two strictly proper p ×m transfer func-

tions. T̂ (s) interpolates T (s) at I if the three following conditions are satisfied:
1. T̂ (s) interpolates T (s) at any couple (zα, xα(s)) belonging to Il,
2. T̂ (s) interpolates T (s) at any couple (wγ , yγ(s)) belonging to Ir,
3. Finally, for every zα = wγ

.
= ξα,γ , we impose in addition that for all f =

1, . . . , βα; g = 1, . . . , δγ , T̂ (s) interpolates T (s) at (ξα,γ , x
(f)
α (s), y

(g)
γ (s)).

Two remarks are in order. In this paper, we consider only the simple case when
the interpolation set I is T (s)-admissible and T̂ (s)-admissible. Second, the tangential
interpolation problem has been studied in a slightly different form in the literature,
e.g., in [4], and the reader is directed there for general results about the theory of
interpolation of rational matrix functions. At first sight, one could think that our
definition of the two-sided tangential interpolation problem is not the same as the
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one treated in [4]. A lemma showing the equivalence between the two formulations is
proved in the appendix.

The problem solved in this paper can be stated as follows.
Problem 1.1. We are given a strictly proper p × m transfer function T (s) of

McMillan degree N , and a corresponding minimal state space realization (C,A,B),
such that

T (s) = C(sIN −A)−1B,

with C ∈ C
p×N , A ∈ C

N×N , and B ∈ C
N×m. We are also given a T (s)-admissible

tangential interpolation set I. We want to construct a p ×m reduced order transfer
function T̂ (s) of minimal McMillan degree n,

T̂ (s) = Ĉ(sIn − Â)−1B̂,(1.21)

with Ĉ ∈ C
p×n, Â ∈ C

n×n, B̂ ∈ C
n×m such that I is T̂ (s)-admissible and T̂ (s)

tangentially interpolates T (s) at I.
The remainder of this paper is organized as follows. In section 2, the tangential

interpolation problem is solved for two simple sets of interpolation conditions. In
section 3, the background necessary to solve the general problem, Problem 1.1, is
introduced. In section 4, the multipoint Padé approximation is constructed and its
main properties are analyzed. Concluding remarks are given in section 5.

2. Preliminary results. In this section, we present the solution of Problem 1.1
for two particular interpolation sets. The general results are given in sections 3 and 4.

2.1. One set of n distinct right interpolation conditions. The first simpler
problem solved in this section is the following.

Problem 2.1. Let T (s) be a p×m transfer function of McMillan degree N . Let
{λ1, . . . , λn} be n (where n < N) distinct finite points in the complex plane that are
not poles of T (s). Let {y1, . . . , yn} be n m× 1 nonzero vectors. We want to construct
a p×m transfer function T̂ (s) of McMillan degree n such that for all 1 ≤ i ≤ n,

T (λ)yi = T̂ (λi)yi.(2.1)

Let C,A,B be a minimal state space realization of the p×m transfer function T (s).
In order to solve the problem, we construct the N × n matrix V

.
=

[
v1 . . . vn

]
that

satisfies the following Sylvester equation:

A
[
v1 . . . vn

]
−
[
v1 . . . vn

] ⎡⎢⎣ λ1

. . .

λn

⎤⎥⎦ + B
[
y1 . . . yn

]
= 0.(2.2)

Assume that V has full column rank n. Construct Z ∈ C
N×n such that

ZTV = In.

Construct Ĉ ∈ C
p×n, Â ∈ C

n×n, and B̂ ∈ C
n×m as follows:

Ĉ
.
= CV, Â

.
= ZTAV, B̂

.
= ZTB.

To verify that the transfer function

T̂ (s)
.
= Ĉ(sIn − Â)−1B̂
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solves Problem 2.1, first note that for any 1 ≤ i ≤ k the columns of V can be computed
as follows:

vi = (λiIN −A)−1Byi.

We will also use the following well-known result.
Lemma 2.1. Let V ∈ C

N×n. If the vector v belongs to the column span of the
matrix V . Then, for any matrix W ∈ C

N×n such that WTV = Ik,

v = VWT v.

Proof. Because v belongs to the linear span of the columns of V , there exists
a vector v̂ ∈ C

n such that v = V v̂. For any WT satisfying WTV = In, we have
v̂ = WT v. This in turn implies that v = VWT v.

Defining W by

WT .
=

(
ZT (λ1IN −A)V

)−1
ZT (λ1IN −A).

clearly yields WTV = In and applying the preceding lemma, we obtain the following
equalities:

T (λ1)y1 = C(λ1IN −A)−1By1(2.3)

= CVWT (λ1IN −A)−1By1(2.4)

= CV (λ1Ik − ZTAV )−1ZTBy1(2.5)

= T̂ (λ1)y1.(2.6)

This proves that T̂ (s) solves Problem 2.1.
Remark 2.1.

1. This reasoning is very similar to the technique used in the SISO case in [7] and
[11] . These papers develop techniques to construct a SISO transfer function
of McMillan degree n that satisfies a set of (scalar) interpolation conditions
with respect to an original transfer function.

2. It should be pointed out that the transfer function T̂ (s) of McMillan degree n
that solves Problem 2.1 is not unique. This is due to the fact that there exist
infinitely many matrices Z ∈ C

N×n such that ZTV = In, where V satisfies
(2.2) and is generically unique. We will see in what follows that, by imposing
n additional left interpolation conditions, one generically determines a unique
reduced order transfer function T̂ (s) of McMillan degree n.

2.2. One unique two-sided interpolation condition. We next consider the
case where the interpolation set consists of only one finite interpolation point α ∈ C,
i.e., in terms of the parameters of Problem 1.1,

kleft = kright = 1, β1 = δ1 = n, z1 = w1 = α.(2.7)

Moreover, we assume that α is not a pole of T (s). Deleting the subscripts not required
due to the simpler conditions to clarify the notation allows the problem to be stated
as follows.

Problem 2.2. Given T (s) = C(sIN − A)−1B, α ∈ C, x(s)
.
=

∑n−1
i=0 x[i](α − s)i

and y(s)
.
=

∑n−1
i=0 y[i](α − s)i, construct a reduced order transfer function T̂ (s) of

McMillan degree n such that

x(s)T (s) = x(s)T̂ (s) + O(α− s)n,(2.8)

T (s)y(s) = T̂ (s)y(s) + O(α− s)n,(2.9)



334 K. GALLIVAN, A. VANDENDORPE, AND P. VAN DOOREN

and for all f = 1, . . . , n, g = 1, . . . , n,

x(f)(s)(T (s) − T̂ (s))y(g)(s) = O(α− s)f+g.(2.10)

In order to solve the problem, we first rewrite (2.8)–(2.10) as matrix equations.
Note that for any α ∈ C is not a pole of T (s), we can write

T (s) = C(sIN −A)−1B = C ((s− α)IN + αI −A)
−1

B(2.11)

= C(αIN −A)−1
(
I − (α− s)(αI −A)−1

)−1
B(2.12)

=

∞∑
k=0

C(αI −A)−k−1B(α− s)k.(2.13)

Let us consider the left interpolation conditions corresponding to equation (2.8). By
imposing the n first coefficients of the Taylor expansion of the product x(s)(T (s) −
T̂ (s)) to be zero, we find the following system of equations:

x[0]C(αI −A)−1B

= x[0]Ĉ(αI − Â)−1B̂(2.14)

x[1]C(αI −A)−1B + x[0]C(αI −A)−2B

= x[1]Ĉ(αI − Â)−1B̂ + x[0]Ĉ(αI − Â)−2B̂(2.15)

...

x[n−1]C(αI −A)−1B + · · · + x[0]C(αI −A)−nB

= x[n−1]Ĉ(αI − Â)−1B̂ + x[0]Ĉ(αI − Â)−nB̂.(2.16)

Defining the matrix X ∈ C
n×np and the generalized observability matrix OC,A ∈

C
np×N as follows:

X
.
=

⎡⎢⎣ x[0]

...
. . .

x[n−1] . . . x[0]

⎤⎥⎦; OC,A
.
=

⎡⎢⎣ C(αI −A)−1

...
C(αI −A)−n

⎤⎥⎦(2.17)

and defining matrix OĈ,Â ∈ C
np×n analogously by replacing the matrices C and A

by Ĉ and Â in (2.17), we are able to state the following lemma.
Lemma 2.2. A p × m transfer function T̂ (s) = Ĉ(sIn − Â)−1B̂ satisfies the

interpolation conditions (2.8) if and only if

XOĈ,ÂB̂ = XOC,AB.(2.18)

Proof. Equation (2.18) is simply a matrix form of the system (2.14)–(2.16).
We can transpose the preceding reasoning to the right interpolation condition

(2.9). Defining

Y =

⎡⎢⎣ y[0] . . . y[n−1]

. . .
...

y[0]

⎤⎥⎦; CA,B =
[
(αI −A)−1B . . . (αI −A)−nB

]
(2.19)

and following the same reasoning as before, we obtain the following lemma.
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Lemma 2.3. A p × m transfer function T̂ (s) = Ĉ(sIn − Â)−1B̂ verifies the
interpolation conditions (2.9) if and only if

ĈCÂ,B̂Y = CCA,BY.(2.20)

At this point, all that we have done is to rewrite the left and right interpolation
conditions into matrix equations. Next, we define the generalized Loewner matrix as

LT (s) = XOC,ACA,BY.(2.21)

The matrix LT̂ (s) is defined as LT (s) by replacing the matrices C,A, and B by Ĉ, Â,

and B̂. By rewriting the two-sided interpolation conditions corresponding to (2.10),
we obtain the following lemma.

Lemma 2.4. A p × m transfer function T̂ (s) = Ĉ(sIn − Â)−1B̂ verifies the
interpolation conditions (2.10) if and only if

LT̂ (s) = LT (s).(2.22)

The following result can be proven using partial fraction expansion and Lemmas
2.2 to 2.3.

Proposition 2.5. Every transfer function T̂ (s) that verifies (2.8), (2.9) and
(2.10) is such that

XOC,AACA,BY = XOĈ,ÂÂCÂ,B̂Y.(2.23)

The main result of this section can now be stated as follows.
Proposition 2.6. If the matrix LT (s) is invertible, then every transfer function

that verifies the interpolation conditions (2.8)–(2.10) has a McMillan degree greater
than or equal to n. Moreover, the transfer function of degree n that satisfies the
equations (2.8)–(2.10) is unique if it exists and it can be constructed by the projection
matrices V and Z that satisfy

Im(V ) = Im (CC,AY ) ,(2.24)

Ker(ZT ) = Ker (XOA,B) ,(2.25)

ZTV = In,(2.26)

if α is not a pole of Â.
Sketch of the proof. Suppose that there exists a transfer function of McMillan

degree n such that (2.8)–(2.10) are satisfied. It follows that

XOĈ,ÂB̂ = XOC,AB,(2.27)

ĈCĈ,ÂU = CCC,AY,(2.28)

XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY.(2.29)

Because of the invertibility of LT (s), the matrices XOĈ,Â ∈ C
n×n and CÂ,B̂Y ∈ C

n×n

are invertible. If we define

M = (XOĈ,Â)−1,(2.30)

N = (CÂ,B̂Y )−1,(2.31)

ZT = MXOC,A,(2.32)

V = CA,BY N,(2.33)

it is straightforward to show that

Â = ZTAV, B̂ = ZTB, Ĉ = CV, ZTV = In.(2.34)
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3. Auxiliary results. In this section, we define a generalized Loewner matrix
that will allow us to construct explicitly the solution of the interpolation problem
(1.1) under some mild conditions. This generalized Loewner matrix is inspired by the
discussion in [2]. For the SISO case previous results based on [1], [8], and [10] may be
found in [9].

In this section, we are given a strictly proper transfer function T (s) and a T (s)-
admissible interpolation set I = {Il, Ir} as defined in section 1. The objective of this
section is to find a way to characterize the set of strictly proper transfer functions
T̂ (s) such that I is T̂ (s)-admissible (the interpolation points are not poles of T̂ (s))
and T̂ (s) tangentially interpolates T (s) at I.

We define first several matrices that will be used in the development. Consider
the set Il and associate with the pair (zα, xα(s)) ∈ Il defined in (1.11)–(1.12) the
matrix Xα ∈ C

βα×pβα

Xα
.
=

⎡⎢⎢⎣
x

[0]
α

...
. . .

x
[βα−1]
α . . . x

[0]
α

⎤⎥⎥⎦ ,(3.1)

and define the matrix X(Il) ∈ C
s(Il)×ps(Il) by

X(Il)
.
= diag{Xα}kleft

α=1 .(3.2)

Analogously, with the pair (wα, yα(s)) ∈ Ir, we associate the matrix

Yα
.
=

⎡⎢⎢⎣
y
[0]
α . . . y

[δα−1]
α

. . .
...

y
[0]
α

⎤⎥⎥⎦(3.3)

and define

Y (Ir)
.
= diag{Yα}kright

α=1(3.4)

related to, respectively, the left and right interpolation sets Il and Ir.
The Jordan matrices will play an important role in this paper, and we therefore

introduce the following compact notation.
Definition 3.1. The matrix Jw,δ,k ∈ C

kδ×kδ is defined to be

Jw,δ,k
.
=

⎡⎢⎢⎢⎢⎣
wIk −Ik

. . .
. . .

. . . −Ik
wIk

⎤⎥⎥⎥⎥⎦ .(3.5)

When k = 1, Jw,δ,1 is simply a Jordan matrix of size δ × δ at eigenvalue w and is
written Jw,δ.

With this definition, we easily obtain the following lemma.
Lemma 3.2.

Jw,δ,mYα = YαJw,δ, JT
w,βXα = XαJ

T
w,β,p.(3.6)
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Proof. The case w = 0 is nothing but the shift invariance property of block
Toeplitz matrices. It then also follows for Jw,δ,m = wI +J0,δ,m since we add the same
term on both sides of (3.6).

Two matrices associated to the p ×m transfer function T (s) = C(sIN − A)−1B
with A ∈ C

N×N are the controllability matrix Contr(A,B) ∈ C
pN×N and the ob-

servability matrix Obs(C,A) ∈ C
N×mN defined by

Contr(A,B)
.
=

[
B . . . AN−1B

]
, Obs(C,A) =

⎡⎢⎣ C
...

CAN−1

⎤⎥⎦ .(3.7)

The quantities occurring in Contr(A,B) and Obs(C,A),

µA,B(∞, k)
.
= Ak−1B νC,A(∞, k)

.
= CAk−1,(3.8)

can be seen as “moments” of (sI −A)−1B and C(sI −A)−1 about infinity. Similarly,
from the dyadic expansion about a point λ /∈ Λ(A)

(sI −A)−1 =

+∞∑
k=0

(λI −A)−k−1(λ− s)k,(3.9)

we define the moments about a finite expansion point λ ∈ C

µA,B(λ, k)
.
= (λI −A)−kB, νC,A(λ, k)

.
= C(λI −A)−k.(3.10)

Definition 3.3. Let I be a T (s)-admissible interpolation set. For any state-space
realization (A,B,C) of T (s), we associate with the right tangential interpolation set
Ir the generalized controllability matrix CA,B(Ir) by the following equations:

CA,B(zα, βα)
.
=

[
µ(zα, 1) . . . µ(zα, βα)

]
,(3.11)

CA,B(Ir)
.
=

[
CA,B(z1, β1) . . . CA,B(zkleft

, βkleft
)
]
.(3.12)

Similarly, we define a generalized observability matrix OC,A with the left tangential
interpolation set Il:

OC,A(wα, δα)
.
=

⎡⎢⎣ ν(wα, 1)
...

ν(wα, δα)

⎤⎥⎦,OC,A(Il)
.
=

⎡⎢⎣ OC,A(w1, δ1)
...

OC,A(wkright
, δkright

)

⎤⎥⎦ .(3.13)

We associate with the tangential interpolation set I the generalized Loewner matrix
LT (s)(I) ∈ C

s(Il)×s(Ir) defined by

LT (s)(I)
.
= X(Il)OC,A(Il)CA,B(Ir)Y (Ir),(3.14)

where (A,B,C) is a minimal realization of T (s).
It is straightforward to verify then that LT (s)(I) does not depend on the particular

state space realization of T (s). Next, we derive a series of lemmas that are needed
for our main result in Theorem 3.10.
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Lemma 3.4. If zα �= wγ and both interpolation points are finite,

OC,A(zα, βα)CA,B(wγ , δγ)

=
1

wγ − zα
OC,A(zα, βα)

([
B 0 . . . 0

]
− CA,B(wγ , δγ)J0,δγ ,m

)

+
1

zα − wγ

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

C
0
...
0

⎤⎥⎥⎥⎦− JT
0,βα,pOC,A(zα, βα)

⎞⎟⎟⎟⎠ CA,B(wγ , δγ).(3.15)

If zα �= wγ and zα is infinite, then

OC,A(zα, βα)CA,B(wγ , δγ)

=

⎡⎢⎢⎢⎣
C
0
...
0

⎤⎥⎥⎥⎦ CA,B(zα, δα) − JT
0,βα

OC,A(zα, βα)CA,B(wγ , δγ)J0,δγ ,m(3.16)

−wγJ
T
0,βOC,A(zα, βα)CA,B(wγ , δγ) + JT

0,βα
OC,A(zα, βα)

[
B 0 . . . 0

]
.

Proof. We first prove (3.15). Recall that if α �= β ∈ C, then

(αI −A)−1(βI −A)−1 =
1

β − α
(αI −A)−1 +

1

α− β
(βI −A)−1.(3.17)

This permits us to write that

OC,A(zα, βα)CA,B(wγ , δγ)

=

⎡⎢⎣ C(zαI −A)−1

...
C(zαI −A)−βα

⎤⎥⎦ [
(wγI −A)−1B . . . (wγI −A)−δγB

]
(3.18)

=
1

wγ − zα

⎡⎢⎣ C(zαI −A)−1

...
C(zαI −A)−βα

⎤⎥⎦ [
(B . . . (wγI −A)−δγ+1B

]
(3.19)

+
1

zα − wγ

⎡⎢⎣ C
...

C(zαI −A)−βα+1

⎤⎥⎦ [
(wγI −A)−1B . . . (wγI −A)−δγB

]
.

This last equation is equal to (3.15). This concludes the proof for the finite case.
Next, consider the case zα = ∞. The proof is similar but uses the following

equality:

A(λI −A)−1 = −I + λ(λI −A)−1.(3.20)
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This permits us to write that

OC,A(zα, βα)CA,B(wγ , δγ)

=

⎡⎢⎣ C
...

CAβα−1

⎤⎥⎦ [
(wγI −A)−1B . . . (wγI −A)−δγB

]
(3.21)

=

⎡⎢⎢⎢⎣
C
0
...
0

⎤⎥⎥⎥⎦ CA,B(wγ , δγ) − JT
0,βα

OC,A(zα, βα)(A− wγI + wγI)CA,B(wγ , δγ)(3.22)

=

⎡⎢⎢⎢⎣
C
0
...
0

⎤⎥⎥⎥⎦ CA,B(wγ , δγ) − wγJ
T
0,βα

OC,A(zα, βα)CA,B(wγ , δγ)(3.23)

+ JT
0,βα

OC,A(zα, βα)
([
B 0 . . . 0

]
− CA,B(wγ , δγ)J0,δ

)
.

This last term is equal to the right-hand side of (3.16).
To prove Theorem 3.10, we need the important result that the matrix LT̂ (s)(I) is

invariant for any matrix T̂ (s) interpolating T (s) at I (for which I is T̂ (s)-admissible).
However, to show this result, we need the following lemmas.

Lemma 3.5. Let T (s) = C(sI −A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two p×m
strictly proper transfer functions. Let Il be a left interpolation set that is T (s)- and
T̂ (s)-admissible. Then, T̂ (s) interpolates T (s) at Il if and only if

X(Il)OĈ,Â(Il)B̂ = X(Il)OC,A(Il)B.(3.24)

Proof. Because of the diagonal structure of X, if we prove (3.24) for one diagonal
block of X, say for instance Xα, we prove it for the entire equation (3.24). So we con-
sider the block associated with Xα, and we drop Il from xα(s), Xα,OC,A(Il),OĈ,Â(Il)
to make the notation simpler. In other words, we consider the case where there is
only one vector x(s) of degree β − 1 associated with one interpolation point z in the
left interpolation set Il. We assume that z is finite (appropriate change must be made
for the case z = ∞). We have to show that (1.5) is satisfied if and only if

XOĈ,ÂB̂ = XOC,AB.(3.25)

We can write that

T (s) =
+∞∑
i=0

C(zI −A)−i−1B(z − s)i, T̂ (s) =

+∞∑
i=0

Ĉ(zI − Â)−i−1B̂(z − s)i.(3.26)

Equation (1.5) says that x(s) is a left zero of T (s) − T̂ (s). This means that the first
β Taylor coefficients of x(s)(T (s) − T̂ (s)) at s = z are zero. In other words, for all
1 ≤ i ≤ β, the following equation must be satisfied:

i−1∑
k=0

x[k]Ĉ(zI − Â)i−kB̂ =

i−1∑
k=0

x[k]C(zI −A)i−kB,(3.27)

and this equation turns out to be exactly the ith row of (3.25).
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Analogously, for the right interpolation conditions, we have the following lemma.
Lemma 3.6. Let T (s) = C(sI −A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two p×m

strictly proper transfer functions. Let Ir be a right interpolation set that is T (s)- and
T̂ (s)-admissible. Then, T̂ (s) interpolates T (s) at Ir if and only if

ĈCÂ,B̂Y = CCA,BY.(3.28)

The proof is similar to the proof of Lemma 3.5.
Lemma 3.7. Let T (s) = C(sI −A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two p×m

strictly proper transfer functions. Let I = {Il, Ir} be an interpolation set that is T (s)-
and T̂ (s)-admissible. If T̂ (s) interpolates T (s) at I and then, for every pair of indices
α, γ such that zα = wγ = ξ, (where ξ is finite),

XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)CA,B̂(wγ , δγ)Yγ ;(3.29)

and for every pair of indices α, γ such that zα = wγ = ξ, (where ξ = ∞),

XαOĈ,Â(zα, βα)ÂCÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)ACA,B(wγ , δγ)Yγ .(3.30)

Proof. We consider the finite case. To simplify the notation, we drop the sub-
scripts α, γ. Let us choose two integers f, g such that 1 ≤ f ≤ β and 1 ≤ g ≤ δ.

Condition 3 of Definition 1.3 applied to x(s) = x
(f)
α (s) and y(s) = y

(g)
γ (s) says that the

f + g first derivatives of x(f)(s)(T (s) − T̂ (s))y(g)(s) at s = ξ are zero. The condition
corresponding to the derivative of highest order is

1

(f + g − 1)!

df+g−1

dsf+g−1
{x(f)(s)T̂ (s)y(g)(s)}

∣∣∣
s=ξ

=

f−1∑
k=0

g−1∑
l=0

x[k]C(ξI −A)k+l−f−gBy[l](3.31)

=

f−1∑
k=0

g−1∑
l=0

(x[k]C(ξI −A)k−f )((ξI −A)l−gBu[l])(3.32)

= (XOC,ACA,BY )f,g .(3.33)

Thus, (3.29) is a consequence of the interpolation conditions. The proof is similar for
the infinite interpolation point.

Equations (3.25), (2.20), (3.29), and (3.30) are just a matrix version of the in-
terpolation conditions of Definition 1.3. We now proceed to prove that (3.25) and
(2.20) imply as well that XOĈ,ÂCÂ,B̂Y = XOC,ACA,BY and XOĈ,ÂÂCÂ,B̂Y =
XOC,AACA,BY , provided the two-sided interpolation condition 3 of Definition 1.3
is added for every pair zα = wγ . This may seem surprising but it is a simple con-
sequence of Lemma 3.7 when zα�=wγ and follows from the two-sided condition when
zα = wα.

Lemma 3.8. If the strictly proper transfer function T̂ (s) = Ĉ(sI−Â)−1B̂ interpo-
lates T (s) at I = {Il, Ir} (where the interpolation set I is T (s)- and T̂ (s)-admissible),
then

XOĈ,ÂCÂ,B̂Y = XOC,ACA,BY.(3.34)
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Proof. The proof will be done block by block. If zα = wγ = ξα,γ and ξα,γ is finite,
the proof follows from Lemma 3.7. Let us consider the case ξα,γ infinite.

XαOC,A(zα, βα)CA,B(wγ , δγ)Yγ

= XαOC,A(zα, βα)
[
B . . . Aδγ−1

] ⎡⎢⎢⎣
y
[0]
γ . . . y

δγ−1
γ

. . .
...

y
[0]
γ

⎤⎥⎥⎦(3.35)

= XαOC,A(zα, βα)B
[
y[0]
γ . . . yδγ−1

γ

]
(3.36)

−XαOC,A(zα, βα)ACA,B(wγ , δγ)YγJ0,δ(3.37)

= XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ .(3.38)

Second, we suppose that

zα �= wγ .(3.39)

We assume that zα and wγ are finite. The idea is to recursively use (3.15). We want
to show that

XαOĈ,Â(zα, βα)B̂ = XαOC,A(zα, βα)B(3.40)

and

ĈCÂ,B̂(wγ , δγ)Yγ = CCA,B(wγ , δγ)Yγ(3.41)

imply

XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)CA,B(wγ , δγ)Yγ .(3.42)

We drop again α, γ, (zα, βα), (wγ , δγ) to simplify the notation.

XOC,ACA,BY =
1

w − z
XOC,A

([
B 0 . . . 0

]
− CA,BJ0,δ,m

)
Y

+
1

z − w
X

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

C
0
...
0

⎤⎥⎥⎥⎦− JT
0,β,pOC,A

⎞⎟⎟⎟⎠ CA,BY(3.43)

=
1

w − z

[
XOC,AB 0 . . . 0

]
Y +

1

z − w
X

⎡⎢⎢⎢⎣
CCA,BY

0
...
0

⎤⎥⎥⎥⎦
− 1

w − z
XOC,ACA,BY J0,δ −

1

z − w
J0,βXOC,ACA,BY .(3.44)

From Lemmas 3.5 and 3.6 we deduce

1

w − z

[
XOĈ,ÂB̂ 0 . . . 0

]
Y =

1

w − z

[
XOĈ,ÂB̂ 0 . . . 0

]
Y,(3.45)

1

z − w
X

⎡⎢⎢⎢⎣
CCA,BY

0
...
0

⎤⎥⎥⎥⎦ =
1

z − w
X

⎡⎢⎢⎢⎣
ĈCÂ,B̂Y

0
...
0

⎤⎥⎥⎥⎦ .(3.46)
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By using a recursive argument, it can be shown that

XOC,ACA,BY J0,δ = XOĈ,ÂCÂ,B̂Y J0,δ,(3.47)

J0,βXOC,ACA,BY = J0,βXOĈ,ÂCÂ,B̂Y.(3.48)

Finally, we have to consider the case with one infinite interpolation point, say for
instance zα = ∞ and the other point wγ finite. This can be treated similarly by
recursively using (3.16).

Lemma 3.9. If the strictly proper transfer function T̂ (s) = Ĉ(sI − Â)−1B̂ inter-
polates T (s) at I = {Il, Ir} and I is T (s)- and T̂ (s)-admissible, then

XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY.(3.49)

Proof. We recall that

ACA,BY =
[
ACA,B(w1, δ1)Y1 . . . ACA,B(ws, δs)Ys

]
.(3.50)

The proof will again be done block by block. Let us prove it for the block of CÂ,B̂(Ir)Y
corresponding to wγ . Two cases must be considered.

Assuming that wγ is finite yields

ACC,A(wγ , δγ)Yγ

= (A− wγI + wγI)CC,A(wγ , δγ)Yγ(3.51)

= −
[
B . . . (wγIN −A)−δγ+1B

]
Yγ + wγCC,A(wγ , δγ)Yγ(3.52)

= −B
[
y[0] . . . y[δγ−1]

]
+ CC,A(wγ , δγ)YγJwγ ,δγ .(3.53)

This allows us to write that

XOĈ,ÂÂCÂ,B̂(wγ , δγ)Yγ

= XOĈ,Â(−B̂[y[0] . . . y[δγ−1]] + CÂ,B̂(wγ , δγ)YγJwγ ,δγ )(3.54)

= XOC,A(−B[y[δγ−1] . . . y[0]] + CA,B(wγ , δγ)YγJwγ ,δγ )(3.55)

= XOC,AACA,B(wγ , δγ)Yγ ,(3.56)

where the first part of (3.55) is a consequence of Lemma 3.5 and the second part of
(3.55) is a consequence of Lemma 3.7.

Second, assume that wγ = ∞. Two cases must be considered. If zα is finite, then
the proof is done by transposing the preceding results. If ξα,γ = ∞, then this follows
from Lemma 3.7.

Putting together the preceding results, we obtain the following theorem that gives
the main result of the section.

Theorem 3.10. Let (C1, A1, B1) be a minimal state space realization of the
strictly proper transfer function T1(s) and (C2, A2, B2) be a minimal state space
realization of the strictly proper transfer function T2(s). Let the interpolation set
I = {Il, Ir} be T1(s)- and T2(s)-admissible (i.e., the interpolation points are neither
poles of T1(s) nor T2(s)). Then, T1(s) interpolates T2(s) at I if and only if the fol-
lowing equations are satisfied:

C1CA1,B1(Ir)Y (Ir) = C2CA2,B2(Ir)Y (Ir),(3.57)

X(Il)OC1,A1
(Il)B1 = X(Il)OC2,A2(Il)B2,(3.58)

X(Il)OC1,A1(Il)CA1,B1(Ir)Y (Ir) = X(Il)OC2,A2(Il)CA2,B2(Ir)Y (Ir),(3.59)

X(Il)OC1,A1(Il)A1CA1,B1(Ir)Y (Ir) = X(Il)OC2,A2(Il)A2CA2,B2(Ir)Y (Ir).(3.60)
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Proof. The proof follows from the preceding results.

4. The multipoint Padé reduced order transfer function. In this section,
we give a practical way of constructing a minimal state space realization of the trans-
fer function of minimal McMillan degree that interpolates T (s) at the interpolation
set I when the corresponding Loewner matrix LT (s)(I) is invertible. The interpo-
lating transfer function of minimal McMillan degree will be called the multipoint
Padé reduced order transfer function T̂MP (s). A minimal state space realization
(ĈMP , ÂMP , B̂MP ) of T̂MP (s) will be obtained by a projection technique. More pre-
cisely, the state space realization (ĈMP , ÂMP , B̂MP ) will be constructed by project-
ing a minimal state space realization (C,A,B) of T (s) with two projecting matrices
Z, V ∈ C

N×n as follows:

ĈMP = CV, ÂMP = ZTAV, B̂MP = ZTB, ZTV = In.

It will be shown that the projecting matrices Z, V can be obtained by solving Sylvester
equations.

In order to prove these facts, we first introduce two new pairs of matrices. Let
us consider the left tangential interpolation set Il defined in (1.13). For any integer

α such that 1 ≤ α ≤ kleft, define the matrices (L
(l)
α , L

(r)
α ) as follows:

1. If the interpolation point zα is finite, then take

L(l)
α

.
= Iβα , L(r)

α
.
= JT

zα,βα
.(4.1)

2. If the interpolation point zα is infinite, then define

L(l)
α

.
= −JT

0,βα
, L(r)

α
.
= Iβα

.(4.2)

Moreover, define the matrix Xα as follows:

Xα =

⎡⎢⎢⎣
x

[0]
α

...

x
[βα−1]
α

⎤⎥⎥⎦.(4.3)

Finally, define the matrices L(l)(Il), L
(r)(Il), and X (Il) as follows:

L(l)(Il)
.
= diag{L(l)

α }kleft

α=1 , L(r)(Il)
.
= diag{L(r)

α }kleft

α=1 ,(4.4)

X (Il)
.
=

⎡⎢⎣ X1

...
Xkleft

⎤⎥⎦.(4.5)

Let us consider the right tangential interpolation set Ir defined in (1.16). For any

integer α such that 1 ≤ α ≤ kright, define the matrices (R
(l)
α , R

(r)
α ) as follows:

1. If the interpolation point wα is finite, then take

R(l)
α

.
= Iδα , R(r)

α
.
= Jwα,δα .(4.6)

2. If the interpolation point wα is infinite, then define

R(l)
α

.
= −J0,δα , R(r)

α
.
= Iδα .(4.7)
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Moreover, define

Yα
.
=

[
y[0]
α . . . y[δα−1]

α

]
.(4.8)

Finally, define the matrices R(l)(Ir), R
(r)(Ir), and Y(Ir) as follows:

R(l)(Ir)
.
= diag{R(l)

α }kright

α=1 , R(r)(Ir)
.
= diag{R(r)

α }kright

α=1(4.9)

Y(Ir)
.
=

[
Y0 . . .Ykright

]
.(4.10)

As a consequence of these definitions we have

L(l)L(r) = L(r)L(l), R(l)R(r) = R(r)R(l)(4.11)

and we can now derive the following lemma that introduces the related Sylvester
equations.

Lemma 4.1. Let (A,B,C) be a state-space realization of the transfer function
T (s). Let us consider a T (s)-admissible interpolation set I = {Il, Ir}. Then,

N = CA,B(Ir)Y (Ir) ⇐⇒ ANR(l)(Ir) −NR(r)(Ir) + BY(Ir) = 0,(4.12)

M = X(Il)OC,A(Il) ⇐⇒ L(l)(Il)MA− L(r)M + XC = 0.(4.13)

Proof. Let us prove (4.12) for only one interpolation condition Ir = {(w, y(s))}
at a finite point w.

ANR(l)(Ir) −NR(r)(Ir) + BY(Ir) = 0

⇐⇒ A
[
n1 . . . nk

]
−
[
n1 . . . nk

]
Jw,k

+B
[
y[0] . . . y[k−1]

]
= 0.(4.14)

Let us solve this linear equation for N column by column from n1 up to nk. We find
recursively that

(wI −A)n1 = By[0](4.15)

(wI −A)ni+1 = By[i] + ni.(4.16)

Moreover, the matrix wI − A is invertible because we always assume here that the
interpolation set I is T (s)-admissible. This proves that N = CA,B(Ir)Y (Ir) for one
finite interpolation condition Ir = {(w, y(s))}.

Let us prove (4.12) for only one interpolation condition Ir = {(w, y(s))} at an
infinite point w = ∞.

ANR(l)(Ir) −NR(r)(Ir) + BY(Ir) = 0

⇐⇒ A
[
n1 . . . nk

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 . . . . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−
[
n1 . . . nk

]
+ B

[
y[0] . . . y[k−1]

]
= 0.(4.17)
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Again, by solving this equation column by column we find that N = CA,B(Ir)Y (Ir)
for one interpolation condition Ir = {(∞, y(s))}. If the interpolation set Ir contains
more than one pair, say kr pairs, because of the block diagonal structure of R(l), R(r)

and Y (Ir), and the block structure of Y(Ir), we can split the columns of N into kr
blocks and prove the result for each pair (wγ , yγ(s)) ∈ Ir in order to prove that

N =
[
N1 . . . Nkr

]
=

[
CA,B (w1, y1(s))Y (w1, y1(s)) . . . CA,B (wkr

, ykr
(s))Y (wkr

, ykr
(s))

]
= CA,B(Ir)Y (Ir).(4.18)

The main result of this paper can now be formalized.
Theorem 4.2. Consider a transfer function T (s) and a T (s)-admissible tangen-

tial interpolation set I and assume that the corresponding Loewner matrix LT (s)(I) ∈
C

n×n is invertible. Define then two invertible matrices M,N ∈ C
n×n such that

LT (s)
.
= XOC,ACA,BY = MN,(4.19)

and define the “multipoint Padé” reduced order transfer function T̂MP (s) via its state
space realization {ÂMP , B̂MP , ĈMP } given by the equations

ĈMPN = CCA,BY,(4.20)

MB̂MP = XOC,AB,(4.21)

MÂMPN = XOC,AACA,BY.(4.22)

If the interpolation points are not poles of T̂MP (s), i.e., if the interpolation set I
is T̂MP (s)-admissible, then T̂MP (s) interpolates T (s) at I. Moreover, T̂MP (s) is the
unique transfer function of McMillan degree s(Il) = s(Ir) that interpolates T (s) at I
and there exists no such transfer function of lower McMillan degree.

Proof. First, note that it is always possible to find a couple of invertible matrices
M,N that satisfy (4.19) because of the invertibility of LT (s)(I). Second, it can be

verified that T̂MP (s) is uniquely defined and does not depend on the particular choice
of matrices M,N satisfying (4.19).

The proof consists of showing that M = X(Il)OĈMP ,ÂMP
(Il) and that N =

CÂMP ,B̂MP
(Ir)Y (Ir). From the preceding results, it is equivalent to show that M and

N are solutions of the Sylvester equations of Lemma 4.1. First, from (4.19)–(4.22)
and Lemma 4.1, we have

ÂMPNR(l) −NR(r) + B̂MPY
= M−1XOC,A(ACA,BY R(l) − CA,BY R(r) + BY) = 0.(4.23)

This implies also from Lemma 4.1 that N = CÂMP ,B̂MP
(Ir)Y (Ir). Analogously, M =

X(Il)OĈMP ,ÂMP
(Il). The proof follows now from Proposition 3.10. Indeed, (4.20) is

equivalent to saying that the right tangential interpolation conditions are satisfied,
(4.21) corresponds to the left tangential equations and (4.19) and (4.22) are equivalent
to the two-sided interpolation conditions. Hence, T̂MP (s) interpolates T (s) at I.

We have still to prove that T̂MP (s) is the unique transfer function of McMillan
degree n that satisfies the interpolation conditions with respect to T (s), and that
there exist no transfer function of McMillan degree smaller than n that satisfies the
interpolation conditions. To do this, first assume that there exists T̂ (s) of McMillan
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degree k < n that satisfies the interpolation conditions. Let (Ĉ, Â, B̂) be a minimal
state space realization of T̂ (s). Clearly,

rank CÂ,B̂(Ir)Y (Ir) ≤ rank CÂ,B̂(Ir) = rankContr(Â, B̂) = k < n.(4.24)

From the interpolation conditions, we must have that LT (s)(I) = LT̂ (s)(I). This
implies that

n = rankLT (s)(I) = rankLT̂ (s)(I) ≤ k.(4.25)

This proves that it is not possible to find an interpolating transfer function of McMillan
degree smaller than n.

If we assume that there exists another interpolating transfer function T̂ (s) of
McMillan degree n, it is not difficult to verify that the procedure given for construct-
ing a minimal state space realization (Ĉ, Â, B̂) of T̂ (s) will produce a state space
realization that is similar to (ĈMP , ÂMP , B̂MP ). This implies that T̂ (s) = T̂MP (s)
and concludes the proof.

By inverting the matrices M and N into (4.19)–(4.22), if we define

ZT = M−1XOC,A, V = CA,BY N−1,(4.26)

we see that

ZTV = In, CV = ĈMP , ZTB = B̂MP , ZTAV = ÂMP .(4.27)

5. Concluding remarks. An important result that has not been considered
in this paper is the following. Assume that a reduced order transfer function T̂1(s)
has been constructed that interpolates the original transfer function T (s) at the in-
terpolation set I1 with the projecting matrices Z1 and V1. If one wants to add new
interpolation conditions, say I2, all that we have to do is to compute the generalized
Krylov subspaces corresponding to the new interpolation set I2 and to construct new
projecting matrices Z2, V2 that contain, respectively, the column span of Z1 and V1

and the new, respectively, left and right generalized Krylov subspaces.
Another important result that can easily be derived is that we only need the pro-

jecting matrices Z, V to contain some subspaces, but they can contain other subspaces
as well! For instance, Theorem 4.2 can be generalized as follows.

Theorem 5.1. Consider a transfer function T (s)
.
= C(sI − A)−1B and a T (s)-

admissible tangential interpolation set I
.
= {Il, Ir}. Let us assume that the projecting

matrices Z, V (such that ZTV = In) are such that

Colsp(V ) ⊇ Colsp (CA,B(Ir)Y (Ir)) ,

Colsp(ZT ) ⊇ Colsp
(
OT

C,A(Il)X
T (Il)

)
.

Then, if the interpolation point of I are not poles of T̂ (s)
.
= CV (sIn−ZTAV )−1ZTB,

the transfer function T̂ (s) interpolates T (s) at I.
It should also be pointed out that this Krylov technique can easily be extended

to generalized state space systems, also called descriptor systems.
Finally, we have shown that the projecting matrices Z, V , constructed in order

to compute a state space realization of T̂MP (s), are solutions of Sylvester equations.
Actually, it can be shown that, generically, constructing a reduced order transfer
function with projecting matrices that are solutions of a Sylvester equation with
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respect to a state space realization of the original transfer function is equivalent to
solving a particular tangential interpolation problem. We refer to [10] for results in
this direction.

Appendix.
Lemma A.1. Let T (s) and T̂ (s) be two strictly proper p×m transfer functions.

T̂ (s) tangentially interpolates T (s) at I with respect to Definition 1.3 if and only if
the three following conditions are satisfied:
for all finite zα, 1 ≤ α ≤ r, for any 1 ≤ i ≤ βα:

di−1

dsi−1

{
xα(s)(T (s) − T̂ (s))

}∣∣∣
s=zα

= 0;(A.1)

for all zα = ∞, 1 ≤ α ≤ r,

xα(s)(T (s) − T̂ (s)) = O(s−1)βα+1;(A.2)

for all finite wα, 1 ≤ α ≤ s, for any 1 ≤ i ≤ δα,

di−1

dsi−1

{
(T (s) − T̂ (s))yα(s)

}∣∣∣
s=wα

= 0;(A.3)

for all wα = ∞, 1 ≤ α ≤ s,

(T (s) − T̂ (s))yα(s) = O(s−1)δα+1;(A.4)

for all finite ξα,γ , for all f = 1, . . . , βα, g = 1, . . . , δγ ,

df+g−1

dsf+g−1

{
x(f)
α (s)(T (s) − T̂ (s))y(g)

γ (s)
}∣∣∣

s=ξα,γ

= 0;(A.5)

for all infinite ξα,γ , the coefficient e[f+g] of s−f−g of the product

x(f)
α (s)(T (s) − T̂ (s))y(g)

γ (s)
.
=

+∞∑
k=1

e[k]s−k(A.6)

is zero, where f = 1, . . . , βα; g = 1, . . . , δγ .
Proof of Lemma A.1. It is easy to see that the left tangential interpolation con-

ditions (A.1)–(A.2) and condition 1 of Definition 1.3 are equivalent. For the same
reasons, the right tangential interpolation conditions (A.3)–(A.4) and conditions 2 of
Definition 1.3 are equivalent. Moreover, it is not difficult to see that the two-sided
tangential interpolation condition 3 of Definition 1.3 implies conditions (A.5)–(A.6).
The proof will be completed by showing that conditions (A.1)–(A.6) imply conditions
1, 2, and 3 of Definition 1.3.

Let us first consider the case with a finite left and right interpolation point z ∈ C.
As usual, we assume that this point is admissible for T (s) and T̂ (s); i.e., it is neither
a pole of T (s) nor a pole of T̂ (s). So, we assume that we are given two polynomial
vectors x(s) and y(s) of respective degree β − 1 and δ − 1 such that

x(s)(T (s) − T̂ (s)) = O(s− z)β , x(z) �= 0,(A.7)

(T (s) − T̂ (s))y(s) = O(s− z)δ, y(z) �= 0,(A.8)
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and for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ,

df+g−1

dsf+g−1

∣∣∣{x(f)(s)(T (s) − T̂ (s))y(g)(s)
}∣∣∣

s=z
= 0.(A.9)

We want to prove that this implies for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ,

x(f)(s)(T (s) − T̂ (s))y(g)(s) = O(s− z)f+g.(A.10)

By using Lemma 3.7, (A.10) is equivalent to the equation

XOC,ACA,BY = XOĈ,ÂCÂ,B̂Y.(A.11)

The proof will be completed if we show that for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ, for all
integer k such that 1 ≤ k ≤ f + g − 1, the derivative

df+g−k−1

dsf+g−k−1

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.12)

Let us first verify (A.12) for k = 1. First, straightforward calculation gives

df+g−2

dsf+g−2

{
x(f)(s)T (s)y(g)(s)

}∣∣∣
s=z

=

f−1∑
k=0

g−1∑
l=0

x[k]C(zI −A)k+l−f−g+1By[l](A.13)

=

f−1∑
k=0

g−1∑
l=0

(x[k]C(zI −A)k−f )(zI −A)((zI −A)l−gBy[l])(A.14)

= (XOC,A(zI −A)CA,BY )f,g .(A.15)

From Lemmas 3.7 and 3.9,

(XOC,A(zI −A)CA,BY ) = (XOĈ,Â(zI − Â)CÂ,B̂Y ).(A.16)

This concludes the proof for the case k = 1. Now, we assume that for all 1 ≤ f ≤ β
and 1 ≤ g ≤ δ, and for all 0 ≤ r ≤ min(k, f + g − 1),

df+g−r−1

dsf+g−r−1

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0,(A.17)

and we want to prove that (A.17) is still true for r = min(k + 1, f + g − 1). So, we
choose 1 ≤ f ≤ β and 1 ≤ g ≤ δ such that f + g− 1 ≥ k+ 1. We obtain the following
equations:

df+g−k−2

dsf+g−k−2

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

=
df−1+g−k−1

dsf−1+g−k−1

{
x(f−1)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

(A.18)

+
df−1+g−k−1

dsf−1+g−k−1

{
(z − s)f−1x[f−1](T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

.(A.19)

By the recursive argument,

df−1+g−k−1

dsf−1+g−k−1

{
x(f−1)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.20)
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Moreover, we know from (A.3) that

(T (s) − T̂ (s))y(g)(s) = O(z − s)g.(A.21)

This implies that

df+g−k−2

dsf+g−k−2

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.22)

The case at infinity can be treated in a similar way.
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PSEUDOSPECTRAL COMPONENTS AND THE DISTANCE TO
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Abstract. We show that 2-norm pseudospectra of m-by-n matrices have no more than 2m(4m−1)
connected components. Such bounds are pertinent for computing the distance to uncontrollability
of a control system, since this distance is the minimum value of a function whose level sets are
pseudospectra. We also discuss algorithms for computing this distance, including a trisection variant
of Gu’s recent algorithm, and we show how these may be used to locally maximize the distance to
uncontrollability for a parameterized system.

Key words. pseudospectrum, robust control, distance to uncontrollability, connected compo-
nents, trisection
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1. Introduction. For matrices A and B of sizes p-by-p and p-by-q, respectively,
consider the control system defined by

ẋ = Ax + Bu.

Here, x ∈ Rp is the state vector, and u ∈ Rq is the control vector (both depending on
time). This system is controllable if, given any initial and final states x(0) and x(T ),
there exists a control function u(·) giving a trajectory x(·) with the given endpoints.
In practice A and B are usually real.

Classical theory (see, for example, [ZDG96]) provides a simple characterization of
controllability. The above system is controllable exactly when the matrix [A−zI B]
has full row rank for all scalars z ∈ C.

Given any square matrix A, it is well known that the distance to the nearest
singular matrix (measured in the usual operator 2-norm) is given by the smallest
singular value σmin(A) and that the conditioning of linear systems involving A depends
on this quantity. Another important measure is the distance from A to instability,
that is, the distance to the nearest matrix, possibly complex even if A is real, with
an eigenvalue in the closed right half-plane. This distance plays a key role in robust
stability analysis of the dynamical system ẋ = Ax.

The analogous question for controllability asks for the distance from the pair
(A,B) to the nearest pair (A′, B′), possibly complex even if (A,B) is real, corre-
sponding to an uncontrollable system. A small distance to uncontrollability correlates
with various difficulties for the control system, including numerical challenges for as-
sociated “pole placement” problems. A simple argument based on the singular value
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Fig. 1. Pseudospectra for the controllable pair (1.2) with x1 = x2 = 1.

decomposition [Eis84] shows that the distance to uncontrollability is given by

min
z∈C

σmin[A−zI B],(1.1)

a global optimization problem in two real variables. Here σmin of a p-by-p+q matrix C
means the square root of the smallest eigenvalue of CC∗, a positive quantity when C
has rank p.

The function to be minimized in the expression (1.1) has lower level sets of the
form

{z ∈ C : σmin[A−zI B] ≤ ε}

for real ε > 0. These sets, commonly called pseudospectra, have been well studied for
square matrices, when the matrix B is empty; see the Pseudospectra Gateway [ET].
Pseudospectra are less well understood in the rectangular case, but references include
[TT96, WT01, HT02, WT02, BEGM03]. Substantial insight is gained from examples,
so consider the parameterized matrix pair

(A,B)(x1, x2) =

⎛⎜⎜⎝
⎡⎢⎢⎣

1 1 2 3
−1 1 4 5
0 x1 1 2
x2 0 −2 1

⎤⎥⎥⎦,
⎡⎢⎢⎣

1
1
0
0

⎤⎥⎥⎦
⎞⎟⎟⎠,(1.2)

where x1 and x2 are real parameters. Figures 1 and 2 show pseudospectra1 for,
respectively, the controllable pair (1.2) when x1 = x2 = 1 and the uncontrollable pair
(1.2) when x1 = x2 = 0 (the latter case being an example from [Gu00]).

The horizontal and vertical axes in the figures show the real and imaginary parts
of z. The legends on the right sides of the figures show the contour heights (values

1All the figures in this paper were produced using T. Wright’s software EigTool [Wri02].
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Fig. 2. Pseudospectra for the uncontrollable pair (1.2) with x1 = x2 = 0.

of ε) on a log 10 scale, with both plots using the same scale. In Figure 1, the “pseu-
dospectral landscape” has three local minimizers and one can estimate that the global
minimum value (by definition, the distance to uncontrollability) is about 10−0.7 (in
fact, it is 0.1872). In Figure 2, there are only two local minimizers (forming a complex
conjugate pair), and one can see that the contours drop to much lower values (in fact,
it is easy to check that the minimum value of (1.1) is zero at the points z = 1 ± 2i).
In Figure 2 it is clear that some pseudospectra contain two connected components.
In Figure 1, it is not clear, without a more detailed analysis, whether there are values
of ε for which the pseudospectra have three connected components (in fact, there do
exist such ε).

Our aim in this work is to find an upper bound on the number of connected
components in the pseudospectra of rectangular matrices. We use a slightly more
general setting than described above, defining

Λ = {z ∈ C : σmin(P + zQ) ≤ ε}(1.3)

for given matrices P and Q in the space Mm,n of m-by-n complex matrices (with
m ≤ n). In the case above we have P = [A B] and Q = [−I 0]. Our goal is to find
an upper bound on the number of components of the set Λ. Specifically, we show
this number is no more than 2m(4m − 1). To our knowledge, this general bound
is the best known, although it is certainly not tight. In particular, it is well known
that pseudospectra of m-by-m matrices have no more than m components, since each
component contains an eigenvalue [Tre97]. Furthermore, in the case of a single row
(m = 1), it is easy to see that each nonempty pseudospectrum is simply a circular disk.
We are not aware of an example of a pseudospectrum with more than m components.

We hope our analysis of pseudospectral components will shed light on the com-
plexity of the problem of computing the distance to uncontrollability, for which we
discuss algorithms in the second half of the paper. We begin by discussing a recent
algorithm due to Gu [Gu00] for estimating the distance to uncontrollability within
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a factor of two, and we show how a trisection variant can be used to obtain any
prescribed accuracy. We then discuss an algorithm that combines repeated local op-
timization with Gu’s algorithm and speculate that techniques similar to those used
in analyzing the number of pseudospectral components might be used to bound the
number of local optimization steps in this process.

Finally, with an effective algorithm in hand to evaluate the distance to uncon-
trollability (and, where defined, its gradient), we consider local maximization of the
distance to uncontrollability for a smoothly varying parameterized pair (A,B) over
a vector of free parameters. For the family (1.2), we find a locally maximizing pair
with pseudospectra having four components.

2. Generic properties of singular values. To prove an upper bound on the
number of components of the set Λ defined by (1.3), we first dispose of some trivial
cases. Clearly we can suppose Q is nonzero, and hence Λ is compact. Furthermore,
only the case ε ≥ 0 is interesting, as otherwise Λ is empty.

When ε = 0, the set Λ either is the whole complex plane or consists of at most
m points, as the following argument shows. Notice Λ is just the set of complex z
for which P + zQ has rank less than m. Assuming Λ is not the whole plane, we
lose no generality in supposing that it does not contain zero or, in other words, that
the matrix P has rank m. Partition the matrices P and Q as [P1 P2] and [Q1 Q2],
respectively, where P1 and Q1 are m-by-m, and, again without loss of generality, P1 is
invertible. Since the function det(P1 + zQ1) is a polynomial of degree at most m, and
is nonzero at zero, it has at most m zeros. But this set of zeros contains Λ, so the
claim follows.

Henceforth we therefore assume ε > 0. In the case m = 1, an easy calculation
shows that Λ is either empty or a circular disk.

Our goal in this section is to show that for a fixed δ > 0 and a “generic” matrix P ,
the singular value σmin(P + zQ) is always either simple or less than δ. The proof is
based on the following classical result in the space of m-by-m Hermitian matrices Hm

(a real vector space of dimension m2), concerning matrices X with a multiple smallest
eigenvalue λmin(X).

Theorem 2.1 (von Neumann and Wigner [vNW29]). For any integer m > 1,
the algebraic set

Ĥm = {X ∈ Hm : λmin(X) multiple}

has real codimension 3.
For example, the space H2 has dimension 4, and the set Ĥ2 consists simply of

real multiples of the identity matrix.
We also need an elementary supporting result.
Proposition 2.2 (surjectivity). A matrix Y ∈ Mm,n has full row rank if and

only if the function X �→ XY ∗ + Y X∗ maps Mm,n onto Hm.
Proof. Denote the given function by Φ : Mm,n → Hm. If Y has full row rank,

then, with no loss of generality, Y = [Y0 Y1], where the matrix Y0 is invertible. Now,
given any matrix E ∈ Hm, we have Φ( 1

2 [EY −∗
0 0]) = E, so Φ is indeed onto.

Conversely, suppose the map Φ is onto, and some x ∈ Cm satisfies Y ∗x = 0.
Choose a matrix X ∈ Hm satisfying Φ(X) = xx∗. Then

‖x‖4 = x∗(XY ∗ + Y X∗)x = 0,

so x = 0, as required.
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We are now ready for the main result of this section.
Theorem 2.3 (generic singular values). For any n ≥ m > 1 and any real δ > 0,

the real semialgebraic set

{Y ∈ Mm,n : σmin(Y ) is both multiple and at least δ}

has real codimension 3.
Proof. Define a map Ψ : Mm,n → Hm by Ψ(Y ) = Y Y ∗. Notice that the given set,

which we denote S, is defined locally by the inverse image Ψ−1(Ĥm). Furthermore,
any Y ∈ S has full row rank, and so Proposition 2.2 shows that the derivative ∇Ψ(Y )

is onto. Since Ĥm has codimension 3 by the result of von Neumann and Wigner
(Theorem 1.1), so does S.

Corollary 2.4. For any n ≥ m > 1, real δ > 0, and matrix Q ∈ Mm,n, the
real semialgebraic set

{P ∈ Mm,n : ∃z ∈ C so σmin(P + zQ) is both multiple and at least δ}

has real codimension at least 1.
It follows from this last corollary that for a generic matrix P , the singular value

σmin(P + zQ) is always either simple or less than δ.

3. The generic case. Our bound on the number of components of pseudospec-
tra relies on the following classical result [Mil64].

Theorem 3.1 (Milnor). For any polynomial p : R2 → R of degree d, the zero
set p−1(0) has no more than d(2d− 1) components.

(In fact Milnor bounds the sum of the Betti numbers of p−1(0): the result above
follows from the fact that the number of components is the zeroth Betti number.)

To apply Milnor’s result, we need to relate the number of components of pseu-
dospectra to their boundaries. We accomplish this with the following elementary
result.

Proposition 3.2 (components and boundaries). Consider any continuous func-
tion f : C → R. If the zero set f−1(0) is nonempty, then it has at least as many
components as the level set f−1(−∞, 0].

Proof. Denote the zero set by E and the level set by L. It suffices to show that
every component of L contains a component of E. If this is not the case, L has a
component L1 contained in the set L′ = f−1((−∞, 0)). By continuity, L is closed and
L′ is open. Hence L1, which is a component of both sets, must be both closed and
open, and hence equal to the whole complex plane. Thus E must be empty, contrary
to assumption.

Using this technique in conjunction with Milnor’s theorem, we can now prove our
basic result.

Theorem 3.3 (generic case). Given any real ε and matrices P,Q ∈ Mm,n (where
m ≤ n), suppose there exists no complex z for which the singular value σmin(P + zQ)
is both multiple and equals ε. Then the set

Λ = {z ∈ C : σmin(P + zQ) ≤ ε}

has no more than 2m(4m− 1) components.
Proof. The case m = 1 is elementary, so we suppose m > 1. For any matrix

A ∈ Mm,n, we write the singular values of A by multiplicity and in decreasing order:
σ1(A) ≥ σ2(A) ≥ · · · ≥ σm(A). In this notation, σmin(A) = σm(A).
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Consider the two disjoint open sets

Γ< = {z ∈ C : (σm + σm−1)(P + zQ) < 2ε},
Γ> = {z ∈ C : (σm + σm−1)(P + zQ) > 2ε}.

By assumption, the set

Λ′ = {z ∈ C : σmin(P + zQ) = ε}

is contained in Γ>, whereas the set

Λ′′ =

m−1⋃
j=1

{z ∈ C : σj(P + zQ) = ε}

is contained in Γ<. Hence Λ′ has no more components than the set

Λ′ ∪ Λ′′ =

m⋃
j=1

{z ∈ C : σj(P + zQ) = ε}

= {z ∈ C : det((P + zQ)(P + zQ)∗ − ε2I) = 0}.

We can suppose that the matrix Q is nonzero and that the set Λ is nonempty. Ap-
plying Proposition 3.2 (components and boundaries) to the function f(z) = σmin(P +
zQ) − ε shows that Λ has no more components than Λ′, and hence no more than
Λ′ ∪ Λ′′.

The function φ : C2 → C defined by

φ(x, y) = det((P + (x + iy)Q)(P + (x + iy)Q)∗ − ε2I)

is clearly a polynomial of degree 2m. Since Hermitian matrices have real determinants,
φ(x, y) is real for all real x and y. Thus the restriction φ|R2 is a polynomial of
degree 2m (whose coefficients we could identify by partial differentiation). The zero
set of this polynomial is

{(x, y) ∈ R2 : x + iy ∈ Λ′ ∪ Λ′′},

and our result now follows by applying Milnor’s theorem (3.1).

4. The general case. We extend our basic result, Theorem 3.3 (generic case),
to the general case by a limiting argument. Recall that a sequence of subsets Sr

of some Euclidean space converges to another set S if the following properties hold
[RW98]:

(i) For any point x ∈ S, there exists a sequence of points xr ∈ Sr whose limit
is x.

(ii) For any subsequence R of N, the limit of any convergent sequence of points
xr ∈ Sr (r ∈ R) lies in S.

We first prove that, with this notion of convergence, the number of components of a
compact set has a lower semicontinuity property.

Proposition 4.1 (lower semicontinuity). Consider a sequence of closed subsets
of Sr of a Euclidean space converging to a compact set S. If S has a finite number of
components, say k, then Sr has at least k components for all large r.
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Proof. We can suppose the set S is nonempty. Denote its components by Sj

(j = 1, 2, . . . , k), and the closed and open unit balls by B and B◦, respectively.
Components of compact sets are compact, so for some real δ > 0, the sets Sj + δB
(j = 1, 2, . . . , k) are disjoint. Choose real M so that S + δB ⊂ MB.

We first claim

Sr ⊂ (S + δB◦) ∪MBc for all large r.

Otherwise there would be a subsequence R of N and points

xr ∈ Sr ∩ (S + δB◦)c ∩MB (r ∈ R).

This bounded sequence has a cluster point in the closed set (S + δB◦)c, contradicting
the fact that the sets Sr converge to S.

Thus for all large r, the set Sr is contained in the disjoint union of open sets

MBc ∪
k⋃

j=1

(Sj + δB◦).

If the result fails, then the number of components of Sr is strictly less than k for all
r in some subsequence R of N. Hence for some index j and a further subsequence R′

of R, we must have

Sr ∩ (Sj + δB◦) = ∅ for all r ∈ R′.

But this contradicts the definition of convergence, since for any point x ∈ Sj there
exists a sequence of points xr ∈ Sr converging to x.

Using this result, we can prove our main result.
Theorem 4.2 (components of pseudospectra). For any matrices P,Q ∈ Mm,n

(where m ≤ n) and any real ε, the set {z ∈ C : σmin(P + zQ) ≤ ε} has no more than
2m(4m− 1) components.

Proof. We can suppose that the given set, which we denote by Λ, is nonempty,
that ε > 0, and that Q is nonzero.

By Corollary 2.4, there exists a sequence of matrices Pr ∈ Mm,n satisfying the
following two conditions:

(i) ‖Pr − P‖ ≤ 1/r.
(ii) For no z ∈ C is σmin(Pr + zQ) both multiple and equal to ε + 1/r.

It follows by Theorem 3.3 (generic case) that the set

Λr =

{
z ∈ C : σmin(Pr + zQ) ≤ ε +

1

r

}
has no more than 2m(4m− 1) components.

Using a well-known property of singular values, any point z ∈ Λ satisfies

σmin(Pr + zQ) ≤ σ1(Pr − P ) + σmin(P + zQ) ≤ 1

r
+ ε,

so Λ ⊂ Λr for all r. On the other hand, the continuity of σmin shows that any cluster
point of a sequence of points zr ∈ Λr must lie in Λ. Thus the compact sets Λr converge
to the compact set Λ.

Finally, notice that Λ, being semialgebraic, has finitely many components. Hence
we can apply Proposition 4.1 (lower semicontinuity) to deduce that, in fact, it has no
more than 2m(4m− 1) components, as required.
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5. Computing the distance to uncontrollability. Let τ(A,B) denote the
distance to uncontrollability for a pair (A,B), defined by (1.1), where A is p-by-p
and B is p-by-q. Thus the problem of computing τ(A,B) is that of minimizing
σmin[A−zI B] over the whole complex plane, a global minimization problem in two
real variables.

It is interesting to compare the difficulty of this problem with that of two others:
computing the distance to singularity and the distance to instability for the p-by-p
matrix A alone. Let us assume that the computation of the minimum singular value
function σmin is an atomic operation. Computing the distance to singularity (dis-
tance to the nearest singular matrix) then requires one evaluation of σmin, while the
distance to instability (distance to the nearest unstable matrix) may be computed by
minimizing σmin(A− zI) over the imaginary axis (equivalently, a global optimization
problem in one real variable). Computation of the distance to instability, say β(A),
is a standard operation in control. The key observation is that checking whether
β(A) is less than a fixed number δ simply requires checking whether an associated
Hamiltonian matrix has any imaginary eigenvalues. This leads immediately to a bi-
section algorithm [Bye88, BS90] that evaluates β(A) to any prescribed accuracy in
exact arithmetic, taking the computation of eigenvalues of 2p-by-2p Hamiltonian ma-
trices as another atomic operation. Higher-order convergent algorithms are also well
known [BB90]. In practice, it is important to compute the eigenvalues of the Hamilto-
nian matrices by a special algorithm that preserves Hamiltonian structure (such as in
[Van84]) in order to avoid numerical blunders that incorrectly identify an eigenvalue
as nonimaginary because of unnecessary rounding errors in its real part. The Hamilto-
nian imaginary eigenvalue test in these algorithms may be replaced by a linear matrix
inequality (LMI) test (see, e.g., [BTN01]). This is computationally more expensive
in practice, but offers the advantage of a complexity analysis that does not require
assumption of eigenvalue and singular value computation as atomic operations.

By contrast, computing the distance to uncontrollability τ(A,B) seems to be a
harder problem, and there are no standard methods in use, though there have been
some recent theoretical advances. In 2000, Gu published an algorithm [Gu00] that
estimates τ(A,B) within a factor of two. Gu’s algorithm is based on a most ingenious
test (“Gu’s test,” for brevity) that compares imaginary eigenvalues of matrix pencils
involving Kronecker products that depend on A and B. Taking the computation of
singular values and eigenvalues as atomic operations that can be performed in time
cubic in the matrix dimension, and assuming that q = O(p) (in practice, typically
q < p), Gu’s test requires O(p6) operations. No other polynomial-time algorithm for
estimating τ(A,B) within a constant factor seems to be known; in particular, it does
not seem to be known whether Gu’s test could be replaced by an LMI-based test.

Gu’s test may be summarized as follows. Given two numbers δ1 and δ2 (known
as δ and δ − η/2, respectively, in [Gu00]), with δ1 > δ2 > 0, Gu’s test returns either
the information that

τ(A,B) ≤ δ1(5.1)

or the information that

τ(A,B) > δ2.(5.2)

At least one of these statements must be true; even if both are true, only one of the
two statements is verified. As already noted, Gu’s test involves comparing imaginary
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eigenvalues of matrix pencils. We note for the record that both the terms Q12 ⊗ A
and I ⊗ (A∗Q12) in the definition of A in [Gu00, p. 996] have incorrect signs.

Gu’s estimation algorithm is then as follows.
Algorithm 5.1 (Gu’s estimation algorithm).

1. Set δ1 = σmin([A B]), done = false.
2. While not done

(a) Set δ2 = δ1/2.
(b) Perform Gu’s test. If (5.1) is verified, set δ1 = δ2; if (5.2) is verified,

set done = true.
In exact arithmetic, this algorithm evaluates a nonzero τ(A,B) within a factor of

two, but does not terminate if τ(A,B) = 0.
It is tempting to try to evaluate τ(A,B) to higher precision by a bisection method.

In order to make this work, one needs to set δ1 and δ2 sufficiently close to each
other (η sufficiently small in the notation of [Gu00]) that (5.1) and (5.2) are almost
mutually exclusive. Unfortunately, this leads to numerical difficulties; the necessary
comparison of imaginary eigenvalues of the relevant pencils cannot be carried out with
any confidence in the presence of rounding errors. However, a trisection variant works
well, as follows.

Algorithm 5.2 (trisection variant of Gu’s algorithm).

1. Set L = 0, U = σmin([A B]), done = false, tol to a positive tolerance.
2. While not done

(a) Set δ1 = L + 2(U − L)/3 and δ2 = L + (U − L)/3.
(b) Perform Gu’s test. If (5.1) is verified, set U = δ1; if (5.2) is verified,

set L = δ2.
(c) If U − L < tol, set done = true.

This trisection algorithm maintains upper and lower bounds U and L on τ(A,B),
reducing the length of the interval [L,U ] by a factor of 2/3 at each step of the iteration,
and thereby computing τ(A,B) to any prescribed absolute accuracy in exact arith-
metic in O(p6) operations. Furthermore, it is effective in practice even in the presence
of rounding errors, running into numerical trouble only when τ(A,B) is determined
at least to a few accurate digits.

An algorithm that runs much faster in practice, but without any complexity guar-
antee, is based on local optimization. This algorithm repeatedly performs local opti-
mization of (1.1) using, for example, the well-known BFGS method. For controllable
pairs, one expects the objective in (1.1) to be differentiable at minimizers, since the
least singular value is being minimized, not maximized. As long as the least singular
value at a local minimizer is simple and nonzero, the objective in (1.1) is continuously
differentiable there. The BFGS algorithm requires the gradient of σmin[A−zI B] with
respect to the real and imaginary parts of z, which is given by[

Re
(
([I 0]u)

∗
v
)

Im
(
([I 0]u)

∗
v
) ]

,

where u and v are, respectively, the left and right singular vectors corresponding to
σmin[A−zI B]. (One could use Newton’s method instead of BFGS, as the correspond-
ing 2-by-2 Hessian matrix is not hard to derive, but BFGS is so fast that Newton’s
method offers no significant advantage.) Once a local minimizer is obtained, Gu’s
test is used either to (i) verify global optimality within a tolerance or (ii) restart
BFGS. A key point is that when Gu’s test verifies (5.1), it also provides ẑ for which
σmin[A−ẑI B] = δ1.



PSEUDOSPECTRAL COMPONENTS AND CONTROLLABILITY 359

Algorithm 5.3 (BFGS/Gu hybrid).

1. Set U = σmin([A B]), z = 0, done = false, tol to a positive tolerance.
2. While not done

(a) Run BFGS starting at z, producing an approximate local minimizer z̃.
Set f̃ = σmin[A−z̃I B].

(b) Set δ1 = f̃(1 − 0.5 tol) and δ2 = f̃(1 − tol).
(c) Perform Gu’s test. If (5.1) is verified, set U = δ1 and z = ẑ, where

σmin[A−ẑI B] = δ1; if (5.2) is verified, set L = δ2 and done = true.

Although the objective function in (1.1) may have infinitely many local minimiz-
ers [GdH99], it has only finitely many locally minimal values (being semialgebraic).
Assuming that an idealized BFGS algorithm always generates an exact local mini-
mizer, in exact arithmetic the BFGS/Gu hybrid is guaranteed to terminate with an
estimate of a nonzero τ(A,B) within any prescribed relative accuracy. A natural
question is: how many local minimizers might be visited before a global optimizer is
obtained? Unfortunately, our bound on the number of connected components does
not immediately yield a bound on the number of locally minimal values. Nonethe-
less, we think that it might be possible to obtain a bound on the latter quantity by
extending the techniques used to bound the former.

Our Matlab implementations of the algorithms described in this section are
freely available.2

6. Maximizing the distance to uncontrollability for a parameterized
matrix pair. Finally, with two effective algorithms to evaluate τ(A,B) available,
namely, the trisection variant of Gu’s algorithm and the BFGS/Gu hybrid, we con-
sider maximization of the distance to uncontrollability for a smoothly varying param-
eterized pair (A,B)(x) over a vector of free parameters x ∈ Rk. There are two reasons
why this might be of interest. The first is that it may well be useful in applications to
be able to find a matrix pair that is optimally far away from uncontrollability with re-
spect to given free parameters. The second reason is that maximizing the distance to
uncontrollability tends to produce pseudospectra with several isolated local minimiz-
ers whose minimal values are equal, and therefore is likely to produce pseudospectra
with more components than would be found by randomly generating matrix pairs.

It is not difficult to see that the function τ(·) is not differentiable on the space
of (real or complex) matrix pairs; furthermore, it is easy to construct parameterized
examples where the composite parameter-dependent function τ((A,B)(·)) is not dif-
ferentiable at its maximizer. Such functions are not amenable to optimization by
standard methods, such as BFGS, so we use a more specialized “gradient sampling”
algorithm [BLO03]. This method exploits the fact that τ(·) is differentiable almost
everywhere, with gradient given by uv∗, where u and v are, respectively, the relevant
left and right singular vectors for the matrix minimizing σmin[A−zI B] over z, as long
as the minimum singular value is simple and nonzero. We omit further details here
and conclude by considering the example in (1.2). Running the gradient sampling
algorithm to locally maximize the distance to uncontrollability over x1 and x2, we
found an approximate local maximizer x̂ given by x̂1 = 1.9787, x̂2 = −1.8667, with
τ̂ = τ((A,B)(x̂)) = 0.4897. The corresponding pseudospectra are shown in Figure 3.
Notice that the lowest points in this “pseudospectral landscape” are higher than those
in Figure 1 and, furthermore, that four local minimizers have the same minimal value
(namely, τ̂). Only two of the local minimizers occur in a complex conjugate pair; the

2http://www.cs.nyu.edu/faculty/overton/software
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Fig. 3. Pseudospectra for a local maximizer of τ over (1.2).

other “ties” occur as a result of optimization over the parameters, with τ((A,B)(·))
not differentiable at its maximizer x̂ as a result. Since there are four isolated local
minimizers with minimal value τ̂ , it follows that the pseudospectra have four compo-
nents for ε in a range above τ̂ . In this example, the row dimension p in fact equals
four. Whether it is possible to produce pseudospectra with more than p components
remains an open question.

Note added in proof. In fact, the bound d(2d − 1) in Milnor’s result (Theo-
rem 3.1) can be replaced by the sharp bound (d2 − d + 2)/2 [BR90, Exercise 4.4.4],
resulting in the improvement of our bound in Theorem 4.2 from 2m(4m − 1) to
2m2 −m + 1. Whether a subquadratic bound holds is still an open question.
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Abstract. We give a new characterization of the matrix square root and a new algorithm for its
computation. We show how the matrix square root is related to the constant block coefficient of the
inverse of a suitable matrix Laurent polynomial. This fact, besides giving a new interpretation of the
matrix square root, allows one to design an efficient algorithm for its computation. The algorithm,
which is mathematically equivalent to Newton’s method, is quadratically convergent and numerically
insensitive to the ill-conditioning of the original matrix and works also in the special case where the
original matrix is singular and has a square root.
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1. Introduction. Let us denote by λ(H) and ρ(H) the set of the eigenvalues
and the spectral radius of the square matrix H, respectively, by D the open unit disk
in the complex plane, and by C

+ (C−) the open right (left) half complex plane.
Let A ∈ C

n×n be a matrix having no nonpositive real eigenvalues. Under this
assumption, the quadratic matrix equation

X2 −A = 0(1.1)

has a unique solution such that λ(X) ⊂ C
+ (see [6, 10]). We will denote by A1/2 that

solution, which is usually called the principal square root of A.
The matrix square root has several properties and is closely related to the matrix

sign function. A well-known fact is that [11]

sign(A) = A(A2)−1/2.

Based on this property, in [12] Higham has shown that the matrix square root can be
characterized in terms of the sign of a suitable 2 × 2 block matrix:

sign

([
0 A
I 0

])
=

[
0 A1/2

A−1/2 0

]
.(1.2)

This is a fundamental relation, since any method for computing the matrix sign can be
used to compute the matrix square root. Indeed, Newton’s iteration applied directly to
the matrix equation (1.1) suffers from instability problems (see [17, 9]) while methods
which are based on the computation of the matrix sign of the matrix in (1.2) are
generally more stable [12].

In this paper we derive a new characterization of the matrix square root. More
specifically we prove the following result.
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Theorem 1.1. Let A ∈ C
n×n be a matrix having no nonpositive real eigenvalues.

Then the matrix Laurent polynomial

R(z) = (I −A)z−1 + 2(I + A) + (I −A)z(1.3)

is invertible for any z ∈ C such that r < |z| < 1/r, where

r = ρ((A1/2 − I)(A1/2 + I)−1) < 1.

Moreover, H(z) = R(z)−1 = H0 +
∑∞

i=1 Hi(z
i + z−i) is such that

H0 =
1

4
A−1/2.

The theorem states that the block constant coefficient of the inverse of R(z) fully
defines the matrix square root. This is a new characterization in terms of matrix
functions.

At first glance this property may appear to be of purely theoretical interest, since
how to compute the constant coefficient of H(z) is not immediately clear. However,
we show that we can apply the cyclic reduction algorithm, which is quadratically
convergent, has a low computational cost per iteration, and enjoys good numerical
stability properties. In particular, the cyclic reduction algorithm, in contrast to other
methods, works fine also in the critical case, where A is close to a singular matrix. If A
is singular, convergence still occurs provided that the zero eigenvalues are semisimple,
i.e., the Jordan blocks corresponding to 0 have size 1. In this case the convergence is
linear. Unlike other methods for computing A1/2, we do not apply scaling techniques
in order to speed up the convergence; in fact, for particular problems our algorithm
can be less efficient than other methods which use scaling. On this subject we refer
the reader to the paper [14], where some scaling strategies for cyclic reduction are
analyzed and the slow convergence is overcome.

The paper is organized as follows. In section 2 we prove Theorem 1.1. In section
3 we propose the algorithm, we prove its convergence properties, and we show some
specific features of the algorithm for the singular case, the symmetric positive case,
the case of M-matrices and the skew-Hamiltonian case. In section 4 we report the
numerical results and the comparisons with the available methods. Finally, in section
5 we draw conclusions.

2. Proof of Theorem 1.1. Let us introduce the Cayley transformation

w : C \ {−1} → C, w(x) =
x− 1

x + 1
,

which maps the right half plane C
+ into the open unit disk D. Since λ(A1/2) ⊂ C

+,
the matrix

W = (A1/2 − I)(A1/2 + I)−1(2.1)

is well defined and is such that λ(W ) ⊂ D. Moreover, it is easy to verify that

A1/2 = (I + W )(I −W )−1.(2.2)

By substituting X in (1.1) with the above expression for A1/2, since all the matrices
commute, we obtain that W solves the matrix equation

(I −A) + 2(I + A)Y + (I −A)Y 2 = 0.(2.3)
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Moreover, from the uniqueness of A1/2, W is the unique solution such that ρ(W ) < 1.
We associate with the matrix equation (2.3) the matrix Laurent polynomial R(z)

of (1.3). Since W solves the matrix equation (2.3) and since R(z) is a symmetric
matrix Laurent polynomial it follows that R(z) can be factorized as

R(z) = G(z)G(z−1),(2.4)

where

G(z) = z(A1/2 + I) − (A1/2 − I)

(this latter property can be also verified by direct inspection). In particular, G(z) is
invertible for any z ∈ C such that ρ(W ) < |z|, and we may write

G(z)−1 = z−1(A1/2 + I)−1(I − z−1W )−1 = z−1(A1/2 + I)−1
∞∑
i=0

z−iW i.

Hence, from the factorization (2.4), we obtain

H(z) = R(z)−1 = G(z−1)−1G(z)−1 = (A1/2 + I)−2
∞∑
i=0

ziW i
∞∑
i=0

z−iW i,

which is convergent for any z ∈ C such that ρ(W ) < |z| < 1/ρ(W ). The constant
matrix coefficient of H(z) is

H0 = (A1/2 + I)−2
∞∑
i=0

W 2i = (A1/2 + I)−2(I −W 2)−1 =
1

4
A−1/2.

3. The algorithm. According to the results of [1], the cyclic reduction algorithm
[4] applied to the bi-infinite block tridiagonal block Toeplitz matrix

T0 =

⎡⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0

. . . 2(I + A) (I −A)

(I −A) 2(I + A)
. . .

0
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎦
generates a sequence {Tk}k≥0 of bi-infinite block tridiagonal block Toeplitz matri-
ces which quadratically converge to the block diagonal matrix having H−1

0 on the
main diagonal, where H0 is the constant term of the inverse of the matrix Laurent
polynomial (1.3).

In this particular case, the cyclic reduction algorithm consists of generating the
two sequences of matrices {Yk}k, {Zk}k in the following way:

Z0 = 2(I + A), Y0 = I −A,
Yk+1 = −YkZ

−1
k Yk,

Zk+1 = Zk − 2YkZ
−1
k Yk, k = 0, 1, . . . .

(3.1)

At the kth step, Zk is the matrix defining the main block diagonal of Tk and Yk is the
matrix defining the lower and the upper diagonal blocks of Tk. Observe that, since
both Yk and Zk are rational functions in A, Yk and Zk commute.
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We now show some properties of the sequences {Yk}k, {Zk}k, from which we can
also directly derive that the sequence {Zk}k converges quadratically to 4A1/2.

Proposition 3.1. Let A ∈ C
n×n be a matrix having no nonpositive real eigen-

values. Then the matrices Zk generated by (3.1) are nonsingular for all k ≥ 0 and

Zk + 2YkW
2k

= 4A1/2, k = 0, 1, . . . ,(3.2)

where W is defined in (2.1).
Proof. From the properties of cyclic reduction applied to matrix equations [2],

the following identity holds:

YkW
2k+1

+ ZkW
2k

+ Yk = 0(3.3)

for k = 0, 1, 2, . . . .
Let us prove by induction on k that Zk is nonsingular. Z0 is nonsingular since

A cannot have an eigenvalue equal to −1. Let us assume the thesis true for a fixed
k ≥ 0 and let us prove it for k + 1. From (3.3) we have

Z−1
k Yk = −W 2k

(I + W 2·2k

)−1.(3.4)

Hence, from (3.1),

Zk+1 = Zk

(
I − 2(Z−1

k Yk)
2
)

= Zk

(
I − 2

(
W 2k

(I + W 2·2k

)−1
)2

)
.(3.5)

Since Zk is nonsingular by inductive assumption, it is sufficient to show that I −
2(W 2k

(I + W 2·2k

)−1)2 is nonsingular. Any eigenvalue of this matrix has the form

µ = 1 − 2λ2k+1

(1 + λ2·2k

)−2, where λ is an eigenvalue of W . Since λ(W ) ⊂ D, µ
cannot be zero.

Now from (3.3) it is a simple matter to verify by induction that

Zk + 2YkW
2k

= Z0 + 2Y0W

for any k. If we replace Z0, Y0, and W with their expression in terms of A and A1/2

we obtain that

Z0 + 2Y0W = 2(I + A) + 2(I −A)(A1/2 − I)(I + A1/2)−1

= 2((I + A)(I + A1/2) + (I −A)(A1/2 − I))(I + A1/2)−1

= 4A1/2(I + A1/2)(I + A1/2)−1 = 4A1/2.

From the above proposition and from the spectral properties of W , we derive
the following convergence results, which describe the quadratic convergence of our
algorithm.

Theorem 3.2. Let A ∈ C
n×n be a matrix having no nonpositive real eigenvalues.

Then the sequences {Yk}k and {Zk}k of (3.1) are convergent and

||Yk|| = O(σ2k

),(3.6)

||Zk − 4A1/2|| = O(σ2·2k

)(3.7)

for any real number σ, ρ(W ) < σ < 1, and for any matrix norm || · ||.
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Proof. Let σ be any real number such that ρ(W ) < σ < 1, and let || · ||σ be an
induced matrix norm such that ||W ||σ ≤ σ. From (3.4) we obtain that ||Z−1

k Yk||σ ≤
γσ2k

for a suitable γ > 0. Therefore, from the equivalence of matrix norms, we obtain
that

||Z−1
k Yk|| = O(σ2k

)(3.8)

for any matrix norm. Thus, from (3.5), it follows that the sequences {Zk}k and
{Z−1

k }k have norm bounded above by a constant. Hence from (3.8) we deduce (3.6).
Finally, from (3.2) and (3.6) we obtain (3.7).

The resulting algorithm for the computation of A1/2 consists of computing the
sequences {Yk}k and {Zk}k of (3.1), until ||Yk|| < ε, for a fixed error bound ε and
for a chosen matrix norm || · ||, and then approximating A1/2 by Zk/4. It is worth
noting that each step of our algorithm requires only one matrix inversion and 2 matrix
multiplications.

It is also interesting to point out that the sequence {Zk}k generated by our al-
gorithm coincides, up to within the multiplicative constant 4, with the sequence gen-
erated by applying Newton’s method to the matrix equation (1.1). More specifically,
by denoting with {Xk}k the sequence generated by Newton’s algorithm, i.e., X0 = A,
Xk+1 = (Xk + AX−1

k )/2, k ≥ 0, then we can easily verify by induction on k that

Yk = (A−X2
k)X−1

k , Zk = 4Xk+1, k = 0, 1, . . . .(3.9)

Observe that Yk represents a “normalized” residual matrix of the approximation Xk.
Thus we have a different way to compute the sequence generated by Newton’s method,
which is a little bit more expensive, but which, unlike the latter method, has good sta-
bility properties, as we will show by numerical experiments in section 4. This analogy
with Newton’s method is shared also by the Denman–Beavers algorithm [5], which is
generally more stable than Newton’s method [9]. Some different, but mathematically
equivalent, ways to relate cyclic reduction and Newton’s method are analyzed in [14].
Such different formulations of (3.9) allow one to perform a stability analysis of cyclic
reduction and to derive some scaling strategies.

The singular case. Suppose that A ∈ C
n×n is a singular matrix having no negative

real eigenvalues, and suppose that the null eigenvalues are semisimple, i.e., their
Jordan blocks have size 1. This hypothesis on the null eigenvalues is a necessary and
sufficient condition for a singular complex matrix A to have a square root which is a
function of A (see Theorem 6.4.12 in [13]).

We show that also in this case Zk is nonsingular for any k ≥ 0 and that ||Yk|| =
O(2−k), ||Zk − 4A1/2|| = O(2−k). Hence our algorithm can still be applied and
converges linearly with rate 1/2. Note, however, that the sequence {Zk}k converges
to a singular matrix.

Under our assumption, if p is the number of eigenvalues equal to zero, the Jordan
canonical form of A has the structure

J = PAP−1 =

[
0 0
0 H

]
,(3.10)

where H is a nonsingular block diagonal matrix of size (n−p)× (n−p). In particular

J1/2 = PA1/2P−1 =

[
0 0

0 H1/2

]
.
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Let us denote Ŵ = PWP−1, Ẑk = PZkP
−1, Ŷk = PYkP

−1, k ≥ 0. Then it is
immediate to verify that Ŷk+1 = −ŶkẐ

−1
k Ŷk, Ẑk+1 = Ẑk−2ŶkẐ

−1
k Ŷk, k ≥ 0, and that

Ẑk + 2ŶkŴ
2k

= 4J1/2, k ≥ 0. Moreover, Ŷk and Ẑk, k ≥ 0, have the structure

Ŷk =

[
R

(1)
k 0

0 R
(2)
k

]
, Ẑk =

[
S

(1)
k 0

0 S
(2)
k

]
, k ≥ 0,

where R
(1)
k = rkI, S

(1)
k = skI are p× p diagonal matrices with equal diagonal entries.

By following the same arguments used in section 3 we can show that S
(2)
k is nonsingular

for any k and that ||R(2)
k || = O(σ2k

), ||S(2)
k − 4H1/2|| = O(σ2·2k

), where σ is any real
number 0 < σ < r, and r = ρ((H1/2 − I)(H1/2 + I)−1) < 1. Moreover, we have that

r0 = 1, s0 = 2,
rk+1 = −r2

k/sk, sk+1 = sk − 2r2
k/sk, k = 0, 1, . . . .

Hence rk = −2−k, sk = 2−k+1, k = 1, 2, . . . , from which the nonsingularity of {Zk}k
and the convergence properties of {Zk}k and {Yk}k follow.

In the singular case we may also show that the residual matrix Γk = A− (Zk/4)2

and the error matrix Ek = A1/2 − Zk/4, for k ≥ 0, are such that

||Γk|| = O(||Ek||2)(3.11)

for any matrix norm. A similar property was observed by Guo and Laub in [7] for
Newton’s method applied to a particular algebraic Riccati equation.

In order to prove (3.11), define the matrix norm || · ||P as ||V ||P = ||PV P−1||∞,
where V is an n×n matrix and P is the matrix of (3.10) such that J = PAP−1. We
show that, for this particular norm, if k is sufficiently large, then ||Γk||P = ||Ek||2P .
Therefore (3.11) follows from the equivalence of matrix norms. Observe that

PΓkP
−1 =

[ −(sk/4)2I 0

0 H − (S
(2)
k /4)2

]
,

PEkP
−1 =

[ −(sk/4)I 0

0 H1/2 − S
(2)
k /4

]
, k ≥ 0.

Since the sequence {S(2)
k /4}k converges quadratically to H1/2, for k sufficiently large

one has ||Γk||P = || − (sk/4)2I||∞ = (sk/4)2 and ||Ek||P = || − (sk/4)I||∞ = sk/4;
therefore ||Γk||P = ||Ek||2P .

The symmetric positive definite case. In the case where A is real symmetric, then
the matrices Yk and Zk are obviously symmetric for any k. If in addition A is positive
definite (we will write A > 0), then it is possible to show that −Yk and Zk are positive
definite, and to give a bound on the spectral condition number of Zk.

Theorem 3.3. If A is symmetric positive definite, then the matrices −Yk, k ≥ 1,
and Zk, k ≥ 0, generated by (3.1), are positive definite, and

κ2(Zk) =
maxλ(Zk)

minλ(Zk)
≤ 1 + maxλ(A)

2
√

minλ(A)
, k = 0, 1, . . . .

Proof. Since W and Zk are rational functions in A1/2, from (3.5) it follows that
the eigenvalues of Zk+1 are the eigenvalues of Zk times the eigenvalues of the matrix
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Hk = I − 2(W 2k

(I + W 2·2k

)−1)2; since the eigenvalues of W belong to the interval
(−1, 1), we deduce that the eigenvalues of Hk belong to the interval (0, 1). Thus
Zk+1 > 0 if Zk > 0; since Z0 > 0, we conclude that Zk is positive definite for any k.
Hence −Yk, for k ≥ 1, is also positive definite, and Zk − Zk+1 is positive definite for
any k ≥ 0; in particular, since limk Zk = 4A1/2 and Z0 = 2(I + A), also Zk − 4A1/2

and 2(I + A) − Zk are positive definite, and thus the eigenvalues of Zk belong to the
interval [µ1, µ2], where µ1 = 4 minλ(A1/2), µ2 = 2(1 + maxλ(A)).

From the above theorem it follows that the matrices Zk, k ≥ 0, which must be
inverted at each step, can be better conditioned than A. In particular, assuming that
maxλ(A) = 1 and minλ(A) < 1, we always have

κ2(Zk) ≤
1 + maxλ(A)

2
√

minλ(A)
=

1√
minλ(A)

<
1

minλ(A)
= κ2(A).

The case of M-matrices. Also in the important case where A is an M-matrix,
we can show some interesting properties of our algorithm. Up to within a scaling of
A by its maximum diagonal entry, A may be written as A = I − B, where B is a
nonnegative matrix such that ρ(B) < 1. Thus Y0 = I − A = B is nonnegative, and
Z0 = 2(I + A) = 4I − 2B is an M-matrix. Moreover, observe that the matrices Yk,
Zk, k ≥ 1, generated by (3.1) do not change if we replace Y0 with −Y0; thus we may
suppose Y0 = A − I = −B. It is immediate to verify that, if Z0 = 4I − 2B and
Y0 = −B, then the k × k block matrix

Hk =

⎡⎢⎢⎢⎢⎣
Z0 Y0 0

Y0 Z0
. . .

. . .
. . . Y0

0 Y0 Z0

⎤⎥⎥⎥⎥⎦
is a nonsingular M-matrix for any k ≥ 1. If we apply one step of block cyclic reduction
to Hk, where k = 2q + 1, q ≥ 1, we obtain the permuted block LU factorization

ΠHkΠ
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z0 0 Y0 0
. . . Y0

. . .

. . .
. . . Y0

0 Z0 0 Y0

Y0 Y0 0 Z0 0
. . .

. . .
. . .

0 Y0 Y0 0 Z0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
V1 V2

V3 V4

]
= LU,

L =

[
I 0

V3V
−1
1 I

]
, U =

[
V1 V2

0 S

]
,

where Π is the block even-odd permutation matrix and where the Schur complement
S = V4 − V3V

−1
1 V2 is the (2q−1 + 1) × (2q−1 + 1) block matrix

S =

⎡⎢⎢⎢⎢⎣
Z1 Y1 0

Y1 Z1
. . .

. . .
. . . Y1

0 Y1 Z1

⎤⎥⎥⎥⎥⎦ .
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Since ΠHkΠ
T is a nonsingular M-matrix, for the properties of Schur complements,

it follows that S is a nonsingular M-matrix; in particular Z1 is an M-matrix, and Y1

has nonpositive entries. We can prove by induction on k that Zk is a nonsingular M-
matrix, and Yk has nonpositive entries for all k ≥ 0. In particular, our algorithm has
the same stability properties as block Gaussian elimination applied to M-matrices.

The skew-Hamiltonian case. Let us now consider the case where A is real skew-
Hamiltonian, i.e., n = 2m and A has the structure

A =

[
A1 A2

A3 AT
1

]
,

where A1, A2, A3 are m×m matrices, and A2, A3 are skew-symmetric. This situation
occurs in the numerical solution of algebraic Riccati equations that is ultimately
reduced to the computation of the square root of a matrix [20, 18].

Since A is skew-Hamiltonian, there exists an orthogonal matrix Q such that

B = QTAQ =

[
B1 B2

0 BT
1

]
,(3.12)

where B1 is upper Hessenberg and B2 is skew-symmetric. Moreover, the reduced
matrix B = QTAQ can be computed in a numerically stable way by means of the
Van Loan algorithm [19], and A1/2 = QB1/2QT . Indeed, the methods proposed
in [20, 18] for computing the square root of a skew-Hamiltonian matrix A consist
first of reducing A into the form (3.12), and then of approximating the square root
of the reduced matrix B by exploiting the structure of B. Also our algorithm can
be adapted for the computation of B1/2, thus generating matrices which keep the
structure of B, with a substantial reduction of the computational cost with respect to
the direct application of the algorithm to the skew-Hamiltonian matrix A. Indeed, it
is a simple matter to verify that the matrices {Yk}k and {Zk}k, obtained by starting
with Y0 = I −B, Z0 = 2(I + B), have the structure:

Yk =

[
Y1,k Y2,k

0 Y T
1,k

]
, Zk =

[
Z1,k Z2,k

0 ZT
1,k

]
,

where Y T
2,k = −Y2,k, Z

T
2,k = −Z2,k, and

Y1,k+1 = −Y1,kZ
−1
1,kY1,k,

Y2,k+1 = −Y1,kZ
−1
1,kY2,k + Y1,kZ

−1
1,kZ2,kZ

−T
1,k Y

T
1,k − Y2,kZ

−T
1,k Y

T
1,k,

Z1,k+1 = Z1,k + 2Y1,k+1,

Z2,k+1 = Z2,k + 2Y2,k+1.

4. Numerical experiments. We have performed several numerical experiments
on an Athlon XP 2400, CPU at 2002 MHz, using Matlab. We have compared our
algorithm based on cyclic reduction (CR) with

1. the Denman–Beavers (DB) iteration [5]

Y0 = A, Z0 = I,

Yk+1 = (Yk + Z−1
k )/2,

Zk+1 = (Zk + Y −1
k )/2, k = 0, 1, 2, . . .

such that Yk → A1/2, Zk → A−1/2 as k → ∞;
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2. the scaled DB iteration [12]

Y0 = A, Z0 = I,

γk = |det(Yk) det(Zk)|−1/(2n),

Yk+1 = (γkYk + γ−1
k Z−1

k )/2,

Zk+1 = (γkZk + γ−1
k Y −1

k )/2, k = 0, 1, 2, . . .

such that Yk → A1/2, Zk → A−1/2 as k → ∞;
3. the method based on Padé approximations [15, 16, 12]

Y0 = A, Z0 = I,

Yk+1 = 1
pYk

∑p
i=1

1
ξi

(ZkYk + α2
i I)

−1,

Zk+1 = 1
pZk

∑p
i=1

1
ξi

(YkZk + α2
i I)

−1, k = 0, 1, 2, . . . ,

where p ≥ 1 is a chosen integer,

ξi =
1

2

(
1 + cos

(2i− 1)π

2p

)
, α2

i =
1

ξi
− 1, i = 1, . . . , p,

and Yk → A1/2, Zk → A−1/2 as k → ∞;
4. the method based on scaled Padé approximations [12]

Y0 = A, Z0 = I,

γk = |det(Yk) det(Zk)|−1/(2n),

Yk+1 = 1
pγkYk

∑p
i=1

1
ξi

(γ2
kZkYk + α2

i I)
−1,

Zk+1 = 1
pγkZk

∑p
i=1

1
ξi

(γ2
kYkZk + α2

i I)
−1, k = 0, 1, 2, . . . ;

5. the method based on polar decomposition (PD) [8], when A is real symmetric
positive definite:

• compute A = RTR, the Cholesky decomposition;
• compute U = X∞ from X0 = R, Xk+1 = (Xk + X−T

k )/2, k = 0, 1, . . . ;
• set A1/2 = UTR;

6. the method based on polar decomposition with scaling (PD scaled) [8], when
A is real symmetric positive definite:

• compute A = RTR, the Cholesky decomposition;
• compute U = X∞ from X0 = R, Xk+1 = (γkXk + γ−1

k X−T
k )/2, γk =(

‖X−1
k ‖1 ‖X−1

k ‖∞
‖Xk‖1‖Xk‖∞

)1/4

, k = 0, 1, . . . ;

• set A1/2 = UTR;
7. The sqrtm function of Matlab, which uses the Schur algorithm [3, 10].

For each test matrix we have reported
1. the condition number estimate µ(A1/2) of the matrix square root provided

by the Matlab function sqrtm;
2. the relative residual

||X2 −A||
||A|| ;
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Table 4.1

Prolate matrix, n = 20, µ(A1/2) = 3.7 · 106.

Method Iters. Residual Error

CR 25 1.7e-15 9.3e-10

Padé unscaled p = 1 17 4.6e-12 4.7e-7
p = 2 9 2.8e-12 3.3e-7
p = 3 7 2.6e-12 3.1e-7
p = 4 6 2.0e-12 3.3e-7

Padé scaled p = 1 12 3.7e-10 1.9e-10
p = 2 8 2.9e-10 1.5e-10
p = 3 6 1.4e-10 8.6e-11
p = 4 5 8.6e-11 2.0e-10

DB unscaled 5 9.7e-04 2.4e-2

DB scaled 11 1.2e-06 5.7e-7

PD unscaled 17 5.8e-11 3.0e-6

PD scaled 8 1.6e-14 7.4e-12

sqrtm * 1.8e-15 1.3e-10

3. the number of iterations needed to reach that residual; we stopped the itera-
tions when the residual stopped decreasing significantly;

4. the relative error

||X −A1/2||
||A1/2|| ;

here A1/2 has been computed by means of CR by using the Symbolic Com-
putation Toolbox with a precision floating point arithmetic with 40 decimal
digits accuracy.

Here ||X|| is the Frobenius norm of the matrix X.
Test 1 (Prolate matrix). We used the prolate function of the Matlab gallery

test matrices, which generates the Prolate matrix. It is a symmetric, ill-conditioned
Toeplitz matrix, which depends on an input parameter w. If 0 < w < 0.5, then the
Prolate matrix is positive definite, its eigenvalues are distinct, lie in (0, 1), and tend
to cluster around 0 and 1. We used the default value of w, i.e., w = 0.25 and the
size n = 20; in this case the spectral condition number of A is κ2(A) = 5.7 · 1013.
The results are reported in Table 4.1. The smallest residuals are obtained by the
CR algorithm, PD scaled, and the sqrtm function. Also the errors of PD scaled are
good. Since the condition number of A1/2 is of the order of 106, we cannot expect a
residual better than 10−10. Thus all the results, except the ones obtained with the
DB iteration, are acceptable. The poor performance of the latter algorithm is due to
the ill-conditioning of the matrix A, which must be inverted at the first step. The CR
algorithm, in terms of accuracy, seems insensitive to the ill-conditioning of A. The
large number of iterations is due to the fact that A is close to a singular matrix, and
that CR converges linearly in the case where A is singular. For larger values of n the
residual of CR remains unchanged; the residual of (scaled) DB and Padé methods
grows with n. It is also interesting to point out that the residual of CR, as a function
of the number of iterations, reaches a minimum and after that it does not change in
the subsequent iterations; for DB and Padé methods, the residual can grow much in
the subsequent iterations.
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Table 4.2

Frobenius matrix, p(x) = (x− 2)(x− 5)
(
(x + 2)2 + ε

)
, ε = 10−8, µ(A1/2) = 1.5 · 1010.

Method Iters. Residual Error

CR 19 7.5e-03 2.6e-5

Padé unscaled p = 1 24 7.7e-02 1.9e-5
p = 2 10 2.2e-03 5.0e-5
p = 3 12 6.1e-02 8.5e-6
p = 4 6 5.9e-03 4.2e-5

Padé scaled p = 1 15 3.2e-02 2.0e-5
p = 2 15 7.9e-02 1.8e-5
p = 3 12 2.9e-02 6.4e-7
p = 4 19 5.4e-03 1.5e-5

DB unscaled 20 2.0e-05 1.9e-9

DB scaled 13 1.4e-05 2.0e-9

sqrtm * 6.3e-9 2.1e-8

Test 2 (Frobenius matrix). For this test A is the 4 × 4 Frobenius matrix whose

characteristic polynomial is p(x) =
∑4

i=0 pix
i = (x− 2)(x− 5)

(
(x + 2)2 + ε

)
, i.e.,

A =

⎡⎢⎢⎣
−p3 −p2 −p1 −p0

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ ,

where ε is a small fixed real positive number. The eigenvalues of the matrix A are the
zeros of p(x). In particular A has two complex conjugate eigenvalues −2 ± i

√
ε close

to the negative real axis. The matrix A is well conditioned (µ(A) ≈ 10), while A1/2

is ill-conditioned when ε is small. In this case the residuals are large, due to the ill-
conditioning of A1/2, and the DB method performs better than the other algorithms.
The results are reported in Table 4.2.

We tried also with the Frobenius matrix associated with the polynomial p(x) =
(x − 2)(x − 5)

(
(x + 1)2 + ε

)
. In this case A has two complex conjugate eigenvalues

−1± i
√
ε close to −1; thus the matrix I +A, which must be inverted at the first step

of CR, is close to a singular matrix when ε is small. We tried with ε = 10−5. The
results are reported in Table 4.3. In this case the DB and Padé methods perform
better than the CR algorithm, which suffers from the ill-conditioning of the matrix
I +A. This drawback could be overcome by computing the matrix square root of αA,
where α is a positive real number such that I + αA is well conditioned, and then by
scaling by α1/2 the obtained approximation.

Test 3 (Dorr matrix). This is the matrix generated by the dorr function of the
Matlab gallery test matrices. It is a row diagonally dominant, tridiagonal matrix
that is ill-conditioned for small values of the input argument θ ≥ 0. We performed
experiments with θ = 10−7 and size n = 10. The numerical results are reported in
Table 4.4. We observe that the CR algorithm provides the lowest residual, and the
approximation provided by the DB method is very poor.

Test 4 (Scaled matrix). For this test A = αR, where α is a positive real number,
and R is the randomly generated 5 × 5 matrix

R =

⎡⎢⎢⎢⎢⎣
0.20277 0.015274 0.41865 0.83812 0.50281
0.19872 0.74679 0.84622 0.019640 0.70947
0.60379 0.44510 0.52515 0.68128 0.42889
0.27219 0.93181 0.20265 0.37948 0.30462
0.19881 0.46599 0.67214 0.83180 0.18965

⎤⎥⎥⎥⎥⎦ .
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Table 4.3

Frobenius matrix, p(x) = (x− 2)(x− 5)
(
(x + 1)2 + ε

)
, ε = 10−5, µ(A1/2) = 1.2 · 106.

Method Iters. Residual Error

CR 13 1.4e-03 3.2e-7

Padé unscaled p = 1 14 2.6e-07 1.2e-7
p = 2 12 2.9e-09 7.2e-12
p = 3 6 5.8e-08 1.1e-8
p = 4 8 3.6e-10 6.3e-12

Padé scaled p = 1 12 7.3e-09 5.6e-12
p = 2 8 6.4e-09 6.3e-11
p = 3 5 9.2e-09 3.8e-11
p = 4 4 3.3e-09 4.5e-11

DB unscaled 15 5.8e-12 3.1e-12

DB scaled 12 2.4e-12 1.4e-12

sqrtm * 2.4e-12 1.4e-12

Table 4.4

Dorr matrix, n = 10, µ(A1/2) = 3.0 · 108.

Method Iters. Residual Error

CR 25 7.0e-16 2.6e-8

Padé unscaled p = 1 6 1.7e-15 5.1e-9
p = 2 3 1.9e-15 5.1e-9
p = 3 2 2.5e-15 5.1e-9
p = 4 2 1.7e-15 5.1e-9

Padé scaled p = 1 11 6.4e-4 3.2e-4
p = 2 20 6.4e-8 5.3e-8
p = 3 9 6.3e-8 4.3e-8
p = 4 7 9.6e-9 8.6e-9

DB unscaled 1 1.1 4.5e-1

DB scaled 11 8.7e-3 9.3e-3

sqrtm * 2.8e-15 1.2e-8

We have compared the number of iterations needed to reach the minimum residual for
small and large values of α. We have applied CR, Padé and scaled Padé (with p = 2),
DB, and scaled DB. The number of iterations are reported in Figure 4.1. We observe
that the scaling of DB and Padé methods keeps constant the number of iterations.
For the nonscaled methods the number of iterations reaches a minimum for a certain
ᾱ, and then it grows for larger and smaller values of ᾱ. The minimum number of
iterations of CR coincides with the number of iterations of DB scaled.

Test 5 (Neumann matrix). We tested our algorithm on the 16 × 16 matrix
generated by the neumann function of the Matlab gallery test matrices. It is the
matrix resulting from discretizing the Neumann problem with the usual five point
operator on a regular mesh. The matrix has a one-dimensional null space with null
vector the vector of 1s. The CR algorithm shows a linear convergence and reaches
the residual 9.6e-16 in 24 iterations, and the error of the approximation is 1.6e-8;
this confirms relation (3.11), which holds when A is singular. The matrix square
root computed with the function sqrtm has a residual 2.9e-15 and an error 3.8e-9
and has complex entries, with imaginary part of magnitude 10−9. The Padé method,
with p = 1, reaches the residual 2.6e-15 after 6 iterations, and the error is 2.5e-10.
A drawback of Padé algorithm which we have observed in this example is that the
residual reaches a minimum value at the sixth iteration, and then it starts to grow;
for instance, after 60 iterations the residual is 1.0e-7. This problem is not encountered
for the CR method.
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Fig. 4.1. Scaled matrix: number of iterations

Table 4.5

Matrix with prescribed singular values, n = 10, σ1 ≈
√

2, σ10 ≈ 0, µ(A1/2) = 3.1 · 104.

Method Iters. Residual Error

CR 15 1.4e-15 1.5e-12

Padé unscaled p = 1 13 2.0e-12 4.5e-10
p = 2 7 6.7e-13 3.4e-13
p = 3 6 8.3e-13 6.0e-13
p = 4 5 6.8e-13 6.5e-13

Padé scaled p = 1 10 1.3e-12 5.3e-13
p = 2 6 8.5e-13 9.3e-13
p = 3 5 8.6e-13 5.2e-13
p = 4 4 7.5e-13 3.8e-13

DB unscaled 13 8.4e-10 6.5e-10

DB scaled 10 2.2e-10 1.3e-10

sqrtm * 3.9e-15 5.4e-13

Test 6 (matrix with prescribed singular values). By using the function randcolu

of the Matlab gallery test matrices, we have generated the 10× 10 random matrix
A having columns of unit 2-norm and having singular values σ1 =

√
2 − ε2, σ2 =

1, . . . , σ9 = 1, σ10 = ε, where ε is a small real positive number. Thus σ10 is close
to zero, while σ1 is close to

√
2. We have chosen ε = 10−7. In Table 4.5 we have

reported the results. The less accurate approximations are obtained by DB and the
Padé algorithm with p = 1, the remaining algorithms provide small residuals and
small errors.

We have also tested the same algorithms on the matrix A/ε, which has as singular
values σ1 = ε−1

√
2 − ε2, σ2 = ε−1, . . . , σ9 = ε−1, σ10 = 1; thus σ1 is large, while σ10 is

equal to 1. As before, we have chosen ε = 10−7. For this matrix the effect of scaling
of the DB and Padé methods is evident. In fact, the scaling considerably reduces the
number of iterations.

By using the same function randcolu we have also generated the 10× 10 matrix
A having singular values σ1 =

√
1 + ε, σ2 = 1, . . . , σ9 = 1, σ10 =

√
1 − ε, where ε is a
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small real number. Thus σ1 ≈ σ−1
10 . We have chosen ε = 10−5. This does not seem a

critical case, since all the tested algorithms provide very small residuals and errors in
few iterations.

5. Conclusions. We have given a new functional interpretation of the matrix
square root of a matrix A, in terms of the inverse of a suitable matrix Laurent polyno-
mial R(z). This interpretation has allowed us to reduce the computation of the matrix
square root to computing the constant block coefficient of R(z)−1. For this purpose we
have applied cyclic reduction, which, from the several numerical experiments, provides
very accurate approximations of A1/2. In particular, the cyclic reduction algorithm
seems insensitive to the ill-conditioning of A, while other methods may fail to converge
if A is ill-conditioned. In fact, cyclic reduction converges also in the important case
where A is singular. An open question, which we are investigating, is to understand if
a similar functional interpretation holds also for the matrix pth root, for p > 2. This
would open the way to new algorithms for computing the matrix pth root.

Acknowledgments. The author wishes to thank N. J. Higham and the anony-
mous referees for providing useful suggestions to improve the presentation of this
paper, and D. A. Bini and L. Gemignani for the useful discussions. In particular, the
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Abstract. In this paper we derive bounds on the eigenvalues of the preconditioned matrix that
arises in the solution of saddle point problems when the Hermitian and skew-Hermitian splitting
preconditioner is employed. We also give sufficient conditions for the eigenvalues to be real. A few
numerical experiments are used to illustrate the quality of the bounds.
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1. Introduction. We are given the saddle point problem(
A BT

−B 0

)(
u
v

)
=

(
f
−g

)
, or Ax = b(1.1)

with A ∈ R
n×n symmetric positive semidefinite and B ∈ R

m×n with rank(B) = m ≤
n. We assume that the null spaces of A and B have trivial intersection, which implies
that A is nonsingular. We set

H =

(
A 0
0 0

)
S =

(
0 BT

−B 0

)
,

so that A = H+S. We consider the preconditioner P = (2α)−1(H+αI)(S+αI), with
real α > 0, and we study the eigenvalue problem associated with the preconditioned
matrix, that is,

(H + S)x = η(2α)−1(H + αI)(S + αI)x.(1.2)

This preconditioner has been studied in a somewhat more general setting in [4], mo-
tivated by the paper [1]. Letting D(1, 1) := {z ∈ C ; |z − 1| < 1}, it was shown in
[4] that the spectrum of the preconditioned matrix satisfies σ(P−1A) ⊂ D(1, 1)\{0}.
Furthermore, σ(P−1A) ⊂ D(1, 1) if A is positive definite. Some rather special cases
(including the case A = I) have been studied in [2, 3]. The purpose of this paper is
to provide more refined inclusion regions for the spectrum of P−1A for saddle point
problems of the form (1.1). Most of our bounds are in terms of the extreme eigenval-
ues and singular values of the blocks A and B, respectively. Although these quantities
may be difficult to estimate, our results can be used to explain why small values of
α usually give the best results in terms of convergence rates. For instance, we show
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that sufficiently small values of α always result in preconditioned matrices having a
real spectrum consisting of two tight clusters.

Throughout the paper, we write MT for the transpose of a matrix M and u∗ for
the conjugate transpose of a complex vector u. Also, A > 0 (A ≥ 0) means that
matrix A is symmetric positive definite (respectively, semidefinite).

2. Spectral bounds. In this section we provide bounds for the eigenvalues of
the preconditioned matrix.

In the following we shall use the fact that A is symmetric positive semidefinite,
so that

0 ≤ λn ≤ u∗Au

u∗u
≤ λ1 ∀ u ∈ C

n, u �= 0,(2.1)

where λn, λ1 are the smallest and largest eigenvalues of A, respectively. Moreover, we
denote by σ1, . . . , σm the decreasingly ordered singular values of B.

The spectrum of the preconditioned matrix can be more easily analyzed by means
of a particular spectral mapping, which we introduce next. We shall then derive
estimates for the location of the eigenvalues of (1.2).

We first observe that (H + αI)(S + αI) = HS + α(H + S) + α2I. By collecting
the terms with (H + S) we can write the eigenvalue problem (1.2) as(

1 − 1

2
η

)
(H + S)x =

ηα

2

(
I +

1

α2
HS

)
x.(2.2)

If 1 − 1
2η = 0, then η = 2. For 1 − 1

2η �= 0 we set

θ :=
ηα

2 − η
, from which η = 2 − 2α

θ + α
=

2θ

θ + α
.(2.3)

Therefore, (2.2) can be written as (H + S)x = θ
(
I + 1

α2HS
)
x.

By explicitly writing the term HS, the eigenproblem above becomes(
A BT

−B 0

)
x = θ

(
I 1

α2ABT

0 I

)
x, or Ax = θGx,

where

G :=

(
I 1

α2ABT

0 I

)
.

The equivalent eigenproblem G−1Ax = θx can be explicitly written as(
A + 1

α2ABTB BT

−B 0

)
x = θx.(2.4)

Therefore, the two eigenproblems (1.2) and (2.4) have the same eigenvectors, while
the eigenvalues are related by (2.3). Our spectral analysis aims at describing the
behavior of the spectrum of G−1A, from which considerations on the spectrum of
(1.2) can be derived. In the following, �(θ) and �(θ) denote the imaginary and real
part of θ, respectively.

Lemma 2.1. Assume A is symmetric and positive semidefinite. Let K := I +
1
α2B

TB. For each eigenpair (η, [u; v]) of (1.2), η either is η = 2 or can be written as
η = 2 − 2α

α+θ , where θ �= 0 satisfies the following:
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1. If �(θ) �= 0, then

�(θ) =
1

2

u∗KAKu

u∗Ku
, |θ|2 =

u∗KBTBu

u∗Ku
.(2.5)

2. If �(θ) = 0, then

min

⎧⎨⎩λn,
σ2
m

λ1

(
1 +

σ2
m

α2

)
⎫⎬⎭ ≤ θ ≤ ρ

where ρ := λ1(1 +
σ2
1

α2 ).
Proof. The first statement of the lemma was already shown by means of the

mapping in (2.3). We are thus left with proving the estimates for θ. First of all, note
that θ �= 0 or else η = 0, which is not possible since P−1A is nonsingular.

Let x = [u; v] �= 0 be the complex eigenvector associated with θ. We explicitly
observe that K = I + 1

α2B
TB is symmetric positive definite and that KBTB is

symmetric. We shall make use of the following properties of K,

λmax(K) = 1 +
σ2

1

α2
, λmin(K) ≥ 1,(2.6)

where the inequality becomes an equality whenever B is not square. In addition,

λn ≤ u∗KAKu

u∗K2u
≤ λ1,(2.7)

and using KBTB = α2(K2 −K),

0 ≤ u∗KBTBu

u∗K2u
= α2u

∗K2u− u∗Ku

u∗K2u
= α2

(
1 − u∗Ku

u∗K2u

)
≤ α2 ∀u �= 0.(2.8)

The two matrix equations in (2.4) are given by(
A +

1

α2
ABTB

)
u + BT v = θu,(2.9)

−Bu = θv.(2.10)

It must be u �= 0; otherwise (2.10) would imply θ = 0 or v = 0, neither of which can
be satisfied. For u �= 0 and v = 0, from (2.9), θ must satisfy AKu = θu and Bu = 0.

Since K is symmetric and positive definite, we can write K
1
2AK

1
2 û = θû, û = K

1
2u,

from which it follows that θ is real and satisfies

0 < θ ≤ λ1‖K
1
2 ‖2 = λ1λmax

(
I +

1

α2
BTB

)
= λ1

(
1 +

σ1

α2

)
= ρ.

We now assume u �= 0 �= v. Using (2.10), we write v = −θ−1Bu, which, substituted
into (2.9), yields θA(I+ 1

α2B
TB)u−BTBu = θ2u. By multiplying this equation from

the left by u∗K we obtain

θu∗KAKu− u∗KBTBu = θ2u∗Ku.(2.11)
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Let θ = θ1 + ıθ2. For A symmetric, the quadratic equation (2.11) has real coefficients
so that its roots are given by

θ± =
1

2

u∗KAKu

u∗Ku
±

√
1

4

(
u∗KAKu

u∗Ku

)2

− u∗KBTBu

u∗Ku
.(2.12)

Eigenvalues with nonzero imaginary part arise if the discriminant is negative.
Case θ2 �= 0. It must be

(u∗KAKu)2 − 4(u∗Ku)(u∗KBTBu) < 0,(2.13)

and from (2.12) we get θ1 = 1
2
u∗KAKu
u∗Ku . By substituting θ1 in (2.12), we obtain

θ2
2 + θ2

1 = u∗KBTBu
u∗Ku .

Case θ2 = 0. In this case, from (2.12) it follows that θ = θ1 > 0. For Bu = 0,
from (2.10) it follows that v = 0 (θ �= 0), and the reasoning for v = 0 applies.

We now assume that Bu �= 0. We have

−θ2
1u

∗Ku + θ1u
∗KAKu = u∗KBTBu > 0,

where the last inequality follows from (2.8). Since θ1 > 0, the inequality θ1u
∗KAKu−

θ2
1u

∗Ku > 0 implies u∗KAKu− θ1u
∗Ku > 0, hence θ1 < λ1λmax(K) = ρ.

To prove the lower bound on θ, write the equation (2.9) as (AK − θI)u = −BT v.
If θ is an eigenvalue of AK, then θ ≥ λnλmin(K) ≥ λn. Otherwise, (AK − θI) is
invertible, so that u = −(AK − θI)−1BT v, which, substituted into (2.10), yields

B(AK − θI)−1BT v = θv ⇔ BK−1(A− θK−1)−1BT v = θv.(2.14)

Let BT = [W1,W2]
[
Σ
0

]
QT be the singular value decomposition of BT , and note that

K = [W1,W2]

(
I + 1

α2 Σ2 0
0 I

)
[WT

1 ,WT
2 ]T ,

BK−1 = Q
(
Σ(I + 1

α2 Σ2)−1 0
)
[WT

1 ,WT
2 ]T = QD−1ΣWT

1 ,

where D = I + 1
α2 Σ2. Problem (2.14) can be thus written as QD−1ΣWT

1 (A −
θK−1)−1W1ΣQT v = θv, or, equivalently,

ΣWT
1 (A− θK−1)−1W1Σw = θDw, w = QT v,

from which

WT
1 (A− θK−1)−1W1ŵ = θΣ−1DΣ−1ŵ, ŵ = Σw.(2.15)

We multiply both sides from the left by ŵ∗ and we notice that the left-hand side is
positive for any ŵ �= 0. If θ ≥ λmin(AK) ≥ λn, then λn is the sought-after lower
bound. Assume now that θ < λmin(AK). Then, the matrix A − θK−1 is symmetric
and positive definite. Therefore,

ŵ∗WT
1 (A− θK−1)−1W1ŵ ≥ λmin((A− θK−1)−1)‖W1ŵ‖2

= λmin((A− θK−1)−1)‖ŵ‖2,(2.16)
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and we have

λmin((A− θK−1)−1) =
1

λmax(A− θK−1)
≥ 1

λ1 − θλmin(K−1)

=
1

λ1 − θ
λmax(K)

=
1

λ1 − θ
τ

,

where τ := λmax(K) = (1 +
σ2
1

α2 ). This, together with (2.16), provides a lower bound
for the left-hand side of (2.15). Using

θŵ∗Σ−1DΣ−1ŵ = θŵ∗
(

Σ−2 +
1

α2
I

)
ŵ ≤ θ

(
1

σ2
m

+
1

α2

)
‖ŵ‖2

and recalling that λ1τ − θ > 0, from (2.15) we obtain

1

λ1 − θ
τ

≤ θ

(
1

σ2
m

+
1

α2

)
, i.e.,

θ2

τ
+

σ2
mα2

α2 + σ2
m

≤ λ1θ.

Since θ2 > 0, we get
σ2
mα2

α2+σ2
m

≤ λ1θ, and the final bound follows.

The quantities in part 1 of the lemma can also be bounded with techniques similar
to those for the real case. However, in the next theorem, we derive sharper bounds
for complex η than those one would obtain by using estimates for complex θ.

Theorem 2.2. Under the hypotheses and notation of Lemma 2.1, the eigenvalues
of problem (1.2) are such that the following hold:

1. If �(η) �= 0, then

(α + 1
2λn)λn

3α2
< �(η) < min

{
2,

4α

α + λn

}
,(2.17)

λ2
n

3α2 + 1
4λ

2
n

< |η|2 ≤ 4α

α + α(1 +
σ2
1

α2 )−1 + λn

.(2.18)

2. If �(η) = 0, then η > 0 and

min

⎧⎨⎩ 2λn

α + λn
,

2
σ2
m

�

α +
σ2
m

�

⎫⎬⎭ ≤ η ≤ 2ρ

α + ρ
< 2,(2.19)

where � := λ1(1 +
σ2
m

α2 ) and ρ := λ1(1 +
σ2
1

α2 ).
Proof. We have that η is real if and only if θ is real. Assume �(η) �= 0 and write

θ = θ1 + ıθ2. Recall that τ = (1 +
σ2
1

α2 ).
Using the definition of θ in (2.3) we obtain

�(η) = 2
αθ1 + |θ|2

α2 + 2αθ1 + |θ|2 ,

that is, (α2 + 2αθ1 + |θ|2)�(η) = 2αθ1 + 2|θ|2. We substitute the quantities in (2.5)
to get (α2u∗Ku + αu∗KAKu + u∗KBTBu)�(η) = αu∗KAKu + 2u∗KBTBu. Note
that α2u∗Ku + u∗KBTBu = α2u∗K2u. We divide by u∗K2u > 0 to obtain(

α2 + α
u∗KAKu

u∗K2u

)
�(η) = α

u∗KAKu

u∗K2u
+ 2

u∗KBTBu

u∗K2u
.
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We recall that for �(η) �= 0 relation (2.13) holds, which implies by (2.6) and (2.8)

(u∗KAKu)2

(u∗K2u)2
< 4

(u∗Ku)

u∗K2u

(u∗KBTBu)

u∗K2u
≤ 4α2(2.20)

and

(u∗KBTBu)

u∗K2u
>

1

4

(u∗KAKu)2

(u∗K2u)2
(u∗K2u)

u∗Ku
≥ 1

4
λ2
n.(2.21)

Therefore, by applying (2.7), (2.20), and (2.8), we obtain

(α2 + αλn)�(η) < α(2α) + 2α2 ⇔ �(η) <
4α

α + λn
.

By once more applying (2.20), (2.7), and (2.21), we also get

(α2 + α(2α))�(η) > αλn +
1

2
λ2
n ⇔ �(η) >

(α + 1
2λn)λn

3α2
,

which provide the upper and lower bounds for �(η).
To complete the proof of the first statement, we write |η|2 using (2.3) to obtain

(α2 + 2αθ1)|η|2 = (4 − |η|2)|θ|2.

Substituting (2.5) as before and dividing by u∗K2u, it yields(
α2 u∗Ku

u∗K2u
+ α

u∗KAKu

u∗K2u

)
|η|2 = (4 − |η|2)u

∗KBTBu

u∗K2u
.

Note that 4 − |η|2 > 0. As before, we bound |η|2 from both sides, keeping in mind
(2.6), (2.7), (2.8), (2.21), and (2.20), to get(

1

τ
α2 + αλn

)
|η|2 ≤ 4α2 − |η|2α2 ⇔ |η|2 ≤ 4α

α + α(1 +
σ2
1

α2 )−1 + λn

,

and

(α2 + α(2α))|η|2 >
1

4
λ2
n(4 − |η|2) ⇔ |η|2 >

λ2
n

3α2 + 1
4λ

2
n

.

This completes the proof of the first part.
Assume now that η is real. Then, from the corresponding bound for real θ in

Lemma 2.1 and the fact that η = φ(θ) = 2θ
α+θ is a strictly increasing function of its

argument, we obtain the desired bounds on η.
A few comments are in order. We start by noticing that, in general, real eigen-

values η may well cover the whole open interval (0, 2), depending on the parameter
α. Our numerical experiments show that these bounds are indeed sharp for several
values of α (cf. section 4).

Although much less sharp in general, we also found the bounds for eigenvalues
with nonzero imaginary part of interest. The lower estimate for |η| indicates that
nonreal eigenvalues are not close to the origin, especially for small α. In addition,
they are located in a section of an annulus as in Figure 2.1. We will see in Theorem 3.1
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20

Fig. 2.1. Inclusion region for the typical spectrum of the preconditioned matrix.

that complex eigenvalues cannot arise for values of α smaller than one half the smallest
eigenvalue of A.

Remark 2.1. We note that when A is positive definite, selecting α = λn provides
constant bounds for the cluster of eigenvalues with nonzero imaginary part. Indeed,
substituting α = λn in (2.17) and in (2.18) we obtain

1

2
≤ �(η) < 2 and

4

13
≤ |η|2 ≤ 4(λ2

n + σ2
1)

3λ2
n + 2σ2

1

≤ 4(λ2
n + σ2

1)

2λ2
n + 2σ2

1

= 2.

For α ≈ λn we expect to obtain similar bounds. This complex clustering seems to be
relevant in the performance of the preconditioned iteration; cf. section 4.

3. Conditions for a real spectrum and clustering properties. We next
show that under suitable conditions, the spectrum of the nonsymmetric precondi-
tioned matrix P−1A is real. We stress the fact that a real spectrum is a welcome
property, because it enables the efficient use of short-recurrence Krylov subspace
methods such as Bi-CGSTAB; see, e.g., [11, p. 139].

Theorem 3.1. Assume the hypotheses and notation of Lemma 2.1 hold and
assume in addition that A is symmetric positive definite. If α ≤ 1

2λn, then all eigen-
values η are real.

Proof. We prove our assertion for the eigenvalues θ, from which the statement for
η will follow. Let x = [u; v] be an eigenvector associated with θ. For u �= 0, v = 0 we
already showed that the spectrum is real, while u = 0 implies v = 0, a contradiction.
We now assume u �= 0 �= v.

The eigenvalues θ of (2.4) are the roots of equation (2.11), which can be expressed
as in (2.12). These are all real if the discriminant is nonnegative. Equivalently,

θ ∈ R if (u∗KAKu)2 ≥ 4(u∗Ku) (u∗KBTBu) ∀u �= 0.

Since u∗K2u > 0 for u �= 0, we write the problem above as

θ ∈ R if
(u∗KAKu)2

(u∗K2u)2
≥ 4

u∗Ku

u∗K2u

u∗KBTBu

u∗K2u
∀u �= 0.
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We have (u∗KAKu)2

(u∗K2u)2 ≥ λ2
n, and u∗Ku

u∗K2u ≤ λmin(K)−1 ≤ 1; see (2.6). Therefore, using

(2.8), if α ≤ 1
2λn, we have

(u∗KAKu)2

(u∗K2u)2
≥ λ2

n ≥ 4 · 1 · α2 ≥ 4
u∗Ku

u∗K2u

u∗KBTBu

u∗K2u
∀u �= 0.(3.1)

The discriminant is nonnegative, therefore all roots of (2.12) are real, and so are the
eigenvalues θ.

The smallest eigenvalue of A can be increased by suitable scalings, thus enlarging
the interval of α values leading to a real spectrum. Note, however, that multiplying
(1.1) by a positive constant ω is equivalent to applying the Hermitian/skew-Hermitian
splitting preconditioner with parameter α̂ :=

√
ωα to the original, unscaled system.

Under additional assumptions on the spectrum of the block matrices, it is possible
to provide a less strict condition on α. This is stated in the following corollary.

Corollary 3.2. Under the hypotheses and notation of Theorem 3.1, assume
that 4σ2

1 − λ2
n > 0. If α ≤ λnσ1√

4σ2
1−λ2

n

then all eigenvalues η are real.

Proof. Using (2.8), we can write

u∗KBTBu

u∗K2u
= α2

(
1 − u∗Ku

u∗K2u

)
≤ α2

(
1 − 1

1 +
σ2
1

α2

)
= α2 σ2

1

α2 + σ2
1

.

Therefore, if λ2
n ≥ 4α2 σ2

1

α2+σ2
1
, the bound equivalent to (3.1) follows. Moreover, we

note that under the assumption that 4σ2
1 − λ2

n > 0,

λ2
n ≥ 4α2 σ2

1

α2 + σ2
1

⇔ α2 ≤ λ2
nσ

2
1

4σ2
1 − λ2

n

.

It is interesting to observe that if σ2
1 = λ1, the condition 4σ2

1−λ2
n > 0 corresponds

to the inequality

λ1

λn
>

1

4
λn,

which is easily satisfied since usually λn is small and λ1 is much bigger than λn. Note
that such a setting is very common in the Stokes problem, where A is a discretization
of a (vector) Laplacian and BBT can also be regarded as a discrete Laplacian.

The following result shows that the eigenvalues form two tight clusters as α → 0.
This is an important property from the point of view of convergence of preconditioned
Krylov subspace methods. This result extends and sharpens the clustering result
obtained in [3] (using different tools) for the special case of Poisson’s equation in
saddle point form.

Proposition 3.3. Assume A is symmetric and positive definite. For sufficiently
small α > 0, the eigenvalues of P−1A cluster near zero and two. More precisely, for
small α > 0, η ∈ (0, ε1) ∪ (2 − ε2, 2), with ε1, ε2 > 0 and ε1, ε2 → 0 for α → 0.

Proof. We assume α is small, and in particular α ≤ 1
2λn; therefore all eigenvalues

are real. Let [u; v] be an eigenvector of (2.4) and let θ± be the roots of equation (2.11).
These are given by (2.12). Collecting u∗Ku and dividing and multiplying (2.12) by
u∗K2u > 0, we obtain

θ± =
u∗K2u

u∗Ku

(
1

2

u∗KAKu

u∗K2u
±
√

1

4

(
u∗KAKu

u∗K2u

)2

− u∗Ku

u∗K2u

u∗KBTBu

u∗K2u

)
≡ u∗K2u

u∗Ku
ν±.
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We recall the bounds in (2.7) and (2.8), while 1 ≤ u∗K2u
u∗Ku ≤ (1 +

σ2
1

α2 ) for any

u �= 0, with (1 +
σ2
1

α2 ) = O(α−2) as α → 0. Moreover, 0 ≤ u∗Ku
u∗K2u

u∗KBTBu
u∗K2u ≤ α2, so

that u∗Ku
u∗K2u

u∗KBTBu
u∗K2u → 0 as α → 0. We thus have ν+ → u∗KAKu

u∗K2u as α → 0. Since
u∗KAKu
u∗K2u is bounded independently of α, we also obtain

ν− = O

(
u∗Ku

u∗K2u

u∗KBTBu

u∗K2u

)
for α → 0.

Therefore, θ+ = O(u
∗K2u
u∗Ku ) = O(α−2) as α → 0, whereas θ− = O(u

∗KBTBu
u∗K2u ) = O(α2)

as α → 0. It thus follows that

η+ = 2 − 2

1 + θ+
α

→ 2 and η− = 2 − 2

1 + θ−
α

→ 0 for α → 0.

We mention that the dependency of the “optimal” value of α on the mesh size h
has been discussed, using Fourier analysis, in [3] for the case of Poisson’s equation in
first order system form, and in [5] for the case of the Stokes problem. In the first case
one can choose α so as to have h-independent convergence, whereas in the second case
there is a moderate growth in the number of iterations as h → 0.

It is important to remark that the occurrence of a gap in the spectrum for small α
can be deduced from known results for overdamped systems. Indeed, equation (2.11)
stems from the quadratic eigenvalue problem

θ2Ku− θKAKu + KBTBu = 0.

The eigenproblem above has 2n eigenvalues, n−m of which are zero, corresponding to
the dimension of the null space of KBTB. The remaining n+m eigenvalues coincide
with the eigenvalues of our problem (2.4). By introducing θ̃ = −θ, we obtain the
quadratic symmetric eigenproblem (see [6])

θ̃2Ku + θ̃KAKu + KBTBu = 0, K > 0, KAK > 0, KBTB ≥ 0.

It can be shown (see, e.g., [6, Theorem 13.1]) that if the discriminant is positive—that

is, if (u∗KAKu)2 − 4(u∗Ku)(u∗KBTBu) > 0 for any u �= 0—then all eigenvalues θ̃
are real and nonpositive. Moreover, the spectrum is split in two parts, each of which
contains n eigenvalues.1

In our context, and in light of Proposition 3.3, the result above implies that m
eigenvalues η will cluster towards zero, while n eigenvalues η will cluster around 2,
for sufficiently small α.

4. Numerical experiments. In this section we present the results of a few
numerical tests aimed at assessing the tightness of our bounds. The first problem
we consider is a saddle point system arising from a finite element discretization of a
model Stokes problem (leaky-lid driven cavity). This problem was generated using
the IFISS software written by Howard Elman, Alison Ramage, and David Silvester
[9]. Here n = 578, m = 254, λn = 0.0763666, λ1 = 3.949253, σ1 = 0.247606661,
and σm = 0.005319517. Note that the B matrices (discrete divergence operators)
generated by this software are rank deficient; we obtained a full rank matrix by
dropping the two first rows of B.

1Note that in the statement of Theorem 13.1 in [6], matrix KBTB is required to be positive
definite rather than just semidefinite. However, the result is still true under the weaker assumption
KBTB ≥ 0; see also the treatment in [10] and references therein.
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Table 4.1

Real bounds in (2.19) vs. actual eigenvalues, Stokes problem.

α Lower bound ηmin ηmax Upper bound

0.001 0.00048902 0.00050629 1.9999 1.9999
0.01 0.00111635 0.00169724 1.9999 1.9999
0.1 0.00014289 0.00022355 1.9929 1.9929
0.2 0.00007160 0.00011205 1.9608 1.9608
0.3 0.00004775 0.00007473 1.9134 1.9135
0.4 0.00003582 0.00005606 1.8633 1.8635
0.5 0.00002866 0.00004485 1.8150 1.8154
0.6 0.00002388 0.00003738 1.7696 1.7702
0.7 0.00002047 0.00003204 1.7271 1.7278
0.8 0.00001791 0.00002803 1.6871 1.6880
0.9 0.00001592 0.00002492 1.6494 1.6504
1.0 0.00001433 0.00002243 1.6137 1.6147
2.0 0.00000717 0.00001121 1.3327 1.3344
5.0 0.00000287 0.00000449 0.8826 0.8838

Table 4.2

Bounds in (2.19) vs. actual real eigenvalues, groundwater flow problem.

α Lower bound ηmin ηmax Upper bound

0.001 0.181813 0.181818 2.000000 2.000000
0.01 0.285713 0.310869 1.999893 1.999971
0.05 0.064515 0.070481 1.985944 1.996341
0.1 0.032786 0.035865 0.137154 1.971127
0.3 0.011049 0.012099 0.047856 1.437903
0.5 0.006644 0.007277 0.028988 0.722331
1.0 0.003327 0.003645 0.014599 0.145003
3.0 0.001110 0.001217 0.004890 0.011648
5.0 0.000666 0.000730 0.002937 0.005078

In Table 4.1 we compare the lower and upper bounds given in Theorem 2.2 with
the actual values of the smallest and largest eigenvalues of P−1A, which in this case
are all real. One can see that the upper bound is always very tight and that the
lower bound is fairly tight, especially for small values of α. For α ≈ 0.01 or smaller,
the eigenvalues form two tight clusters near 0 and 2, containing m and n eigenvalues,
respectively, as predicted by Proposition 3.3.

Next, we consider a saddle point system arising from the discretization of a
groundwater flow problem using mixed-hybrid finite elements [7]. In the example
at hand, n = 270, m = 207, n + m = 477, and A contains 1, 746 nonzeros. Here we
have λn = 0.0017, λ1 = 0.010, σ1 = 2.611, and σm = 0.19743.

In this case there are nonreal eigenvalues (except for very small α). In Table 4.2
we compare the lower and upper bounds given in Theorem 2.2 with the actual values
of the smallest and largest real eigenvalues of P−1A while in Tables 4.3 and 4.4 we
provide the analogous results for the real part and modulus of the nonreal eigenvalues.

One can see that the location of the real eigenvalues is well detected with our
bounds. In particular, the lower bound is very sharp, whereas the upper bound gets
looser when the whole spectrum becomes complex (α ≥ 0.05), providing again good
estimates for large values of α. The lower bounds suggest that the leftmost cluster
will not be too close to zero, particularly for α between 10−3 and 10−2, and it turns
out that these values of α yield the best results (see below).
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Table 4.3

Bounds in (2.17) vs. actual real part of nonreal eigenvalues, groundwater flow problem.

α Lower bound min�(η) max�(η) Upper bound

0.001 – – – –
0.01 – – – –
0.05 0.011296 1.823080 1.962387 2.000000
0.1 0.005602 1.571808 1.975776 2.000000
0.3 0.001857 0.608980 1.966375 2.000000
0.5 0.001113 0.274840 1.924906 2.000000
1.0 0.000556 0.078255 1.742401 2.000000
3.0 0.000185 0.009779 0.862083 2.000000
5.0 0.000111 0.003810 0.428775 2.000000

Table 4.4

Bounds in (2.18) vs. actual modulus of nonreal eigenvalues, groundwater flow problem.

α Lower bound min |η| max |η| Upper bound

0.001 – – – –
0.01 – – – –
0.05 0.019244 1.860113 1.963349 1.967129
0.1 0.009622 1.753875 1.977199 1.982111
0.3 0.003207 1.093125 1.979200 1.981669
0.5 0.001924 0.731979 1.959713 1.962379
1.0 0.000962 0.386709 1.865509 1.881779
3.0 0.000321 0.131260 1.312480 1.596393
5.0 0.000192 0.078883 0.925533 1.496510

Concerning nonreal eigenvalues, we observe that our bounds are generally not very
sharp. The real part of the eigenvalues changes considerably as α varies, clustering
on different regions of the interval (0, 2). Our lower bounds on �(η) are rather loose,
although they get better for larger values of α; conversely, the upper bounds are tight
for small α and loose for large α.

We conclude this section with the results of a few experiments that illustrate the
convergence behavior of (full) GMRES [8] with Hermitian/skew-Hermitian splitting
preconditioning; we refer to [4] for more extensive experimental results. The purpose
of these experiments is to investigate the influence of the eigenvalue distribution, and
in particular of the clustering that occurs as α → 0, on the convergence of GMRES.
We also monitor the conditioning of the eigenvectors of the preconditioned matrix for
different values of α.

In Table 4.5 we report a sample of results for both the Stokes and the groundwa-
ter flow problem, for different values of α (from tiny to fairly large). Here κ2(V ) :=
σmax(V )
σmin(V ) denotes the spectral condition number of the matrix of (normalized) eigenvec-

tors of P−1A, and “Its” denotes the corresponding number of preconditioned GMRES
iterations (matrix-vector products) needed to reduce the initial residual by at least six
orders of magnitude. For the Stokes problem, the condition number of the eigenvec-
tor matrix of the unpreconditioned A is κ2(V ) = 6.94. Without preconditioning, full
GMRES converges in 199 iterations. For the (unpreconditioned) groundwater flow
problem, it is κ2(V ) = 1.37 and GMRES stagnates.

Note that for both problems, the best results (in terms of GMRES iterations) are
obtained for α = 0.005, with generally good convergence behavior for α between 10−6

and 10−2. Good performance is observed in particular for α ≈ λn, for which nonreal
eigenvalues, when they occur, lie in a small region in the disc D(1, 1) (cf. Remark 2.1).
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Table 4.5

Conditioning of the eigenvectors and iteration count.

Stokes Groundwater flow

α κ2(V ) Its κ2(V ) Its

10−12 1.28E+18 > 200 4.31E+09 25
10−9 1.31E+10 45 1.01E+08 17
10−6 4.51E+08 41 1.41E+17 17
10−5 3.30E+04 40 5.69E+00 17
10−4 9.65E+03 40 1.23E+01 17
10−3 1.48E+03 40 8.01E+00 13
0.005 1.16E+04 38 1.31E+03 11
0.01 1.18E+03 38 1.57E+04 13
0.03 7.63E+02 40 1.32E+01 17
0.05 2.68E+02 44 6.79E+01 19
0.07 2.26E+02 48 1.91E+01 20
0.1 6.05E+01 54 1.37E+01 26
0.3 3.55E+01 76 2.76E+00 67
0.5 4.38E+01 88 1.92E+00 109
0.7 2.88E+01 97 8.87E+00 > 200
1.0 1.77E+01 108 1.56E+00 > 200
5.0 3.33E+01 157 1.20E+00 > 200

10.0 6.44E+00 174 1.90E+00 > 200

The convergence rate remains fairly stable even for smaller values of α, but even-
tually it starts deteriorating as α approaches zero. It is likely that this is due to
the fact that the preconditioner (and with it, the preconditioned matrix) becomes
singular as α → 0. On the other hand, as α → ∞ the preconditioned matrix tends
to the unpreconditioned one and the preconditioner becomes ineffective. Note that
somewhat better results can be obtained by a suitable diagonal scaling of A (see [4]);
however, no scaling was used here.

For both problems, κ2(V ) appears to be very sensitive to changes in α, at least
when α is small. This is in stark contrast with the rather smooth variation in the
number of GMRES iterations. Overall, the condition number of the eigenvector matrix
does not seem to have much influence on the convergence of GMRES.

5. Conclusions. In this paper we have provided bounds and clustering re-
sults for the spectra of preconditioned matrices arising from the application of the
Hermitian/skew-Hermitian splitting preconditioner to saddle point problems. Numer-
ical experiments have been used to illustrate the capability of our estimates to locate
the actual spectral region. We have also shown that for small α, all the eigenvalues
are real and fall in two clusters, one near 0 and the other near 2. Our bounds are
especially sharp precisely for these values of α, which are those of practical interest.
Indeed, our analysis suggests that the “best” value of α should be small enough so
that the spectrum is clustered, but not so small that the preconditioned matrix is close
to being singular. Numerical experiments confirm this, and it appears that when A
is positive definite, α ≈ λn(A) is generally a good choice.

Finally, we found a connection with the quadratic eigenvalue problems arising in
the theory of overdamped systems; it is possible that exploitation of this connection
may lead to further insight into the spectral properties of preconditioned saddle point
problems.
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Abstract. Given an n-by-n Hermitian matrix A and a real number λ, index i is said to be
Parter (resp., neutral, downer) if the multiplicity of λ as an eigenvalue of the principal submatrix
A(i) is one more (resp., the same, one less) than that in A. In case the multiplicity of λ in A is at
least 2 and the graph of A is a tree, there are always Parter vertices. Our purpose here is to advance
the classification of vertices and, in particular, to relate classification to the combinatorial structure
of eigenspaces. Some general results are given and then used to deduce some rather specific facts not
otherwise easily observed. Examples are given.
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1. Introduction. Throughout this article, A will be an n-by-n Hermitian matrix
and A(i) its (n − 1)-by-(n − 1) principal submatrix, resulting from deletion of row
and column i, i = 1, . . . , n. If λ ∈ R is an identified eigenvalue, we denote by mA(λ)
its multiplicity as an eigenvalue of A. Because of the interlacing inequalities [HJ,
Chap. 4], |mA(λ) −mA(i)(λ)| ≤ 1, and all 3 values of mA(λ) −mA(i)(λ) are possible.
Because of recent work [JLD99, JLD02, JLD+, JLDS] and for historical reasons [P],
we call the index i a Parter (resp., downer, neutral) index if mA(λ)−mA(i)(λ) = −1
(resp., 1, 0). In the event that the graph of A becomes relevant, recall that G(A) is
the graph on n vertices in which there is an edge between i and j if and only if the
i, j entry of A is nonzero. By H(G) we denote the set of all Hermitian matrices whose
graph is the given graph G; note that the diagonal entries are immaterial for belonging
to the set H(G) (except that they are real). In discussing issues herein, we naturally
identify vertices of G(A) with indices, and induced subgraphs of G(A) with principal
submatrices of A, etc., in a benign way. It was shown in [P] and subsequent refinements
[W, JLDS] that for trees there are always Parter vertices when mA(λ) ≥ 2 and further
information about their existence when mA(λ) < 2. As the location of Parter vertices
in G is an important issue, our purpose here is to relate the classification of vertices
(w.r.t. Parter, downer, and neutral) to the combinatorial structure of eigenspaces.
However, the relationship may be of interest in both directions. As it turns out some
of our observations do not depend upon the particular structure of G(A).

If mA(λ) ≥ 1, denote the corresponding eigenspace by EA(λ). If mA(λ) = 0,
then we may, for convenience, adopt the convention that EA(λ) contains only the
zero vector. In the event that entry i of x is 0 for every x ∈ EA(λ), we say that i is
a null vertex (for A and λ); otherwise i is a nonzero vertex. Of course, there is an
x ∈ EA(λ) whose support consists of all nonzero vertices.
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For trees, a useful characterization of when a vertex is Parter was demonstrated
in [JLDS]. Removal of a vertex v of degree d in a tree leaves d induced subgraphs,
each of which is a tree; such subgraphs are called branches at v and may be identified
by the neighbors u1, . . . , ud of v. Vertex v is then Parter in the tree T if and only if
there is an i, 1 ≤ i ≤ d, such that ui is a downer vertex in its branch (all w.r.t. some
λ ∈ σ(A), A ∈ H(T )).

We also use the notation A({i1, . . . , ik}) to indicate the (n− k)-by-(n− k) prin-
cipal submatrix of A resulting from deletion of rows and columns i1, . . . , ik from
A ∈ Mn. In addition, A[{i1, . . . , ik}] denotes the k-by-k principal submatrix of A
lying in the rows and columns indexed by i1, . . . , ik. (When k = 1, we write A[i].)
When indices/vertices are deleted, we refer to the remaining vertices via their original
numbers.

2. General result. From a simple and standard calculation, it is clear that
when i is a null vertex, the structure of EA(λ) imparts a good deal of information
about EA(i)(λ). Suppose, w.l.o.g., that n = i:

⎡⎢⎢⎣ A(n) a1n

a∗1n ann

⎤⎥⎥⎦
⎡⎢⎢⎣ x

0

⎤⎥⎥⎦ = λ

⎡⎢⎢⎣ x

0

⎤⎥⎥⎦ .(2.1)

(a1n is a column vector, and ann is a scalar.) Then, A(n)x = λx. This implies, in
particular, that a null vertex is, at least, neutral. The converse is also valid.

Theorem 2.1. Let A be an n-by-n Hermitian matrix. Then, index i is null for
A if and only if index i is either Parter or neutral.

Our proof uses the following lemma. When taking principal submatrices, it is
convenient to think of EA(i)(λ) as a subspace of C

n. We define E′
A(i)(λ) to be the

mA(i)(λ)-dimensional subspace of C
n formed by extending every vector of EA(i)(λ)

by a zero in the ith coordinate.
Lemma 2.2. For an n-by-n Hermitian matrix A and an identified λ ∈ R, we have

the following:
1. If i is downer, then EA(λ) � E′

A(i)(λ).

2. If i is neutral, then EA(λ) = E′
A(i)(λ).

3. If i is Parter, then EA(λ) � E′
A(i)(λ).

Proof. Assume w.l.o.g. that i = n and λ = 0, and use the block decomposition of
A shown in (2.1).

If a∗1n is a linear combination of the rows of A(n), then EA(0) ⊇ E′
A(n)(0). If

a∗1n is not a linear combination of the rows of A(n), then sequentially extending A(n)
by the row a∗1n and then by the column (a∗1n ann)∗ increases the rank each time.
Thus, rankA = rankA(n) + 2, so n is Parter. Therefore, if n is downer or neutral,
EA(0) ⊇ E′

A(n)(0). By definition, if n is downer, the containment is strict, and if n is
neutral, the containment is actually equality.

Suppose n is Parter. Let X be the maximal subspace of E′
A(n)(0) that is orthog-

onal to (a∗1n 0)∗. Clearly, X ⊆ EA(0). Since dimX ≥ mA(n)(0)−1 = mA(0), we have
X = EA(0).

Proof of Theorem 2.1. Return to the calculation displayed in (2.1). Index i is null
for A if and only if EA(λ) ⊆ E′

A(i)(λ). By the lemma, this is true if and only if i is
Parter or neutral.
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3. Distinguishing Parter and neutral vertices. To distinguish between
Parter and neutral vertices, then, we must look beyond the appropriate eigenspace of
A itself. Our approach is to consider the secondary eigenspace, that of A(i), associ-
ated with the same λ. We continue to write A as a block matrix as in (2.1). Again,
we begin with some useful lemmas.

Lemma 3.1. If n is a null vertex, then n is neutral if and only if EA(n)(λ) is
orthogonal to A1n.

Proof. By Lemma 2.2, EA(λ) ⊆ E′
A(n)(λ). In fact, EA(λ) is precisely the maximal

subspace of E′
A(n)(λ) that is orthogonal to (a∗1n 0)∗. Thus, n is neutral if and only if

EA(λ) = E′
A(n)(λ) if and only if EA(n)(λ) is orthogonal to a1n.

There is a particularly simple sufficient condition for orthogonality. We say that
a subspace X ⊆ C

n is combinatorially orthogonal to a vector y ∈ C
n if xiyi = 0 for

every x ∈ X, i = 1, . . . , n.
Lemma 3.2. Suppose that the graph of A is a tree and that n is a null vertex for

some λ ∈ R. The following statements are equivalent.
1. n is neutral.
2. All neighbors of n are null for A(n).
3. EA(n)(λ) is orthogonal to a1n.
4. EA(n)(λ) is combinatorially orthogonal to a1n.

Proof. 1 ⇒ 2: If some neighbor of n were a nonzero vertex for A(n), then that
neighbor would be a downer vertex for its branch at n (Theorem 2.1). Then n would
be Parter [JLDS].

2 ⇒ 4: The only nonzero entries in a1n correspond to the neighbors of n. These
neighbors are null vertices by assumption.

4 ⇒ 3 is obvious.
3 ⇒ 1 by Lemma 3.1.
Example 3.3. The characterization of Parter vertices in terms of “downer branches”

(specific to trees) is crucial to the proof of the lemma. In fact, if the graph of A is
not a tree, then a neutral vertex i may be adjacent to a vertex j that is nonzero for
A(n). Consider

A =

⎡⎣1 1 1
1 1 1
1 1 0

⎤⎦ .

Vertex 3 is neutral for the eigenvalue 0, and vertices 1 and 2 are nonzero for
A(3).

We may now state our main observation of this section, again focusing on trees.
It identifies Parter vertices among null vertices by considering eigenspaces of A(i).

Theorem 3.4. Let A be an Hermitian matrix whose graph is a tree, and let i
be a null vertex for A. Then i is Parter if and only if there is a neighbor j that is
nonzero for A(i).

Proof. This follows from the equivalence of 1 and 2 in Lemma 3.2, but we can
also prove the result directly. The vertex i is Parter if and only if some neighbor of i
is a downer vertex in its branch of G(A) � i. If such a downer vertex exists, then it
is nonzero for A(i). If not, then every neighbor of i is null for A(i).

Our theorem has a surprising corollary.
Corollary 3.5. Suppose that the graph of A is a tree. Every neighbor of a

neutral vertex is a null vertex for A.
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Proof. By the theorem, if i is neutral, then every neighbor of i is null for A(i).
Because EA(λ) = E′

A(i)(λ), every vertex that is null for A(i) is also null for A.
The corollary implies, by Theorem 2.1, that every neighbor of a neutral vertex is

either neutral or Parter. Thus, if a null vertex is not Parter, its neighbors constitute
a natural place to look for Parter vertices. It can happen that all neighbors are again
neutral, but, often, the neighbors include a Parter vertex.

Example 3.6. The converse of Corollary 3.5 is not true. It may happen that
all neighbors of a null vertex are null without the vertex being neutral. Suppose an
Hermitian matrix A with graph

1�������� 2�������� 3�������� 4��������

6��������

5��������

satisfies mA[{1,2}](λ) = mA[5](λ) = mA[6](λ) = 1, mA[3](λ) = 0. Then vertex 4 is
Parter because vertex 5 is a downer for its branch. A consequence of the discussion
on paths following this example is that λ is not an eigenvalue of A[{1, 2, 3}]. Hence,
mA(λ) = 1. Now it is easy to check that vertex 2 is neutral and vertices 3 and 4 are
Parter.

Let A be an Hermitian matrix whose graph is a path, and let λ be an eigenvalue
of A. For example, A could be an irreducible, tridiagonal Hermitian matrix. Using
Theorem 2.1, we can locate the zeros in an eigenvector corresponding to λ. We begin
by classifying the possible locations of Parter, neutral, and downer vertices. It is
a well-known fact that deleting a pendant (i.e., degree 1) vertex from A causes the
eigenvalue interlacing inequalities to be strict, and thus each pendant vertex is a
downer vertex for λ. It follows that A has no neutral vertices, because if λ is an
eigenvalue of A(i), each neighbor of i is a pendant vertex in G(A(i)), and thus a
downer vertex for its branch, forcing i to be Parter. For the same reason, if i and
j are Parter vertices, then j is Parter for A(i), and hence no two Parter vertices
can be adjacent. The converse of these three observations is also true; specifically,
if i1 ≤ · · · ≤ ik satisfy i1 �= 1, ik �= n, and ij+1 − ij > 1 for j = 1, . . . , k − 1, then
there exists an irreducible, tridiagonal Hermitian matrix for which λ is an eigenvalue
and vertices i1, . . . , ik are precisely the Parter vertices. (Simply construct a B such
that λ is an eigenvalue of each direct summand of B(i1, . . . , ik), and B(i1, . . . , ik)
has no Parter vertices (trivial).) Furthermore, if λ is the rth largest (resp., smallest)
eigenvalue of A, then λ can have at most r− 1 Parter vertices, i.e., k ≤ r− 1. (To see
this, iterate the interlacing inequalities to see that λ is the (r − k)th largest (resp.,
smallest) eigenvalue of mA({i1,...,ik})(λ).) Now, by Theorem 2.1, the constraints on
i1, . . . , ik also characterize the locations of zeros in an eigenvector.

4. Implications. The observations made thus far show that there are simple
but surprising links among the classification of vertices. These have some very strong
implications that we explore here. First, we give two basic lemmas that hold inde-
pendent of the graph and then consider implications via certain categories.

Lemma 4.1. Let A be an n-by-n Hermitian matrix. If i is neutral, then j �= i is
downer for A if and only if j is downer for A(i).

Proof. If i is neutral, then EA(λ) = E′
A(i)(λ), which implies that j is nonzero for

A if and only if j is nonzero for A(i).
Lemma 4.2. Let A be an n-by-n Hermitian matrix. If i is Parter and j is downer

(for A and λ), then j is also downer for A(i) and λ.
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Proof. Delete vertex i first and vertex j second. Then it is clear that mA({i,j})(λ) ≥
mA(λ). Deleting the vertices in the opposite order gives mA({i,j})(λ) ≤ mA(λ). Hence,
mA({i,j})(λ) = mA(λ), which implies the result.

4.1. Vertex classification. It is a goal for each graph G, A ∈ H(G), and
identified λ ∈ R, to be able to quickly classify each vertex w.r.t. Parter, neutral, or
downer. In principle this could be done with prior results. Here, we mention some
observations that assist in classification.

Proposition 4.3. Let A be an n-by-n Hermitian matrix. If mA(λ) = m, then
A has at least m downer vertices.

Proof. Assume m ≥ 1. Because dimEA(λ) = m, there is some vector in EA(λ)
that has at least m nonzero entries. These entries identify downer vertices.

Proposition 4.4. Suppose that the graph of A is connected. If mA(λ) = m ≥ 1,
then A has at least m + 1 downer vertices.

Proof. By Proposition 4.3, A has at least m nonzero vertices. Suppose A has
exactly m nonzero vertices. Then EA(λ) is spanned by vectors ei1 , . . . , eim , where ej
is the jth standard basis vector for C

n. Since (A− λI)ej = 0 implies the jth column
of A− λI is zero, the graph of A is not connected.

Example 4.5. A star is a graph that is a tree and has exactly one vertex of degree
> 1. If the graph of A is the star on n vertices, and every diagonal entry of A is λ,
then mA(λ) = n − 2. Also, the central vertex is Parter, and every pendant vertex is
a downer vertex, so A has exactly mA(λ)+ 1 downer vertices. Therefore, Proposition
4.4 is the strongest statement that can be made for all connected graphs.

The following proposition is a restatement of Corollary 3.5.
Proposition 4.6. Suppose that the graph of A is a tree, and let i be a neutral

vertex. Then every neighbor of i is either Parter or neutral for A.

4.2. Classification of vertex pairs. We next turn to the classification of two
vertices and, in particular, the possibilities for their status initially vs. sequentially.
There are differences depending upon whether or not the two vertices are adjacent.
We begin with another observation that is independent of the graph.

Proposition 4.7. Let A be an n-by-n Hermitian matrix, and let i and j be
distinct indices. We have the following three statements.

1. If i and j are Parter, then mA(λ) −mA({i,j})(λ) ∈ {−2, 0}.
2. If i and j are neutral, then mA(λ) −mA({i,j})(λ) ∈ {−1, 0}.
3. If i is neutral and j is downer, then mA(λ) −mA({i,j})(λ) = 1.

Proof. 1. Clearly, if i and j are Parter vertices, then −2 ≤ mA(λ)−mA({i,j})(λ) ≤
0. Suppose that the difference is −1, for the sake of contradiction. Assuming w.l.o.g.
that our eigenvalue λ equals 0 and that i = n− 1 and j = n, we write

A =

⎡⎢⎢⎢⎢⎣
A({n− 1, n}) a1,n−1 a1,n

∗ an−1,n−1 an−1,n

∗ ∗ an,n

⎤⎥⎥⎥⎥⎦ ,

where the entries marked ∗ are determined by the Hermicity of A. (Note that A({n−
1, n}) is our usual notation for the (n− 2)-by-(n− 2) principal submatrix of A, that
a1,n−1 and a1,n are vectors of length n− 2, and that all other entries are scalars.) By
our assumption that mA(λ) − mA({n−1,n})(λ) = −1, it follows that n − 1 is neutral
for A(n) and that n is neutral for A(n− 1), and therefore a1,n−1 and a1,n are linear
combinations of the columns of A({n− 1, n}). Hence,
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rankA ≤ rank
[
A({n− 1, n}) a1,n−1 a1,n

]
+ 2 = rankA({n− 1, n}) + 2,

so that

mA(0) = n− rank(A) ≥ (n− 2) − rankA({n− 1, n}) = mA({n−1,n})(0),

contradicting the assumption that mA(λ) −mA({n−1,n})(λ) = −1.
2. By Lemma 4.1, if i and j are neutral, then j is Parter or neutral for A(i).
3. By the same lemma, if i is neutral and j is downer, then j is downer for

A(i).
Corollary 4.8. Let A be an Hermitian matrix, and let i and j be distinct

indices. If i is Parter and mA(λ) −mA({i,j})(λ) = −1, then j is neutral for A.
Proof. First, suppose that j is Parter. By Proposition 4.7, mA(λ)−mA({i,j})(λ) �=

−1, a contradiction. Next, suppose that j is downer. Then mA({i,j})(λ) ≤ mA(j)(λ)+
1 = mA(λ), also a contradiction.

Proposition 4.9. Suppose that the graph of A is a tree, and let i and j be
neighbors. We have the following two statements.

1. If i and j are neutral, then mA(λ) −mA({i,j})(λ) = 0.
2. If i and j are downer, then mA(λ) −mA({i,j})(λ) = 1.

Proof. 1. By Proposition 4.7, if i and j are neutral, then mA(λ)−mA({i,j})(λ) ∈
{−1, 0}. Suppose mA(λ)−mA({i,j})(λ) = −1. Then j is Parter in A(i), so j is adjacent
to a vertex k which is downer for A({i, j}). But then k must also be a downer in A(j)
since i and j are adjacent. It follows that j is Parter for A—a contradiction.

2. If i and j are downer, then clearly 0 ≤ mA(λ) − mA({i,j})(λ) ≤ 2. Suppose
that mA(λ) − mA({i,j})(λ) = 0. Then j is Parter in A(i), so j is adjacent to some
vertex k which is downer for A({i, j}). But since i and j are adjacent, k must also be
downer for A(j), which implies that j is Parter for A—a contradiction. Now suppose
that mA(λ) −mA({i,j})(λ) = 2. Then j is downer for its branch at i, which implies
that i is Parter for A—a contradiction.

Example 4.10. We will show that if i and j are not adjacent, then the conclusions
of Proposition 4.9 may not hold.

First, observe that if an irreducible 2-by-2 Hermitian matrix has λ on its diagonal,
then λ is not an eigenvalue.

Take λ = 0, and let

A =

⎡⎣1 1 0
1 0 1
0 1 1

⎤⎦ .

Check that mA(0) = 0, and that the graph of A is a path. Removing either pendant
vertex leaves a 2-by-2 Hermitian matrix with λ = 0 on its diagonal, so both pendant
vertices are neutral. However, mA({1,3})(0) = 1, so claim 1 of Proposition 4.9 does
not hold.

Still with λ = 0, take

B =

⎡⎣0 1 0
1 0 1
0 1 0

⎤⎦ .

B has the same graph as A, but mB(0) = 1. For the same reason as above, mB(1)(0) =
mB(3)(0) = 0, so the pendant vertices are downer vertices. However, in contrast to
claim 2 of Proposition 4.9, mB(0) −mB({1,3})(0) = 0.
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Table 4.1

i j mA(λ) −mA({i,j})(λ)

Parter Parter −2, 0
Parter Neutral −1, 0
Parter Downer 0
Neutral Neutral −1, 0
Neutral Downer 1
Downer Downer 0, 1, 2

Again with λ = 0, take

C =

⎡⎢⎢⎣
0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎦ .

Then mC(0) = 2 and mC({3,4})(0) = 0, even though vertices 3 and 4 are downer.
We have seen that claim 2 of Proposition 4.9 need not hold for nonadjacent

vertices, and, in fact, mA(λ) −mA({i,j})(λ) may take on either value 0 or 2.
Using the results thus far, we are able to classify, for pairs of vertices, the joint

or sequential effect upon multiplicity, given the individual effect of removal. It is of
interest that certain possibilities cannot occur. Some of these are contained in results
of this section thus far, and others are straightforward. We list the full classification
without proof. Both the case of arbitrary and adjacent vertices are considered. In each
case, a missing possibility provably cannot occur, and examples may be constructed
for each listed possibility. For example, the last entry in the second table indicates
that if a downer vertex is removed, an adjacent vertex that was initially a downer
must then be neutral, and not Parter or downer (which can occur in the nonadjacent
case).

Table 4.1 classifies the joint effect of removing two indices i and j in the following
sense. Let ∆ be an integer. If ∆ is listed in some row of the table, then there
exists an Hermitian matrix A and indices i �= j with given classifications such that
mA(λ) − mA({i,j})(λ) = ∆. If ∆ is missing from a row, then no matrix with such
indices exists. Furthermore, for each listed ∆, an appropriate matrix A exists whose
graph is a tree. Hence, the table would be identical if we restricted attention to
matrices whose graphs are trees.

Table 4.2 concerns adjacent vertices. Specifically, if ∆ is listed in some row of the
table, then there exists an Hermitian matrix A whose graph is a tree and indices i �= j
with given classifications which are neighbors such that mA(λ)−mA({i,j})(λ) = ∆. If
∆ is missing from a row, then no matrix with such indices exists.

Table 4.2

i j mA(λ) −mA({i,j})(λ)

Parter Parter −2, 0
Parter Neutral −1, 0
Parter Downer 0
Neutral Neutral 0
Neutral Downer not possible
Downer Downer 1
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The restriction to trees is important; without this restriction, the table would
have been identical to the previous table. As before, the difference between trees and
nontrees can be explained by the [JLDS] characterization of Parter vertices of trees.

4.3. Null subgraphs. This section is devoted to unexpected results about clas-
sification of entire subgraphs of a given graph.

Let G1 be an induced subgraph of G(A). If xi = 0 for all x ∈ EA(λ), i ∈ G1,
then we say that G1 is a null subgraph (for A and λ). Our first observation is a simple
consequence of Theorem 2.1.

Proposition 4.11. G1 is a null subgraph for A if and only if every vertex i of
G1 is Parter or neutral for A.

If there is a sequence of vertices i1, . . . , ik such that i1 is null for A and ij is null
for A({i1, . . . , ij−1}), j = 2, . . . , k, then we say that i1, . . . , ik are sequentially null.

Proposition 4.12. Let A be an n-by-n Hermitian matrix, and suppose i1, . . . , ik
are sequentially null. If λ is not an eigenvalue of some direct summand A1 of
A({i1, . . . , ik}), then G(A1) is a null subgraph for A.

Proof. Clearly, every vertex in G(A1) is a null vertex for A({i1, . . . , ik}). For
each j, the eigenspace of A({i1, . . . , ij−1}) is contained in the eigenspace of
A({i1, . . . , ij}) (by Lemma 2.2), so null vertices of A({i1, . . . , ij}) are null vertices
of A({i1, . . . , ij−1}).

Proposition 4.13. Let A be an n-by-n Hermitian matrix, and suppose i1, . . . , ik
are sequentially null. Identify some direct summand A1 of A({i1, . . . , ik}). If G(A1)
is a null subgraph for A, then mA1

(λ) ≤ mA({i1,...,ik})(λ) −mA(λ).
Proof. We have EA(λ) ⊆ E′

A({i1,...,ik})(λ). (Similar to the notation introduced

before Lemma 2.2, E′
A({i1,...,ik})(λ) is formed from EA({i1,...,ik})(λ) by inserting ze-

ros into appropriate spaces.) If A({i1, . . . , ik}) = A1 ⊕ A2, then EA(λ) ⊆ E′
A2

(λ).
Now, dimEA1

(λ) = dimEA({i1,...,ik})(λ) − dimEA2
(λ) ≤ dimEA({i1,...,ik})(λ)−

dimEA(λ).
In the following proposition, T ′ is an induced subgraph of G(A). The notation

A[T ′] denotes the principal submatrix of A lying in the rows and columns indexed by
the vertices of T ′.

Proposition 4.14. Suppose that the graph of A is a tree. Let i be Parter for A,
and identify some branch T ′ at i for which mA[T ′](λ) ≥ 1. If T ′ is a null subgraph for
A, then every neighbor of i is Parter or neutral for A.

Proof. If j is a neighbor of i, let Tj denote the branch of j at i.
In the notation of Lemma 2.2, we have EA(λ) ⊆ E′

A(i)(λ). Choose a basis B for

E′
A(i)(λ) in which the support of any basis vector is contained in a single branch Tj .

Because mA(λ)−mA(i)(λ) = −1 and T ′ is a null subgraph, it follows that B contains
exactly one vector x1 whose support is T ′. Furthermore, B�{x1} is a basis for EA(λ).

Obviously, if there is a neighbor j such that no basis vector x ∈ B � {x1} has
support Tj , then j is a null vertex.

Now, let j be a neighbor of i, and suppose there exists an x ∈ B � {x1} whose
support is Tj . We have (A− λIn)x = 0, and aijxj = 0 implies xj = 0.

5. Example. Results from the previous section can be used to classify vertices
w.r.t. Parter, neutral, or downer with little knowledge of the numerical entries in a
matrix. Of course, an understanding of the combinatorial structure of eigenspaces
follows. Here we present an extended example.

Several results in the previous section concern the quantity mA(λ)−mA({i,j})(λ).
Sometimes it is useful to think of extracting A({i, j}) by first deleting row and column
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i and then deleting row and column j. For example, if i is Parter for A and j is
neutral for A(i), then mA(λ) −mA({i,j})(λ) = −1. In this case, we say that i and j
are sequentially Parter-neutral (for A and λ). We may rephrase Corollary 4.8, “If i
and j are sequentially Parter-neutral for A, then j is originally neutral for A.”

Let A = (aij) be an Hermitian matrix with graph
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3��������
��

��
��

�
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5���������������
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10��������

11��������
�������
12��������

13��������
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��
��

� .

Let B = A[{2, 3, 4, 5}], C = A[{6, 7, 8, 9}], and D = A[{10, 11, 12, 13}], the 4-by-4
principal submatrices of A lying in the indicated rows and columns. The graph of
each of these principal submatrices is the star on four vertices. Let λ be a fixed real
number, and suppose that mB(λ) = 0, mC(λ) = 1, and mD(λ) = 2. Further, suppose
that neither B nor C has Parter vertices. We will use this information to classify
some of the vertices of A w.r.t. Parter, neutral, or downer and to completely classify
the combinatorial structure of the eigenspace corresponding to λ.

Because mD(λ) = 2, it follows that D has a Parter vertex and a11,11 = a12,12 =
a13,13 = λ. Therefore, vertex 11 is a downer for its branch at vertex 10, so vertex 10
is Parter for A.

Similarly, vertex 6 is downer for C, so vertex 1 is Parter for A.
Because vertices 1 and 10 are sequentially Parter-Parter and mA({1,10})(λ) = 4,

we conclude that mA(λ) = 2.
By Proposition 4.12, the subgraph of G(A) induced by vertices 2, 3, 4, 5 is a null

subgraph, i.e., each vertex i, i = 2, 3, 4, 5, is Parter or neutral for A.
Because vertices 1 and 2 are sequentially Parter-neutral, vertex 2 must be neutral

for A by Corollary 4.8.
Because mA(λ) = 2 and mA[{11,12,13}](λ) = 3, λ cannot be an eigenvalue of

A({10, 11, 12, 13}) by the interlacing inequalities. Therefore, mA(λ)−mA({6,10})(λ) ≤
−1, so mA(λ)−mA(6)(λ) ≤ 0. Vertex 6 is Parter or neutral for A. Similar arguments
show that vertices 7, 8, and 9 are Parter or neutral.

By Proposition 4.4, A has at least three downer vertices, so vertices 11, 12, and
13 must be downers for A.

In summary, mA(λ) = 2; vertices 1 and 10 are Parter; vertex 2 is neutral; vertices
11, 12, and 13 are downer; and each vertex i, i = 3, 4, 5, 6, 7, 8, 9, is either Parter
or neutral. Therefore, xi = 0 for all x ∈ EA(λ), i �= 11, 12, 13, and there is some
eigenvector which is nonzero in coordinates 11, 12, and 13.

Remark 5.1. Once we know that vertex 2 is neutral, Proposition 4.6 implies that
vertices 3, 4, and 5 are null vertices, which agrees with our findings.

Remark 5.2. Once we know that vertices 6, 7, 8, and 9 are null vertices, Propo-
sition 4.14 implies that vertices 2 and 10 are also null vertices, which agrees with our
findings.
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Remark 5.3. The constraints on A were insufficient to classify every vertex as
Parter, neutral, or downer. For example, there is a matrix that satisfies the constraints
on A such that vertex 3 is Parter but vertex 4 is neutral, and vertex 7 is Parter but
vertex 8 is neutral. It is also possible to show that vertex 6 may be either neutral
or Parter. However, if vertex 6 is Parter, then vertices 7, 8, and 9 must be neutral,
because then vertices 6 and i, i = 7, 8, 9, would be sequentially Parter-neutral.

Acknowledgment. The authors wish to thank Lon Mitchell for his suggestion
to pursue the results herein because of graph theoretic interest.
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Abstract. We explore the computation of roots of polynomials via eigenvalue problems. In
particular, we look at the case when the leading coefficient is relatively very small. We argue that
the companion matrix algorithm (used, for instance, by the Matlab roots function) is inaccurate in
this case. The accuracy problem is addressed by using matrix pencils instead. This improvement can
be predicted from the backward error bound of Edelman and Murakami (for companion matrices)
versus the bound of Van Dooren and Dewilde (for pencils). We then show how to extend the accurate
algorithm to Bézier polynomials and present computational experiments.

Key words. polynomial roots, stability, condition number, generalized eigenvalue, matrix pen-
cil, Bézier polynomial
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1. Introduction. Computing the roots of a univariate polynomial is a funda-
mental problem that arises in many applications. The focus of this paper is on polyno-
mials where the leading coefficient is much smaller than some of the other coefficients.
Such polynomials occur frequently in geometric applications like mesh generation and
graphics. The reason is that the user of geometric applications often works witha
fixed toolbox of geometric primitives, e.g., cubic splines. The application might store
a user’s linear or quadratic polynomial as a cubic with leading coefficients of zeros.
Once transformations (such as translations and rotations) are applied, the leading co-
efficient, which was formerly zero, could become small but nonzero in these cases. An
example of such a geometric application is the QMG mesh generator [9]. Even in an
implementation of the quadratic formula to solve a real polynomial ax2 + bx+ c = 0,
there are numerical difficulties when b is much bigger than the other two coefficients.
This problem and its solution are discussed in many textbooks on numerical analysis
(see, e.g., Example 1.10 of [6]).

One way of numerically computing the roots of a polynomial is to form its com-
panion matrix and compute the eigenvalues. This is, for example, how the Matlab
function roots works [10]. There exist quality algorithms for computing eigenvalues,
so roots should give accurate solutions as long as the following two conditions are
met. First, the problem has to be well conditioned to begin with. A root ξ of a
polynomial q(x) is well conditioned if the quantity κ2(ξ, q), defined by (2.2) below
and to be discussed later, is not too large. Second, the translation from a polynomial
to an eigenvalue problem should not cause the conditioning of the problem to become
much worse. Our focus is on the latter issue.

Let p be a polynomial,

p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0,
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and C be its companion matrix,

C =

⎡⎢⎢⎢⎣
0 1

. . .
. . .

0 1
− a0

an
· · · · · · −an−1

an

⎤⎥⎥⎥⎦ .(1.1)

Suppose the eigenvalues of C are computed using a backward stable eigensolver, so
that they are the exact eigenvalues of C +E, where E is a matrix with small entries.
The computed eigenvalues are also roots of a perturbed polynomial p̃ with coefficients
ãj = aj + ej . Edelman and Murakami [2] show that to first order

ej−1 �
j−1∑
m=0

am

n∑
i=j+1

Ei+m−j,i −
n∑

m=j

am

j∑
i=1

Ei+m−j,i,

taking into account that our companion matrix is the transpose of theirs. Note that
the leading coefficient an is not perturbed (en = 0). Also, note that this formula is
still correct even though we do not assume the normalization an = 1 used in [2].

In roots the eigenvalue problem Cx = λx is solved using the QR-algorithm (see,
for example, section 7.5 of [5]), and it can be shown that

‖E‖ < k1‖C‖εmach,

where εmach is machine epsilon, ‖ · ‖ = ‖ · ‖F is the Fröbenius norm, and k1 depends
only on n. (Actually k1 also depends on the number of QR-steps, but in Matlab’s
implementation the algorithm is deemed to have failed to converge if this number
exceeds 3n. For a detailed backward error analysis of the QR-algorithm see [12].)
Let a = [a0, . . . , an] and ã = [ã0, . . . , ãn]. Now, ‖C‖ � |amax/an|, where amax is the
largest coefficient, i.e., |amax| = max |aj |. So we get a backward error bound,

‖ã − a‖ < k2

∣∣∣∣amax

an

∣∣∣∣ · ‖a‖ · εmach + O(ε2mach).(1.2)

Here ‖ · ‖ = ‖ · ‖2. (In this paper all vector norms are 2-norms and matrix norms
in this section are Fröbenius norms. Also, from now on the error bounds are only
written to first order in εmach, i.e., the O(ε2mach) term is omitted.) This bound is not
so good when amax is much bigger than the leading coefficient an, the case we will
refer to by saying that p has a small leading coefficient.

In a paper on matrix polynomials [14], Van Dooren and Dewilde present an anal-
ysis of a different algorithm. If their result is written for ordinary polynomials, it goes
as follows. Consider the generalized eigenvalue problem Ax = λBx, with

A− λB =

⎡⎢⎢⎢⎣
0 1

. . .
. . .

0 1
−a0 · · · · · · −an−1

⎤⎥⎥⎥⎦− λ

⎡⎢⎢⎢⎣
1

. . .

1
an

⎤⎥⎥⎥⎦ .(1.3)

If this is solved using the QZ-algorithm (section 7.7 of [5]), the computed eigenvalues
are exact for a perturbed matrix pencil

(A + E) − λ(B + F ),(1.4)
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with

‖E‖ < ka‖A‖εmach, ‖F‖ < kb‖B‖εmach,

where ka, kb depend only on n.
Let a = [a0, . . . , an], as before, and assume that the coefficients have been scaled

so that ‖a‖ = 1. In a clever way Van Dooren and Dewilde use row and column
operations to get the perturbed pencil (1.4) back into the same form as the original
pencil (1.3), thus showing that the computed roots are exact for a polynomial p̃ with

‖ã − a‖ < k3εmach = k3‖a‖εmach,(1.5)

where k3 depends only on n.
One would expect solving Cx = λx and solving Ax = λBx to give similar results,

but clearly the error bound (1.5) is better than (1.2). The difference is the factor
|amax/an|, which comes from the norm of the companion matrix C. The advantage
of the matrix pencil is that we can normalize the entries of the matrices A and B, so
that we get bounds on the matrix norms independent of the coefficients aj . For the
companion matrix we do not have this freedom.

We must also point out that there is a difference in the way the two methods are
analyzed. Edelman and Murakami [2] fix the leading coefficient, while Van Dooren
and Dewilde [14] allow all the coefficients to be perturbed. In section 2 we verify by
numerical examples that both the normalization ‖a‖ = 1 and perturbing the leading
coefficient are needed for the strong backward error bound (1.5) to hold.

We then compare the accuracy of the roots computed by the two methods. The
results are given in relation to the condition number of each root, the hope being
that the forward error is of the order of condition number times machine precision,
or smaller. If we use the pencil (1.3), this is indeed the case. For polynomials with
a small leading coefficient and roots of order 1 in magnitude or smaller, this method
does better than roots. For other classes of problems, roots sometimes gives better
answers than the pencil algorithm; see further remarks in section 4.

In section 3 we turn our attention towards Bézier polynomials, i.e., polynomials
arising in computations with Bézier curves. We propose two generalized eigenvalue
approaches for computing their roots, and give a backward error bound for one of
them. Numerical experiments are done to reveal the benefit of the generalized eigen-
value approach over using the companion matrix together with a change of variables.

There certainly are other ways of dealing with a small leading coefficient. One
way is to drop the leading term, if that causes a smaller error than we would get if we
kept it. Another way is to use linear fractional transformations. We return to these
approaches in the next section.

2. Numerical experiments. To test the two methods we need polynomials
whose coefficients vary greatly in size. We generate random test polynomials as fol-
lows. First we form a random polynomial of degree 8 with coefficients

(α + iβ) · 10γ ,

where α and β are chosen uniformly from [−1, 1] and γ is chosen uniformly from
[−10, 10]. To get a small leading coefficient we fix it at 10−10. (This is slightly
modified from the random test polynomials used in [13].) We then impose a double
root at 1/2 by multiplying this polynomial with (z− 1

2 )2, thus giving a test polynomial
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Fig. 2.1. Backward error: (a) roots, (b) and (d) normalized pencil (‖a‖ = 1), (c) pencil with
an = 1. All minimal errors except (d) where an is fixed. Dashed line is at machine epsilon.

of degree 10. We plot the forward error versus the condition number of the root and
the double root is added to ensure that there is an ill-conditioned root.

Given computed roots, ẑ1, . . . , ẑn, let

p̂(z) = (z − ẑ1) · · · (z − ẑn).

We compute the coefficients, â0, . . . , ân, of this polynomial using 40-decimal-digit pre-
cision (via Matlab’s vpa function). If we allow all the coefficients of p to be perturbed,
the perturbation giving ẑ1, . . . , ẑn as exact roots is not unique, since multiplying p̂
by a scalar does not change its roots. Unless otherwise stated, we will compute the
backward error that is minimal in a least squares sense,

min
τ

‖τ â − a‖.(2.1)

The minimum is obtained at τ = (âHa)/(âH â).
Figure 2.1 shows the relative normwise backward error as the roots and the error

are computed in four different ways (all using the same 100 random polynomials).
“Normwise” means that we measure the norm ‖a− τ â‖ as opposed to componentwise
errors in individual coefficients. We return to componentwise bounds in section 4.
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Fig. 2.2. Forward error: (a) roots, (b) normalized pencil. Error shown only for roots with
modulus < 10. Dashed line is the condition number times machine epsilon.

In (a) we used Matlab’s roots and the error is computed using (2.1). Even if all
the coefficients are perturbed and we take the smallest perturbation, we get an error
substantially bigger than machine epsilon. So it is not possible to get an error bound
as strong as (1.5) for this method. In fact, this is only slightly better than we would
get holding an fixed (τ = an/ân).

The plot (b) shows the backward error when the roots are computed by solving
the generalized eigenvalue problem Ax = λBx, the coefficients are normalized so that
‖a‖ = 1, and (2.1) is used to compute the backward error. We see that the pencil
algorithm gives much better results than the companion matrix algorithm for our test
problems. To see how important the normalization ‖a‖ = 1 is, we modified the pencil
algorithm in (c) by using the normalization an = 1 instead. (Basically we are using
the pencil C−λI.) And in (d) we used the same algorithm as in (b) but computed the
backward error using τ = an/ân to see what happened if we insisted on not perturbing
an. We see that both the normalization ‖a‖ = 1 and perturbing all the coefficients
are needed for (1.5) to hold.

Next we turn to forward error, i.e., accuracy of the computed roots. In what
follows, z1, . . . , zn will denote the “exact” roots, which we find by simplifying in 40-
decimal-digit arithmetic the result of Matlab’s solve function. The roots computed
in regular (double) precision are denoted by ẑ1, . . . , ẑn.

Figure 2.2 shows the error |ẑj−zj | for the same set of 100 random polynomials used
for the backward error estimates. We choose to plot the accuracy of each computed
root as a function of its condition number. Let

q(z) = zn + cn−1z
n−1 + · · · + c1z + c0

be a monic polynomial. Toh and Trefethen [13] derive a formula for the condition
number of a root ξ of q, which for normwise perturbations becomes

κ1(ξ, q) = ‖ [c0, . . . , cn−1] ‖
‖ [1, ξ, . . . , ξn−1] ‖

|q′(ξ)| .

By “normwise perturbations” we mean that this formula bounds how much ξ will
change if the coefficient vector c = [c0, . . . , cn−1] is perturbed by a vector u such that
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‖u‖ � ‖c‖. In section 4 we consider componentwise perturbations in which |ui| � |ci|
individually for each i. Toh and Trefethen did not perturb the leading coefficient,
but if we allow perturbation of all the coefficients and modify the derivation in [13]
accordingly, we get

κ2(ξ, p) = ‖a‖‖ [1, ξ, . . . , ξn] ‖
|p′(ξ)| ,(2.2)

as the condition number of a simple root ξ of p. This is the formula we use.
In geometric computing, we usually only need the roots in the interval [0, 1], but

we want to be sure we have all of them with high accuracy. Since this is the intended
application, our goal is to get the roots with small modulus as accurate as possible,
while the accuracy of the big ones is less important. We return to the matter of
computing the large roots in section 4. Therefore, the plots in Figure 2.2 include only
roots satisfying |z| < 10. It is for these roots that the method using Ax = λBx does
well compared to roots. We see in plot (b) that the roots computed using the pencil
algorithm have errors < κ2εmach, while this is not true for the companion matrix
algorithm seen in plot (a).

We conclude this section by looking at two other possible approaches to handling
a small leading coefficient. As mentioned in the introduction, another approach is
to drop leading coefficients that are too small. For example, suppose the size of the
leading coefficient is δ‖a‖. Then the error in the roots caused by the amax/an factor in
(1.2), assuming the leading coefficient is not dropped, is on the order of εmach/δ. On
the other hand, the error caused from the change to the polynomial (which therefore
changes the roots) for dropping the leading coefficient is on the order of δ. This
suggests that the best strategy is to drop the leading coefficient (and subsequent
leading coefficients, if they continue to be small) if δ ≤ √

εmach. The worst error in
this case is expected to be about

√
εmach. We ran our tests on this method; the results

are illustrated in Figure 2.3(a) and (b) (backward and forward errors). As before, only
forward error of roots with modulus less than 10 are depicted. As is evident from the
figure (and is expected from the preceding explanation), this method is not as accurate
as the pencil method. We also tried augmenting this method by computing a Newton
step to improve each root. (The rationale is that the worst case error is

√
εmach, so

we could, in principle, get a nearly exact root with a single step of Newton to double
the number of digits.) The results of this augmentation (not shown) are that the
forward errors are often improved, but the backward errors often get worse with this
modification.

Another potential approach for handling a small leading coefficient is to change
variables by a fractional linear transformation (FLT), and then transform the com-
puted roots back after the solution. This approach is difficult to implement because
the best FLT for the data at hand is problem-dependent and is not easy to determine
in advance. Therefore, a rootfinder that adopted this approach would probably have
to try several FLTs chosen at random and use a cutoff measure to determine which
FLT was best. We tried solving for the roots of the 100 polynomials using the fixed
FLT t = 1/(z− 1) which maps the very large root or roots of the original polynomial
(caused by the small leading coefficient) to roots near 1. This algorithm performed ac-
ceptably as shown in Figure 2.3(c) and (d), but still worse than the pencil algorithm.
Furthermore, as already mentioned, the use of a single fixed FLT is not recommended
as a general solution to the problem of small leading coefficients.
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Fig. 2.3. The method of truncating small leading terms (backward and forward errors) are
depicted in (a) and (b), while the method of a fractional linear transformation is depicted in (c) and
(d).

3. Bézier polynomials. Bézier curves are widely used in geometric computing
[3]. Given control points b0,b1, . . . ,bn, the Bézier curve b(t) is defined for t ∈ [0, 1]
by taking repeated convex combinations

b1
j = (1 − t)bj + tbj+1, j = 0, . . . , n− 1,

b2
j = (1 − t)b1

j + tb1
j+1, j = 0, . . . , n− 2,

...

bn
0 = (1 − t)bn−1

0 + tbn−1
1

and setting b(t) = bn
0 . An equivalent definition is given by

b(t) =

n∑
j=0

bj

(
n

j

)
(1 − t)n−jtj .

(The latter is called the Bernstein form of the Bézier curve.) Figure 3.1 shows an
example with three control points.
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Fig. 3.1. An example of a Bézier curve (with the points br
j for t = 1/3).

If we wanted to know where a Bézier curve intersects one of the coordinate axes,
we would have to solve a polynomial equation

pB(t) =

n∑
j=0

bj

(
n

j

)
(1 − t)n−jtj = 0,(3.1)

where the bj are now real scalars. In general, the problem of finding the intersection
of a Bézier curve and an arbitrary line can be written as this kind of equation.

Let aj =
(
n
j

)
bj . One way of solving pB(t) = 0 is to solve

qB(z) = anz
n + · · · + a1z + a0 = 0

using roots and then compute fractional transformation t = z/(1+z). This approach
may run into numerical difficulties as above, namely, the method will work poorly if
an is much smaller than the other coefficients. A better approach is to run the QZ
algorithm on the Van Dooren–Dewilde pencil given by (1.3) for qB followed by the
fractional transformation. At first glance, it seems that this method could run into
difficulties if one or more of the roots of qB is close to −1 since the denominator in
the equation t := z/(1 + z) will blow up. In fact, the following analysis shows that
this algorithm is backward stable for finding roots of a Bézier polynomial.

Let ẑ1, . . . , ẑn be the computed roots of qB using the pencil algorithm. This
analysis will assume that no ẑi is exactly equal to −1, although the analysis could be
extended to that case as well (i.e., there is no assumption of a lower bound on the
distance to −1). Let q̂B(z) = (z − ẑ1) · · · (z − ẑn). The backward error bound of Van
Dooren and Dewilde implies that there exists a τ1 such that

‖qB − τ1q̂B‖ ≤ Cnεmach‖qB‖.(3.2)

Here, we regard qB and q̂B as vectors with n+1 entries, the constant coefficient being
the first entry and the leading coefficient being the last.

Let T1, . . . , Tn be the computed values of ẑ1/(ẑ1 + 1), . . . , ẑn/(ẑn + 1). We adopt
the usual model of floating-point arithmetic, namely, that every operation +,−, ∗, /
on floating point numbers x, y yields the correct answer multiplied by a factor (1+δ),
where |δ| ≤ εmach, machine epsilon. Assuming the model is valid for real numbers,
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Higham [7] shows the same bounds apply to complex arithmetic except with a slightly
larger value of εmach and with the proviso that δ may now be complex. For the rest
of this section, we rely on this result and we redefine εmach to be machine epsilon for
complex floating-point arithmetic (i.e., we multiply the original machine epsilon by a
small constant factor). Refer also to Exercise 1.12 of Demmel [1].

Thus, we can say that

Ti =
(1 + ηi)ẑi

(1 + η̂i)(ẑi + 1)
,

where ηi, η̂i are two complex numbers satisfying |ηi|, |η̂i| ≤ εmach and accounting for
the roundoff in the addition in the denominator and quotient. Since (1+ηi)/(1+ η̂i) =
1+ηi− η̂i+O(ε2mach), we can let δi = ηi− η̂i and drop the high order term to simplify:

Ti =
(1 + δi)ẑi
ẑi + 1

,

where |δi| ≤ 2εmach.
Next, let PB(t) be the Bézier polynomial whose roots are T1, . . . , Tn. The goal for

the backward error analysis is to show that the control points of PB , say B0, . . . , Bn,
are normwise not too far away from b0, . . . , bn, i.e., to show that there exists a τ2 such
that

‖(b0, . . . , bn) − τ2(B0, . . . , Bn)‖ ≤ O(εmach) · ‖(b0, . . . , bn)‖.(3.3)

Define Ai = n!Bi/(i!(n− i)!). Let QB(z) = Anz
n + · · ·+A0. Then the above problem

is equivalent to showing that there exists τ2 such that

‖qB − τ2QB‖ ≤ O(εmach) · ‖qB‖,(3.4)

where the constant in the O-notation of (3.4) differs from the constant in (3.3) by a
multiplicative factor at most n!/((n/2)!(n/2)!).

We will prove (3.4) in two steps: First, (3.2) gives the distance from qB to q̂B .
Second, we derive an inequality for the distance from q̂B to QB . Let Z1, . . . , Zn be
the result of applying inverse transformation Z = t/(1 − t) to T1, . . . , Tn. Clearly
Z1, . . . , Zn are the roots of QB(z). Assume QB(z) = (z − Z1) · · · (z − Zn) to fix the
scaling of QB . An initial approach for bounding q̂B − QB would be to argue that
for each i, ẑi is close to Zi in a relative sense. In fact, this argument is not valid as
Zi could be relatively very distant from ẑi when the latter is very large. The correct
argument does not rely on relative closeness.

Regard QB and q̂B as vectors in Cn+1 with constant coefficient written as the
first entry and leading coefficient as the last. Observe that QB can be obtained by
the following matrix computations. Start with the vector [1] in C1, which represents
the constant zero-degree polynomial 1. Next, apply the 2 × 1 matrix H1 = (−Z1; 1)
to this vector to yield a 2-vector representing the linear polynomial z − Z1. Next,
apply the 3 × 2 matrix

H2 =

⎛⎝ −Z2 0
1 −Z2

0 1

⎞⎠
to H1 · [1] to obtain a quadratic polynomial, and so on. Thus QB = Hn · · ·H1, where
we omit the trailing factor [1] by identifying Cn with Cn×1. Similarly, qB = Ĥn · · · Ĥ1,
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where Ĥi is an (i + 1) × i bidiagonal Toeplitz matrix with −ẑi on the main diagonal
instead of −Zi.

Observe that the maximum and minimum singular values of Hi can be written in
closed form (since every eigenvalue and eigenvector of H∗

i Hi can be written in terms
of trig functions):

σmax(Hi) = (|Zi|2 + 2|Zi| cos(π/(i + 1)) + 1)1/2(3.5)

and

σmin(Hi) = (|Zi|2 − 2|Zi| cos(π/(i + 1)) + 1)1/2.(3.6)

From these two equations, we can easily obtain two bounds,

σmax(Hi) ≤ |Zi| + 1,(3.7)

obtained from (3.5) using the estimate cos(·) ≤ 1, and

σmin(Hi) ≥ max(sin(π/(i + 1)), |Zi| − 1),(3.8)

where the first term in the max comes from minimizing the right-hand side of (3.6)
over all choices of |Zi| and the second term comes from the estimate cos(·) ≤ 1.
Similar equations and similar bounds apply to Ĥi with ẑi replacing Zi.

We claim that for each i, there exists a µi such that

‖Ĥi − µiHi‖ ≤ 3εmach · (1 + |ẑi|).(3.9)

In (3.9) and for the rest of the section, we use the matrix 2-norm, i.e., the largest
singular value. Recall that Zi = Ti/(1−Ti) and Ti = (1 + δi)ẑi/(ẑi + 1). (We assume
Ti 	= 1, i.e., Zi is finite, but the analysis can be extended to the case Ti = 1 as well.)
Combining,

Zi =
(1 + δi)ẑi
1 − δiẑi

.(3.10)

There are now three cases. If ẑi = 0 then Zi = 0 also (and conversely) hence in this
case, Hi = Ĥi, satisfying (3.9) for µi = 1. The other two cases are that |ẑi| ≤ 2 or
|ẑi| > 2. If |ẑi| ≤ 2, start from (3.10) and drop high-order terms to obtain

Zi = (1 + δi)(1 + δiẑi)ẑi = (1 + δi + δiẑi)ẑi = ẑi + (1 + ẑi)δi;

hence |Zi − ẑi| ≤ 2εmach(1 + |ẑi|) (since |δi| ≤ 2εmach). Since the off-diagonal entries
of Ĥi−Hi are all zeros and the diagonal entries are ẑi−Zi, this establishes (3.9) with
µi = 1.

The other case is |ẑi| > 2. Take µi = ẑi/Zi, so Ĥi−µiHi has zeros in all diagonal
entries, and the subdiagonal entries are all equal to 1 − ẑi/Zi, which simplifies to
δi(1+ẑi)/(1+δi). Thus, ‖Ĥi−µiHi‖ ≤ 2εmach(1+|ẑi|)/(1−2εmach), again establishing
(3.9). We assume εmach is small enough so that 1/(1 − 2εmach) < 1.5.

Recall that q̂B = Ĥn · · · Ĥ1 while QB = Hn · · ·H1. Let τ2 = µ1 · · ·µn. Then

‖q̂B − τ2QB‖ = ‖Ĥn · · · Ĥ1 − (µnHn) · · · (µ1H1)‖

≤
n∑

i=1

‖Ĥn · · · Ĥi(µi−1Hi−1) · · · (µ1H1) − Ĥn · · · Ĥi+1(µiHi) · · · (µ1H1)‖
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≤
n∑

i=1

‖Ĥn · · · Ĥi+1‖ · ‖Ĥi − µiHi‖ · ‖(µi−1Hi−1) · · · (µ1H1)‖

≤
n∑

i=1

(|ẑn| + 1) · · · (|ẑi+1| + 1)·3εmach ·(|ẑi| + 1)·(|ẑi−1| + 1) · · · (|ẑ1| + 1)

= 3nεmach(|ẑ1| + 1) · · · (|ẑn| + 1).

Here, the second line is obtained from the first via a telescoping-sum argument. The
third is obtained from the second by factoring and using submultiplicativity. The
fourth is obtained from the third using (3.7) for Ĥi and (3.9). To obtain the fourth line
we also used ‖µiHi‖ ≤ |ẑi|+1. This follows from (3.7) because µiHi = Ĥi +O(εmach)
and we are dropping second-order and higher terms.

On the other hand,

‖q̂B‖ = ‖Ĥn · · · Ĥ1‖
≥ σmin(Ĥn) · · ·σmin(Ĥ1)

≥ max(sin(π/2), |ẑ1| − 1) · · ·max(sin(π/(n + 1)), |ẑn| − 1)

≥ max(1, |ẑ1| − 1) · · ·max(2/(n + 1), |ẑn| − 1)

≥ (|ẑ1| + 1)(1/3) · (|ẑ2| + 1)(2/9) · · · (|ẑn| + 1)(2/(3(n + 1))).

Here, the second line was derived from the first since ‖AB‖ ≥ σmin(A)σmin(B) for
matrices with full column rank. The third was derived from the second using (3.8).
The fourth was derived from the third since sinx ≥ 2x/π for x ∈ [0, π/2]. The fifth
was derived from the relation max(a, |x| − 1) ≥ (a/3)(|x| + 1) for a ∈ [0, 1], which is
proved by taking cases.

Combining the last two chains of inequalities shows that

‖q̂B − τ2QB‖ ≤ 3nεmach · 3 · (9/2) · · · (3(n + 1)/2) · ‖q̂B‖.(3.11)

We have ‖qB − τ2q̂B‖ ≤ Cn‖qB‖εmach using the result of Van Dooren and Dewilde.
Combining this inequality with (3.11) and dropping second-order terms yields

‖qB − τ1τ2QB‖ ≤ C ′
nεmach‖qB‖,(3.12)

where C ′
n = Cn + (3n)3 · (9/2) · · · (3(n + 1)/2). In other words, the pencil method

followed by the FLT is a stable method for solving univariate Bézier polynomials.
In previous work [8], we proposed a different pencil for solving Bézier polynomials,

which is as follows. It is straightforward to show that t is a root of pB if and only if
Ā− tB̄ is singular, where

Ā− λB̄ =

⎡⎢⎢⎢⎢⎢⎣
0 1

0 1
. . .

. . .

0 1
−b0 −b1 · · · −bn−2 −bn−1

⎤⎥⎥⎥⎥⎥⎦

−λ

⎡⎢⎢⎢⎢⎢⎣
n
1 1

n−1
2 1

. . .
. . .
2

n−1 1

−b0 −b1 · · · −bn−2 −bn−1 + bn
n

⎤⎥⎥⎥⎥⎥⎦ .(3.13)
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Fig. 3.2. The backward and forward error of roots applied to qB followed by the fractional
linear transformation t = z/(z + 1) is depicted in (a) and (b). In (c) and (d) we show the algorithm
combining the Van Dooren–Dewilde pencil (1.3) with FLT. Finally, in (e) and (f) we show the
results for the pencil (3.13) that gives the Bézier roots directly without requiring an FLT.
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We found two ways to analyze this pencil algorithm (3.13): an analysis along the
lines of Edelman and Murakami and another along the lines Van Dooren and Dewilde.
Both analyses are written in [8]. The upshot is that we obtain a bound like (3.12)
except the constant factor C ′

n is better in the analysis for (3.13) as it is exponential
rather than super-exponential. The algorithm based on (3.13) also has the advantage
that the code is slightly simpler, since there is no need for an if statement to handle
the case when a computed eigenvalue z is exactly equal to −1. The two algorithms are
similar in terms of numerical results presented in the next section, so the difference
in constant factors is more likely a shortcoming in the analysis in this section rather
than in the algorithm itself.

3.1. Numerical results. Recall the formula (2.2) for the condition number of
a root of a polynomial. We need to modify it to work for Bézier polynomials. If we
consider b = [b0, . . . , bn] as the input data, we get by a derivation similar to that of
[13] that the condition number of the root τ of pB is

κbez(τ, pB) = ‖b‖ ‖τ̃‖
|p′B(τ)| ,(3.14)

where τ̃ = [
(
n
0

)
(1 − τ)n,

(
n
1

)
(1 − τ)n−1τ, . . . ,

(
n
n

)
τn]. Farouki and Rajan [4] defined a

similar condition number for Bézier polynomial evaluation and root-finding, except
their condition number is in terms of componentwise perturbation of coefficient rather
than normwise. We return to the issue of componentwise versus normwise in section 4.

Figure 3.2 shows the forward error for the roots of 100 random Bézier polynomials
of degree 10, where the coefficients bj are chosen as follows. Instead of choosing the
control points, we chose the coefficients of the matrix qB described in the last section.
First, we computed a polynomial q5 of degree 5 with leading coefficient 10−10 and
remaining coefficients of the form (α+ iβ) ·10γ with α, β chosen uniformly at random
in [−1, 1] and γ chosen uniformly in [−10, 10]. Then qB(z) = q5(z)(z − 1/2)2(z −
.4)2(z + 1). The factor z + 1 was included in the definition of qB to show that the
method in the last section still works well even if −1 is a root of qB . The control points
are then obtained from the coefficients of qB by dividing by the binomial coefficients(
n
i

)
.
We see that roots computed using either the Van Dooren–Dewilde pencil (1.3)

followed by an FLT or the pencil (3.13) have forward errors around κbezεmach or
smaller. But this does not hold for the roots computed using roots. So, just as for
the standard polynomials, there are accuracy benefits by using the pencil.

4. Computing large roots and componentwise bounds. The focus so far
has been on computing the smaller roots, which are the most important for geometric
modeling. In this section we consider briefly the matter of computing large roots
accurately. To focus the discussion in this section, consider the specific degree-10
polynomial p(x) obtained by multiplying 10−10x8 + .2x6 + .35 − .5x4 + x3 − 2.2x2 −
1.2x− .3 by (x− .5)2. All the roots of this polynomial have absolute value less than
10 except for a pair of conjugate roots approximately .75 ± 4.47 · 104i. The pencil
algorithm for this polynomial gets the small roots with absolute and relative accuracy
of about εmach, but the two larger roots are obtained with relative accuracy of only
about 10−8, i.e., absolute accuracy about 10−4. The inaccurate computation of these
larger roots does not violate our theory, since these roots are ill conditioned according
to our definition (2.2). The large roots can be obtained to full machine precision
by first substituting x = 103y into p(x) = 0, obtaining a new polynomial equation
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q(y) = 0. Then the roots are computed for q using the pencil, and the resulting roots
are all scaled by 103. This polynomial q no longer has a small leading coefficient.
This transformation has the effect of making the large roots well conditioned, and
they are now computed with absolute error smaller than 10−10. On the other hand,
this transformation has the side effect of making the smaller roots ill conditioned, so
they are now computed with only a few digits of accuracy. It is interesting to ask
whether there is a method that gets both the large and small roots of this polynomial
accurately in a single computation using ordinary floating-point arithmetic.

We noticed in our test runs (not plotted) that roots often gets the large roots
much more accurately than the pencil algorithm. The reason is that roots uses the
eig function of Matlab, which in turn calls a balancing routine. Balancing means
multiplying the companion matrix A on the left by D and on the right by D−1 for
some diagonal matrix D chosen to make the entries of A better scaled [11]. One
possible choice of D would be a diagonal matrix of the form diag(1, α, α2, . . . , αn−1),
which has the effect of replacing p(x) by p(x/α) and thus carrying out the scaling
described in the last paragraph. The actual balancing matrix is not of this form, but
nonetheless the presence of balancing explains why it might be possible for roots to
sometimes be especially accurate for large roots. On the other hand, balancing does
not always work well—roots returned very inaccurate answers for the polynomial
in the last paragraph, getting neither the larger nor smaller roots to more than four
digits of accuracy.

There is some additional unexpected accuracy in the QR and QZ that we are
currently not able to explain. In particular, both plots in Figure 2.2(a) and (b) show
roots far below the dotted line. These are not large roots (since large roots were
excluded from the plots). In addition, we carried out some additional test runs (not
shown) involving eigenvalues without balancing, i.e., we used the nobalance option
to the eig function. These smaller roots were still found with unexpected accuracy,
indicating that balancing is not the whole story.

The QZ algorithm in Matlab used for pencils does not carry out any balancing.
This is because balancing is not well understood for the QZ method, and there is no
generally accepted method.

It is a bit unsettling that the condition number of the roots of a polynomial can
change so drastically under a rescaling of the unknown like x = y/1000, which seem-
ingly does not really change the underlying polynomial. An alternative not affected
by scaling is to define a condition number for polynomials in terms of componentwise
perturbations of the coefficients instead of normwise perturbations. In other words,
the condition number of a root x1 of p(x) = anx

n + · · · + a0 is defined to be the
amount that the root changes when each ai is perturbed to ai(1 + δi) for some small
choices of δ0, . . . , δn. Clearly this condition number is unchanged by a rescaling. Com-
ponentwise condition numbers were used by Toh and Trefethen and also by Farouki
and Rajan. The ideal rootfinder would be one whose backward error bound is small
in the componentwise sense, i.e., the roots computed by the algorithm are the exact
roots to a polynomial close to the original polynomial in a componentwise sense. It is
implausible that such a rootfinder could exist. For example, for the polynomial xn−1
it would have to return exact roots to xn − (1 + ε) for a small ε, i.e., it would have
return floating-point roots with exactly evenly spaced args and with exactly the same
absolute values, which appears to be impossible. Perhaps more realistic would be
to ask for an algorithm whose forward error is at most the componentwise condition
number multiplied by εmach. We don’t know of such an algorithm, but we don’t know
of a counterexample that would rule out its existence.
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Abstract. This paper is concerned with the characterization of the Hurwitz stability of matrices,
which can be written as the product of two square matrices AD with A precisely known and D
belonging to the set of all positive diagonal matrices, and the Schur stability of matrices AD for all
diagonal D, whose entries have absolute magnitude less than or equal to 1, known as the problem
of D-stability. Sufficient conditions are given in terms of linear matrix inequalities formulated at
the vertices of an adequately chosen polytope domain, allowing simple and numerically efficient
evaluations of D-stability. The conditions proposed provide less conservative results and encompass
previous conditions from the literature, as illustrated by examples.
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Notation. PD indicates that matrix P is diagonal. A diagonal matrix n × n is
described as diag{σ11, . . . , σnn}. The symbol (′) indicates transpose; P > 0 (≥ 0)
means that P is symmetric positive (semi)definite and P > M means that P − M
is symmetric positive definite. Tr(A) is the trace of the n × n matrix A, aij are its
entries, and λi(A), i = 1, . . . , n, are its n eigenvalues.

1. Introduction. The characterization of Hurwitz or Schur stability of matrices
belonging to a set such as a polytope or to sets defined by interval matrices has been
addressed in many papers. Although small dimension sets or special cases have been
identified as Hurwitz (Schur) stable by means of algebraic methods or thanks to some
particular property of the matrices, necessary and sufficient conditions which can be
efficiently tested are still under investigation.

A set of particular importance is defined by the product of square matrices AD,
with A precisely known and D belonging to the set of diagonal positive matrices.
Matrices A such that all matrices AD with positive diagonal D are Hurwitz (i.e., all
the eigenvalues of AD have negative real part) are called D-stable matrices [22]. In
the context of Schur stability, A is D-stable if all the eigenvalues of AD have absolute
magnitude less than 1 for all diagonal D such that | djj |≤ 1.

The importance of D-stability can be inferred by the large number of papers
dealing with this subject, in fields such as economics, biology, multiparameter singu-
lar perturbations, and large scale and decentralized control systems [23], [28], [31],
[43]. As discussed in [26], the concept of D-stability of a matrix was introduced in
mathematical economics [1], [38], being used later in mathematical ecology. Other
applications of D-stability can be found in [3], [4], [9], [10], [14], [20], [21], [38], [41].
For instance, a generalized multispecies Lotka–Volterra model can be described by

ẋi(t) = cixi(t) +

n∑
j=1

aijxi(t)xj(t)
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for i = 1, . . . , n. Similar models are used in problems like the management of fish pop-
ulations, the spread of epidemics, the propagation of genetic traits, and the kinetics of
autocatalytic chemical reactions. For details, references, and other applications, the
reader is referred to [28]. Assuming that xi(t) �= 0, i = 1, . . . , n (that is, no species
disappears), one has

ẋi(t)/xi(t) = ci +

n∑
j=1

aijxj(t)

or, equivalently,

d

dt
[lnxi(t)] = ci +

n∑
j=1

aij exp[lnxj(t)].

Defining yi(t) � lnxi(t), one has

ẏi(t) = ci +

n∑
j=1

aijf(yj(t)).

Assuming the existence of a positive equilibrium y∗, i.e., y∗ =
[
y∗1 · · · y∗n

]′
, with

yi > 0 for all i, such that ci +
∑n

j=1 aijf(y∗j ) = 0, one has the incremental model

żi(t) =

n∑
j=1

aijgj(zj(t)),

where, for all i, zi(t) � yi(t) − y∗i ; z(t) =
[
z1(t) · · · zn(t)

]′
, gi : ξ → exp(ξ +

lnx∗
i )− x∗

i ; therefore, gi(0) = 0 and gi(ξ)ξ > 0 for ξ �= 0. In this case, the D-stability
of the matrix A � [aij ] of the coefficients of interaction implies that the stability of
the positive equilibrium is preserved under any variation of the equilibrium values of
population sizes [26].

Since the concept of D-stability has been introduced, much effort has been made to
characterize classes of matrices that are D-stable and also to provide less conservative
sufficient conditions assuring Hurwitz or Schur D-stability [6], [11], [15], [24], [33].

In fact, D-stability can be classified as a particular case of the problem of global
stability for linear systems with dynamics represented by matrix A subjected to state
perturbations of multiplicative type [30]. A well-known sufficient condition for D-
stability is the existence of a positive definite diagonal Lyapunov matrix PD such that
A′PD + PDA < 0 (or A′PDA − PD < 0 in the discrete-time case), which is in fact a
strong condition assuring global stability of the origin of a dynamic system represented
by matrix A for a class of state perturbations (known as stability of Persidskii [37] and
its corresponding extension to the discrete-time case [29]). Although there exist some
classes of matrices, usually of small dimensions, for which the necessary and sufficient
conditions for D-stability are well established (for instance, there are constructive
necessary and sufficient conditions of D-stability for matrices of the second and third
orders) [23], [27], the complete characterization of D-stable matrices remains an open
problem [22]. The difficulty lies mainly on the fact that algebraic methods become
very involved as the order of matrix A increases [26], while the existing numerical
algorithms, although more suitable for handling higher order systems, provide only
sufficient conditions for D-stability.
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In the last two decades, a lot of work has been done to characterize robust stabil-
ity for linear uncertain systems, and one of the major approaches is the simultaneous
stability by means of a common Lyapunov function (also known as quadratic stabil-
ity) [2]. From this condition, many robust control and filtering problems have been
addressed by means of linear matrix inequalities (LMIs) [5], [7], [17], [19], [25], [32],
[34], [35], which nowadays can be efficiently solved by polynomial time algorithms [16].
It is worth mentioning the recent works dealing with sum-of-squares representation
[36], relaxations [42], and homogeneous Lyapunov functions [12], which investigate
sharper characterizations of robust stability by means of LMIs.

The robust stability of compact sets such as polytopes can also be used to assess
D-stability, as proposed in [27] for discrete-time systems. In this case, a polytope
AD is constructed, with D belonging to an adequately defined compact set, and the
robust stability of the polytope is a necessary and sufficient condition for the Schur
D-stability of A. Similar results appeared in [18], [28] for the Hurwitz D-stability, but
the closed polytope tested was only an approximation of the open set of interest.

As a consequence, the existence of a common Lyapunov matrix assessing the ro-
bust stability of AD becomes another sufficient condition for D-stability, formulated as
a set of LMIs described at a finite number of vertices of an appropriate polytopic set [8],
[27], [28]. However, the results can be very conservative, since the Lyapunov matrix
is fixed. New conditions for structural and robust stability formulated as LMIs ap-
peared in [13], [18]. The main idea was the introduction of some extra variables in the
LMIs, allowing the characterization of D-stability by means of a parameter-dependent
Lyapunov function, which provides less conservative results than a fixed one.

In this paper, new simple and efficient LMI conditions for D-stability are given.
Using the ideas from [6], [13], [18], [27], combined with recent robust stability tests
[39], [40], a parameter-dependent Lyapunov function is constructed and used to assess
the Hurwitz (Schur) stability of a conveniently constructed polytope. These new
conditions identify many D-stable matrices that are not identified by other methods
and also contain the previous conditions (quadratic and LMIs from [13], [18]) as
particular cases. Both Hurwitz and Schur D-stability are investigated and illustrated
by examples.

Although the focus of this paper is on the stability of real matrices, the lemmas
and theorems presented could be extended to deal with D-stability of complex ma-
trices, provided that Hermitian matrices Pi, i = 1, . . . , N , and complex matrices Gi,
Hi, i = 1, . . . , N , were investigated as feasible solution of the complex LMIs.

2. Hurwitz D-stability. In the context of Hurwitz stability, D-stability can be
viewed as a particular case of the more general problem of stability of dynamical
systems described by the differential equation ẋ = Af(x). It has been shown in [37]
that the existence of a positive diagonal matrix PD such that A′PD+PDA < 0 assures
the global asymptotic stability of the equilibrium point x = 0 for a class of functions
f(·) : R

n → R
n belonging to a given set (see also [18], [27]). The existence of such a

diagonal matrix PD, sometimes called absolute stability, assures the robust stability
for any function f(x) such that fj(xj)xj > 0, j = 1, . . . , n (see [28] for details). This
includes functions of the form f(x) = Dx, where D ∈ R

n×n is any positive diagonal
matrix. Therefore, the existence of diagonal PD implies that all matrices AD with
positive diagonal D are Hurwitz (but the converse is not necessarily true). Note that
this sufficient condition can be easily verified by testing the feasibility of the LMI
A′PD + PDA < 0, which can be efficiently performed nowadays (easily handling the
constraint P = PD) by any available LMI solver [16], [44].
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In order to obtain a sharper characterization of D-stability, some properties of sets
of Hurwitz matrices can be exploited. If AD is Hurwitz stable for any positive diagonal
matrix D, then for any scalar ρ > 0 one has λi(ρAD) = ρλi(AD), i = 1, . . . , n,
implying that ρAD also defines a set of Hurwitz stable matrices for any positive
diagonal matrix D and ρ > 0. With that on mind, the test of Hurwitz stability of AD
can be constrained to the set of positive diagonal matrices D such that Tr(D) = 1,
for instance.

This idea has been used in [18] to conveniently construct a convex polytope DH

by defining its vertex matrices as Di, i = 1, . . . , N , as positive diagonal matrices with
unitary trace, whose entries are parametrized by a sufficiently small scalar ε > 0.
Then the Hurwitz stability of the set DH (i.e., the Hurwitz stability of any matrix
belonging to the set) is investigated by means of Lyapunov inequalities. As ε → 0,
the Hurwitz stability of DH tends to the D-stability of A.

The problem of Hurwitz D-stability, i.e., to determine if a given matrix A ∈ R
n×n

is such that AD is Hurwitz for all matrices positive and diagonal D ∈ R
n×n, can be

addressed following the lines given in [18], [28], that is, by testing if the set of matrices
AD is Hurwitz for all D belonging to the polytope DH given by

DH =

{
D(α) : D =

N∑
i=1

αiDi ; αi ≥ 0 ;

N∑
i=1

αi = 1

}
,(2.1)

Di = diag

⎧⎨⎩ ε

n− 1
, . . . , 1 − ε︸ ︷︷ ︸

i

, . . . ,
ε

n− 1

⎫⎬⎭ > 0, i = 1, . . . , N, N = n,(2.2)

with ε > 0 arbitrarily small. As ε → 0, the Hurwitz stability of matrices AD, D ∈ DH

defined as the convex hull of matrices Di given by (2.2), tends to the D-stability of A
(see [18] for details). In other words, the closed set defined in terms of ε approximates
the open set of all positive diagonal matrices as ε → 0. Note that the number of
vertices of this polytope equals the dimension of matrix A, and that any D ∈ DH

can be written as a convex combination of the vertex matrices Di, being such that
Tr(D) = 1.

As discussed in [18], as ε → 0, the D-stability of a matrix A can be inferred
from the Hurwitz stability of the matrices AD such that D ∈ DH given by (2.1)–
(2.2), which is equivalent to the existence of a parameter-dependent positive definite
Lyapunov matrix P (α) such that

(AD(α))
′
P (α) + P (α) (AD(α)) < 0(2.3)

holds for all AD with D ∈ DH .

A well-known sufficient condition for that comes from quadratic stability [2], that
is, the same P (α) = P = P ′ > 0 must verify

(ADi)
′P + P (ADi) < 0, i = 1, . . . , N,(2.4)

implying that (2.3) holds for all D ∈ DH . However, quadratic stability can be very
conservative for testing the robust stability of the polytope defined by AD, D ∈ DH .
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In [18], a less conservative evaluation of the Hurwitz stability is provided by means
of a parameter-dependent Lyapunov matrix, which is reproduced in the next lemma.

Lemma 2.1. If there exist symmetric positive definite matrices Pi ∈ R
n×n, i =

1, . . . , N , matrices G ∈ R
n×n and H ∈ R

n×n satisfying the LMIs[
GDi + D′

iG
′ PiA−G + D′

iH
′

A′Pi −G′ + HDi −H −H ′

]
< 0, i = 1, . . . , N,(2.5)

then P (α) > 0 given by

P (α) =
N∑
i=1

αiPi, αi ≥ 0,

N∑
i=1

αi = 1(2.6)

is such that (2.3) holds, implying that AD is Hurwitz for all D ∈ DH .

Proof. See [18] for the proof.

Note that if a feasible solution exists for (2.5), then a parameter-dependent Lya-
punov function v(x) = x′P (α)x with P (α) given by (2.6) assures the Hurwitz stability
of AD for all D ∈ DH . Moreover, the results of Lemma 2.1 encompass the fixed Lya-
punov matrix (i.e., Pi = P , i = 1, . . . , N) as a particular case.

In what follows, a new LMI condition assuring that (2.3) holds with P (α) given
by (2.6) is presented. Besides being more general than the results of Lemma 2.1, con-
taining (2.5) as a particular case, the conditions provide less conservative evaluations
of Hurwitz stability of AD, D ∈ DH , and, consequently, of D-stability.

Theorem 2.2. If there exist symmetric positive definite matrices Pi ∈ R
n×n,

matrices Gi ∈ R
n×n and Hi ∈ R

n×n, i = 1, . . . , N , satisfying the LMIs[
GiDi + D′

iG
′
i PiA−Gi + D′

iH
′
i

A′Pi −G′
i + HiDi −Hi −H ′

i

]
< −I, i = 1, . . . , N,(2.7)

(2.8)

[
GiDj + D′

jG
′
i + GjDi + D′

iG
′
j

A′(Pi + Pj) −G′
i −G′

j + HiDj + HjDi

(Pi + Pj)A−Gi −Gj + D′
iH

′
j + D′

jH
′
i

−Hi −H ′
i −Hj −H ′

j

]
<

2

N − 1
I,

i = 1, . . . , N − 1, j = i + 1, . . . , N,

then (2.3) holds with P (α) > 0 given by (2.6), implying that AD is Hurwitz for all
D ∈ DH .

Proof. Multiplying (2.7) by α2
i and summing for i = 1, . . . , N ; multiplying (2.8)

by αiαj ≥ 0 and summing for i = 1, . . . , N − 1, j = i + 1, . . . , N ; and taking into
account (2.6) and defining G(α) and H(α),

G(α) =
N∑
i=1

αiGi, H(α) =

N∑
i=1

αiHi, αi ≥ 0,

N∑
i=1

αi = 1,(2.9)
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one has (see [40])

(2.10)

N∑
i=1

α2
i

[
GiDi + D′

iG
′
i PiA−Gi + D′

iH
′
i

A′Pi −G′
i + HiDi −Hi −H ′

i

]

+
N−1∑
i=1

N∑
j=i+1

αiαj

[
GiDj + D′

jG
′
i + GjDi + D′

iG
′
j

A′(Pi + Pj) −G′
i −G′

j + HiDj + HjDi

(Pi + Pj)A−Gi −Gj + D′
iH

′
j + D′

jH
′
i

−Hi −H ′
i −Hj −H ′

j

]
= ΘH(α) �

[
G(α)D(α) + D(α)′G(α)′ P (α)A−G(α) + D(α)′H(α)′

A′P (α) −G(α)′ + H(α)D(α) −H(α) −H(α)′

]

< −

⎛⎝ N∑
i=1

α2
i −

N−1∑
i=1

N∑
j=i+1

αiαj
2

N − 1

⎞⎠ I ≤ 0,

implying that ΘH(α) < 0. Now, multiply ΘH(α) by T (α) =
[

I D(α)′
]

on the left
and by T (α)′ on the right to obtain (2.3), which guarantees that AD is Hurwitz for
all D ∈ DH , since P (α) given by (2.6) with Pi > 0 is a parameter-dependent positive
definite matrix.

Theorem 2.2 provides sufficient conditions to test whether A is D-stable by testing
whether AD is Hurwitz for all D ∈ DH . As discussed in [18], as ε → 0 in (2.2), the
Hurwitz stability of AD tends to the D-stability of A. The feasibility of the LMIs
(2.7)–(2.8) can be verified by polynomial time algorithms as, for instance, the interior
point method in [16]. Besides being less conservative than the results presented in
Lemma 2.1, the condition (2.7) reduces to (2.5) when Gi = G, Hi = H, i = 1, . . . , N
(in this case, (2.8) holds whenever (2.7) is verified). Note that the right-hand side of
the LMIs (2.7) can be arbitrarily fixed as −I thanks to the property of homogeneity,
and that the identity matrix in (2.7)–(2.8) could be replaced by any other positive
definite matrix with appropriate dimensions, yielding equivalent conditions provided
that the coefficients are chosen in such a way that (2.10) holds. Moreover, as illus-
trated by means of examples, the results of Theorem 2.2 are able to identify Hurwitz
D-stable matrices for which the conditions of Lemma 2.1 do not hold.

3. Schur D-stability. The problem of Schur D-stability—i.e., to determine if a
given matrix A ∈ R

n×n is such that AD is Schur stable for all diagonal matrices D
whose entries djj are such that | djj |≤ 1, j = 1, . . . , n—can be addressed following
the lines given in [6], [13], that is, by testing if matrices AD are Schur stable for all
D ∈ DS given by

DS =

{
D(α) : D =

N∑
i=1

αiDi ; αi ≥ 0 ;

N∑
i=1

αi = 1

}
,(3.1)

Di = diag {σ1, . . . , σj , . . . , σn}, i = 1, . . . , N, N = 2n−1,(3.2)

with σj ∈ {−1, 1}, j = 1, . . . , n, and Dk �= −D� for all k, � ∈ {1, . . . , 2n−1}. Note
that, similarly to the set DH defined in the Hurwitz case, any D ∈ DS can be written
as a convex combination of the vertices Di given by (3.2).

As discussed in [13], this choice of vertices generates a polytope which entirely
represents the set of diagonal matrices whose entries have absolute value less than or
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equal to 1 for Schur stability purposes, since for any scalar ρ > 0 one has ρλj(A) =
λj(ρA), j = 1, . . . , n, implying that if | λj(AD) |< 1, j = 1, . . . , n, for all D ∈ DS

given by (3.1)–(3.2), then | λj(AD) |< 1, j = 1, . . . , n, for any diagonal matrix D
whose entries are such that | dij |≤ 1. Note that the number of vertices of DS is 2n−1,
while in DH (i.e., the Hurwitz stability case) it was n, illustrating how the Schur
D-stability characterization is more involved.

The aim is to characterize the Schur stability of matrices AD for D ∈ DS given by
(3.1)–(3.2), that is, to determine a parameter-dependent Lyapunov matrix P (α) > 0
such that

(AD(α))
′
P (α) (AD(α)) − P (α) < 0(3.3)

holds for all AD with D ∈ DS . By Schur complement, (3.3) is equivalent to[
−P (α) P (α)AD(α)

D(α)′A′P (α) −P (α)

]
< 0.(3.4)

The simplest way to deal with condition (3.3) is to impose that the same P (α) = P > 0
must verify

(ADi)
′P (ADi) − P < 0, i = 1, . . . , N,(3.5)

or, equivalently, [
−P PADi

D′
iA

′P −P

]
< 0, i = 1, . . . , N,(3.6)

implying that (3.3) holds for all AD with D(α) ∈ DS . As in the Hurwitz case, this
choice can produce conservative results in the evaluation of the Schur stability of AD
since the same P is imposed for the entire set DS . A parameter-dependent Lyapunov
function was proposed in [13] as an alternative way to investigate the D-stability
of matrix A, introducing some extra variables in the characterization of the Schur
stability of the polytope defined by matrices AD, D ∈ DS .

Lemma 3.1. If there exist symmetric positive definite matrices Pi ∈ R
n×n, i =

1, . . . , N , matrices G ∈ R
n×n and H ∈ R

n×n satisfying the LMIs[
GDi + D′

iG
′ − Pi D′

iH
′ −G

HDi −G′ A′PiA−H −H ′

]
< 0, i = 1, . . . , N,(3.7)

then P (α) > 0 given by (2.6) is such that (3.3) holds, implying that AD is Schur stable
for all D ∈ DS.

Proof. See [13] for the proof.
With the results of Lemma 3.1, a parameter-dependent Lyapunov function given

by v(x(k)) = x(k)′P (α)x(k) with P (α) as in (2.6) can be used to assess the Schur
stability of AD for all D ∈ DS . Besides being less conservative than the results
obtained through a fixed Lyapunov matrix (which can be recovered by fixing Pi = P ,
i = 1, . . . , N), the fact that the same matrices G and H must satisfy all the LMIs
makes the conditions of Lemma 3.1 far from the necessity. A more general condition
is presented in what follows.

Theorem 3.2. If there exist symmetric positive definite matrices Pi ∈ R
n×n,

matrices Gi ∈ R
n×n and Hi ∈ R

n×n, i = 1, . . . , N , satisfying the LMIs[
GiDi + D′

iG
′
i − Pi D′

iH
′
i −Gi

HiDi −G′
i A′PiA−Hi −H ′

i

]
< −I, i = 1, . . . , N,(3.8)
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(3.9)

[
GiDi + D′

iG
′
i + GiDj + D′

jG
′
i + GjDi + D′

iG
′
j − 2Pi − Pj

(Hi + Hj)Di + HiDj − 2G′
i −G′

j

D′
i(H

′
i + H ′

j) + D′
jH

′
i − 2Gi −Gj

2A′PiA + A′PjA− 2Hi − 2H ′
i −Hj −H ′

j

]
<

1

(N − 1)2
I,

i = 1, . . . , N, j �= i, j = 1, . . . , N,

(3.10)

⎡⎢⎢⎢⎣
GiDj + D′

jG
′
i + GiDk + D′

kG
′
i + GjDi + D′

iG
′
j + GjDk + D′

kG
′
j

+GkDi + D′
iG

′
k + GkDj + D′

jG
′
k − 2(Pi + Pj + Pk)

HjDi + HkDi + HiDj + HkDj

+HiDk + HjDk − 2(Gi + Gj + Gk)
′

D′
iH

′
j + D′

iH
′
k + D′

jH
′
i + D′

jH
′
k

+D′
kH

′
i + D′

kH
′
j − 2(Gi + Gj + Gk)

2(A′PiA + A′PjA + A′PkA)
−2(Hi + H ′

i + Hj + H ′
j + Hk + H ′

k)

⎤⎥⎥⎥⎦
<

6

(N − 1)2
I,

i = 1, . . . , N − 2,
j = i + 1, . . . , N − 1, k = j + 1, . . . , N,

then (3.3) holds with P (α) > 0 given by (2.6), implying that AD is Schur stable for
all D ∈ DS.

Proof. The proof follows similar steps to those of Theorem 2.2. Multiply (3.8) by
α3
i and sum for i = 1, . . . , N ; multiply (3.9) by α2

iαj and sum for i = 1, . . . , N ; and
multiply j �= i, j = 1, . . . , N and (3.10) by αiαjαk, i = 1, . . . , N−2, j = i+1, . . . , N−1,
k = j + 1, . . . , N , with G(α) and H(α) as in (2.9), to obtain (see [39])

(3.11) ΘS(α) �
[

G(α)D(α) + D(α)′G(α)′ − P (α) D(α)′H(α)′ −G(α)
H(α)D(α) −G(α)′ A′P (α)A−H(α) −H(α)′

]
< −

(
N∑
i=1

α3
i −

1

(N − 1)2

N∑
i=1

N∑
j �=i;j=1

α2
iαj−

6

(N − 1)2

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

αiαjαk

)
I.

By premultiplying ΘS(α) < 0 by T (α) =
[

I D(α)′
]

and by postmultiplying by
T (α)′, one gets (3.3), which guarantees that A is D-stable.

As in the Hurwitz case (Theorem 2.2), the LMI conditions of Theorem 3.2 can be
solved by polynomial time algorithms. These conditions are less conservative than the
ones presented in Lemma 3.1. In fact, condition (3.8) contains (3.7) as a particular
case when G = Gi, H = Hi, i = 1, . . . , N . In this case (i.e., G = Gi and H = Hi) the
LMIs (3.9)–(3.10) are always verified if (3.8) holds. Note that the right-hand side of
the LMI (3.8) can be arbitrarily fixed as −I thanks to the property of homogeneity,
which also assures that matrix I appearing at the right-hand side of the LMIs (3.8)–
(3.10) could be replaced by any other positive definite matrix, yielding equivalent
results provided the coefficients are such that (3.11) holds.

Finally, a remark about the larger number of LMIs obtained in the conditions
of Theorem 3.2, when compared to the continuous-time case (Theorem 2.2). This is
due to the lines followed in the paper (similar to the ones in [39]) to assure that (3.3)
holds. Note that α3

i terms naturally appear in (3.3) for D(α) given by (3.1)–(3.2)
and P (α) given by (2.6), and conditions (3.8)–(3.10) have been constructed in order
to guarantee that (3.11) holds, that is, ΘD(α) < 0, implying that (3.3) is satisfied.
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4. Examples. The numerical tests were performed using the LMI Control Tool-
box [16]. By means of randomly generated matrices, it is shown that the conditions
proposed in the paper are able to identify D-stability in cases where the other methods
fail.

The first examples are concerned with Hurwitz D-stability, and ε = 0.001 has
been used to construct the polytope DH in (2.1)–(2.2). Although there exist algebraic
characterizations for second and third order systems, the conditions of Lemma 2.1 and
Theorem 2.2 have been tested for several small-size systems (n = 2, 3). For n = 2
all the examples of D-stable matrices have been identified by both Lemma 2.1 and
Theorem 2.2, but for n ≥ 3 it is very simple to find examples of D-stable matrices
which are identified by Theorem 2.2 but not by Lemma 2.1 conditions, as in the case
with the following matrices (which are Hurwitz stable but do not admit a diagonal
positive solution PD to the Lyapunov inequality A′PD + PDA < 0):

A =

⎡⎣ −3 4 −2
−1 0 0
−1 3 −4

⎤⎦ , A =

⎡⎣ 0 0 −1
1 −2 0
2 −1 −2

⎤⎦ ,

A =

⎡⎣ 0 −1 0
2 −3 −1
3 −1 −3

⎤⎦ , A =

⎡⎣ −3 −1 1
1 −5 0
−3 3 0

⎤⎦ .

These small-dimension examples are presented here only to illustrate that even in
the cases where algebraic characterization exists, the conditions of Lemma 2.1 fail
to guarantee D-stability (but not Theorem 2.2). Moreover, Theorem 2.2 can easily
evaluate the D-stability of matrices with greater dimension, for which there is no other
characterization available, as in the following matrices (which do not admit a diagonal
positive solution PD to the Lyapunov inequality A′PD+PDA < 0), identified as being
D-stable:

A =

⎡⎢⎢⎣
−7 −2 4 1
−1 −4 0 0
0 0 −3 0
−4 −3 4 0

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
−4 −1 2 −1
0 −4 3 −2
0 −1 0 0
0 −1 1 −3

⎤⎥⎥⎦ ,

A =

⎡⎢⎢⎢⎢⎣
−2 2 −1 0 0
−1 0 0 0 1
−1 1 −1 0 0
0 1 0 −1 1
0 −1 0 0 −2

⎤⎥⎥⎥⎥⎦ .

Now, Schur D-stability is investigated. As discussed in [6], for any 2 × 2 matrix,
the existence of a positive diagonal solution to the Lyapunov equation is a necessary
and sufficient condition for Schur D-stability, indicating that a larger dimension is
needed to find a D-stable matrix which is not diagonally stable. Moreover, in [15] it
has been shown that for 3× 3 matrices the vertex stability of the polytope defined by
AD with D ∈ DS is equivalent to the D-stability of A.

For higher dimensions, there is not a characterization based on the vertices of
AD, D ∈ DS , but the results of Theorem 3.2 can be efficiently used. For instance, the
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following matrix A is Schur stable, but does not admit a diagonal positive solution
PD to the Lyapunov inequality A′PDA− PD < 0:

A =

⎡⎢⎢⎣
0.13 0.26 −0.54 0.12
−0.63 0.59 0.29 −0.13
0.22 0.26 −0.68 0.18
−0.78 1.10 −0.04 −0.19

⎤⎥⎥⎦ .(4.1)

By constructing the polytope DS as in (3.1)–(3.2), one may check that no feasible
solution is obtained through the conditions of Lemma 3.1, but the conditions of The-
orem 3.2 provide a positive evaluation of the Schur stability of the polytope, implying
that A is Schur D-stable.

5. Conclusion. Improved sufficient conditions for Hurwitz and Schur D-stability
have been given. The conditions are formulated as LMIs and can be efficiently solved
by means of polynomial time algorithms, providing less conservative evaluations of
D-stability and encompassing previous results from the literature as particular cases.

Acknowledgment. The authors wish to thank the reviewers for their valuable
suggestions.
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Abstract. Let A be an m×m real random matrix with independently and identically distributed
standard Gaussian entries. We prove that there exist universal positive constants c and C such
that the tail of the probability distribution of the condition number κ(A) satisfies the inequalities
c
x
< P{κ(A) > mx} < C

x
for every x > 1. The proof requires a new estimation of the joint density

of the largest and the smallest eigenvalues of ATA which follows from a formula for the expectation
of the number of zeros of a certain random field defined on a smooth manifold.
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1. Introduction and main result. Let A be an m×m real matrix and denote
by

‖A‖ = sup
‖x‖=1

‖Ax‖

its Euclidean operator norm. ‖x‖ denotes the Euclidean norm of x in R
m. If A is

nonsingular, its condition number κ(A) is defined by

κ(A) = ‖A‖‖A−1‖

(von Neumann and Goldstine [18]; Turing [17]). The role of κ(A) in a variety of
numerical analysis problems is well established (see, for example, Wilkinson [20],
Smale [14], Higham [9], and Demmel [6]). The purpose of the present paper is to
prove the following.

Theorem 1.1. Assume that A = ((aij))i,j=1,...,m, m ≥ 3, and that the aij’s are

independently and identically distributed (i.i.d.) Gaussian standard random variables.
Then there exist universal positive constants c, C such that for x > 1,

c

x
< P{κ(A) > mx} <

C

x
.(1.1)

Remarks. The following are remarks on the statement of Theorem 1.1:
1. It is well known that as m tends to infinity, the distribution of the random

variable κ(A)/m converges to a certain distribution (this follows easily, for
example, from Edelman [7]). The interest of (1.1) lies in the fact that it holds
true for all m ≥ 3 and x > 1
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route de Narbonne, 31062 Toulouse Cedex 4, France (azais@cict.fr).
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2. We will see below that c = 0.13, C = 5.60 satisfy (1.1) for every m = 3, 4, . . .
and x > 1. Using the same methods, one can obtain more precise upper and
lower bounds for each m, but we will not detail these calculations here.
The simulation study of section 3 suggests that P{κ(A) > mx} is increasing
with m, so that c should be the value corresponding to m = 3, i.e., c ≈ 0.88,
and C the one derived from the mentioned asymptotic result in Edelman [7],
i.e., C = 2.

3. In Sankar, Spielman, and Teng [13] it was conjectured that

P{κ(A) > x} = O
( m

σx

)
when the aij ’s are independent Gaussian random variables having a common
variance σ2 ≤ 1 and supi,j |E (aij)| ≤ 1.
The upper bound part of (1.1) implies that this conjecture holds true in the
centered case. The lower bound shows that, up to a constant factor, this is
the exact order of the behavior of the tail of the probability distribution of
κ(A). See Wschebor [22] for the noncentered case.

4. This theorem, and related ones, can be considered as results on the Wishart
matrix ATA (AT denotes the transpose of A). Introducing some minor
changes, it is possible to use the same methods to study the condition num-
ber of ATA for rectangular n×m matrices A having i.i.d. Gaussian standard
entries, n > m. This will be considered elsewhere.

Some examples of related results on the random variable κ(A) are the following.

Theorem 1.2 (see [7]). Under the same hypothesis as that of Theorem 1.1, one
has

E (log κ(A)) = logm + C1 + εm,

where C1 is a known constant (C1 ≈ 1.537) and εm → 0 as m → +∞.

Theorem 1.3 (see [4]). Let A = ((aij))i,j=1,...,m and assume that the aij’s are

independent Gaussian random variables with a common variance σ2 and mij = E(aij).
Denote by M = ((mij))i,j=1,...,m the nonrandom matrix of expectations. Then

E (log κ(A)) ≤ logm + log

[
‖M‖
σ
√
m

+ 4

]
+ C ′

1,

where C ′
1 is a known constant.

Next, we introduce some notation. Given A, an m × m real matrix, we denote
by λ1, . . . , λm, 0 ≤ λ1 ≤ · · · ≤ λm, the eigenvalues of ATA. If X : Sm−1 → R is the
quadratic polynomial X(x) = xTATAx, then

• λm = ‖A‖2
= maxx∈Sm−1 X(x),

• in case λ1 > 0, λ1 = 1
‖A−1‖2 = minx∈Sm−1 X(x).

It follows that

κ(A) =

(
λm

λ1

) 1
2

when λ1 > 0. We put κ(A) = +∞ if λ1 = 0. Note also that κ(A) ≥ 1 and κ(rA) =
κ(A) for any real r, r �= 0.
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There is an important difference between the proof of Theorem 1.1 and those of
the two other theorems mentioned above. In the latter cases, one puts

log κ(A) =
1

2
log λm − 1

2
log λ1,

and if one takes expectations, the joint distribution of the random variables λm, λ1

does not play any role; the proof uses only the individual distributions of λm and
λ1. On the contrary, the proof below of Theorem 1.1 depends essentially on the
joint distribution of the pair (λm, λ1). A general formula for the joint density of
λ1, . . . , λm has been well known for a long time (see, for example, Wilks [21], Wigner
[19], Krishnaiah and Chang [11], Kendall, Stuart, and Ord [10], and the references
therein), but it seems to be difficult to adapt this to our present requirements. In
fact, we will use a different approach, based on the expected value of the number of
zeros of a random field parameterized on a smooth manifold.

We have also applied this technique to give a new proof of the known result of
Lemma 2.2, a lower bound for P{λ1 < a}.

One can ask if Theorem 1.1 follows from the well-known exponential bounds
for the concentration of the distribution of λm together with known bounds for the
distribution of λ1 (see, for example, Szarek [15], Davidson and Szarek [5], and Ledoux
[12] for these types of inequalities).

More precisely, consider the upper bound in Theorem 1.1. For ε > 0 one has

P
{
κ(A) > mx

}
= P

{
λm

λ1
> m2x2

}
≤ P

{
λm > (4 + ε)m

}
+ P

{
λm ≤ (4 + ε)m,

λm

λ1
> m2x2

}
≤ P

{
λm > (4 + ε)m

}
+ P

{
λ1 <

(4 + ε)

mx2

}
≤ C1 exp

[
−C2mε2

]
+ C3

√
4 + ε

x
,(1.2)

where C1, C2, C3 are positive constants. From (1.2), making an adequate choice of
ε one can get an upper bound for P{κ(A) > mx} of the form (const) 1

x

(
log x
m

)α
for

some α > 0 and x large enough. However, this kind of argument does not lead to the
precise order given by our Theorem 1.1.

On the other hand, using known results for the distribution of other functions of
the spectrum (for example, (λ1 + · · ·+ λm)/λ1 as in Edelman [8]), one can get upper
and lower bounds for the tails of the distribution of κ(A) which again do not reach
the precise behavior (const)/x.

2. Proof of Theorem 1.1. It is easy to see that, almost surely, the eigenvalues
of ATA are pairwise different. We introduce the following additional notation:

• 〈., .〉 is usual scalar product in R
m and {e1, . . . , em} the canonical basis.

• Ik denotes the k × k identity matrix.
• B = ATA = ((bij))i,j=1,...,m.

• For s �= 0 in R
m, πs : R

m → R
m denotes the orthogonal projection onto

{s}⊥, the orthogonal complement of s in R
m.

• M � 0 (resp., M ≺ 0) means that the symmetric matrix M is positive definite
(resp., negative definite).
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• If ξ is a random vector, pξ(.) is the density of its distribution whenever it
exists.

• For a differentiable function F defined on a smooth manifold M embedded in
some Euclidean space, F ′(s) and F ′′(s) are the first and the second derivative
of F that we will represent, in each case, with respect to an appropriate
orthonormal basis of the tangent space.

Instead of (1.1) we prove the equivalent statement: for x > m,

cm

x
< P{κ(A) > x} <

Cm

x
.(2.1)

We break the proof into several steps. Our main task is to estimate the joint
density of the pair (λm, λ1); this will be done in Step 4.

Step 1. For a, b ∈ R, a > b, one has almost surely

(2.2) {λm ∈ (a, a + da) , λ1 ∈ (b, b + db)}

=

{
∃ s, t ∈ Sm−1, 〈s, t〉 = 0, X(s) ∈ (a, a + da) , X(t) ∈ (b, b + db) ,

πs(Bs) = 0, πt(Bt) = 0, X ′′(s) ≺ 0, X ′′(t) � 0

}
.

An instant reflection shows that almost surely the number

Na,b,da,db

of pairs (s, t) belonging to the right-hand side of (2.2) is equal to 0 or to 4, so that

P{λm ∈ (a, a + da), λ1 ∈ (b, b + db)} =
1

4
E(Na,b,da,db).(2.3)

Step 2. In this step we will give a bound for E (Na,b,da,db) using what we call a
Rice-type formula (see Azäıs and Wschebor [3] for some related problems and general
tools). Let

V =
{
(s, t) : s, t ∈ Sm−1, 〈s, t〉 = 0

}
.

V is a C∞-differentiable manifold without boundary, embedded in R
2m, dim(V ) =

2m−3. We will denote by τ = (s, t) a generic point in V and by σV (dτ) the geometric
measure on V .

It is easy to see that σV (V ) =
√

2σm−1.σm−2, where σm−1 denotes the surface

area of Sm−1 ⊂ R
m, that is, σm−1 = 2πm/2

Γ(m/2) . On V we define the random field

Y : V → R
2m

by means of

Y (s, t) =

(
πs(Bs)
πt(Bt)

)
.

For τ = (s, t) a given point in V , we have that

Y (τ) ∈ {(t,−s)}⊥ ∩
{
{s}⊥ × {t}⊥

}
= Wτ

for any value of the matrix B, where {(t,−s)}⊥ is the orthogonal complement of the
point (t,−s) in R

2m.
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In fact, (t,−s) ∈ {s}⊥ × {t}⊥ and

〈Y (s, t), (t,−s)〉R2m = 〈πs(Bs), t〉 − 〈πt(Bt), s〉
= 〈Bs− 〈s,Bs〉s, t〉 − 〈Bt− 〈t, Bt〉t, s〉 = 0

since 〈s, t〉 = 0 and B is symmetric. Notice that dim(Wτ ) = 2m− 3.
We also set

∆(τ) =
[
det

[
(Y ′(τ))

T
Y ′(τ)

]] 1
2

,

N = 	 {τ : τ ∈ V, Y (τ) = 0} .

For τ = (s, t) ∈ V , Fτ denotes the event

Fτ = {X(s) ∈ (a, a + da), X(t) ∈ (b, b + db), X ′′(s) ≺ 0, X ′′(t) � 0} ,

and pY (τ)(.) is the density of the random vector Y (τ) in the (2m − 3)-dimensional
subspace Wτ of R

2m.
Assume that 0 is not a critical value of Y , that is, if Y (τ) = 0, then ∆(τ) �= 0. This

holds true with probability 1. By compactness of V , this implies N < ∞. Assume
that N �= 0 and denote by τ1, . . . , τN the roots of the equation Y (τ) = 0.

Because of the implicit function theorem, if δ > 0 is small enough, one can find in
V open neighborhoods U1, . . . , UN of the points τ1, . . . , τN , respectively, so that the
following hold:

• Y is a diffeomorphism between Uj and Y (V ) ∩ B2m(0, δ) (B2m(0, δ) is the
Euclidean ball of radius δ centered at the origin, in R

2m).
• U1, . . . , UN are pairwise disjoint.
• If τ /∈

⋃N
j=1 Uj , then Y (τ) /∈ B2m(0, δ).

Using the change of variable formula, it follows that∫
V

∆(τ) 1{‖Y (τ)‖<δ}σV (dτ) =

N∑
j=1

∫
Uj

∆(τ) σV (dτ) =

N∑
j=1

µ (Y (Uj)) ,(2.4)

where µ (Y (Uj)) denotes the—(2m − 3)-dimensional—geometric measure of Y (Uj).
As δ ↓ 0, µ (Y (Uj)) ∼ |B2m−3(δ)|, where |B2m−3(δ)| is the (2m − 3)-dimensional
Lebesgue measure of a ball of radius δ in R

2m−3. It follows from (2.4) that, almost
surely,

N = lim
δ↓0

1

|B2m−3(δ)|

∫
V

∆(τ)1l{‖Y (τ)‖<δ}σV (dτ).

In exactly the same way, one can prove that

Na,b,da,db = lim
δ↓0

1

|B2m−3(δ)|

∫
V

∆(τ)1lFτ 1l{‖Y (τ)‖<δ}σV (dτ).

Applying Fatou’s lemma and Fubini’s theorem,

E(Na,b,da,db) ≤ lim inf
δ↓0

1

|B2m−3(δ)|

∫
V

E
(
∆(τ) 1lFτ

1l{‖Y (τ)‖<δ}
)
σV (dτ)

= lim inf
δ↓0

∫
V

σV (dτ)

∫
Bm,δ,τ

E (∆(τ)1lFτ
/Y (τ) = y) pY (τ)(y)

dy

|B2m−3(δ)|

=

∫
V

E (∆(τ)1lFτ /Y (τ) = 0) pY (τ)(0) σV (dτ),
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where Bm,δ,τ = B2m(0, δ) ∩ Wτ . The validity of the last passage to the limit will
become clear below, since it will follow from the calculations we will perform that the
integrand in the inner integral is a continuous function of the pair (τ, y). Hence,

(2.5) E (Na,b,da,db) ≤
∫ a+da

a

dx

∫ b+db

b

dy

∫
V

E
(
∆(s, t)1l{X′′(s)≺0,X′′(t)
0}/Cs,t,x,y

)
× pX(s),X(t),Y (s,t)(x, y, 0) σV (d(s, t)),

where Cs,t,x,y is the condition {X(s) = x,X(t) = y, Y (s, t) = 0}. The invariance of
the law of A with respect to isometries of R

m implies that the integrand in (2.5) does
not depend on (s, t) ∈ V . Hence, we have proved that the joint law of λm and λ1 has
a density g(a, b), a > b, and

(2.6) g(a, b) ≤
√

2

4
σm−1σm−2E

(
∆(e1, e2)1l{X′′(e1)≺0,X′′(e2)
0}/Ce1,e2,a,b

)
× pX(e1),X(e2),Y (e1,e2)(a, b, 0).

In fact, using the method of Azäıs and Wschebor [3], it could be proved that (2.6) is
an equality, but we do not need such a precise result here.

Step 3. Next, we compute the ingredients in the right-hand member of (2.6). We
take as orthonormal basis for the subspace W(e1,e2){

(e3, 0), . . . , (em, 0), (0, e3), . . . , (0, em),
1√
2
(e2, e1)

}
= L1.

We have

X(e1) = b11,

X(e2) = b22,

X ′′(e1) = B1 − b11Im−1,

X ′′(e2) = B2 − b22Im−1,

where B1 (resp., B2) is the (m−1)× (m−1) matrix obtained by suppressing the first
(resp., the second) row and column in B,

Y (e1, e2) = (0, b21, b31, . . . , bm1, b12, 0, b32, . . . , bm2)
T ,

so that it has the following expression in the orthonormal basis L1:

Y (e1, e2) =

m∑
i=3

(
bi1(ei, 0) + bi2(0, ei)

)
+
√

2b12

(
1√
2
(e2, e1)

)
.

It follows that the joint density of X(e1), X(e2), Y (e1, e2) appearing in (2.6) in the
space R × R ×W(e1,e2) is the joint density of the random variables

b11, b22,
√

2b12, b31, . . . , bm1, b32, . . . , bm2

at the point (a, b, 0, . . . , 0). To compute this density, first compute the joint density q
of

b31, . . . , bm1, b32, . . . , bm2,



432 JEAN-MARC AZAÏS AND MARIO WSCHEBOR

given a1, a2, where aj denotes the jth column of A which is Gaussian standard in R
m.

q is the normal density in R
2(m−2), centered with variance matrix(
‖a1‖2Im−2 〈a1, a2〉Im−2

〈a1, a2〉Im−2 ‖a2‖2Im−2

)
.

Set

a′j =
aj

‖aj‖
, j = 1, 2.

The density of the triplet

(b11, b22, b12) = (‖a1‖2, ‖a2‖2, ‖a1‖‖a2‖〈a′1, a′2〉)

at the point (a, b, 0) can be computed as follows.

Since 〈a′1, a′2〉 and (‖a1‖, ‖a2‖) are independent, the density of the triplet at
(a, b, 0) is equal to

χ2
m(a)χ2

m(b)(ab)−1/2p<a′
1,a

′
2>

(0),

where χ2
m(.) denotes the χ2 density with m degrees of freedom.

Let ξ = (ξ1, . . . , ξm)T be Gaussian standard in R
m. Clearly, 〈a′1, a′2〉 has the same

distribution as ξ1
‖ξ‖ , because of the invariance under rotations.

1

2t
P{|〈a′1, a′2〉| ≤ t} =

1

2t
P

{
ξ2
1

χ2
m−1

≤ t2

1 − t2

}
=

1

2t
P

{
F1,m−1 ≤ t2(m− 1)

1 − t2

}

=
1

2t

∫ t2(m−1)

1−t2

0

f1,m−1(x)dx,

where χ2
m−1 = ξ2

2 + · · · + ξ2
m and F1,m−1 has the Fisher distribution with (1,m − 1)

degrees of freedom and density f1,m−1. Letting t → 0, we obtain

p〈a′
1,a

′
2〉(0) =

1√
π

Γ(m/2)

Γ
(
(m− 1)/2

) .
Summing up, the density in (2.6) is equal to

1√
2
(2π)2−mπ− 1

2
1

Γ(m/2)Γ
(
(m− 1)/2

)2−m 1√
ab

exp

(
− a + b

2

)
.(2.7)

We now consider the conditional expectation in (2.6). First, observe that the
(2m−3)-dimensional tangent space to V at the point (s, t) is parallel to the orthogonal
complement in R

m×R
m of the triplet of vectors (s, 0); (0, t); (t, s). This is immediate

from the definition of V .

To compute the associated matrix for Y ′(e1, e2) take the set{
(e3, 0), . . . , (em, 0), (0, e3), . . . , (0, em),

1√
2
(e2,−e1)

}
= L2
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as orthonormal basis in the tangent space and the canonical basis in R
2m. A direct

calculation gives

Y ′(e1, e2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−vT 01,m−2 − 1√
2
b21

wT 01,m−2
1√
2
(−b11 + b22)

B12 − b11Im−2 0m−2,m−2
1√
2
w

01,m−2 −wT 1√
2
(−b11 + b22)

01,m−2 vT 1√
2
b21

0m−2,m−2 B12 − b22Im−2 − 1√
2
v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where vT = (b31, . . . , bm1), w
T = (b32, . . . , bm2), 0i,j is a null matrix with i rows and

j columns, and B12 is obtained from B by suppressing the first and second rows and
columns. The columns represent the derivatives in the directions of L2 at the point
(e1, e2). The first m rows correspond to the components of πs(Bs), the last m ones
to those of πt(Bt). Thus, under the condition Ce1,e2,a,b that is used in (2.6),

Y ′(e1, e2) =

⎛⎜⎜⎜⎜⎜⎜⎝

01,m−2 01,m−2 0
01,m−2 01,m−2

1√
2
(b− a)

B12 − aIm−2 0m−2,m−2 0m−2,1

01,m−2 01,m−2
1√
2
(b− a)

01,m−2 01,m−2 0
0m−2,m−2 B12 − bIm−2 0m−2,1

⎞⎟⎟⎟⎟⎟⎟⎠
and[

det
[(
Y ′(e1, e2)

)T
Y ′(e1, e2)

]] 1
2

= |det(B12 − aIm−2)||det(B12 − bIm−2)|(a− b).

Step 4. Note that B1−aIm−1 ≺ 0 ⇒ B12−aIm−2 ≺ 0, and similarly, B2−bIm−1 �
0 ⇒ B12 − bIm−2 � 0, and that for a > b, under Ce1,e2,a,b, there is equivalence in
these relations.

It is also clear that, since B12 � 0, one has

|det(B12 − aIm−2)|1lB12−aIm−2≺0 ≤ am−2,

and it follows that the conditional expectation in (2.6) is bounded by

am−1E
(
|det(B12 − bIm−2)|1lB12−bIm−2
0/C

)
,(2.8)

where C is the condition {b11 = a, b22 = b, b12 = 0, bi1 = bi2 = 0 (i = 3, . . . ,m)}.
To compute the conditional expectation in (2.8) we further condition on the value

of the random vectors a1 and a2. Since unconditionally a3, . . . , am are i.i.d. standard
Gaussian vectors in R

m, under this new conditioning, their joint law becomes the law
of i.i.d. standard Gaussian vectors in R

m−2 and independent of the condition. That
is, (2.8) is equal to

am−1E
(
|det(M − bIm−2)|1lM−bIm−2
0

)
,(2.9)

where M is an (m − 2) × (m − 2) random matrix with entries Mij = 〈vi, vj〉 (i, j =
1, . . . ,m− 2) and the vectors v1, . . . , vm−2 are i.i.d. Gaussian standard in R

m−2. The
expression in (2.9) is bounded by

am−1E
(
det(M)

)
= am−1(m− 2)!.
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The last equality is contained in the following lemma, which is well known; see, for
example, Edelman [7].

Lemma 2.1. Let ξ1, . . . , ξm be i.i.d. random vectors in R
p, p ≥ m, their common

distribution being Gaussian centered with variance Ip.
Denote by Wm,p the matrix

Wm,p = ((〈ξi, ξj〉))i,j=1,...,m,

and by

D(λ) = det (Wm,p − λIm)

its characteristic polynomial.
Then
(i)

E (det (Wm,p)) = p(p− 1) . . . (p−m + 1),(2.10)

(ii)

E (D(λ)) =

m∑
k=0

(−1)k
(
m

k

)
p!

(p−m + k)!
λk.(2.11)

Returning to the proof of the theorem and summing up this part, after substitut-
ing in (2.6), we get

g(a, b) ≤ Cm

exp
(
− (a + b)/2

)
√
ab

am−1,(2.12)

where Cm = 1
4(m−2)! .

Step 5. Now we prove the upper-bound part in (2.1). One has, for x > 1,

P{κ(A) > x} = P

{
λm

λ1
> x2

}
≤ P

{
λ1 <

L2m

x2

}
+ P

{
λm

λ1
> x2, λ1 ≥ L2m

x2

}
,

(2.13)

where L is a positive number to be chosen later on. For the first term in (2.13), we
use Proposition 9 in Cuesta-Albertos and Wschebor [4], which is a slight modification
of Theorem 3.2 in Sankar, Spielman, and Teng [13]:

P

{
λ1 <

L2m

x2

}
= P

{
‖A−1‖ >

x

L
√
m

}
≤ C2(m)

Lm

x
.

Here,

C2(m) =

(
2

π

) 1
2
[

sup
0<c<m

√
cP

{
t2m−1 >

(m− 1)c

m− c

}]−1

≤ C2(+∞) ≈ 2.3473,

where tm−1 is a random variable having Student’s distribution with m− 1 degrees of
freedom.

For the second term in (2.13),

P

{
λm

λ1
> x2, λ1 ≥ L2m

x2

}
=

∫ +∞

L2mx−2

db

∫ +∞

bx2

g(a, b)da ≤ Gm(x2)
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with

Gm(y) = Cm

∫ +∞

L2my−1

db

∫ +∞

by

exp
(
− (a + b)/2

)
√
ab

am−1da,

using (2.12). We have

(2.14) G′
m(y) = Cm

[
−
∫ +∞

L2my−1

exp(−b/2)
√
b exp

(
− (by)/2

)
(by)m−3/2db

+ L2my−2

∫ +∞

L2m

exp

(
− 1

2

(
a +

L2m

y

))
am−3/2L−1m− 1

2 y
1
2 da

]
,

which implies

−G′
m(y) ≤ Cmym−3/2

∫ +∞

L2my−1

exp

(
− b(1 + y)

2

)
bm−1db

=
y−3/2

4(m− 2)!

(
y

1 + y

)m

2m
∫ +∞

L2m
2y (1+y)

e−zzm−1dz

≤ y−3/2

4(m− 2)!
2m

∫ +∞

L2m
2

e−zzm−1dz.

Put Im(a) =
∫ +∞
a

e−zzm−1dz. Integrating by parts,

Im(a) = e−a
[
am−1 + (m− 1)am−2 + (m− 1)(m− 2)am−3 + · · · + (m− 1)!

]
,

so that for a > 2.5m

Im(a) ≤ 5

3
e−aam−1.

If L2 > 5, we obtain the bound

−G′
m(y) ≤ Dmy−3/2 with Dm =

5

6

mm−1

(m− 2)!
L2(m−1) exp

(
−L2m

2

)
.

We now apply Stirling’s formula (Abramowitz and Stegun [1, sect. 6.1.38]), i.e., for
all x > 0

Γ(x + 1) exp

(
− 1

12x

)
≤

(x
e

)x √
2πx ≤ Γ(x + 1),

to get

Dm ≤ 5
√

2

12
√
πL2

m√
m− 2

exp

(
−m

L2 − 4log(L) − 2

2

)
≤ 5

√
2

12
√
πL2

m,

if we choose for L the only root larger than 1 of the equation L2 − 4 log(L) − 2 = 0
(check that L ≈ 2.3145). To finish,

0 ≤ Gm(y) =

∫ +∞

y

−G′
m(t)dt < Dm

∫ +∞

y

dt

t3/2
= 2Dmy−

1
2 .
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Replacing y by x2 and performing the numerical evaluations, the upper bound in (2.1)
follows, and we get for the constant C the value 5.60.

Step 6. We consider now the lower bound in (2.1). For γ > 0 and x > 1, we have

(2.15) P{κ(A) > x} = P

{
λm

λ1
> x2

}
≥ P

{
λm

λ1
> x2, λ1 <

γ2m

x2

}
= P

{
λ1 <

γ2m

x2

}
− P

{
λm

λ1
≤ x2, λ1 <

γ2m

x2

}
.

A lower bound for the first term in the right-hand member of (2.15) is obtained using
the following inequality, which we state as a separate lemma. In fact, this result is
known; see, for example, Szarek [15, Theorem 1.2], where it is proved without giving
an explicit value for the constant. See also Edelman [7, Corollary 3.1], for a related
result.

Lemma 2.2. If 0 < a < 1/m, then

P{λ1 < a} ≥ β
√
am,

where we can choose β =
(

2
3

)3/2
e−1/3.

Proof. Define the index iX(t) of a critical point t ∈ Sm−1 of the function X as
the number of negative eigenvalues of X”(t). For each a > 0 put

Ni(a) = 	{t ∈ Sm−1 : X(t) = tTBt < a,X ′(t) = 0, iX(t) = i}

for i = 0, 1, . . . ,m− 1. One easily checks that if the eigenvalues of B are λ1, . . . , λm,
0 < λ1 < · · · < λm, then

• if a ≤ λ1, then Ni(a) = 0

for i = 0, 1, . . . ,m− 1;

• if λi < a ≤ λi+1, then Nk(a) = 2

for some i = 0, 1, . . . ,m1 for k = 0, . . . , i− 1,

Nk(a) = 0

for k = i, . . . ,m− 1;

• if λm < a, then Ni(a) = 2

for i = 0, 1, . . . ,m− 1.

Now consider

M(a) =

m−1∑
i=0

(−1)iNi(a).

M(a) is the Euler characteristic of the set S = {t ∈ Sm−1 : X(t) < a}; see Adler [2].
It follows from the relations above that

• if N0(a) = 0, then Ni(a) = 0 for i = 1, . . . ,m− 1, and hence M(a) = 0;
• if N0(a) = 2, then M(a) = 0 or 2,

so that in any case

M(a) ≤ N0(a).
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Hence,

P{λ1 < a} = P{N0(a) = 2} =
1

2
E
(
N0(a)

)
≥ 1

2
E
(
M(a)

)
.(2.16)

The expectation of M(a) can be written using the Rice-type formula (see Azäıs and
Wschebor [3] or Taylor and Adler [16])

E
(
M(a)

)
=

∫ a

0

dy

∫
Sm−1

E
[
det

(
X”(t)

)
/X(t) = y,X ′(t) = 0

]
pX(t),X′(t)(y, 0)σm−1(dt)

=

∫ a

0

σm−1(S
m−1)E

[
det

(
X”(e1)

)
/X(e1) = y,X ′(e1) = 0

]
pX(e1),X′(e1)(y, 0)dy,

where we have used again invariance under isometries. Applying a similar Gaussian
regression—as we did in Step 4 to get rid of the conditioning—we obtain

E
(
M(a)

)
=

∫ a

0

E
[
det

(
Q− yIm−1

)] √2π

2m−1
Γ−2

(
m

2

)
exp(−y/2)

√
y

dy,(2.17)

where Q is an (m− 1)× (m− 1) random matrix with entry i, j equal to (〈vi, vj〉) and
v1, . . . , vm−1 are i.i.d. Gaussian standard in R

m−1. We now use part (ii) of Lemma 2.1:

E
[
det

(
Q− yIm−1

)]
= (m− 1)!

m−1∑
k=0

(
m− 1

k

)
(−y)k

k!
.(2.18)

Under condition 0 < a < m−1, since 0 < y < a, as k increases, the terms of the sum
in the right-hand member of (2.18) have decreasing absolute value, so that

E
[
det

(
Q− yIm−1

)]
≥ (m− 1)![1 − (m− 1)y].

Substituting into the right-hand member of (2.17), we get

E
[
M(a)

]
≥

√
2π

2m−1

(m− 1)!

Γ2(m/2)
Jm(a),

where, using again 0 < a < m−1,

Jm(a) =

∫ a

0

(
1 − (m− 1)y

)exp(−y/2)
√
y

dy ≥
∫ a

0

(
1 − (m− 1)y

)
√
y

(1 − y/2)dy ≥ 4

3

√
a

by an elementary computation. Going back to (2.17), applying Stirling’s formula, and

remarking that
(
1 + 1/n

)n+1 ≥ e, we get

P{λ1 < a} ≥
(

2

3

)3/2

e−1/3
√
am.

This proves the lemma.
End of the proof of Theorem 1.1. Using Lemma 2.2, the first term on the right-

hand side of (2.15) is bounded below by

βγ
m

x
.
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Table 1

Values of the estimations P{κ(A) > mx} for x = 1, 2, 3, 5, 10, 15, 30, 50, 100 and m = 3, 5, 10, 30,
100, 300, 500 by Monte Carlo method over 40,000 simulations.

Value of x
Probability 1 2 3 5 10 20 30 50 100

Lower bound: .13/x .13 .065 .043 .026 .013 .007 .004 .003 .001
Upper bound: 5.6/x 1 1 1 1 .56 .28 .187 .112 .056

m = 3 .881 .57 .41 .26 .13 .067 .044 .027 .013
m = 5 .931 .66 .48 .30 .16 .079 .053 .033 .016
m = 10 .959 .71 .52 .34 .17 .088 .059 .035 .017
m = 30 .974 .75 .56 .36 .19 .096 .063 .038 .019
m = 100 .978 .77 .58 .38 .20 .098 .066 .040 .019
m = 300 .982 .77 .58 .38 .20 .101 .069 .041 .022
m = 500 .980 .77 .59 .38 .20 .100 .066 .039 .020

To obtain a bound for the second term, we use again our upper bound (2.12) on the
joint density g(a, b), so that we obtain

P
{λm

λ1
≤ x2, λ1 <

γ2m

x2

}
=

∫ γ2m

x2

0

db

∫ bx2

b

g(a, b)da(2.19)

≤ Cm

∫ γ2m

x2

0

db

∫ bx2

b

exp
(
− (a + b)/2

)
√
ab

am−1da

≤ Cm

∫ γ2m

x2

0

b(x2 − 1)b−
1
2 (bx2)

m−3
2 db

≤ 1

4(m− 2)!

x2 − 1

x3
γ2mmm−1 ≤

√
2

8
√
π
emγ2mm

x

on applying Stirling’s formula. Now choosing γ = 1/e, we see that the hypothesis of
Lemma 2.2 is satisfied and also

P
{λm

λ1
≤ x2, λ1 <

γ2m

x2

}
≤

√
2

8
√
π
e−3m

x
.

Substituting into (2.15), we obtain the lower bound in (1.1) with

c =

(
2

3

)3/2

e−4/3 −
√

2

8
√
π
e−3 ≈ 0.138.

3. Monte Carlo experiment. To study the tail of the distribution of the con-
dition number of Gaussian matrices of various size, we used the following Matlab
functions:

• normrnd, to simulate normal variables;
• cond, to compute the condition number of matrix A.

The results of over 40,000 simulations using Matlab are given in Table 1 and in
Figure 1.

The table suggests, taking into account the simulation variability, that the con-
stants c and C should take values smaller than 0.88 and bigger than 2.00, respectively.

Acknowledgments. The authors thank Professors G. Letac and F. Cucker for
valuable discussions. They also thank the associate editor and two anonymous referees
for helpful comments that contributed to improving this paper.
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Fig. 1. Values of P{κ(A) > mx} as a function of x for m = 3, 10, 100, and 500.
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Abstract. In this paper, the distributions of the largest and smallest eigenvalues of complex
Wishart matrices and the condition number of complex Gaussian random matrices are derived.
These distributions are represented by complex hypergeometric functions of matrix arguments, which
can be expressed in terms of complex zonal polynomials. Several results are derived on complex
hypergeometric functions and complex zonal polynomials and are used to evaluate these distributions.
Finally, applications of these distributions in numerical analysis and statistical hypothesis testing are
mentioned.
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eigenvalue distribution, condition number distribution
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1. Introduction. In this work, we investigate the distributions of the eigenval-
ues and condition number of complex random matrices and their applications to nu-
merical analysis. In contrast to [3], we consider that the elements of random matrices
are complex Gaussian distributed with zero mean and arbitrary covariance matrices.
This will enable us to consider the beautiful but difficult theory of complex zonal
polynomials (also called Schur polynomials [10]), which are symmetric polynomials
in the eigenvalues of a complex matrix [12]. Complex zonal polynomials enable us
to represent the distributions of the eigenvalues of these complex random matrices as
infinite series.

In statistics, the random eigenvalues are used in hypothesis testing, principal
component analysis, canonical correlation analysis, multiple discriminant analysis,
etc. (see [12]). In nuclear physics, random eigenvalues are used to model nuclear
energy levels and level spacing [11]. Moreover, the zeros of the Riemann zeta function
are modeled using random eigenvalues [11].

Let an n×m complex Gaussian random matrix A be distributed as A ∼ CN(0, In⊗
Σ) with mean E{A} = 0 and covariance cov{A} = In ⊗ Σ. Then the matrix
W = AHA is called the complex central Wishart matrix, and its distribution is
denoted by CWm(n,Σ).

The condition number, cond(A), of a matrix A is defined as the positive square
root of the ratio of the largest to the smallest eigenvalues of the positive definite
Hermitian matrix W = AHA. Thus (see [4] and [19])

cond(A) =
√
λmax/λmin = ‖A‖2‖A−1‖2, cond(W ) = cond(A)2,(1.1)
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where the �2-norms of the matrix A and the vector x are

‖A‖2 = sup
x�=0

‖Ax‖2/‖x‖2 and ‖x‖2 =
(
x2

1 + x2
2 + · · · + x2

n

)1/2
,

respectively. We assume that the eigenvalues of W are ordered in strictly decreasing
order, λmax = λ1 > · · · > λm = λmin > 0, since the probability that any eigenvalues
of A are equal is zero. The condition number of a random matrix gives valuable
information on the convergence rate of iterative methods in optimization algorithms
and on the reliability of the solutions of linear systems of equations.

The distributions of λmax and λmin and the condition number density of random
matrices are studied in [3] (and references given therein) for Σ = I (see also [18]). The
singular value distribution of Gaussian random matrices is given in [13] for Σ = I.
Note that the singular values of a complex Gaussian random matrix A are equal
to the square root of the eigenvalues of the complex Wishart matrix W = AHA.
The asymptotic distribution of the largest eigenvalue of a complex Wishart matrix
is given in [6] if m and n are large and Σ = I. In [7] the largest and smallest
eigenvalue distributions of a complex Wishart matrix are studied for Σ = σ2I. Here,
we derive the distributions of the largest and smallest eigenvalues of complex Wishart
matrices and the condition number density of complex random matrices for arbitrary
Σ. Applications of these distributions are also given.

This paper is organized as follows. Section 2 provides the necessary tools for
deriving the eigenvalue and condition number distributions of complex central Wishart
matrices. Complex central Wishart matrices are studied in section 3 and their largest
and smallest eigenvalue distributions derived. The condition number density is derived
in section 4 and a numerical example is given.

2. Preliminaries. In this section, we derive several results on complex hyper-
geometric functions and complex zonal polynomials that will be used to evaluate
the subsequent distributions. First, we define the multivariate hypergeometric coef-

ficients [a]
(α)
κ which frequently occur in integrals involving zonal polynomials. Let

κ = (k1, . . . , km) be a partition of the integer k with k1 ≥ · · · ≥ km ≥ 0 and
k = k1 + · · · + km. Then [1]

[a](α)
κ =

m∏
i=1

(
a− 1

α
(i− 1)

)
ki

,

where (a)k = a(a + 1) · · · (a + k − 1) and α = 1 for complex and α = 2 for real
multivariate hypergeometric coefficients, respectively. In this paper we consider only
the complex case; therefore, for notational simplicity we drop the superscript [8], i.e.,

[a]κ := [a](1)κ =

m∏
i=1

(a− i + 1)ki =
CΓm(a, κ)

CΓm(a)
,

where

CΓm(a, κ) = πm(m−1)/2
m∏
i=1

Γ(a + ki − i + 1), �(a) > (m− 1),

and CΓm(a) denotes the complex multivariate gamma function

CΓm(a) = πm(m−1)/2
m∏

k=1

Γ(a− k + 1), �(a) > (m− 1) + k1.
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Moreover,

CΓm(a,−κ) = πm(m−1)/2
m∏
i=1

Γ(a−m− ki + i).

The complex zonal polynomials (also called Schur polynomials [10]) of a complex
matrix X are defined in [5] by

Cκ(X) = χ[κ](1)χ[κ](X),(2.1)

where χ[κ](1) is the dimension of the representation [κ] of the symmetric group given
by

χ[κ](1) = k!

∏m
i<j(ki − kj − i + j)∏m

i=1(ki + m− i)!
,(2.2)

and χ[κ](X) is the character of the representation [κ] of the linear group given as a
symmetric function of the eigenvalues, λ1, . . . , λm, of X by

χ[κ](X) =
det

[(
λ
kj+m−j
i

)]
det

[(
λm−j
i

)] .(2.3)

Note that both the real and complex zonal polynomials are particular cases of Jack

polynomials C
(α)
κ (X) for general α. See [1] and [15] for details. Again α = 1 for

complex and α = 2 for real zonal polynomials, respectively. For the same reason as
before, we shall drop the superscript of Jack polynomials, as we did in (2.1), i.e.,

Cκ(X) := C
(1)
κ (X).

The following basic properties are given in [5]:

(trX)k =
∑
κ

Cκ(X)

and ∫
U(m)

Cκ(AXBXH)(dX) =
Cκ(A)Cκ(B)

Cκ(Im)
,(2.4)

where (dX) is the invariant measure on the unitary group U(m) normalized to make
the total measure unity and

Cκ(Im) = 22kk!

[
1

2
m

]
κ

∏r
i<j(2ki − 2kj − i + j)∏r

i=1(2ki + r − i)!
,

where [
1

2
m

]
κ

=

r∏
i=1

(
1

2
(m− i + 1)

)
ki

.

Note that the partition κ of k has r nonzero parts.
The probability distributions of random matrices are often derived in terms of

hypergeometric functions of matrix arguments. The following definitions of hypergeo-
metric functions with a single and double matrix argument are due to Constantine [2]
and Baker [1].
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Definition 2.1. The hypergeometric function of one complex matrix is defined
as

pF
(α)
q (a1, . . . , ap; b1, . . . , bq;X) =

∞∑
k=0

∑
κ

[a1]
(α)
κ · · · [ap](α)

κ

[b1]
(α)
κ · · · [bq](α)

κ

C
(α)
κ (X)

k!
,(2.5)

where X ∈ C
m×m and {ai}pi=1 and {bi}qi=1 are arbitrary complex numbers. Note that∑

κ denotes summation over all partitions κ of k and α = 1 and 2 for complex and
real hypergeometric functions, respectively.

In this paper we consider only the complex case, and hence we shall drop the

superscript, i.e., pFq := pF
(1)
q . Note that none of the parameters bi is allowed to

be zero or an integer or half-integer ≤ m − 1. Otherwise some of the terms in the
denominator will be zero [12].

Remark 1. The convergence of (2.5) is as follows [12]:
(i) If p ≤ q, then the series converges for all X.
(ii) If p = q+1, then the series converges for σ(X) < 1, where the spectral radius

σ(X) of X is the maximum of the absolute values of the eigenvalues of X.
(iii) If p > q+ 1, then the series diverges for all X �= 0, unless it terminates. Note

that the series terminates when some of the numerators [aj ]κ in the series
vanish.

Special cases are

0F0(X) = etr(X), 1F0(a;X) = det(I −X)−a,

and

0F1(n;ZZH) =

∫
U(n)

etr(ZE + ZE)(dE),

where Z is an m× n complex matrix with m ≤ n, etr denotes the exponential of the
trace, etr(·) = exp(tr(·)), and ZE denotes the complex conjugate of ZE.

Definition 2.2. The complex hypergeometric function of two complex matrices
is defined by

pFq(a1, . . . , ap; b1, . . . , bq;X,Y ) =

∞∑
k=0

∑
κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

Cκ(X)Cκ(Y )

k!Cκ(Im)
,(2.6)

where X, Y ∈ C
m×m.

The splitting formula is∫
U(m)

pFq(AEBEH)(dE) = pFq(A,B).

The following propositions and corollaries are required in what follows.
Proposition 2.3. If Y and Z are m × m Hermitian matrices with �(Z) > 0,

then

(2.7)

∫
XH=X>0

etr(−XZ)(detX)a−mCκ(XY )(dX)

= CΓm(a, κ)(detZ)−aCκ(Y Z−1),
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where �(a) > (m− 1), and

(2.8)

∫
XH=X>0

etr(−XZ)(detX)a−mCκ(X−1Y )(dX)

= CΓm(a,−κ)(detZ)−aCκ(Y Z),

where �(a) > (m− 1) + k1.
Proof. Let Z = I and f(Y ) denote the left side of (2.7). Then

f(EY EH) =

∫
XH=X>0

etr(−X)(detX)a−mCκ(XEY EH)(dX) ∀E ∈ U(m).

If X = EWEH , then (dX) = (dW ) and f(EY EH) = f(Y ). This implies that f is a
symmetric function of Y . Moreover, (dE) is the normalized invariant measure on the
unitary group U(m). Therefore we have

f(Y ) =

∫
U(m)

f(Y )(dE)(2.9)

=

∫
XH=X>0

etr(−X)(detX)a−m

∫
U(m)

Cκ(XEY EH)(dE)(dX)

=

∫
XH=X>0

etr(−X)(detX)a−mCκ(X)Cκ(Y )

Cκ(Im)
(dX)

=
f(Im)Cκ(Y )

Cκ(Im)
.

On the one hand, from Definition 7.2.1 in [12] we have

f(Y ) =
f(Im)

Cκ(Im)
dκy

k1
1 · · · ykm

m + terms of lower weight.(2.10)

On the other hand, using Lemma 7.2.6 in [12] we have

f(Y ) =

∫
XH=X>0

etr(−X)(detX)a−mCκ(XY )(dX)

= dκy
k1
1 · · · ykm

m

∫
XH=X>0

etr(−X)(detX)a−mxk1−k2
11

× det

[
x11 x12

x21 x22

]k2−k3

· · ·detXkm(dX) + terms of lower weight.

Substituting X = THT and evaluating this integral we obtain

f(Y ) = dκy
k1
1 · · · ykm

m CΓm(a, κ) + terms of lower weight.(2.11)

Equating the coefficients of yk1
1 · · · ykm

m in (2.10) and (2.11) and using (2.9), we obtain

f(Y ) = CΓm(a, κ)Cκ(Y ).

The rest of the proof for general Z can be obtained by substituting X = Z−1/2V Z−1/2.
Similarly, we can prove the second part.
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The following corollary follows from the second part of Proposition 2.3 by letting
Y = I.

Corollary 2.4. Let Z be an m×m Hermitian matrix with �(Z) > 0. Then

∫
XH=X>0

etr(−XZ)(detX)a−mCκ(X−1)(dX) =
(−1)kCΓm(a)

[−a + m]κ
(detZ)−aCκ(Z)

(2.12)

for �(a) > k1 + (m− 1), where κ = (k1, . . . , km).
Proof. The result follows by noting that

CΓm(a,−κ) =
(−1)kCΓm(a)

[−a + m]κ
.

Proposition 2.5. Let Y be an m × m symmetric matrix. Then the following
are true:

∫
0<X<Im

(detX)a−m det(Im −X)b−mCκ(XY )(dX) =
CΓm(a, κ)CΓm(b)

CΓm(a + b, κ)
Cκ(Y )

(2.13)

for �(a) > (m− 1) and �(b) > (m− 1). Moreover,

∫
0<X<Im

(detX)a−m det(Im −X)b−mCκ(X−1Y )(dX) =
CΓm(a,−κ)CΓm(b)

CΓm(a + b,−κ)
Cκ(Y )

(2.14)

for �(a) > (m− 1) + k1 and �(b) > (m− 1).
Proof. As in the proof of Proposition 2.3, if f(Y ) denotes the left side of (2.13),

then we have

f(Y ) = f(EY EH) ∀ E ∈ U(m) and f(Y )Cκ(Im) = f(Im)Cκ(Y ).

Letting Z = I and Y = I in (2.7) and then multiplying with f(Im), we obtain

CΓm(a + b, κ)f(Im) =

∫
WH=W>0

etr(−W )(detW )a+b−mf(W )(dW )

=

∫
WH=W>0

etr(−W )(detW )a+b−m

∫
0<X<Im

(detX)a−m

× det(Im −X)b−mCκ(WX)(dX)(dW ).

Let X = W−1/2UW−1/2. Then (dX) = (detW )−m(dU) and

CΓm(a + b, κ)f(Im) =

∫
WH=W>0

etr(−W )

∫
0<U<W

(detU)a−m

× det(W − U)b−mCκ(U)(dU)(dW )

=

∫
UH=U>0

etr(−U)(detU)a−mCκ(U)(dU)

×
∫
V H=V >0

etr(−V )(detV )b−m(dV ) (letting V = W − U)

= CΓm(a, κ)Cκ(Im)CΓm(b).
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This completes the proof, i.e.,

f(Im) =
CΓm(a, κ)CΓm(b)

CΓm(a + b, κ)
Cκ(Im).

Similarly, we can prove the second part.
If b = m, then we have the following corollary.
Corollary 2.6. If Y is an m×m Hermitian matrix, then∫

0<X<Im

(detX)a−mCκ(XY )(dX) =
CΓm(a)CΓm(m)

CΓm(a + m)

[a]κ
[a + m]κ

Cκ(Y )(2.15)

for �(a) > (m− 1).
Proof. The result follows by noting that

CΓm(a, κ) = [a]κCΓm(a).

3. The complex central Wishart matrix. In this section, we describe the
complex central Wishart distribution and give the joint eigenvalue density of the
complex central Wishart matrix. The largest and smallest eigenvalue distributions
are derived in subsections 3.1 and 3.2, respectively. These distributions are used in
the hypothesis testing of the structure of the covariance matrix Σ.

The definition of the complex central Wishart distribution is given by the follow-
ing.

Definition 3.1. Let W = AHA, where the n × m matrix A is distributed as
A ∼ CN(0, In⊗Σ). Then W is said to have the complex central Wishart distribution
W ∼ CWm(n,Σ) with n degrees of freedom and covariance matrix Σ.

Let W ∼ CWm(n,Σ) with n ≥ m. Then the density of W is given by [5]

f(W ) =
1

CΓm(n)(det Σ)n
etr

(
−Σ−1W

)
(detW )n−m.(3.1)

Moreover, W is an m ×m positive definite Hermitian matrix with real eigenvalues.
The joint density of the eigenvalues, λ1 > · · · > λm > 0, of W is

f(Λ) =
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)

m∏
k=1

λn−m
k

m∏
k<l

(λk − λl)
2
0F0

(
−Λ,Σ−1

)
,(3.2)

where Λ = diag(λ1, . . . , λm).
If W ∼ CWm(n, σ2Im) with n ≥ m, then the joint density of its eigenvalues is

f(Λ) =
πm(m−1)(σ2)−nm

CΓm(m)CΓm(n)

m∏
k=1

λn−m
k

m∏
k<l

(λk − λl)
2 exp

(
− 1

σ2

m∑
k=1

λk

)
.(3.3)

3.1. Distribution of λmax. In this subsection, we derive the distribution of
the largest eigenvalue, λmax, of a central Wishart matrix and apply it to hypothesis
testing. The following theorem is needed.

Theorem 3.2. Let W ∼ CWm(n,Σ) (n ≥ m) and let ∆ be an m ×m positive
definite matrix. Then the probability P (W < ∆) is given by

P (W < ∆) =
CΓm(m)

CΓm(n + m)

(det ∆)n

(det Σ)n
1F1(n;n + m;−Σ−1∆),(3.4)
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where

1F1(a; b;X) =

∞∑
k=0

∑
κ

[a]κ
[b]κ

Cκ(X)

k!
.

Proof. Using the Wishart distribution (3.1) we can write P (W < ∆) as

P (W < ∆) =
1

CΓm(n)(det Σ)n

∫
0<W<∆

etr(−Σ−1W )(detW )n−m (dW ).

The change of variable W = ∆1/2X∆1/2 leads to the differential form (dW ) =
(det ∆)m(dX). Hence,

P (W < ∆) =
(det ∆)n

CΓm(n)(det Σ)n

∫
0<X<I

etr(−∆1/2Σ−1∆1/2X)(detX)n−m (dX)

=
(det ∆)n

CΓm(n)(det Σ)n

∞∑
k=0

∑
κ

1

k!

∫ I

0

(detX)n−mCκ(−∆1/2Σ−1∆1/2X) (dX)

=
CΓm(m)

CΓm(n + m)

(det ∆)n

(det Σ)n

∞∑
k=0

∑
κ

[n]κ
[n + m]κ

Cκ(−Σ−1∆)

k!

=
CΓm(m)

CΓm(n + m)

(det ∆)n

(det Σ)n
1F1(n;n + m;−Σ−1∆).

Note that Corollary 2.6 is used in this proof.
The following corollary follows from Theorem 3.2.
Corollary 3.3. Let W ∼ CWm(n,Σ) (n ≥ m). If λmax is the largest eigenvalue

of W , then its distribution is given by

P (λmax < x) =
CΓm(m)

CΓm(n + m)

xmn

(det Σ)n
1F1(n;n + m;−xΣ−1).(3.5)

The density of λmax is obtained by differentiating (3.5) with respect to x.
Proof. The inequality λmax < x is equivalent to W < xI. Therefore, the result

follows by letting ∆ = xI in Theorem 3.2.
The distributional result in Corollary 3.3 can be used to test hypotheses about Σ

using statistics which are functions of λmax. For example, consider the null hypothesis
H0 : Σ = Im. A test on the size of α based on the largest eigenvalue λmax is to reject
H0 if λmax > λ(α,m, n), where λ(α,m, n) is the upper 100α% point of the distribution
of λmax when Σ = Im, i.e., PIm(λmax > λ(α,m, n)) = α. The power function of this
test is given by

β(Σ) = PΣ(λmax > λ(α,m, n)),

which depends on Σ only through its eigenvalues. The percentage points and power
can be computed using the distribution function given in Corollary 3.3.

3.2. Distribution of λmin. In this subsection, we derive the distribution of the
smallest eigenvalue, λmin, of a central Wishart matrix and use it to test the structure
of the covariance matrix Σ, as explained in the previous subsection. In addition, the
distribution of λmin is useful in principal component analysis. Here it would be of
interest to find out the number of eigenvalues which are significant in Σ. The following
theorem is used to derive the distribution of λmin.
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Theorem 3.4. Let W ∼ CWm(n,Σ) (n ≥ m) and let ∆ be an m ×m positive
definite matrix. Then the probability P (W > ∆) can be written as a finite series, i.e.,

P (W > ∆) = etr
(
−Σ−1∆

)m(n−m)∑
k=0

∑̂
κ

Ck

(
Σ−1∆

)
k!

,(3.6)

where
∑̂

κ denotes summation over the partitions κ = (k1, . . . , km) of k with k1 ≤
n−m.

Proof. Using the Wishart distribution (3.1) we can write the probability P (W >
∆) as

P (W > ∆) =
1

CΓm(n)(det Σ)n

∫
W>∆

etr
(
−Σ−1W

)
(detW )n−m(dW ).(3.7)

The change of variable W = ∆1/2(I + X)∆1/2 leads to the differential form (dW ) =
(det ∆)m(dX). Hence,

P (W > ∆) =
etr(−Σ−1∆)(det ∆)n

CΓm(n)(det Σ)n

×
∫
X>0

etr
(
−∆1/2Σ−1∆1/2X

)
(detX)n−m(det(I + X−1))n−m(dX)

=
etr(−Σ−1∆)(det ∆)n

CΓm(n)(det Σ)n

m(n−m)∑
k=0

∑̂
κ

[−(n−m)]κ(−1)k

k!

×
∫
X>0

etr
(
−∆1/2Σ−1∆1/2X

)
(detX)n−mCκ(X−1)(dX)

= etr(−Σ−1∆)

m(n−m)∑
k=0

∑̂
κ

Cκ

(
Σ−1∆

)
k!

.

In this proof we have used

det
(
I + X−1

)n−m
= 1F0(−(n−m);−X−1)

=

m(n−m)∑
k=0

∑̂
κ

[−(n−m)]κCκ(X−1)(−1)k

k!

and Corollary 2.4. Note that if any part of κ is greater than (n−m), then [−(n−m)]κ =
0. Therefore, the series for 1F0 reduces to a finite series.

The distribution of the smallest eigenvalue is given in the following corollary.
Corollary 3.5. Let W ∼ CWm(n,Σ). If λmin is the smallest eigenvalue of W,

then

P (λmin > x) = etr
(
−xΣ−1

)m(n−m)∑
k=0

∑̂
κ

Cκ

(
xΣ−1

)
k!

,(3.8)

where
∑̂

κ denotes summation over the partitions κ = (k1, . . . , km) of k with k1 ≤
n−m. The density of λmin is obtained by differentiating (3.8) with respect to x and
then changing the sign.
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Proof. The inequality λmin > x is equivalent to W > xI. Therefore, the result
follows by letting ∆ = xI in Theorem 3.4.

As a numerical example, we compute the smallest eigenvalue distribution of the
complex central Wishart matrix for m = 2, n = 10, and

Σ =

[
1 0.25 + 0.25i

0.25 − 0.25i 1

]
.

The distribution is defined by

P (λmin < x) = 1 − P (λmin > x),

where P (λmin > x) is given in (3.8). Let F = P (λmin < x). Figure 3.1 shows this
distribution of λmin.
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Fig. 3.1. The smallest eigenvalue distribution of the complex central Wishart matrix.

4. Distribution of cond(A). Many scientific problems lead to solving a ran-
dom system of linear equations. The condition number distribution of this random
matrix indicates how many digits of numerical precision are lost due to ill condi-
tioning. In addition, if a random system is solved by an iterative technique, then
the condition number distribution describes the speed of convergence of this iterative
method (e.g., conjugate gradient method).

The condition number, cond(A), can also be defined (see [14], [22], and [3]) as the
smallest number

‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖

for all x and δx such that Ax = b and A(x + δx) = b + δb. By taking the logarithm
on both sides, we have

(log ‖δx‖ − log ‖x‖) − (log ‖δb‖ − log ‖b‖) ≤ log cond(A).



EIGENVALUES OF COMPLEX RANDOM MATRICES 451

This shows that the number of correct digits in x can differ from the number of
correct digits in b by at most log cond(A). In [14], the loss of precision is denoted
by log cond(A). Problems where cond(A) is large are referred to as ill conditioned,
and such problems are characterized by very elongated elliptical level sets. Iterative
methods converge slowly for these problems. These facts illustrate the importance of
the condition number distribution for solving random systems.

If A ∼ CN(0, I ⊗ Σ) or A ∼ CN(0, I ⊗ σ2I), then the condition number dis-
tributions of A and W = AHA are not available in the literature. We derive these
distributions in what follows. First, we derive the joint density of the extreme eigen-
values of the complex central Wishart matrix W = AHA, i.e., f(λmax, λmin). This
will enable us to compute the distribution of the condition number of the random
matrix A. The following two lemmas are required in what follows.

Lemma 4.1. Let Λ = diag(λ1, . . . , λm) and D1 = {1 > λ1 > · · · > λm > 0}.
Then

(4.1)

∫
D1

(det Λ)a−m det(I − Λ)b−m
m∏
k<l

(λk − λl)
2Cκ(Λ)

m∧
k=1

dλk

=
CΓm(m)

πm(m−1)

CΓm(a, κ)CΓm(b)

CΓm(a + b, κ)
Cκ(I).

Proof. The result follows by letting Y = I and X = EΛEH in (2.13) and using
the differential form

(dX) =
m∏
k<l

(λk − λl)
2(dΛ)(EHdE) with

∫
U(m)

(EHdE) =
2mπm2

CΓm(m)
.

We must then divide the left side of (2.13) by (2π)m.

Lemma 4.2. Let Z = diag(ζ2, . . . , ζm), Z1 = diag(1, ζ2, . . . , ζm), and D2 = {1 >
ζ2 > · · · > ζm > 0}. Then

(4.2)

∫
D2

(detZ)a−m
m∏

k=2

(1 − ζk)
2

m∏
k<l

(ζk − ζl)
2Cκ(Z1)

m∧
k=2

dζk

= (ma + k)
CΓm(m)

πm(m−1)

CΓm(a, κ)CΓm(m)

CΓm(a + m,κ)
Cκ(I).

Proof. Let b = m and ζk = λk/λ1, k = 2, . . . ,m. Then the left side of (4.1)
becomes∫ 1

0

λma+k−1
1 dλ1

∫
D2

(detZ)a−m
m∏

k=2

(1 − ζk)
2

m∏
k<l

(ζk − ζl)
2Cκ(Z1)

m∧
k=2

dζk.(4.3)

The result follows by noting that
∫ 1

0
λma+k−1

1 dλ1 = 1/(ma + k).

The following theorem describes the joint density of the extreme eigenvalues of
the central complex Wishart matrix.

Theorem 4.3. Let W ∼ CWm(n,Σ). The joint distribution of λ1(= λmax) and
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λm(= λmin) of W is given by

f(λ1, λm) =
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
exp(−mλ1)

∞∑
k=0

∑
κ

λmn+k−1
1 Cκ(Σ−1)

k! Cκ(I)
(4.4)

×
∞∑
t=0

∑
τ,δ

(m− n)τg
δ
τ,κ(1 − λm/λ1)

(m−1)(m+1)+t+k−1

t!

× [(m− 1)(m + 1) + k + t]
CΓm−1(m− 1)

π(m−1)(m−2)

× CΓm−1(m + 1, δ)CΓm−1(m− 1)

CΓm−1(2m, δ)
Cδ(I),

where gδτ,κ is the coefficient of Cδ (defined in the proof).

Proof. Consider (3.2). By making the transformations λ1 = λ1, ηk = 1 − λk/λ1,
k = 2, . . . ,m, we obtain the joint density of λ1, η2, . . . , ηm as

πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
exp(−mλ1)

∞∑
k=0

∑
κ

λmn+k−1
1 (detH)2 det(I −H)n−m

× Cκ(H)Cκ(Σ−1)

k! Cκ(I)

m∏
i>j=2

(ηi − ηj)
2, 0 < λ1 < ∞, 0 < η2 < · · · < ηm < 1,

where H = diag(η2, . . . , ηm). We have [9]

det(I −H)n−mCκ(H) =

∞∑
t=0

∑
τ

(−(n−m))τCτ (H)Cκ(H)

t!

=
∞∑
t=0

∑
τ

∑
δ

(−(n−m))τg
δ
τ,κCδ(H)

t!
,

where gδτ,κ is the coefficient of Cδ(H) in the product Cτ (H)Cκ(H), δ = (δ1, . . . , δm),
δ1 ≥ · · · ≥ δm ≥ 0, and

∑m
i=1 δi = k + t. Again, by making the transformations

λ1 = λ1, ζk = ηk/ηm, k = 2, . . . ,m− 1, and ηm = ηm, we obtain the joint density of
λ1, ζ2, . . . , ζm−1, and ηm as

πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
exp(−mλ1)

∞∑
k=0

∑
κ

λmn+k−1
1 Cκ(Σ−1)

k! Cκ(I)

×
∞∑
t=0

∑
τ,δ

(m− n)τg
δ
τ,κη

(m−1)(m+1)+t+k−1
m

t!

× (detZ)2Cδ(Z1)

m−1∏
i=2

(1 − ζi)
2

m−1∏
i>j=2

(ζi − ζj)
2,

where Z = diag(ζ2, . . . , ζm−1) and Z1 = diag(1, ζ2, . . . , ζm−1). Integrating with re-
spect to ζ2, . . . , ζm−1 and using Lemma 4.2, we obtain the joint density of λ1 and ηm
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as

g(λ1, ηm) =
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
exp(−mλ1)

∞∑
k=0

∑
κ

λmn+k−1
1 Cκ(Σ−1)

k! Cκ(I)

(4.5)

×
∞∑
t=0

∑
τ,δ

(m− n)τg
δ
τ,κη

(m−1)(m+1)+t+k−1
m

t!
[(m− 1)(m + 1) + k + t]

× CΓm−1(m− 1)

π(m−1)(m−2)

CΓm−1(m + 1, δ)CΓm−1(m− 1)

CΓm−1(2m, δ)
Cδ(I).

Finally, the result follows by substituting ηm = 1 − λm/λ1.

Theorem 4.4. Let W = AHA ∼ CWm(n,Σ). Since cond(A)2 = λ1/λm, then
the density of y = 1 − 1/ cond(A)2 is given by

f(y) =
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)

∞∑
k=0

∑
κ

Γ(mn + k)Cκ(Σ−1)

mmn+k k! Cκ(I)
(4.6)

×
∞∑
t=0

∑
τ,δ

(m− n)τg
δ
τ,κy

(m−1)(m+1)+t+k−1

t!
[(m− 1)(m + 1) + k + t]

× CΓm−1(m− 1)

π(m−1)(m−2)

CΓm−1(m + 1, δ)CΓm−1(m− 1)

CΓm−1(2m, δ)
Cδ(I).

Proof. The result follows by integrating (4.5) with respect to λ1 and substituting
y = ηm. Note that we have∫ ∞

0

e−mλ1λmn+k−1
1 dλ1 =

Γ(mn + k)

mmn+k
.

If Σ = σ2I, then the corresponding results for Theorems 4.3 and 4.4 can be derived
using a similar method. However, we provide an alternative approach as follows.

Theorem 4.5. Let Σ = σ2I. The joint density of λ1(= λmax) and λm(= λmin)
of a central Wishart matrix is given by

(4.7)

f(λ1, λm) =
πm(m−1)(σ2)−nm

CΓm(m)CΓm(n)
λ

(m−1)(n−m−1)+m
1 exp

{
− 1

σ2
[(m− 1)λ1 − λm]

}
λn−m
m

× (λ1 − λm)m
2−2�(ψ;m− 2, 2, 0, 1), 0 < λm < λ1 < ∞,

where

�(ψ,m, r, L, U) =

∫
D3

m∏
k=1

(xr
kψ(xk))

m∏
k>l=1

(xk − xl)
2

m∧
k=1

dxk,(4.8)

and ψ(x) = (1−x)2(1−x− (λm/λ1)x)n−m exp
(

1
σ2 (λ1 − λm)x

)
with D3 = {L ≤ x1 ≤

· · · ≤ xq ≤ U}.
Proof. Consider (3.3). By making the transformations λ1 = λ1, ηk = 1 − λk/λ1,
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k = 2, . . . ,m, we obtain the joint density of λ1, η2, . . . , ηm as

πm(m−1)(σ2)−nm

CΓm(m)CΓm(n)
λmn−1

1 exp

(
− 1

σ2
mλ1

)
×

m∏
k=2

[
η2
k(1 − ηk)

n−m exp

(
1

σ2
λ1ηk

)] m∏
k>l=2

(ηk − ηl)
2,

where 0 < λ1 < ∞ and 0 < η2 < · · · < ηm < 1. Again, by making the transformations
λ1 = λ1, ζk = ηk/ηm, k = 2, . . . ,m− 1, and ηm = ηm, we obtain the joint density of
λ1, ζ2, . . . , ζm−1, and ηm as

πm(m−1)(σ2)−nm

CΓm(m)CΓm(n)
λmn−1

1 exp

{
− 1

σ2
λ1 (m− ηm)

}
ηm

2−2
m (1 − ηm)n−m

×
m−1∏
k=2

[
ζ2
k(1 − ζk)

2(1 − ηmζk)
n−m exp

(
1

σ2
λ1ηmζk

)] m−1∏
k>l=2

(ζk − ζl)
2,

where 0 < λ1 < ∞, 0 < ζ2 < · · · < ζm−1 < 1, and 0 < ηm < 1. Upon integration with
respect to ζ2, . . . , ζm−1, the joint density, g(λ1, ηm), of λ1 and ηm is given by

πm(m−1)(σ2)−nm

CΓm(m)CΓm(n)
λmn−1

1 exp

{
− 1

σ2
λ1 (m− ηm)

}
ηm

2−2
m(4.9)

× (1 − ηm)n−m�(ψ;m− 2, 2, 0, 1),

where

ψ(x) = (1 − x)2(1 − ηmx)n−m exp

(
1

σ2
λ1ηmx

)
, 0 < λ1 < ∞,

and 0 < ηm < 1. Now, the result follows by substituting ηm = 1 − λm/λ1.
Theorem 4.6. Let W = AHA ∼ CWm(n, σ2I). Since cond(A)2 = λ1/λm, then

the density of y = 1 − 1/ cond(A)2 is given by

f(y) =

∫ ∞

0

g(λ1, ηm) dλ1, 0 < y < 1.(4.10)

Proof. The proof is obvious from (4.9).
It should be noted that the joint density of the extreme eigenvalues of a real

central Wishart matrix is studied in [16], [17], [20], and [21]. The density given in
Theorem 4.6 may be used to test the sphericity hypothesis H0 : Σ = σ2I against
the alternative H1 : Σ �= σ2I; see [17]. It may also be used to test the sphericity
hypothesis against the alternative that any two eigenvalues of Σ are unequal.

Consider the following numerical example for testing the sphericity hypothesis. A
sequence of 23 complex signals is received at the output of the communication system.
Let the number of outputs of the system be 3 (m = 3). The sample covariance matrix
is given by

S =

⎡⎣ 150.77 78.15 + 15.12i 35.32 + 10.15i
78.15 − 15.12i 71.05 23.65 + 10.12i
35.32 − 10.15i 23.65 − 10.12i 12.26

⎤⎦ .
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Assume the complex multivariate signal is normal with population covariance matrix
Σ. Then W = 22S is a complex central Wishart distribution with 22 degrees of
freedom, W ∼ CW 3(22,Σ). We wish to test the sphericity hypothesis H0 : Σ = σ2I,
σ2 unknown against H1: any two eigenvalues of Σ are unequal at the significance level
α = 0.05. Let λ1 > λ2 > λ3 be the eigenvalues of W . Then the critical region is given
by

λ1

λ3
= cond(W ) ≥ c,

where the constant c is chosen to make the significance level equal to 0.05. This
critical region can be written equivalently as

y ≥ d,

where y = 1 − λ3/λ1, the density f(y) is given in (4.10), and d is a constant chosen
to make the significance level equal to 0.05. Thus d is chosen such that

PH0
(y ≥ d) =

∫ 1

d

f(y) dy = 0.05.

A numerical evaluation of this probability shows that d = 0.7 with m = 3, n = 22, and
σ2 = 1. For the measured data we have y = 1−λ3/λ1 = 1−2/209.88 = 0.9905, which
is highly significant at the 5% level, and so we reject the sphericity hypothesis. If W ∼
CW 3(22, I3), it also follows from this calculation that P (cond(W ) > 1/(1−d)) = 0.05.

5. Conclusion. In this paper, the distributions of the largest and smallest eigen-
values of a complex Wishart matrix were derived for an arbitrary covariance matrix Σ,
and the joint distributions of the extreme eigenvalues were also derived. Using these
distributions we derived the condition number distributions of complex random ma-
trices. These distributions play an important role in numerical analysis and statistical
hypothesis testing.
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1. Introduction. We consider the solution of the ill-posed model dependent
problem

Ax ≈ b,

where A ∈ Rm×n and b ∈ Rm are known, and are assumed to be error contaminated.
If the matrix A is well conditioned a solution can be found using the method of total
least squares (TLS)

min‖[E, f ]‖F subject to (A + E)x = b + f,(1.1)

where ‖ · ‖F denotes the Frobenius norm [4, 5, 12].
For ill-conditioned systems, Golub, Hansen, and O’Leary [3] presented and ana-

lyzed the properties of regularization for TLS. Consistent with the formulation of the
Tikhonov regularized LS problem [15, 16], the regularized TLS (RTLS) is given by

min‖[E, f ]‖F subject to (A + E)x = b + f and ‖Lx‖ ≤ δ.(1.2)
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Here ‖ · ‖ denotes the 2-norm, δ is a regularization parameter, and L ∈ Rp×n defines
a (semi)norm on the solution [9, 3].

Guo and Renaut [6] obtained the solution of the RTLS problem by finding the
minimum eigenpair for an augmented solution-dependent block matrix. The eigenpair
is found iteratively, using inverse iteration applied to the solution-dependent matrix.
Here we present a theoretical development of a convergent algorithm for determi-
nation of the minimum eigenpair. The algorithm is extended to improve efficiency
by inclusion of the option to do inexact local solves and update of the constraint
within the matrix formulation. Bisection search is presented because of the ability
to determine precisely the number of iterations required for a given accuracy. We
also provide an L-curve approach for cases in which a good estimate of the physical
constraint parameter is not available.

Theoretical results which lead to the development of the algorithms are presented
in section 2. The theory uses the alternative statement of the RTLS problem, namely
the minimization of the normalized residual, equivalently the minimization of the
Rayleigh quotient for the augmented matrix

M = [A, b]T [A, b](1.3)

[12] subject to the addition of the constraint term for regularization of the solution. We
also present results on the relationships between the Lagrange multipliers of the RTLS
and the constraint parameter δ. If any one of the set of three parameters is chosen as a
free parameter, the other two are immediately specified and are monotonically related
to one another. This result verifies the connection between the presented algorithms.
Computational details are described in section 3, and experimental results comparing
and contrasting the different approaches and comparing with the quadratic eigenvalue
solver presented in [14] are described in section 4. We conclude that the eigenproblem
formulation provides a powerful approach for RTLS solutions in practical applications.

2. Algorithmic development.

2.1. Rayleigh quotient formulation. It is well known that the solution of the
TLS minimizes the sum of squared normalized residuals,

xTLS = argminxφ(x) = argminx

‖Ax− b‖2

1 + ‖x‖2
(2.1)

[5, 12], where φ is the Rayleigh quotient of matrix M . This suggests an alternative
formulation for regularized TLS,

minxφ(x) subject to ‖Lx‖ ≤ δ.(2.2)

To distinguish the two formulations we call this the regularized Rayleigh quotient
form for total least squares (RQ-RTLS). It leads to the augmented Lagrangian

L(x, µ) = φ(x) + µ(‖Lx‖2 − δ2).(2.3)

Although φ(x) is not concave its stationary points can be characterized, which is
useful in characterization of the solution of (2.3).

Lemma 2.1 (Fact 1.8 in [13]). The Rayleigh quotient of a symmetric matrix is
stationary at, and only at, the eigenvectors of the matrix.
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Lemma 2.2. If the extreme singular values of the matrix [A, b] are simple, then
φ(x) has one unique maximum point, one unique minimum point, and n − 1 saddle
points.

Proof. The proof follows by the observation φ(xi) = σ2
i , where vector [xT

i ,−1]T

is the ith right singular vector of matrix [A, b] with corresponding singular value σi.
The uniqueness of the maximum and minimum points is immediate. To show that
all the other stationary points are saddles, it is easy to construct their neighbors and
show that φ(x) is, resp., greater and less on either side of the corresponding stationary
point.

Theorem 2.1. Suppose that the conditions of Lemma 2.2 are satisfied for matrix
[A, b], that σn > σn+1 and that constraint parameter δ is specified. Then, if the
constraint is active, ‖LxRTLS‖2 = δ2 and µ > 0.

Proof. By Lemma 2.2 and using σn > σn+1, the solution xTLS of (2.1) is unique.
If the constraint in (2.2) is active, ‖LxTLS‖2 > δ2, and by Lemma 2.2 there is no
local minimum of φ within the set defined by the constraint ‖Lx‖2 < δ2. Thus, if
the constraint is active, xRTLS must lie on the boundary of the domain defined by
‖Lx‖2 ≤ δ2,

xT
RTLSL

TLxRTLS − δ2 = 0,(2.4)

and the Lagrange parameter at the minimum of the Lagrangian is positive, µ >
0.

It is easy to see that the Kuhn–Tucker conditions for (2.2) are the same as those
for (1.2). Hence we immediately obtain the following theorem for the characterization
of the RTLS solution for (2.2), equivalent to that presented in [3] for the augmented
Lagrangian for (1.2).

Theorem 2.2. The solution, xRTLS, of the regularized problem (2.2), for which
the constraint is active, satisfies

(ATA + λII + λLL
TL)xRTLS = AT b,(2.5)

µ > 0, xT
RTLSL

TLxRTLS − δ2 = 0,(2.6)

where

λI = −φ(xRTLS),(2.7)

λL = µ(1 + ‖xRTLS‖2),(2.8)

µ = − 1

δ2(1 + ‖xRTLS‖2)

(
bT (AxRTLS − b) + φ(xRTLS)

)
.(2.9)

Proof. Setting ∇xL(x, µ) = 0, we have

ATAx−AT b + µ(1 + ‖x‖2)LTLx− φ(x)x = 0,

which is (2.5) with λI and λL identified by (2.7) and (2.8), resp. Multiplying both sides
by xT , replacing ‖Lx‖ by δ, and using the relationship (2.1) to rewrite ‖Ax‖2 − bTAx
as (1+‖x‖2)φ(x)+bT (Ax−b), we immediately obtain the expression for µ. Moreover,
(2.6) follows from Theorem 2.1.

In [6] we observed, without proof, that this result additionally characterizes the
RTLS solution in terms of an eigenpair for an augmented system. Here we present
a slight modification of the result, of significant practical use, which includes the
constraint condition in an alternative manner.
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Theorem 2.3. The solution xRTLS of (2.2) subject to the active constraint (2.4)
satisfies the augmented eigenpair problem:

B(xRTLS)

(
xRTLS

−1

)
= −λI

(
xRTLS

−1

)
,(2.10)

where the solution-dependent matrix is given by

B(xRTLS) = M + λL(xRTLS)

(
LTL 0
0 α

)
, α = −‖LxRTLS‖2,(2.11)

in which λL(xRTLS) is given by (2.8) and (2.9).

Conversely, suppose the pair ((x̂T ,−1)T ,−λ̂) is an eigenpair for matrix B̂(x̂),
where matrix B̂ represents the matrix B with modification in the lower right corner,
α replaced by α̂, α̂ = −γ, where γ can take values δ2, or ‖Lx̂‖2, and λL(x̂) is defined
accordingly by (2.8) and (2.9). Then

1. x̂ satisfies (2.5),
2. the constraint is active, (2.4) is satisfied for x̂, and

3. eigenvalue λ̂ is given by

λ̂ = −φ(x̂).

Proof. The first block equation of (2.10) comes immediately from (2.5). For the
second block equation we note that by (2.7)

λI(1 + ‖x‖2) = −‖Ax− b‖2,

but by (2.5)

λI‖x‖2 = bTAx− ‖Ax‖2 − λL‖Lx‖2.

Thus, by subtraction,

λI = bTAx + λLx‖Lx‖2 − bT b,(2.12)

as required. We replace ‖Lx‖2 occurring in α by δ2 using the active constraint con-
dition (2.4).

For the proof in the opposite direction, we suppose that the eigenpair ((x̂T ,−1)T ,

−λ̂) satisfies the eigenvalue equation (2.10), with appropriate replacement of xRTLS

by x̂ and λI by λ̂. The first block equation immediately gives (2.5). By the second
block equation of the eigenvalue problem we have

λ̂ = bTAx̂− bT b + λL(x̂)γ,(2.13)

and by the inner product of the eigensystem equation with eigenvector (x̂T ,−1)T we
have

λ̂ = − 1

‖x̂‖2 + 1
(‖Ax̂− b‖2 + λL(x̂)(‖Lx̂‖2 − γ)).(2.14)

Equating these two expressions, collecting terms in λL and then using (2.8) and (2.9)
we find

λL

(
‖Lx̂‖2 − γ

‖x̂‖2 + 1
+ γ

)
= λLδ

2.
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Solving for γ, by using the fact that λL �= 0, because it is proportional to µ �= 0,
yields

γ =
δ2(1 + ‖x̂‖2) − ‖Lx̂‖2

‖x̂‖2
,(2.15)

which is satisfied for γ = δ2, or γ = ‖Lx̂‖2, each of which also imposes the active

constraint equation (2.4). When inserted back into the second expression for λ̂ this
also yields

λ̂ = −‖Ax̂− b‖2

‖x̂‖2 + 1
− λL(x̂)

‖Lx̂‖2 − δ2

‖x̂‖2
,

where now the second term vanishes because both of the choices for γ also enforce
the active constraint condition. Hence λ̂(x̂) = λI(x̂), as required.

2.2. Theoretical development. By the definition of RTLS problem (2.2) and
Theorem 2.3, the RTLS solution can be obtained through estimation of the minimum
|λI | = φ(x) which solves the augmented eigenvalue problem. Whenever the system
(2.10) is satisfied, the active constraint condition is also immediately satisfied. To de-
rive practical algorithms for the solution of the eigenproblem, we observe the similarity
with the unconstrained TLS problem: (xT

TLS ,−1)T is a right eigenvector for matrix M
associated with its smallest eigenvalue. An algorithm based on the Rayleigh quotient
iteration (RQI) for matrix (1.3) was presented by Björck, Heggernes, and Matstoms
[2]. While a similar iterative approach can be implemented, there is the additional
complication that the system matrix (2.11) depends on the solution xRTLS , which
requires consideration of the convergence properties applied to this particular situa-
tion. On the other hand, in [6], we verified numerically that inverse iteration can be
used for the determination of the RTLS solution. Here we investigate the convergence
properties of the approach and introduce modifications of the algorithm to improve
efficiency and reliability.

To analyze the eigenproblem for (2.10), for the case in which we use γ = δ2, we
introduce the parameter-dependent matrix, B(θ) = M + θN , θ ∈ R+, where

N =

(
LTL 0
0 −δ2

)
.(2.16)

Obviously B(λL) = B(x) in (2.11) if λL is given by (2.8) with x in place of xRTLS .
We denote the smallest eigenvalue corresponding to eigenvector (xT

θ ,−1)T of B(θ) by
�n+1, and use the notation N (A) for the null space of matrix A.

We also introduce the function g(x) = (‖Lx‖2 − δ2)/(1 + ‖x‖2). Then the goal of
solving the augmented eigenproblem may be reformulated as follows.

Problem 2.4. For a constant δ, find a θ such that g(xθ) = 0.
The following results assist with the design of an algorithm to solve this problem.
Lemma 2.3. Assuming that bTA �= 0 and N (A)∩N (L) = {0}, then the smallest

eigenvalue of B(θ) is simple.
Proof. The eigenvalue-eigenvector equation

B(θ)

(
xθ

−1

)
= ρθ

(
xθ

−1

)
yields

(ATA + θLTL− ρθI)xθ = AT b.(2.17)
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By assumption AT b �= 0, so ρθ is not an eigenvalue of ATA+θLTL. By the eigenvalue
interlace theorem, it is thus strictly smaller than the smallest eigenvalue of ATA +
θLTL and must be simple.

Lemma 2.4. If [A, b] is a full rank matrix, there exists one and only one positive
number, denoted by θc, such that B(θc) is singular, and

1. the null eigenvalue of B(θc) is simple,
2. when 0 ≤ θ < θc, B(θ) is positive definite, and
3. when θ > θc, B(θ) has only one negative eigenvalue; the others are positive.

Proof. Because M is nonsingular, B(θ) = M + θN is congruent to C(θ) =
I + θXTNX, where X is a nonsingular matrix. Thus B(θ) and C(θ) have the same
inertia, as do N and XTNX. Because LTL is nonnegative definite, we know C(θ) is
similar to

I + θ

⎛⎝D
0

−ω2

⎞⎠ ,(2.18)

where D is a diagonal matrix with positive diagonal entries. Thus there exists only
one finite real number θ = θc > 0 such that the null space of B(θ) is nontrivial and
the dimension of the corresponding null space is 1.

Because matrices (2.18) and B(θ) have the same inertia, we immediately obtain
the other two results.

Lemma 2.5. If bTA �= 0, and [A, b] is full rank, then
1. there exists a λ∗

L ∈ [0, θc] which solves Problem 2.4,
2. the solution of Problem 2.4 is unique,
3. when λL ∈ (0, λ∗

L), g(xλL
) > 0 and λL ∈ (λ∗

L,∞), g(xλL
) < 0.

Proof.
1. When θ = 0, B(0) > 0. The eigenvector corresponding to the smallest

eigenvalue of B(0), (M), is related to the TLS solution xTLS , g(xTLS) > 0
because the constraint is active. Moreover, for small perturbation in the
matrix B(θ), Theorem 6.3.12 in [11] yields

d�n+1

dθ
|θ=θ0 = g(xθ0).(2.19)

Thus, �n+1 increases with θ near zero. On the other hand, by Lemma 2.4
�n+1 = 0 for θ = θc. Thus, g(xθ) must change sign in [0, θc] and by continuity
there must exist a number λ∗

L ∈ [0, θc] such that the corresponding g(xλ∗
L
) =

0. Hence Problem 2.4 is solved.
2. We introduce notation xθ,

xθ = argminx∈Rn(φ(x) + θg(x)).(2.20)

Clearly, by Lemma 2.3, the smallest eigenvalue of B(θ) is simple. Suppose
that vectors xθ1 , xθ2 solve (2.20) for θ1, θ2 > 0; then

φ(xθ2) + θ2g(xθ2) < φ(xθ1) + θ2g(xθ1),(2.21)

φ(xθ1) + θ1g(xθ1) < φ(xθ2) + θ1g(xθ2).(2.22)

Adding these inequalities yields

(θ1 − θ2)g(xθ1) < (θ1 − θ2)g(xθ2),(2.23)
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and without loss of generality assuming θ1 > θ2, g(xθ1) < g(xθ2). Thus, g(xθ)
is monotonically decreasing with respect to θ and there exists only one θ such
that g(xθ) = 0.

3. The final statement follows immediately from the former two.
Remark 2.1. We see from this result that there is a unique solution to our

problem and that an algorithm for finding this solution should depend both on finding
an update for the Lagrange parameter λL and monitoring the sign of g(xλL

).
From (2.13) it is immediate that xθ is related to θ by θ = 1

δ2 (bT (b−Axθ)−φ(xθ)).
This suggests an iterative search for the θ,

θ(k+1) =
1

δ2
(bT (b−Axθ(k)) − φ(xθ(k))),(2.24)

where, at step k, (xT
θ(k) ,−1)T is the eigenvector for �

(k)
n+1. On the other hand, by (2.14),

we can write �
(k)
n+1 = φ(xθ(k)) + θ(k)g(xθ(k)), which in (2.24), also using bTAxθ(k) −

bT b + δ2θ(k) = −�
(k)
n+1, gives an update equation

θ(k+1) = θ(k) +
θ(k)

δ2
g(xθ(k)).(2.25)

It remains to consider whether this iteration will generate the appropriate θ that solves
Problem 2.4. We investigate the convergence properties of the update equation (2.25),
but first revert to the use of the parameter λL in place of θ. The theory presented in
Lemma 2.5 suggests the use of an iteration dependent parameter 0 < ι(k) ≤ 1 chosen
such that g(x

λ
(k+1)

L

) has the same sign as g(x
λ

(0)

L

):

λ
(k+1)
L = λ

(k)
L + ι(k)λ

(k)
L

δ2
g(x

λ
(k)

L

), 0 < ι(k) ≤ 1.(2.26)

Lemma 2.6. Suppose λ
(0)
L > 0. Let sequences {x

λ
(k)

L

} and {λ(k)
L }, k = 1, 2, . . . ,

be generated by (2.26), with parameter sequence 0 < ι(k) ≤ 1 utilized to enforce
g(x

λ
(k+1)

L

)g(x
λ

(0)

L

) > 0.

1. λ
(k)
L > 0 for any positive integer k.

2. If g(x
λ

(0)

L

) < 0, then sequences {λ(k)
L } and {φ(x

λ
(k)

L

)} decrease monotonically,

while {�(k)
n+1} and {g(x

λ
(k)

L

)} increase monotonically.

3. If g(x
λ

(0)

L

) > 0, then sequences {λ(k)
L } and {φ(x

λ
(k)

L

)} increase monotonically,

while {�(k)
n+1} and {g(x

λ
(k)

L

)} decrease monotonically.

4. If g(x
λ

(0)

L

) = 0, λ
(0)
L solves Problem 2.4.

Proof. For ease of presentation we write x(k) to indicate x
λ

(k)

L

, assuming the

dependence of the update on the λ
(k)
L .

1. Multiplying both sides of (2.26) by δ2(1 + ‖x(k)‖2), we obtain

δ2(1 + ‖x(k)‖2)λ
(k+1)
L = δ2(1 − ι(k) + ‖x(k)‖2)λ

(k)
L + ι(k)λ

(k)
L ‖Lx(k)‖2.

Because ι(k) ≤ 1, λ
(k+1)
L > 0 if λ

(k)
L > 0. Thus λ

(0)
L > 0 ensures λ

(k)
L > 0 for

all k ≥ 1.



464 ROSEMARY A. RENAUT AND HONGBIN GUO

2. If g(x(0)) < 0, the algorithm forces g(x(k)) < 0 for k > 1 so that also

λ
(k+1)
L < λ

(k)
L . Then by (2.23) g(x(k)) < g(x(k+1)) < 0 and combining with

(2.21) φ(x(k+1)) < φ(x(k)). Moreover, because the Rayleigh–Ritz theorem

also gives�
(k)
n+1 = minx∈Rn(φ(x) + λ

(k)
L g(x)), we have

�
(k)
n+1 = φ(x(k)) + λ

(k)
L g(x(k))

< φ(x(k+1)) + λ
(k)
L g(x(k+1))

< φ(x(k+1)) + λ
(k+1)
L g(x(k+1))

= �
(k+1)
n+1 .

3. The proof of this case follows equivalently.
4. This is immediate from the definition of Problem 2.4.

Remark 2.2. For an initial 0 < λ
(0)
L < θc, the tendency of the generated mono-

tonic sequence for λ
(k)
L depends on whether λ

(0)
L < λ∗

L or λ
(0)
L > λ∗

L, but in either case

B(λ
(k)
L ) is always positive definite.

Theorem 2.5. The iteration (2.26) with an initial λ
(0)
L > 0 converges to the

unique solution, λ∗
L, of Problem 2.4.

Proof. By Lemma 2.6 {λ(k)
L } is monotonic and by Lemma 2.5, statement 3, it

is bounded by λ∗
L. Thus it converges. Suppose that it converges to the limit point

λ̃L; then this limit point should satisfy (2.26) in the limit, and g(xλ̃L
) = 0. But now

Problem 2.4 has a unique solution and thus λ̃L ≡ λ∗
L.

2.3. Algorithms. The theoretical results justify the basic algorithm for the so-
lution xRTLS of (1.2) which uses exact determination of the smallest eigenvalue for
each update of the Lagrange parameter λL with RQI.

Algorithm 1 (EXACT RTLS: Alternating iteration on λL and x). For given

δ and initial guess λ
(0)
L > 0 calculate the eigenpair determined by (�

(0)
n+1, x

(0)). Set

k = 0. Update λ
(k)
L and x(k) until convergence.

1. While not converged
Do
(a) ι(k) = 1
(b) Inner Iteration: Until sign condition is satisfied Do:

i. Update λ
(k+1)
L by (2.26).

ii. Calculate the smallest eigenvalue, �
(k)
n+1, and the corresponding eigen-

vector, [x(k+1),−1], of matrix B(λ
(k)
L ).

iii. If sign condition g(x(k+1))g(x(0)) > 0 is not satisfied, set ι(k) =
ι(k)/2 else Break.

End Do
(c) Test for convergence. If converged Break else k = k + 1.

End Do.
2. xRTLS = x(k).

At the inner iteration in Algorithm 1 we find the minimum eigenvalue using an
application of the approach presented in [2], based on cubically convergent RQI for the

constant matrix B(λ
(k)
L ). Block Gaussian elimination is used to improve the efficiency.

Specifically, for fixed λL we iterate over j such that at iteration j we wish to find the
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vector y(k,j+1) = ((x(k,j+1))T ,−1)T such that

B(λ
(k)
L )y(k,j+1) = β(k,j)y

(k,j),(2.27)

B(λ
(k)
L ) =

(
J (k,j) AT b
bTA η(k,j)

)
,(2.28)

J (k,j) = ATA + λ
(k)
L LTL− ρ(k,j)In, η(k,j) = bT b− λ

(k)
L δ2 − ρ(k,j),(2.29)

where ρ(k,j) is the RQI shift. Here we use the double index (k, j) to indicate that
the inner iteration to find the eigenvalue is over index j as compared to the outer
iteration for λL which is over k. Having made this distinction, we now assume the
dependence on k whenever iteration j is denoted. We suppose that the matrix J (j) is
positive definite, certainly the case without shift by assumption on the initial choice

of λ
(0)
L , so that we can apply block Gaussian elimination(

J (j) AT b
0 τj

)(
x(j+1)

−1

)
= βj

(
x(j)

−(z(j))Tx(j) − 1

)
,

where

τj = ηj − bTAz(j)(2.30)

and x(j+1) = z(j) + βju
(j). Here z(j) and u(j) solve the systems

J (j)z(j) = AT b,(2.31)

J (j)u(j) = x(j),(2.32)

and the scaling parameter is given by

βj = τj/((z
(j))Tx(j) + 1).(2.33)

Remark 2.3. The algorithm as presented to match the theoretical results requires
precise determination of the smallest eigenvalue for each λL. However, an inexact
determination, particularly in early stages of the iteration, may increase efficiency
by reducing the total number of iterations. Moreover, the key requirement of the
convergence result is that the update xθ(k+1) is such that the sign property for function
g is maintained. Thus, suppose that we do not solve the eigenproblem exactly for each

λ
(k)
L , but that instead an approximate eigenpair is found, (ρ̃

(k)
n+1, x̃θ(k+1)), for which

g(x̃θ(k+1)) maintains the sign condition; then the iteration will still converge. This
leads to modification of Algorithm 1 based on inexact update for the eigenvalue.

Algorithm 2 (INEXACT RTLS: Alternating iteration on λL and x). Implement

the exact algorithm but initialized with 0 < λ
(0)
L < θc chosen such that the initial

matrix B(λ
(0)
L ) is positive definite. At each iteration do not search for the exact

eigenpair for each k, rather use inverse iteration and seek satisfactory x(k,Jk), such
that g(x(k,Jk))g(x(0)) > 0. If this condition is satisfied for j = Jk, assign x(k) = x(k,Jk)

and update λ
(k+1)
L . The initial vector for each inner inverse iteration is x(k,0) =

x(k−1,Jk−1).
Remark 2.4. It is immediate to see from the convergence theory that if the re-

quirement on the sign of g is relaxed, a divergent sequence can result. It was this
version of Algorithm 2 that was implemented in [6]. In particular, without the condi-
tion on the sign of g, each inner iteration to calculate x(k) uses just one step, j = 1,

and the matrix B(λ
(k)
L ) is updated each step.
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Remark 2.5. In Algorithms 1 and 2 we assume that γ = δ2, where λ
(0)
L is re-

quired. While the theory does not immediately follow, these algorithms can be modified
to use γ = ‖Lx(k,j)‖2, where initial solution x(0) or x(0,0) is required. This modifi-
cation introduces new versions of both algorithms, which we denote by 1.2 and 2.2,
resp., reserving the notation 1.1 and 2.1 for the former versions. If blow-up does not
occur, which we demonstrate through our numerical experiments is seldom the case,
we find that the iteration converges much more quickly.

Remark 2.6. While the exact determination of the smallest eigenvalue at any
step will be made efficient if the shift of the RQI is utilized, it should be clear that it
is not, in general, desirable to use the shift when we pose the problem in the inexact
form, for which we want to change λL efficiently to get to the RTLS solution, rather
than to find each intermediate eigenvalue precisely. Thus, in general, given an initial
choice of λL such that B is positive definite, the block matrix J (j) without shift is
guaranteed positive definite.

2.4. Interdependence of parameters. In the preceding algorithms we assume
that the physical parameter δ is known a priori, which may not always be the case.
Hence we need to understand the relationship between δ and the other parameters
λL and λI in order to determine an algorithm for which δ is not provided.

Consistent with earlier notation, we distinguish the solution of the RTLS problem
via the δ-specified algorithm as xδ. Moreover, we use J(λL) = ATA−φ(xλL

)I+λLL
TL

and s(xλL
) = ATAxλL

−AT b− φ(xλL
)xλL

for which J(λL)xλL
= AT b and s(xλL

) =
−λLL

TLxλL
.

Theorem 2.6. Suppose matrix J(λL) is positive definite and λL > 0; then

1.
dφ(xλL

)

dλL
> 0, φ(xλL

) is monotonically increasing with respect to λL, and

2.
d(‖LxλL

‖2)

dλL
< 0, ‖LxλL

‖2 is monotonically decreasing with respect to λL.

Proof. Differentiating J(λL)xλL
= AT b with respect to λL yields

J(λL)
dxλL

dλL
=

(
dφ(xλL

)

dλL
I − LTL

)
xλL

.

Now

dφ(xλL
)

dλL
= (∇xλL

φ(xλL
))T

dxλL

dλL

=
2

1 + ‖xλL
‖2

sT (xλL
)
dxλL

dλL

= −
2λLx

T
λL

LTL

1 + ‖xλL
‖2

dxλL

dλL
.(2.34)

Rearranging yields

dφ(xλL
)

dλL

(
1 + ‖xλL

‖2

2

)
= λLx

T
λL

LTL

(
dφ(xλL

)

dλL
J(λL)−1xλL

− J(λL)−1LTLxλL

)
.

Hence

dφ(xλL
)

dλL

(
1 + ‖xλL

‖2

2
+ λLx

T
λL

LTLJ(λL)−1xλL

)
= λLx

T
λL

LTLJ(λL)−1LTLxλL
> 0

by assumptions on J(λL) and λL, and the first statement follows immediately.
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On the other hand,

d(‖LxλL
‖2)

dλL
= 2xT

λL
LTL

dxλL

dλL
,

which, after substitution in (2.34), gives

dφ(xλL
)

dλL
= − λL

(1 + ‖xλL
‖2)

d(‖LxλL
‖2)

dλL
,

and the second statement follows.
These results justify the introduction of alternative algorithms.

2.4.1. Bisection search. Because of the direct monotonic relationship between
parameters δ = ‖LxλL

‖ and λL, we can use a standard bisection search technique on
parameter λL to obtain an update mechanism for λL. With this approach the number
of solves for each λL is determined by the precision required and the initial interval
for bisection and is thus of most use in situations for which we know that the class
of problems is difficult to solve. This gives the following algorithm, for which details
are standard.

Algorithm 3 (RTLS: Bisection search on λL). Given δ, a search tolerance
TOL on the active constraint, |‖LxλL

‖ − δ| ≤ TOL, and two initial choices of λL

for which g(xλL
) are of different signs, do bisection until the tolerance is satisfied. At

each iteration estimate solution x̂λL
by Algorithm 2 with γ updated each step, namely

Algorithm 2.2 except λL is fixed.

2.4.2. An L-curve algorithm. The earlier algorithms assume a priori infor-
mation to designate δ which may not be available. We consider instead, then, an
approach based on the use of the L-curve [8, 10] to give a δ-independent algorithm
for the formulation

min
x

φ(x) + µ‖Lx‖2.(2.35)

Here the positive regularization parameter µ controls how much weight is given to
the penalty function ‖Lx‖2 as compared to the Rayleigh quotient φ(x). Necessary
conditions for a minimum of (2.35) are the same as for (2.2) except for (2.9). If the
constraint is active, the solution satisfies

(ATA + λII + µ(1 + ‖x‖2)LTL)x = AT b,

where λI = −φ(x). Substituting λL = µ(1 + ‖x‖2), we once again obtain (2.5):

(ATA + λII + λLL
TL)x = AT b.

For each fixed parameter λL, the solution xλL
is equivalent to the xRTLS solution

obtained with constraint parameter δ = ‖LxλL
‖. Hence we need to determine λL so

that it simultaneously gives a small Rayleigh quotient φ(xλL
) and a moderate value

of the penalty term ‖LxλL
‖2. We use the L-curve method which was designed for the

Tikhonov regularized LS problem [8, 10] for the log-log scale plot of φ(xλL
) versus

‖LxλL
‖2.

Algorithm 4 (RTLS: L-curve). Given a discrete set of values for λL on an
interval [a, b], find RTLS solutions xλL

. Generate the L-curve and pick the lower left
corner point of the curve to generate xRTLS.
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1. For λL over a discrete set.
Inner iteration For fixed λL, calculate RTLS solution xλL

by alternatively
updating xλL

by solving (2.5) and λI through (2.7) until the inner iteration
has converged.
End For

2. Plot on log-log scale the pairs φ(xλL
) versus ‖LxλL

‖2.
3. Find the lower left corner point of the L-curve, the corresponding parameter

λL, and solution xλL
= xRTLS .

Remark 2.7. To carry out the final step of the algorithm we could use “Algorithm
FindCorner” in [10].

3. Computational considerations.

3.1. Termination criteria. In the inner iterations for the Rayleigh quotient or
inverse iteration, where also the system matrix may depend on the current update
if γ is updated each step, we test convergence on the residual r(j) = B(x(j))ȳ(j) +
λI(x

(j))ȳ(j), where ȳ(j) is y(j) normalized. It is easy to verify that

(B(x(j)) + C(j))ȳ(j) = −λI(x
(j))ȳ(j),

where C(j) = −r(j)(ȳ(j))T . Let ε represent machine accuracy and c be a quite
mild function of degree n + 1; then the best accuracy we can expect to achieve is
‖C(j)‖/‖B(x(j))‖ ≤ cε [17, Chap. 5, sect. 58]. Hence

‖C(j)‖ = ‖r(j)‖ ≤ cε‖B(x(j))‖ ≈ cε‖[A, b]‖2.

Since B(x(j)) is a symmetric matrix, the accuracy of λI(x
(j)) is also approximately

cε‖[A, b]‖2. This suggests using |λ(j)
I − λ

(j−1)
I |/|λ(j)

I | < TOL as stopping criterium,

where TOL is a tolerance. ‖r(j)‖
|λ(j)

I
|
< TOL may also be used as termination criterium.

When δ is known we may directly use |‖Lx(j)‖ − δ| as stopping criterium. Also
‖r(j)‖ is a measurement of the distance of x(j) to the boundary (2.4). In fact, by the
Cauchy–Schwarz inequality, ‖ȳ(j)‖ = 1, and using, from (2.9), µ as a function of x,

‖r(j)‖ ≥ |(ȳ(j))T (B(x(j)) + λI(x
(j))I)ȳ(j)|(3.1)

= |µ(x(j))(‖Lx(j)‖2 − δ2)|.

Thus, the residual ‖r(j)‖ also provides an upper estimate for the violation of the
constraint condition (2.4) and, if ȳ(j) is sufficiently close to an eigenvector of B(x(j)),
then the inequality in (3.1) is close to an equality. Since we solve the eigenproblem for

B and need to find −λI , we would expect (B+λ
(j)
I I)ȳ(j) becomes zero if (−λ

(j)
I , ȳ(j))T

is an eigenpair for B.

3.2. The generalized SVD (GSVD) of [A, L]. All of the presented algo-
rithms depend on the efficiency of solving systems with coefficient matrix ATA +
λLL

TL, or the shifted version ATA+ λLL
TL− ρkI. Here we focus on the derivation

of an efficient algorithm for the solution of systems with system matrix, J , without
shift. Notice that, without loss of generality, we drop the dependence on iteration
(k, j), and consider the solution of the system

(ATA + λLL
TL)w = f.(3.2)

While different approaches can be considered for (3.2), we also note the similarity
of (3.2) with the system to be solved in Tikhonov regularization of the least squares
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Table 3.1

Algorithmic summary and comparison.

Algorithm ∗.1 Algorithm ∗.2 Bisection L-curve
δ given given given unknown

x(0) random required required required

λ
(0)
L given derived from x(0) derived from x(0) derived from x(0)

subalg. No No Algorithm 2.2 Algorithm 2.2

problem. Hence we should use the algorithms which have been demonstrated as
successful for regularized LS. Moreover, we can safely assume that matrix L, which in
our examples is a low order derivative operator, is well conditioned. In particular, the
smallest nonzero singular values of the first and second order derivative operators are
of order n−1 and n−2, resp., and their null spaces are spanned by very smooth vectors.
Thus, if λL is not too small, matrix ATA + λLL

TL is well posed for a large class of
matrices A, and the GSVD of the matrix pair [A,L] can be calculated with a stable
numerical method [7]. This approach, used to solve (3.2) [7], also motivates use of
algorithms without shift. Using the algorithm of Bai and Demmel [1], the calculation
of the GSVD for matrix pair [A,L] requires 2m2n + 15n3 flops (the coefficient of n3

depends on the number of iterations required). Given the GSVD the solution of each
equation (3.2) costs just 8n2 flops.

3.3. Summary of the algorithms. In the preceding sections we have presented
several different algorithmic approaches for the solution of the given RTLS problem.
We now summarize these algorithms with respect to the initialization requirements
and the subalgorithm that is used to solve an eigenproblem with fixed parameter
λL. We list the requirements in Table 3.1, where Algorithm ∗.1 and Algorithm ∗.2
represent versions γ = δ2 and γ = ‖Lx(k)‖2, resp.

4. Numerical experiments. To test the given algorithms we mainly use test
examples taken from Hansen’s Regularization Tools [9]. Three functions, ilaplace,
phillips, and shaw, are used to generate matrices A, right-hand sides b, and solutions
x� so that Ax� = b is satisfied. In all cases, the data are scaled so that ‖A‖F =
‖Ax�‖2 = 1, and a 5% Gaussian perturbation is added to both coefficient matrix and
right-hand side. For ilaplace and shaw matrix A has size 65 × 64, and for phillips
the matrix is 64 × 64 [3, 9]. We let operator L ∈ R(n−1)×n approximate the first-
derivative operator. For algorithms in which δ is specified, we choose δ = 0.9‖Lx�‖.
In all tests we choose tolerance TOL = 10−4, and we denote the estimated solution
of each algorithm by xest.

In the results we report the relative error with respect to x�. On the other
hand, we know the solutions should converge to xRTLS , which is the solution of
the equation subject to constraint. Thus we may expect that evaluation compared
to x� is limited for a single test, and that it is the speed with which a converged
solution satisfying the constraint is achieved, which is important. Thus in Test 4.3
we repeat tests over 100 perturbations for each experiment and report the average
results for each case, except for the L-curve in which we present results of one sample
perturbation. We measure the speed with respect to the numbers of system solves of
type (3.2) that are required, hence providing a comparison between algorithms. To
give the total cost of each test, we add the cost for the GSVD and the iterations,
i.e., 2m2n + 15n3 + K · 8n2 flops, where K is the number of solves, and report the

number of megaflops. In each case we initialize the iteration with λ
(0)
L = 0.1, and for

Algorithm 2.2 with x(0,0) = xRLS obtained with regularization parameter λ = .001.
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For the test of the L-curve algorithm we pick 20 equally spaced points, with
respect to the log scale, on the interval [a, b] = [1.0e− 6, 0.1]. For any choice of λL we
stop the inner iteration if convergence is not achieved in 15 steps. If the curve has a
clear L-shape, 20 points are sufficient to identify the corner because more points are
located near the corner than at other places on the curve.

Test 4.1 (evaluation of inexact and exact algorithms). Here we demonstrate the
impact of use of the exact solve by Algorithm 1 as compared to the inexact approach
in Algorithm 2, in which for the inexact solve we search only for a new update which
satisfies the sign condition. We find that primarily Jk = 1; namely the inexact solve
mostly uses one step of inverse iteration prior to update of parameter λL. The long-

term and short-term convergence history for −λ
(k)
I is illustrated in Figure 4.1. In

these tests we do not update γ occurring in B, but fix γ = δ2. This test is thus a true
comparison for the convergence theory for inexact solve in place of the exact solve.
Clearly, the costs for the inexact solve are less than the total cost for determination
of the exact eigenpair at each outer iteration, but the total impact depends on the
algorithm used for the exact solve. Thus we do not report relative costs in each case.
We observe that over the long term there is no detrimental impact on the convergence
behavior, even though we see that at the early iterations the solutions obtained are
not exactly the same. It is clear that inexact solve produces an alternative update in
the early steps without being deleterious for ultimate convergence.

Test 4.2 (evaluation of inclusion of RQ shift). We now consider the impact of the
use of the shift for improving the convergence of the inexact algorithm, Algorithm 2.
In Figure 4.2 we show the lack of impact on the convergence of inclusion of the shift
for the inner iteration of Algorithm 2. The top and bottom three figures are associated
with Algorithms 2.1 and 2.2, resp. We illustrate three cases, the first without any
shift, the second in which we shift at all steps, and the third in which, consistent
with the RQI for the TLS problem introduced by [2], we shift after the first step. We
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Fig. 4.1. The figures compare the convergence history for −λ
(k)
I for the exact algorithms

compared to the inexact. The dotted and dashed lines show the convergence for the exact and
inexact algorithms, resp. The first row shows the whole convergence history while the second row
shows the first 10 steps. From left to right, examples ilaplace, shaw, and phillips, resp.
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Fig. 4.2. The figures show the convergence history of −λI for Algorithms 2.1 and 2.2, top
and bottom, resp., with the shift added at different stages in the iteration process, i.e., shifted for
all steps (“shifted”), no shift at all (“no shift”), and the shift added after the first step (“sh-af-1”).
From left to right, examples ilaplace, shaw, and phillips, resp.

note the different line type used for the case when the shift is added after the first
step between the upper and lower figures. This is deliberate because, in addition,
Algorithm 2.2 converges with far fewer iterations (compare the scales on the x-axes)
and so the use of + also for Algorithm 2.1, which requires many iterations, would
mask all the other results in these figures.

It is clear that adding the shift at every step can cause Algorithm 2.1 to converge
to an eigenpair which is not the smallest as defined by the eigenvalue. This pos-
sibility exists because the algorithm is initialized with a random vector which then
generates a bad initial RQ shift. This problem is avoided if the shift occurs only after
one step of inverse iteration, and the results are almost the same as without shift
for all steps—both approaches converge to the RTLS solution. On the other hand,
Algorithm 2.2 always converges to the RTLS solution, and shift does not cause any
significant difference in the convergence history of λI after the first few steps of the
iteration.

In summary, adding the shift makes no positive contribution to the convergence,
contrary to the case for RQI for the TLS problem. Moreover, with inclusion of the
shift we cannot take advantage of the calculation of the GSVD for the augmented
matrix [A,L]. Thus our results demonstrate no reason to include the shift in (2.29),
which also further justifies our assumption that matrix J remains positive definite
throughout the iteration.

Test 4.3 (comparison of the algorithms). Here we emphasize the improvement
due to setting γ = ‖Lx(k,j)‖2 in the right corner of B(x(k,j)) as compared with γ = δ2.
Details of average results for all four algorithms, over 100 perturbations, are provided
in Tables 4.1–4.3, and the solutions of one sample perturbation are illustrated in
Figure 4.3. In the tables, the relative error reported is the average relative error of
xest to x�.
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Table 4.1

Average solutions for ilaplace (Test 4.3).

Algorithm λL λI K Cost mflops Relerr

1.1 γ = δ2 6.6382e-01 −5.6144e-05 799 NA 6.75e-02

1.2 γ = ‖Lx(k,j)‖2 6.6433e-01 −5.6228e-05 54.4 NA 6.75e-02
2.1 γ = δ2 6.6382e-01 −5.6144e-05 799 31.0 6.75e-02

2.2 γ = ‖Lx(k,j)‖2 6.6433e-01 −5.6228e-05 54.2 6.2 6.75e-02
Bisection 6.6231e-01 −5.5937e-05 100.6 7.8 6.79e-02
L-curve (sample) 5.6234e-04 −3.0242e-08 161 9.8 1.7470e-02

Table 4.2

Average solutions for shaw (Test 4.3).

Algorithm λL λI K Cost mflops Relerr

1.1 γ = δ2 3.1329e-04 −9.9912e-06 98.1 NA 9.13e-02

1.2 γ = ‖Lx(k,j)‖2 3.1296e-04 −9.9907e-06 21.0 NA 9.12e-02
2.1 γ = δ2 3.1310e-04 −9.9895e-06 99.4 7.7 9.11e-02

2.2 γ = ‖Lx(k,j)‖2 2.9090e-04 −9.8089e-06 25.8 5.3 9.51e-02
Bisection 2.7939e-04 −1.0033e-05 81.5 7.1 9.46e-02
L-curve (sample) 1.7783e-04 −1.0094e-05 158 9.7 1.0478e-01

Table 4.3

Average solutions for phillips (Test 4.3).

Algorithm λL λI K Cost mflops Relerr

1.1 γ = δ2 1.8454e-01 −1.3426e-04 368.6 NA 9.05e-02

1.2 γ = ‖Lx(k,j)‖2 1.8454e-01 −1.3426e-04 71.5 NA 9.05e-02
2.1 γ = δ2 1.8454e-01 −1.3426e-04 369.0 17.0 9.05e-02

2.2 γ = ‖Lx(k,j)‖2 1.8454e-01 −1.3426e-04 71.6 6.8 9.05e-02
Bisection 1.8502e-01 −1.3460e-04 66.3 6.6 9.05e-02
L-curve (sample) 5.6234e-04 −4.4807e-06 119 8.36 5.1365e-02

We note that the total numbers of outer iterations for Algorithm 1 and Algo-
rithm 2 are comparable, thus again demonstrating the benefit of the use of the in-
exact solve for each outer iteration. Again we do not report the costs of the exact
solve, denoted in the tables by NA, which depends on the chosen algorithm and is
certainly not optimal if inverse iteration is used. Given the lack of benefit of the use
of exact solve, we chose not to investigate the most efficient technique for its solution.
In all cases, we see a dramatic decrease in the total number of steps required to reach
convergence for Algorithm 2.2 as compared to Algorithm 2.1. While the solutions are
different in all cases, because of the dependence on the specific converged value for
λL, all solutions other than those obtained by the L-curve algorithm are qualitatively
similar; see the figures on the left of Figure 4.3. We note that example shaw does not
give a good L-shape and thus it is hard to determine the optimal λL.

Test 4.4 (comparison with solution based on the quadratic eigenvalue problem
(QEP) [14]). To compare the approach with that using the QEP we compare Algo-
rithm 2.1 with the QEP again over 100 cases, each with the random 5% perturbation.
For both algorithms we adopt the stopping rule ‖x(k+1) − x(k)‖/‖x(k+1)‖ < TOL
used in [14], and the QEP program is written exactly as stated for rtlsqep in [14].
We use a random initial solution x(0) and matrix-vector multiplication to avoid ma-
trix multiplication. Algorithm 2.1 is initialized in each case with λL = 0.1. In some
situations—for example, ilaplace—this generates an apparently zero cost solution.
Actually this corresponds to a one step iteration to convergence because the initial-



EFFICIENT REGULARIZED TOTAL LEAST SQUARES 473

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10
1.7

10
1.5

10
1.3

10
9

10
8

10
7

10
6

10
5

L–curve
chosen corner

x#

L–curve method
Bisection method
Alg2.1, γ=δ2

Alg2.2, γ=||Lx(k)||2

0 20 40 60 80
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
x*

L–curve
Bisection
Alg1.1, γ=δ2

Alg1.2, γ=||Lx(k)||2

10
3

10
2

10
1

10
0

10
6

10
5

10
4

L–curve
chosen point

0 20 40 60 80
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

10
2

10
0

10
2

10
7

10
6

10
5

10
4

x#

L–curve
Bisection
Alg2.1 
Alg2.2

L–curve
chosen corner

Fig. 4.3. From top to bottom, examples ilaplace, phillips, and shaw, resp. Solutions are
indicated on the left and the L-curve on the right.

ization λL = 0.1 presents an almost perfect estimation to the regularization parameter
λL, which would never occur for use of random x(0) with QEP.

The results are summarized in Figure 4.4, which shows the distribution of relative
errors of xest to x� (two top rows of figures), −λI(xest) (middle two rows of figures),
and the CPU costs in seconds (last two rows of figures). In each case the figures are
organized with results for Algorithm 2.1 first, followed by those for QEP, and with,
from left to right, examples ilaplace, shaw , and phillips, resp.

For ilaplace Algorithm 2.1 has generally smaller error but is a little more expensive
than QEP, while the results with shaw are similar but Algorithm 2.1 is cheaper, and
phillips outperforms the QEP in all measures.
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Fig. 4.4. Comparison of Algorithm 2.1 and the QEP algorithm, Test 4.4.

5. Conclusions. We have demonstrated new algorithms for the solution of the
RTLS problem. These algorithms employ the relationship between the RTLS solution
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and the eigensolution of an augmented matrix. The results are summarized as follows:
1. In the case that a good estimate on the constraint condition for the solution

is available, an efficient approach uses inverse iteration for the solution of the
eigenproblem combined with the GSVD for solution of the systems arising at
each inverse iteration.

2. If a good estimate for the constraint parameter is available, but the algorithm
is shown to converge slowly for a given class of problems, bisection search may
be used to predict the total number of outer steps required for a given desired
accuracy.

3. For cases without constraint information, the L-curve approach used for reg-
ularized LS has been adapted for regularized TLS.

Numerical experiments have been presented which verify all algorithms and we con-
clude with the following.

1. Algorithm 2.2 provides an efficient and practical approach for the solution
of the RTLS problem in which a good estimate of the physical parameter is
provided.

2. Otherwise, if blow-up occurs, bisection search may yield a better solution
satisfying the constraint condition.

3. If no constraint information is provided, the L-curve technique can be suc-
cessfully employed.

4. Algorithm 2.1 performs better than QEP for all of our tests.
In all cases we have demonstrated a constructive and practical approach for the solu-
tion of RTLS problems.

Acknowledgment. The authors gratefully acknowledge the comments of three
anonymous referees who suggested that we seek a proof of the convergence of our basic
algorithm, which ultimately led to our improvement of the reliability of the solution
technique.
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Abstract. We present a new numerical method for computing selected eigenvalues and eigen-
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1. Introduction. We are interested in computing one or more eigenpairs of the
two-parameter eigenvalue problem

A1x1 = λB1x1 + µC1x1,
(1.1)

A2x2 = λB2x2 + µC2x2,

where Ai, Bi, and Ci are given ni × ni matrices over C, λ, µ ∈ C and xi ∈ C
ni

for i = 1, 2. A pair (λ, µ) is called an eigenvalue if it satisfies (1.1) for nonzero
vectors x1, x2. The tensor product x1 ⊗ x2 is then the corresponding right eigen-
vector. Similarly, y1 ⊗ y2 is the corresponding left eigenvector if 0 �= yi ∈ C

ni and
y∗i (Ai − λBi − µCi) = 0 for i = 1, 2.

Multiparameter eigenvalue problems of this kind arise in a variety of applications
[1], particularly in mathematical physics when the method of separation of variables
is used to solve boundary value problems [23]. When the separation constants cannot
be decoupled, two-parameter Sturm–Liouville problems of the form

−(pi(xi)y
′
i(xi))

′ + qi(xi)yi(xi) = (λai1(xi) + µai2(xi))yi(xi),(1.2)

where xi ∈ [ai, bi], with boundary conditions

yi(ai) cosαi − y′i(ai) sinαi = 0, 0 ≤ αi ≤ π,

yi(bi) cosβi − y′i(bi) sinβi = 0, 0 ≤ βi ≤ π,
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can arise, where αi ∈ [0, π), βi ∈ (0, π], and p′i, qi, ai1, ai2 are real valued and contin-
uous functions, for i = 1, 2. Using discretization, the problem (1.2) can be converted
into the form (1.1). As an example, let us consider the equation ∆u + k2u = 0 in R

2,
which represents the vibration of a fixed membrane [14]. In a rectangular membrane
the separation of variables leads to two Sturm–Liouville equations that can be solved
independently. In a circular membrane the two equations (the angular and the radial)
form a triangular system and cannot be solved independently. We can solve them one
by one by inserting the parameter from the solution of the angular equation into the
radial equation. In an elliptic membrane the separation leads to the Mathieu and
modified Mathieu equations (see, e.g., [23])

y′′1 (x1) + (2λ cosh 2x1 − µ)y1(x1) = 0,
(1.3)

y′′2 (x2) − (2λ cos 2x2 − µ)y2(x2) = 0,

which have to be solved simultaneously and thus form a genuine two-parameter eigen-
value problem.

Another problem that can be cast in the form (1.1) is the three-point boundary
problem [7]. A typical problem is

−(p(x)y′(x))′ + q(x)y(x) = (λr(x) + µs(x))y(x),(1.4)

subject to y(a) = y(b) = y(c) = 0, where a < b < c. We can treat (1.4) as a
two-parameter eigenvalue problem

−(p(xi)y
′
i(xi))

′ + q(xi)yi(xi) = (λr(xi) + µs(xi))yi(xi)

for i = 1, 2, where x1 ∈ [a, b], x2 ∈ [b, c], and the boundary conditions are y1(a) =
y1(b) = y2(b) = y2(c) = 0. An example (see [23] for details) is Lamé’s equation

y′′(x) +
1

2

(
1

x− a
+

1

x− b
+

1

x− c

)
y′(x) +

λ + µx

(x− a)(x− b)(x− c)
y(x) = 0,

which arises in the solution of Laplace’s equation in elliptic coordinates.
Two-parameter problems appear in the algebraic form (1.1) as well. In [16], it is

shown that the optimal value of the relaxation parameter ω in the method of successive
overrelaxation for a separable elliptic partial differential equation in two independent
variables can be obtained from the eigenvalues of a certain two-parameter eigenvalue
problem. In [15], algorithms for the estimation of material electrical properties from
measurements of interdigital dielectrometry sensors are discussed. When the sensors
are applied to the material that is composed of two layers, the properties of the indi-
vidual layers are the eigenvalues of the appropriate two-parameter eigenvalue problem.
Yet another example is dynamic model updating [6]. Suppose that we have a spring-
mass model where the mass matrix is known and the stiffness parameter values of two
springs have to be updated based on outside measurements of the natural frequencies.
The updated parameters are the eigenvalues of a two-parameter problem. The above
examples show the need for numerical solvers of problem (1.1).

Two-parameter problems can be expressed as two coupled generalized eigenvalue
problems as follows. On the tensor product space S := C

n1 ⊗ C
n2 of dimension

N := n1n2 we define

∆0 = B1 ⊗ C2 − C1 ⊗B2,

∆1 = A1 ⊗ C2 − C1 ⊗A2,

∆2 = B1 ⊗A2 −A1 ⊗B2.
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(For details on the tensor product and relation to the multiparameter eigenvalue
problem, see, for example, [2].) We assume that the two-parameter problem (1.1) is
nonsingular ; that is, the corresponding operator determinant ∆0 is invertible. In this
case Γ1 := ∆−1

0 ∆1 and Γ2 := ∆−1
0 ∆2 commute, and problem (1.1) is equivalent to

the associated problem

∆1z = λ∆0z,
(1.5)

∆2z = µ∆0z

for decomposable tensors z ∈ S, z = x ⊗ y (see [2]). The left and right eigenvectors
of (1.1) are ∆0-orthogonal; i.e., if x1 ⊗ x2 and y1 ⊗ y2 are right and left eigenvectors,
respectively, of (1.1), corresponding to distinct eigenvalues, then

(y1 ⊗ y2)
∗∆0(x1 ⊗ x2) =

∣∣∣∣∣y∗1B1x1 y∗1C1x1

y∗2B2x2 y∗2C2x2

∣∣∣∣∣ = 0.

If (λ, µ) is an eigenvalue of (1.1), then

dim

⎛⎜⎝ ⋂
i1+i2=N

i1,i2≥0

Ker[(Γ1 − λI)i1(Γ2 − µI)i2 ]

⎞⎟⎠
is the algebraic multiplicity of (λ, µ). We say that (λ, µ) is algebraically simple when
its algebraic multiplicity is one.

The following lemma is a consequence of Lemma 3 in [13].
Lemma 1.1. If (λ, µ) is an algebraically simple eigenvalue of the two-parameter

eigenvalue problem (1.1) and x1 ⊗ x2 and y1 ⊗ y2 are the corresponding right and left
eigenvectors, respectively, then the matrix[

y∗1B1x1 y∗1C1x1

y∗2B2x2 y∗2C2x2

]

is nonsingular.
There exist some numerical methods for two-parameter eigenvalue problems.

Most of them require that the problem be real and right definite, i.e., that all matrices
Ai, Bi, and Ci be real symmetric and that ∆0 be positive definite, and as a conse-
quence, eigenvalues and eigenvectors are real. Most of the presented two-parameter
problems are right definite (for instance, (1.3) and the one in [16]), but not all (for
instance, the one in [15] where the eigenvalues are complex). It is the aim of this
paper to introduce an algorithm for such non–right definite two-parameter eigenvalue
problems.

One of the algorithms (also usable for large sparse matrices) for the right defi-
nite two-parameter problem is a Jacobi–Davidson type method [10], and ideas from
this method are generalized in this paper to handle all nonsingular two-parameter
eigenvalue problems.

One possible approach for solving (1.1) is to solve the associated couple of gen-
eralized problems (1.5). In the right definite case this can be achieved by numer-
ical methods for simultaneous diagonalization of commutative symmetric matrices
[12, 20, 5], while an algorithm for the general nonsingular case using the QZ algo-
rithm is presented in this paper (see Algorithm 2.3). Solving the problem via the
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associated problem is only feasible for problems of low dimension as the size of the
matrices of the associated problem is N ×N .

Another method that can be used for non–right definite two-parameter problems
of moderate size is Newton’s method [4], which has the deficiency that it requires
initial approximations close enough to the solution in order to avoid misconvergence.
The continuation method [18] can be used for weakly elliptic problems, i.e., such that
Ai, Bi, and Ci are real symmetric and one of Bi, Ci is positive definite. We mention
that right definite two-parameter problems are also weakly elliptic [17, Lemma 2.1].

In this paper, we introduce a new Jacobi–Davidson type method that can be
used to compute selected eigenpairs for nonsingular problems. The method works
even without close initial approximations and is suitable for large sparse matrices.
Our method computes the eigenvalue (λ, µ) of (1.1), which is closest to a given target
(λT, µT) ∈ C

2, i.e., the one with minimum |λ− λT|2 + |µ− µT|2.
The outline of the paper is as follows. In section 2, we present a new algorithm

for the computation of eigenpairs using the associated problem. This method is only
suitable for matrices of moderate size, so we combine it with a subspace method.
We generalize the Petrov–Galerkin approach to two-parameter eigenvalue problems
in section 3. In section 4, we present a two-sided Jacobi–Davidson type method for
two-parameter eigenvalue problems. Several possible correction equations are dis-
cussed in section 5. In section 6, we present a selection technique that allows the
computation of more than one eigenpair. The time complexity is given in section 7,
and some numerical examples are presented in section 8. Conclusions are summarized
in section 9.

2. Algorithm based on the associated problem. We propose the following
method for solving (1.1) via the associated problem (1.5). First we compute a QZ
decomposition (generalized Schur form; see, e.g., [8]) of the matrix pencil (∆1,∆0).
We obtain unitary matrices Q and Z such that Q∗∆0Z = R and Q∗∆1Z = S are
upper triangular. Since ∆0 is nonsingular, the same is true for R. From

∆−1
0 ∆1 = ZR−1SZ∗

it follows that the eigenvalues of the first generalized eigenvalue problem in (1.5) are
the quotients sii/rii of the diagonal elements of matrices S and R.

Next, we sort the generalized Schur form so that multiple eigenvalues of the first
generalized eigenvalue problem in (1.5) appear in blocks (see, for instance, [22]). Let
us assume that the generalized Schur form is sorted to meet this requirement, and let
matrix R−1S be partitioned accordingly as

R−1S =

⎡⎢⎢⎢⎣
L11 L12 · · · L1p

0 L22 · · · L2p

...
...

. . .
...

0 0 · · · Lpp

⎤⎥⎥⎥⎦ .(2.1)

In the above partition, multiple eigenvalues of ∆−1
0 ∆1 are clustered in upper triangular

matrices L11, . . . , Lpp along the diagonal so that λ(Lii) �= λ(Ljj) for i �= j, where
λ(Lkk) is the eigenvalue of a block Lkk. Let us denote the size of Lii by mi for
i = 1, . . . , p.
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Lemma 2.1. Let

L =

⎡⎢⎢⎢⎣
L11 L12 · · · L1p

0 L22 · · · L2p

...
...

. . .
...

0 0 · · · Lpp

⎤⎥⎥⎥⎦
be a partitioning of a block upper triangular matrix L such that Λ(L11), . . . ,Λ(Lpp)
are mutually disjoint, where Λ(Lkk) is the set of eigenvalues of Lkk. If M commutes
with L, then M is block upper triangular partitioned conformally with L.

Proof. First we study the case p = 2. Let M be partitioned conformally with L as

M =

[
M11 M12

M21 M22

]
.

From LM − ML = 0 and the above assumption we obtain the equation L22M21 −
M21L11 = 0. Because L11 and L22 have no eigenvalues in common, this is a non-
singular homogeneous Sylvester equation for M21 (see, for example, [21, p. 223]).
Therefore, the unique solution is M21 = 0.

In the case p > 2, one can see that M is block upper triangular by applying the
above argument on all appropriate 2 × 2 block partitions of L and M .

Lemma 2.2. T = Q∗∆2Z partitioned conformally with (2.1) is block upper trian-
gular.

Proof. As ∆−1
0 ∆1 and ∆−1

0 ∆2 commute, so do R−1S and R−1T . It follows from
Lemma 2.1 that R−1T is block upper triangular partitioned conformally to (2.1).
As block upper triangular matrices keep their shape when multiplied by a triangular
matrix, it follows from T = R(R−1T ) that T is block upper triangular as well.

Once R, S, and T are partitioned conformally with (2.1) as

R =

⎡⎢⎢⎢⎣
R11 R12 · · · R1p

0 R22 · · · R2p

...
...

. . .
...

0 0 · · · Rpp

⎤⎥⎥⎥⎦ , S =

⎡⎢⎢⎢⎣
S11 S12 · · · S1p

0 S22 · · · S2p

...
...

. . .
...

0 0 · · · Spp

⎤⎥⎥⎥⎦ ,

T =

⎡⎢⎢⎢⎣
T11 T12 · · · T1p

0 T22 · · · T2p

...
...

. . .
...

0 0 · · · Tpp

⎤⎥⎥⎥⎦ ,

it is straightforward to compute eigenvalues of (1.1). To each diagonal block Lii

of size mi in R−1S correspond mi eigenvalues (λi, µi1), . . . , (λi, µimi
), where λi is

the eigenvalue of Lii and µi1, . . . , µimi
are eigenvalues of the generalized eigenvalue

problem Tiiw = µRiiw.
Now that we have all eigenvalues (λj , µj), j = 1, . . . , N , of (1.1), we compute the

corresponding eigenvectors xj1⊗xj2. We do this by solving (Ai−λjBi−µjCi)xji = 0,
where xji is normalized, for i = 1, 2. In a similar way we can obtain left eigenvectors
yj1 ⊗ yj2 when they are required.

The complete procedure is summarized in Algorithm 2.3.
Algorithm 2.3. An algorithm for the nonsingular two-parameter eigenvalue

problem (1.1).
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1. Compute ∆0, ∆1, and ∆2 of the associated problem (1.5).
2. Compute a generalized Schur decomposition Q∗∆0Z = R and Q∗∆1Z = S,

such that Q and Z are unitary, R and S are upper triangular, and the Schur
form is sorted so that multiple values of λi := sii/rii are clustered along the
diagonal of R−1S. As a result of this, R and S are partitioned as

R =

⎡⎢⎢⎢⎣
R11 R12 · · · R1p

0 R22 · · · R2p

...
...

. . .
...

0 0 · · · Rpp

⎤⎥⎥⎥⎦ , S =

⎡⎢⎢⎢⎣
S11 S12 · · · S1p

0 S22 · · · S2p

...
...

. . .
...

0 0 · · · Spp

⎤⎥⎥⎥⎦ ,

where the size of Rii and Sii is mi and m1 + · · · + mp = N .
3. Compute diagonal blocks T11, . . . , Tpp of T = Q∗∆2Z, partitioned confor-

mally with R and S.
4. Compute the eigenvalues µi1, . . . , µimi of the generalized eigenvalue problem

Tiiw = µRiiw

for i = 1, . . . , p.
5. The eigenvalues of (1.1) are

(λ1, µ11), . . . , (λ1, µ1m1); . . . ; (λp, µp1), . . . , (λp, µpmp
);

reindex them as (λ1, µ1), . . . , (λN , µN ).
6. For each eigenvalue (λj , µj), j = 1, . . . , N , of (1.1), take for xji and yji

the smallest right and the smallest left singular vector of Ai − λjBi − µjCi,
respectively, for i = 1, 2 (see Remark 2.5).

Remark 2.4. In numerical computation we may cluster not only multiple eigen-
values but also close eigenvalues of R−1S. After clustering, we take the mean of all
eigenvalues in the cluster of size mi as a multiple eigenvalue of order mi. This means
that we take λi as a mean of all eigenvalues of the generalized eigenvalue problem

Siiw = λRiiw

for i = 1, . . . , p.
Remark 2.5. In practice there will be an error in a detected eigenvalue (λj , µj).

Therefore we take the right singular vector corresponding to the smallest singular
value to find the normalized xji such that (Ai − λjBi − µjCi)xji ≈ 0 for i = 1, 2. In
a similar way we get the approximation to the left eigenvector.

Let us assume that Ai, Bi, Ci are dense and that n1 = n2 = n. The time
complexity of Algorithm 2.3 is O(n6) for the computation of eigenvalues using QZ
decomposition of matrices of size n2. The maximum additional work for eigenvectors
is O(n5), as we have to compute O(n2) singular value decompositions of matrices of
size n. If we are not interested in all eigenvectors (as is often the case for large sparse
matrices), then the additional work can be substantially less.

The large time complexity is the reason that Algorithm 2.3 is useful only for
matrices of a modest size. For larger problems we embed this method in a subspace
method and use Algorithm 2.3 for the small projected problems.

3. Subspace methods and Petrov triples. In this section we study subspace
methods for the two-parameter eigenvalue problem. In a subspace method we start
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with a given search subspace, from which approximations to eigenpairs are computed
(extraction). In the extraction we usually have to solve a smaller eigenvalue problem
of the same type as the original one. After each step we expand the subspace by a new
direction (expansion), and as the search subspace grows, the eigenpair approximations
will in general converge to an eigenpair of the original problem. In this section we
discuss the extraction, and in the next section we discuss the algorithm and the
expansion.

Suppose that we have k-dimensional search spaces Uik ⊂ C
ni and k-dimensional

test spaces Vik ⊂ C
ni for i = 1, 2. Let the columns of the ni × k matrices Uik and Vik

form orthogonal bases for Uik and Vik, respectively, for i = 1, 2. The Petrov–Galerkin
conditions

(A1 − σB1 − τC1)u1 ⊥ V1k,

(A2 − σB2 − τC2)u2 ⊥ V2k,

where ui ∈ Uik\{0} for i = 1, 2, lead to the smaller projected two-parameter problem

V ∗
1kA1U1kc1 = σV ∗

1kB1U1kc1 + τV ∗
1kC1U1kc1,

(3.1)
V ∗

2kA2U2kc2 = σV ∗
2kB2U2kc2 + τV ∗

2kC2U2kc2,

where ui = Uikci �= 0 for i = 1, 2 and σ, τ ∈ C.
We say that an eigenvalue (σ, τ) of (3.1) is a Petrov value for the two-parameter

eigenvalue problem (1.1) with respect to the search spaces U1k and U2k and test
spaces V1k and V2k. If (σ, τ) is an eigenvalue of (3.1) and c1 ⊗ c2 is the corresponding
right eigenvector, then u1 ⊗ u2 is a right Petrov vector. Similarly, if d1 ⊗ d2 is the
corresponding left eigenvector of (3.1), then v1 ⊗ v2 is a left Petrov vector, where
vi = Vikdi for i = 1, 2. It is easy to check that σ and τ are equal to the two-sided
tensor Rayleigh quotients

σ = ρ1(u, v) =
(v1 ⊗ v2)

∗∆1(u1 ⊗ u2)

(v1 ⊗ v2)∗∆0(u1 ⊗ u2)
=

(v∗1A1u1)(v
∗
2C2u2)− (v∗1C1u1)(v

∗
2A2u2)

(v∗1B1u1)(v∗2C2u2)− (v∗1C1u1)(v∗2B2u2)
,

(3.2)

τ = ρ2(u, v) =
(v1 ⊗ v2)

∗∆2(u1 ⊗ u2)

(v1 ⊗ v2)∗∆0(u1 ⊗ u2)
=

(v∗1B1u1)(v
∗
2A2u2)− (v∗1A1u1)(v

∗
2B2u2)

(v∗1B1u1)(v∗2C2u2)− (v∗1C1u1)(v∗2B2u2)
.

In order to obtain Petrov values, we have to solve small two-parameter eigen-
value problems. For this purpose, we use Algorithm 2.3. Altogether, we obtain k2

Petrov triples ((σj , τj), uj1 ⊗ uj2, vj1 ⊗ vj2) that are approximations to eigentriples
((λj , µj), xj1 ⊗ xj2, yj1 ⊗ yj2) of (1.1) for j = 1, . . . , k2.

4. Jacobi–Davidson type method. The Jacobi–Davidson method [19] is one
of the subspace methods that may be used for the numerical solution of one-parameter
eigenvalue problems. For an overview of subspace methods, see, for example, [3]. In
the Jacobi–Davidson method approximate solutions to certain correction equations
are used to expand the search space. The search for a new direction is restricted to
the subspace that is orthogonal or oblique to the last chosen right (or left) Petrov
vector.

A Jacobi–Davidson type method has been successfully applied to the right definite
two-parameter eigenvalue problem [10]. The method in [10] is one-sided, which means
that the search spaces Vi in (3.1) are the same as the test spaces Ui. When we
tested the one-sided method from [10] on non–right definite problems, it turned out
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that the performance was sometimes not optimal; in particular, there were problems
with convergence to unwanted eigenvalues or no convergence at all. Therefore we
generalize the two-sided Jacobi–Davidson method [9] to two-parameter eigenvalue
problems. The idea is to take Ui as search spaces for the right eigenvectors, and Vi as
search spaces for the left eigenvectors. An advantage of a two-sided method is that
both the left and the right eigenvectors are approximated, which implies an accurate
approximation of the eigenvalue (see Lemma 5.1). An obvious disadvantage is that
such an approach requires more memory and twice the work (in terms of matrix-vector
multiplications) for one iteration. Numerical experiments in section 8 indicate that for
non–right definite problems the two-sided Jacobi–Davidson type method often gives
better results than the one-sided method.

A sketch of the two-sided Jacobi–Davidson type method for the two-parameter
problem is presented in Algorithm 4.1. In step 2(b) we have to choose a Petrov
triple. Some options are given later in this section. In step 2(e), we have to find new
search directions in order to expand the search and test subspaces. We discuss several
possible correction equations in section 5.

Algorithm 4.1. A two-sided Jacobi–Davidson type method for the nonsingular
two-parameter eigenvalue problem.

1. Start. Choose initial vectors u1, u2, v1, and v2 with unit norm.
(a) Set Ui1 = [ui], Vi1 = [vi] for i = 1, 2.
(b) Set k = 1.

2. Iterate. Until convergence or k > kmax do:
(a) Solve the projected two-parameter eigenvalue problem (3.1) by Algo-

rithm 2.3.
(b) Select an appropriate Petrov value (σ, τ) and the corresponding right

and left Petrov vectors u1 ⊗u2 and v1 ⊗v2, where ui = Uikci, vi = Vikdi
for i = 1, 2, respectively.

(c) Compute the right and left residuals

rRi = (Ai − σBi − τCi)ui,(4.1)

rLi = (Ai − σBi − τCi)
∗vi(4.2)

for i = 1, 2.
(d) Stop if ρk ≤ ε, where

ρk = (‖rR1 ‖2 + ‖rR2 ‖2 + ‖rL1 ‖2 + ‖rL2 ‖2)1/2.(4.3)

(e) Solve approximately one of the proposed correction equations (see sec-
tion 5), and obtain new directions si and ti for i = 1, 2.

(f) Expand the search subspaces. Set

Ui,k+1 = RGS(Uik, si),

Vi,k+1 = RGS(Vik, ti),

where RGS denotes the repeated Gram–Schmidt orthonormalization, for
i = 1, 2.

(g) Set k = k + 1.
(h) Restart. If the dimension of the image of Uik and Vik exceeds lmax, then

replace Uik, Vik with new orthonormal bases of dimension lmin.
To apply this algorithm, we need to specify a target (λT, µT), a tolerance ε, a

maximum number of steps kmax, a maximum dimension of the search subspaces lmax,
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and a number lmin < lmax that specifies the dimension of the search subspaces after a
restart. As Algorithm 2.3 is able to solve only low-dimensional two-parameter prob-
lems (3.1) in a reasonable time, we expand the search spaces up to the preselected
dimension lmax and then restart the algorithm. For a restart, we take the lmin eigen-
vector approximations with the smallest residuals (4.3) as a basis for the initial search
space.

We also have to specify a criterion for step 2(b). Suppose that we are looking for
the eigenvalue closest to the target (λT, µT). We suggest combining two approaches.
In the first part we select the Petrov value (σ, τ) closest to the target until the residual
ρk drops below εchange. In the second part we take the Petrov triple with the smallest
residual (4.3). Both stages can be seen as an accelerated inexact Rayleigh quotient
iteration.

Remark 4.2. In step 2(d) we could also stop the algorithm if either the norm of the
right residuals rR1 and rR2 or the norm of the left residuals rL1 and rL2 is small enough. In
either case we can expect that (σ, τ) is a good approximation to an eigenvalue, and we
can compute the corresponding right or left eigenvectors by solving one (orthogonal)
correction equation; see also [9].

In the following section we discuss the expansion in step 2(e) and derive several
correction equations.

5. Correction equations. Let (σ, τ) be a Petrov value that approximates the
eigenvalue (λ, µ) of (1.1), and let u1⊗u2 and v1⊗v2 be its corresponding left and right
Petrov vectors, respectively. Let us assume that u1, u2, v1, and v2 are normalized.

We are searching for orthogonal improvements of the left and right Petrov vectors
of the form

(Ai − λBi − µCi)(ui + si) = 0,(5.1)

(Ai − λBi − µCi)
∗(vi + ti) = 0,(5.2)

where si ⊥ ai and ti ⊥ bi for i = 1, 2. We will discuss the choices for ai and bi later;
at this time we require just that ai �⊥ ui and bi �⊥ vi.

Using (4.1) and (4.2), we can rewrite (5.1) and (5.2) as

(Ai − σBi − τCi)si = −rRi + (λ− σ)Biui + (µ− τ)Ciui
(5.3)

+ (λ− σ)Bisi + (µ− τ)Cisi,

(Ai − σBi − τCi)
∗ti = −rLi + (λ− σ)∗B∗

i vi + (µ− τ)∗C∗
i vi

(5.4)
+ (λ− σ)∗B∗

i ti + (µ− τ)∗C∗
i ti.

Lemma 5.1. If ui = xi−si and vi = yi− ti, for i = 1, 2, are close enough approx-
imations to a left and a right eigenvector of (1.1) for the same algebraically simple
eigenvalue (λ, µ), then the two-sided Rayleigh quotient (σ, τ) = (ρ1(u, v), ρ2(u, v)) is
an O(‖s1‖‖t1‖ + ‖s2‖‖t2‖) approximation to (λ, µ); i.e.,∥∥∥∥[λ− σ

µ− τ

]∥∥∥∥ = O(‖s1‖‖t1‖ + ‖s2‖‖t2‖).(5.5)

Proof. We write the residual (4.1) as

rRi = −(Ai − λBi − µCi)si + (λ− σ)Biui + (µ− τ)Ciui.(5.6)
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When we multiply (5.6) by v∗i and take into account that v∗i r
R
i = 0 and

v∗i (Ai − λBi − µCi) = −t∗i (Ai − λBi − µCi)

for i = 1, 2, then we obtain[
v∗1B1u1 v∗1C1u1

v∗2B2u2 v∗2C2u2

] [
λ− σ
µ− τ

]
= −

[
t∗1(A1 − λB1 − µC1)s1

t∗2(A2 − λB2 − µC2)s2

]
.(5.7)

If ‖si‖ and ‖ti‖ are small enough, then (5.7) is a nonsingular system because of
Lemma 1.1 and continuity. We can deduce from (5.7) that

∥∥∥∥[λ− σ
µ− τ

]∥∥∥∥ =

∥∥∥∥∥∥
[
v∗1B1u1 v∗1C1u1

v∗2B2u2 v∗2C2u2

]−1 [
t∗i (A1 − λB1 − µC1)si

t∗2(A2 − λB2 − µC2)si

]∥∥∥∥∥∥
and so obtain (5.5).

It follows from Lemma 5.1 that asymptotically (i.e., when we have good approx-
imate right and left eigenvectors) we can consider si and ti as first-order corrections
and (λ − σ)Biui + (µ − τ)Ciui and (λ − σ)∗B∗

i vi + (µ − τ)∗C∗
i vi as second-order

corrections, and finally, (λ − σ)Bisi + (µ − τ)Cisi and (λ − σ)∗B∗
i ti + (µ − τ)∗C∗

i ti
can be interpreted as third-order corrections.

5.1. First-order–based correction equations. If we ignore the second- and
higher-order terms in (5.3), then we obtain the equation

(Ai − σBi − τCi)si = −rRi .(5.8)

Because rRi is orthogonal to vi, we can multiply (5.8) with an oblique projection

I − civ
∗
i

v∗
i
ci

, where ci �⊥ vi, that does not change rRi . Secondly, since si is orthogonal to

ai, we can write (I − uia
∗
i

a∗
i
ui

)si instead of si. Thus we obtain the correction equation

for the vector ui,(
I − civ

∗
i

v∗i ci

)
(Ai − σBi − τCi)

(
I − uia

∗
i

a∗i ui

)
si = −rRi(5.9)

for i = 1, 2. In a similar way we obtain from (5.4) the correction equation for the
vector vi, (

I − diu
∗
i

u∗
i di

)
(Ai − σBi − τCi)

∗
(
I − vib

∗
i

b∗i vi

)
ti = −rLi(5.10)

for i = 1, 2, where di �⊥ ui.
We solve these correction equations only approximately, using, for instance, some

Krylov subspace method. Since the operator in (5.9) maps a⊥i onto v⊥i , it is suitable
to take ai = vi in order to apply the Krylov solver without a preconditioner (see, for
example, the discussion in [9, section 4.2]). If ai �= vi, then we need a preconditioner
that maps the image space v⊥i bijectively onto a⊥i . Similarly, we need a preconditioner
for (5.10) when bi �= ui.

Different choices of vectors ai, bi, ci, di lead to different correction equations. We
discuss some options.
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1. For the first correction equation we take ai = di = vi, bi = ci = ui. We obtain
a pair of correction equations(

I − uiv
∗
i

v∗i ui

)
(Ai − σBi − τCi)

(
I − uiv

∗
i

v∗i ui

)
si = −rRi ,

(5.11) (
I − viu

∗
i

u∗
i vi

)
(Ai − σBi − τCi)

∗
(
I − viu

∗
i

u∗
i vi

)
ti = −rLi

for si ⊥ vi, ti ⊥ ui for i = 1, 2. The operator in the first equation is the conjugate
transpose of the operator in the second equation, and we can solve these equations
simultaneously by biconjugate gradients (BiCG). It is also possible to solve equations
in (5.11) separately by the generalized minimum residual method (GMRES).

2. For this correction equation we take ai = ci = ui, bi = di = vi.
It is a natural approach for (5.9) and (5.10) to take ai = ui and bi = vi, as in this

case we are looking for updates orthogonal to the current approximation. As it turns
out later in section 5.2, when we use preconditioning, an interesting choice for ci and
di is to take ci = ui and di = vi, which leads to a pair of correction equations(

I − uiv
∗
i

v∗i ui

)
(Ai − σBi − τCi)(I − uiu

∗
i )si = −rRi ,

(5.12) (
I − viu

∗
i

u∗
i vi

)
(Ai − σBi − τCi)

∗(I − viv
∗
i )ti = −rLi

for si ⊥ ui, ti ⊥ vi for i = 1, 2. In order to solve (5.12) approximately by a Krylov
solver we need a preconditioner because ai �= vi; see section 5.2.

3. In this case we take ai = ui, bi = vi, ci = gi, di = hi, where

gi = (λT − σ)Biui + (µT − τ)Ciui,

hi = (λT − σ)∗B∗
i vi + (µT − τ)∗C∗

i vi.

The idea behind the choice of ci and di is that when the target (λT, µT) is close to
the eigenvalue, then the projections with gi and hi almost annihilate the second-order
terms in (5.3) and (5.4) and thus reduce the neglected quantity.

We derive the correction equations(
I − giv

∗
i

v∗i gi

)
(Ai − σBi − τCi)(I − uiu

∗
i )si = −rRi ,

(5.13) (
I − hiu

∗
i

u∗
i hi

)
(Ai − σBi − τCi)

∗(I − viv
∗
i )ti = −rLi

for si ⊥ ui, ti ⊥ vi for i = 1, 2. Again, if we want to solve (5.13) approximately by a
Krylov solver, then we need a preconditioner, as ai �= vi; see the next section.

5.2. Preconditioned first-order–based correction equations. We have men-
tioned that we need a preconditioner for a Krylov solver for the correction equation
(5.9) when the domain subspace a⊥i and the range subspace v⊥i do not agree. How-
ever, we can also use a preconditioner when the domain and the range agree, to speed
up the convergence.

Suppose that a left preconditioner Mi is available for Ai − σBi − τCi such that
M−1

i (Ai−σBi− τCi) ≈ I. A calculation shows that if we assume that a∗iM
−1
i ci �= 0,
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then the inverse of the map (
I − civ

∗
i

v∗i ci

)
Mi

(
I − uia

∗
i

a∗i ui

)
from a⊥i to v⊥i is the map(

I − M−1
i cia

∗
i

a∗iM
−1
i ci

)
M−1

i

(
I − civ

∗
i

v∗i ci

)
from v⊥i to a⊥i . Therefore, using left preconditioning changes (5.9) into(

I − M−1
i cia

∗
i

a∗iM
−1
i ci

)
M−1

i

(
I − civ

∗
i

v∗i ci

)
(Ai − σBi − τCi)

(
I − uia

∗
i

a∗i ui

)
si

= −
(
I − M−1

i cia
∗
i

a∗iM
−1
i ci

)
M−1

i rRi

for i = 1, 2. Correction equation (5.10) for the left eigenvector can be dealt with
similarly. A preconditioner for Ai−σBi−τCi automatically suggests a preconditioner
for (Ai − σBi − τCi)

∗.

We can combine different preconditioners with different correction equations.
Here are some possibilities.

1. Our suggestion for the preconditioner is

Mi = Ai − λTBi − µTCi,(5.14)

where (λT, µT) is the target. Instead of exact inversion we can also take an inexact
inverse, for example one obtained using an incomplete LU decomposition.

2. The simplest option is to take the identity as a preconditioner in order to be
able to use a Krylov solver for the correction equation. For example, if we take cor-
rection equation (5.12) and the identity as a preconditioner, then we have to multiply
(5.9) and (5.10) by orthogonal projectors I − uiu

∗
i and I − viv

∗
i , respectively. From

(I − uiu
∗
i )(I −

uiv
∗
i

v∗
i
ui

) = I − uiu
∗
i and (I − viv

∗
i )(I −

viu
∗
i

u∗
i
vi

) = I − viv
∗
i we get

(I − uiu
∗
i )(Ai − σBi − τCi)(I − uiu

∗
i )si = −(I − uiu

∗
i )r

R
i ,

(5.15)
(I − viv

∗
i )(Ai − σBi − τCi)

∗(I − viv
∗
i )ti = −(I − viv

∗
i )r

L
i

for i = 1, 2. One can recognize (5.15) as the correction equations of the standard
Jacobi–Davidson method applied to Ai − σBi − τCi and (Ai − σBi − τCi)

∗.

5.3. Second-order–based correction equation. For this case we generalize
the correction equation with oblique projections for the right definite two-parameter
eigenvalue problem [10]. If we define

K =

[
A1 − σB1 − τC1 0

0 A2 − σB2 − τC2

]
,

rR =

[
rR1

rR2

]
, rL =

[
rL1

rL2

]
,
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then we can reformulate (5.3) and (5.4) (neglecting third-order correction terms) as

K

[
s1

s2

]
= −rR + (λ− σ)

[
B1u1

B2u2

]
+ (µ− τ)

[
C1u1

C2u2

]
(5.16)

and

K∗
[
t1
t2

]
= −rL + (λ− σ)∗

[
B∗

1v1

B∗
2v2

]
+ (µ− τ)∗

[
C∗

1v1

C∗
2v2

]
.(5.17)

Let VR be a (n1 + n2) × 2 matrix with orthonormal columns such that

span(VR) = span

([
B1u1

B2u2

]
,

[
C1u1

C2u2

])
,

and let

WR =

[
v1 0
0 v2

]
.

With the oblique projection

PR = I − VR(W ∗
RVR)−1W ∗

R

onto span(WR)⊥ along span(VR), it follows that

PRr
R = rR and PR

[
B1u1

B2u2

]
= PR

[
C1u1

C2u2

]
= 0.

Therefore, from multiplying (5.16) by PR, we obtain

PRK

[
s1

s2

]
= −rR.

Suppose that we are looking for corrections such that si ⊥ vi and ti ⊥ ui. Then

PR

[
s1

s2

]
=

[
s1

s2

]
,

and the result is the correction equation

PRKPR

[
s1

s2

]
= −rR.(5.18)

Remark 5.2. If u1 ⊗ u2 and v1 ⊗ v2 are close approximations to eigenvectors
x1 ⊗x2 and y1 ⊗ y2, corresponding to a single eigenvalue of (1.1), then it follows from
Lemma 1.1 that W ∗

RVR is nonsingular. If the above is not true, then it is possible that
VR does not exist or that W ∗

RVR is singular. In either of these two cases we can use
one of the correction equations from section 5.1 to expand the search and test spaces.

In a similar manner we obtain a correction equation for t1 and t2. If VL, WL, and
PL are defined similarly for (5.17), then we have

PLK
∗PL

[
t1
t2

]
= −rL.(5.19)
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We separately solve (5.18) and (5.19) approximately using a few steps of GMRES.
Better results can be expected if we use preconditioners. Suppose that M is a left

preconditioner for K, for instance, a block preconditioner with the preconditioners Mi

in (5.14) as blocks. One can show that if W ∗
RM

−1VR is nonsingular, then the inverse
of a map PRMPR from span(WR)⊥ to span(WR)⊥ is

(I −M−1VR(W ∗
RM

−1VR)−1W ∗
R)M−1PR.

Thus we obtain a preconditioned correction equation

(I −M−1VR(W ∗
RM

−1VR)−1W ∗
R)M−1PRKPR

[
s1

s2

]
(5.20)

= (I −M−1VR(W ∗
RM

−1VR)−1W ∗
R)M−1rR.

In a similar manner we get a preconditioned equation for t1 and t2.

5.4. One-sided approach. Instead of the two-sided, we could also apply the
one-sided approach, where the search subspace is the same as the test subspace [10].
One-sided versions can be easily derived from the above two-sided correction equa-
tions. All one has to do is use Vi = Ui for i = 1, 2, and solve only the correction
equations for s1 and s2.

The advantage of the one-sided approach is that it requires less memory and
roughly half the work for one outer iteration. On the other side, numerical results in
section 8 show that the two-sided approach gives more accurate results. Also, if we use
the one-sided approach, then we cannot apply Lemma 1.1 as we did in Remark 5.2.

6. Computing more eigenpairs. Suppose that we are interested in p > 1
eigenpairs of (1.1). In one-parameter eigenvalue problems various deflation techniques
can be applied in order to compute more than one eigenpair. The difficulties that are
met when we try to translate standard deflation ideas from one-parameter problems
to two-parameter problems are discussed in [10].

For a general two-parameter eigenvalue problem we can apply a technique similar
to that in [10] for the right definite problem using the ∆0-orthogonality of left and
right eigenvectors. Suppose that we have already found p eigenvalues (λi, µi) with the
corresponding left and right eigenvectors x1i ⊗ x2i and y1i ⊗ y2i for i = 1, . . . , p. Now
we adjust Algorithm 4.1 so that in step 2(b) we consider only those Petrov triples for
which u1 ⊗ u2 and v1 ⊗ v2 satisfy

min(|(v1 ⊗ v2)
∗∆0(x1i ⊗ x2i)|, |(y1i ⊗ y2i)

∗∆0(u1 ⊗ u2)|) < η for i = 1, . . . , p
(6.1)

for an η > 0. A suggestion for η (used in Example 8.4 in section 8) is

η =
1

2
min

i=1,...,p
((y1i ⊗ y2i)

∗∆0(x1i ⊗ x2i)).

If no triple satisfies this condition, then we take the one that gives the smallest left-
hand side of (6.1).

Let us mention that an efficient way to compute (6.1) is to apply the relation
(cf. (3.2))

(x1 ⊗ x2)
∗∆0(y1 ⊗ y2) = (x∗

1B1y1)(x
∗
2C2y2) − (x∗

1C1y1)(x
∗
2B2y2).

If we want to compute more eigenpairs using the one-sided approach, then we
have to compute the left eigenvectors separately for each converged eigenvalue. If we
use the two-sided approach, then left and right eigenvectors are already computed.
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7. Time complexity. The analysis of time complexity of Algorithm 4.1 is simi-
lar to the analysis for the Jacobi–Davidson algorithm for right definite two-parameter
eigenvalue problems in [10, section 6]. Therefore, the details are omitted and the main
results are stated.

If we assume that n = n1 = n2 and that m steps of GMRES are used for the ap-
proximate solutions of the correction equations, then the time complexity of one outer
step of Algorithm 4.1 for dense matrices is O(mn2). Also important is the storage
requirement. If an algorithm works with matrices Ai, Bi, and Ci as Algorithm 4.1
does, then it requires O(n2) memory. On the other hand, Algorithm 2.3, which works
with the associated system (1.5), needs O(n4) memory, which may fast exceed the
available memory even for modest values of n.

If the matrices Ai, Bi, and Ci are sparse, then the time complexity of the outer
step of Algorithm 4.1 is of order O(mMV), where MV stands for a matrix-vector
multiplication by an n× n matrix.

8. Numerical examples. The following numerical results were obtained with
Matlab 6.5.

In the first examples we use a two-parameter eigenvalue problem with known
eigenpairs, which enables us to check the obtained results. The construction is similar
to the one in [10], and therefore the details are omitted.

We take matrices

Ai = ViFiUi, Bi = ViGiUi, Ci = ViHiUi(8.1)

of dimension n × n, where Fi, Gi, and Hi are complex diagonal matrices and Ui, Vi

are random matrices for i = 1, 2. We select diagonal elements of matrices Fi, Gi,
and Hi as complex numbers α+ iβ, where α and β are uniformly distributed random
numbers from the interval (−0.5, 0.5). All the eigenvalues can be computed from the
diagonal elements of Fi, Gi, and Hi for i = 1, 2.

Example 8.1. We compare different correction equations without preconditioning
on matrices (8.1) of size n = 100. For the initial vectors we perturb the exact eigen-
vectors with a random perturbation of order 10−3. In each step 2(b) of Algorithm 4.1
we take the Petrov triple with the smallest residual (4.3).

Table 8.1 contains the number of steps required for the residual (4.3) to become
smaller than 10−8. The other parameters are lmax = 10, lmin = 2, and kmax = 200.
We compared three two-sided correction equations without preconditioning:

• NP1—first-order correction equation (5.11), where si ⊥ vi and ti ⊥ ui;
• NP2—first-order correction equation (5.15), where si ⊥ ui and ti ⊥ vi. Al-

though it is preconditioned, we treat this equation as an unpreconditioned one because
the preconditioner is the identity.

Table 8.1

Comparison of three correction equations NP 1, NP 2, and NP 3 without preconditioning for the
initial vectors ‖ui − x1i‖ = O(10−3) and ‖vi − y1i‖ = O(10−3). GMRES: the number of steps used
in GMRES for the approximate solution of the correction equation; Iterations: the number of outer
iterations for convergence.

NP1 NP2 NP3

GMRES Iterations GMRES Iterations GMRES Iterations

90 > 200 90 > 200 180 50
95 46 95 36 190 25
99 3 99 3 199 5
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Table 8.2

Comparison of three correction equations P 1, P 2, and P 3 with preconditioning for initial
vectors ‖ui − x1i‖ = O(10−3)e and ‖vi − y1i‖ = O(10−3). GMRES: the number of steps used in
GMRES for the approximate solution of the correction equation; Iterations: the number of outer
iterations for convergence.

P1 P2 P3

GMRES Iterations GMRES Iterations GMRES Iterations

1 63 1 63 1 99
2 70 2 59 2 36
4 28 4 28 4 24
8 6 8 6 8 6

15 4 15 4 15 3

• NP3—second-order correction equations (5.18) and (5.19).
The results in Table 8.1 indicate that the convergence is slow or we have no conver-
gence at all if the correction equations are not solved accurately, and this happens as
the number of GMRES steps gets closer to the size of the matrices. Let us remark
that the number of GMRES steps for the second-order correction equation is larger
because the size of the matrices is twice the size of the matrices in the first-order
correction equations.

Example 8.2. For the second example we take the same initial vectors and pa-
rameters as in Example 8.1, but this time we use preconditioned correction equations.
For a preconditioner we take (5.14). We compared the following three two-sided
preconditioned correction equations:

• P1—preconditioned first-order correction equation NP1 from Example 8.1,
where si ⊥ vi and ti ⊥ ui;

• P2—preconditioned first-order correction equation (5.13), where si ⊥ ui,
ti ⊥ vi, and where the second-order terms are small close to the eigenvalue;

• P3—preconditioned second-order correction equation NP3 from Example 8.1;
see (5.20).

The results in Table 8.2 indicate that correction equations with preconditioners
work better than the ones that are not preconditioned, and we have a fast convergence
for a modest number of GMRES steps.

Example 8.3. In this example we use matrices (8.1) of size n = 1000. We take
initial vectors u1 = u2 = v1 = v2 = [1 · · · 1]T and parameters lmax = 15 and lmin = 4.
Our goal is the eigenvalue closest to the origin. In step 2(b) of Algorithm 4.1 we pick
the Petrov triple with the Petrov value closest to the target (0, 0) until the residual
ρk is less than εchange = 10−2.5. After that we take the Petrov triple with the smallest
residual (4.3) until the residual is less than 5 · 10−7.

Figure 8.1 shows the convergence plot for two-sided and one-sided correction
equations P2 and P3 using various number of GMRES steps to solve the correction
equation. One can see that once the residual becomes smaller than εchange (top
horizontal dotted line in the figures) and we are close to the eigentriple, the number
of GMRES steps determines the speed of the convergence.

There is no guarantee that the process will converge to the eigenvalue closest to
the target. Table 8.3 shows the indices of the obtained eigenvalues if the eigenvalues
are ordered by their distance from the target. This example shows that although the
one-sided methods may converge faster than the two-sided methods (especially mea-
sured in number of matrix-vector multiplications), they often converge to an undesired
eigenvalue.
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Fig. 8.1. Convergence plot for the eigenvalue closest to (0, 0) for ui = vi = [1 · · · 1]T . The plots
show the log10 of the residual norm (4.3) versus the outer iteration number for the Jacobi–Davidson
type method using a correction equation with 5 (solid line), 10 (dotted line), and 20 (dashed line)
GMRES steps to solve the correction equation. The correction equations are: two-sided P 3 (top
left), one-sided P 3 (top right), two-sided P 2 (bottom left), and one-sided P 2 (bottom right).

Table 8.3

Indices of the obtained eigenvalues from Figure 8.1.

GMRES Two-sided P3 One-sided P3 Two-sided P2 One-sided P2

1 2 16 3 1

2 1 26 2 80

3 2 4 2 9

Example 8.4. In this example we test the selection technique from section 6 that
enables us to compute more than one eigenvalue. The matrices are the same as in
the previous example. Figure 8.2 shows a convergence plot for the first ten computed
eigenvalues. For each eigenvalue we select the closest Petrov value to the origin until
the residual becomes smaller than εchange, and in the remaining steps we select the
Petrov triple with the minimum residual. We consider only Petrov triples that satisfy
the condition (6.1). The indices of the computed eigenvalues, ordered as they were
obtained, are 1, 34, 4, 5, 2, 16, 3, 6, 9, and 12. The statistics in the following example
show that the probability of a successful convergence is high if we carefully tune the
parameters of the method.

Example 8.5. We use the same n = 1000 matrices as in Example 8.4. We test the
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Fig. 8.2. Convergence plot for the first ten computed eigenvalues using the selection technique
from section 6. Used is correction equation P 3 with 15 GMRES steps and parameters lmax = 15,
lmin = 4, and εchange = 10−2.5.

Table 8.4

Statistics of the Jacobi–Davidson type method using the same set of ten random initial vectors
for computing the ten eigenvalues closest to the origin, using correction equation P 3 and a different
number of GMRES steps and εchange. The parameters are lmax = 15 and lmin = 4; maximum num-
ber of outer iterations is 300. GMRES: the number of steps used in GMRES for the approximate
solution of the correction equation; In 10 (In 50): the average number of the computed eigenval-
ues among the 10 (50) closest eigenvalues to the origin; Conv.: the average number of computed
eigenvalues; Iter.: the average number of outer iterations for convergence.

Two-sided correction equation P3

εchange = 10−2 εchange = 10−3 εchange = 10−4

GMRES In 10 In 50 Conv. Iter. In 10 In 50 Conv. Iter. In 10 In 50 Conv. Iter.

10 6.8 8.4 10.0 72.8 7.8 9.5 9.9 115.9 7.7 9.3 10.0 89.7

20 6.3 8.8 10.0 56.7 7.8 9.5 10.0 91.7 8.7 9.7 10.0 113.3

30 6.9 7.8 10.0 65.6 7.9 9.2 10.0 88.6 8.7 9.7 10.0 124.2

One-sided correction equation P3

εchange = 10−2 εchange = 10−3 εchange = 10−4

GMRES In 10 In 50 Conv. Iter. In 10 In 50 Conv. Iter. In 10 In 50 Conv. Iter.

10 4.5 8.0 10.0 97.5 6.6 8.7 9.5 103.8 6.6 7.7 8.1 192.8

20 2.4 6.5 10.0 80.8 6.2 8.8 10.0 122.1 7.7 8.8 9.1 204.3

30 1.3 2.4 8.4 160.6 6.2 9.0 10.0 121.7 6.7 8.8 9.0 200.3

preconditioned correction equation P3 on the same set of ten random initial vectors.
For each initial vector the goal was to compute the ten eigenvalues closest to the
target, using the same approach as in the previous example. We set the maximum
number of outer steps to 300 and use a different number of GMRES steps and a
different εchange.

The numbers in Table 8.4 show that the probability of computing the correct
eigenvalues is high when the parameters are carefully chosen. If εchange is too small,
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then in the first phase, when we select the closest Petrov value to the origin, the
method requires too many iterations until the residual is smaller than εchange. On the
other hand, if εchange is too large, then the method is likely to converge fast, but to an
unwanted eigenvalue. More GMRES steps may reduce the number of outer iterations
and enlarge the probability, but we must keep in mind that the total amount of work
is dependent on the number of matrix-vector multiplications, and thus roughly equal
to the product of the number of GMRES steps and outer iterations. Also, if we use
too many GMRES steps, then the correction equations are solved too accurately and
the method requires more iterations until the residual is smaller than εchange.

The results show that we can compute more eigenvalues close to the target if we
use the two-sided method. The performance of the one-sided method is less optimal.
The one-sided method usually requires more outer iterations, and situations where
we have very slow convergence or no convergence at all occur more frequently.

Example 8.6. In the last example we study the three-point problem

y′′ + (λ + µ cosx)y = 0(8.2)

with boundary conditions

y(0) = y(2.5) = y(5) = 0.

Instead of (8.2) we can study the two-parameter problem

y′′i + (λ + µ cosxi)yi = 0, i = 1, 2,(8.3)

where x1 ∈ [0, 2.5], x2 ∈ [2.5, 5], and the boundary conditions are y1(0) = y1(2.5) = 0
and y2(2.5) = y2(5) = 0. One can see from the determinant∣∣∣∣∣1 cos(x1)

1 cos(x2)

∣∣∣∣∣ = cos(x2) − cos(x1)

that (8.3) is not right definite.
We can compute eigenvalues of (8.3) using finite differences. If we take h =

1/(n− 1), x1i = ih, and x2i = x1i + 2.5 for i = 1, . . . , n, then the n× n matrices that
form the two-parameter problem are

A1 = A2 =
1

h2
tridiag(1,−2, 1),

B1 = B2 = I,(8.4)

C1 = diag(cos(x11), . . . , cos(x1n)), C2 = diag(cos(x21), . . . , cos(x2n)).

The eigenfunctions for the six closest eigenvalues to (0, 0) are shown in Figure 8.3.
Using finite differences and n = 1000, we test preconditioned correction equation

P3 using the same set of 50 random initial vectors and various numbers of GMRES
steps. The goal is to compute the ten closest eigenvalues to the target (0, 0). Results
in Table 8.5 show that it is possible to compute a selection of the closest eigenvalues
to the target using the Jacobi–Davidson type method. It appears that the optimal
solution in this case is to take a modest number of GMRES steps.

In this example the difference in the performance of the one-sided and the two-
sided approaches is smaller than in Example 8.5. This happens because the matrices
are real symmetric and therefore the left and right eigenvectors of real eigenvalues
agree. The discretized problem (8.4) has complex eigenvalues as well, but the ones
that we are interested in are all real.
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Fig. 8.3. Eigenfunctions of the three-point boundary problem (8.2) for the six closest eigenvalues
to (0, 0): (λ1, µ1) = (−1.5790, 0), (λ2, µ2) = (−6.3145, 0), (λ3, µ3) = (−2.1197, 6.5418), (λ4, µ4) =
(−5.1698,−5.4264), (λ5, µ5) = (−8.9898, 8.4441), and (λ6, µ6) = (−14.2019, 0).

Table 8.5

Statistics of the Jacobi–Davidson type method using the same set of ten random initial vectors
for computing the ten closest eigenvalues to the origin using correction equation P 3 and different
numbers of GMRES steps for problem (8.4) and n = 1000. The parameters are lmax = 15, lmin = 4,
and εchange = 10−2. GMRES: the number of steps used in GMRES for the approximate solution
of the correction equation; In 10: the average number of the computed eigenvalues among the ten
closest eigenvalues to the origin; Iterations: the average number of outer iterations for convergence.

Corr. equation GMRES In 10 Iterations

Two-sided P3 5 10.0 86.2

Two-sided P3 10 10.0 48.9

Two-sided P3 20 9.9 42.2

Two-sided P3 30 10.0 50.8

One-sided P3 5 10.0 70.5

One-sided P3 10 9.8 50.7

One-sided P3 20 10.0 68.2

One-sided P3 30 9.9 90.3

9. Conclusions. We have presented a new Jacobi–Davidson type method for the
nonsingular two-parameter eigenvalue problem. This problem is a very challenging
one, where we have to use many available techniques to be successful: a two-sided
subspace approach, preconditioning, selection techniques instead of deflating, and the
use of a target.

Numerical examples show that the two-sided subspace approach is often more
expensive, but also more reliable. An additional advantage of the two-sided approach
is that during the process we have approximate left and right eigenvectors, and hence
in principle (see [11] for details) an approximation to the condition number of the
eigenvalue to which we are converging.

The new method can compute selected eigenpairs without good initial approxima-
tions, and it can tackle very large two-parameter problems, especially if the matrices
Ai, Bi, and Ci are sparse. In such situations, preconditioning is of great importance.

Let us also mention that Algorithms 2.3 and 4.1 both offer a simple generalization
to multiparameter problems with more than two parameters.

Acknowledgments. The authors are grateful to the referees for careful reading
of the paper and several helpful comments.
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Abstract. Quadratic eigenvalue problems involving large matrices arise frequently in areas such
as the vibration analysis of structures, micro-electro-mechanical systems (MEMS) simulation, and
the solution of quadratically constrained least squares problems. The typical approach is to solve the
quadratic eigenvalue problem using a mathematically equivalent linearized formulation, resulting in
a doubled dimension and, in many cases, a lack of backward stability.

This paper introduces an approach to solving the quadratic eigenvalue problem directly without
linearizing it. Perturbation subspaces for block eigenvector matrices are used to reduce the modified
problem to a sequence of problems of smaller dimension. These perturbation subspaces are shown
to be contained in certain generalized Krylov subspaces of the n-dimensional space, where n is the
undoubled dimension of the matrices in the quadratic problem. The method converges at least as
fast as the corresponding Taylor series, and the convergence can be accelerated further by applying a
block generalization of the quadratically convergent Rayleigh quotient iteration. Numerical examples
are presented to illustrate the applicability of the method.

Key words. quadratic eigenvalue problems, generalized Krylov subspaces, subspace approxi-
mation method, block Rayleigh quotient iteration
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1. Introduction. The quadratic eigenvalue problem

(λ2M + λC + K)x = 0(1.1)

commonly arises during the solution of systems of second order ordinary differen-
tial equations found in scientific and engineering applications. Gohberg, Lancaster,
and Rodman [7] and Lancaster [14] provided an extensive theoretical background on
quadratic and other polynomial eigenvalue problems. For a current review of nu-
merical methods for quadratic eigenvalue problems along with a broad discussion of
application areas, see Tisseur and Meerbergen [19]. The most common approach is
to expand (1.1), for example, as(

0 N
−K −C

)
z = λ

(
N 0
0 M

)
z or

(−C −K
N 0

)
w = λ

(
M 0
0 N

)
w,(1.2)

where N is any nonsingular matrix. Not only does the linearized problem have twice
the dimension of the quadratic problem, but also, in general, even if a backward sta-
ble method is used for the linear eigenvalue problem, that stability is not guaranteed
for the quadratic eigenvalue problem, as shown by Tisseur [18]. This paper intro-
duces a method that tackles the quadratic eigenvalue problem directly using subspace
approximation and perturbation techniques.
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1.1. Subspace approximation method for linear eigenvalue problems.
Zhang, Golub, and Law [21] presented a generalized Krylov subspace method for the
perturbed symmetric standard eigenvalue problem, (A+∆A)x = λx, given the known
solution for Ax = λx. The method is based on the following theorem.

Theorem 1.1 (see [21]). Assume Q = [Q1 Q2] is orthogonal, with each Qi

representing an eigenspace, and assume Λ1 = QT
1 AQ1 = λ1I. Let Λ2 = QT

2 AQ2,
E = Q2(Λ2 − λ1I)QT

2 , and F = E∆A. Let Qm
1 be the eigenspace of A + ∆A (as a

perturbation of Q1) obtained by the mth order Taylor series expansion. Then Qm
1

belongs to the subspace K(E,F,Q1,m), where

K(E,F,Q1,m) = R([P0(E,F )Q1, . . . , Pm(E,F )Q1]).

Here Pk(E,F ) is the space spanned by all the homogeneous polynomials in E and F
of order k, and R(Y ) denotes the range of Y .

The method computes the spaces K(E,F,Q1,m), m = 1, 2, 3, . . . , and solves the
reduced problems in these spaces until convergence of the eigenpairs. The method
is at least as fast as the convergence of the corresponding Taylor polynomials. In
the current paper this subspace approximation concept is employed for solving the
quadratic eigenvalue problem.

1.2. The perturbed quadratic eigenvalue problem. Consider computing a
few eigenpairs for the perturbed problem

(λ2(M + ∆M) + λ(C + ∆C) + (K + ∆K))x = 0,(1.3)

assuming that corresponding eigenpairs for the unperturbed problem, (λ2M + λC +
K)x = 0, are known [11]. For the special case of the quadratic eigenvalue problem
discussed in this paper, we consider the case with ∆M = C = ∆K = 0 and at least one
of M and K nonsingular. That is, we regard the matrix C in (1.1) as a perturbation,
and we consider the quadratic eigenvalue problem as a special case of the perturbed
quadratic eigenvalue problem. The analysis holds for those perturbations which result
in a convergent Taylor series for the eigenvector matrix, and may be extended using
homotopy [11] to future work involving arbitrarily large perturbations.

This paper is organized as follows. In section 2 a block perturbation form of (1.3)
is introduced and a subspace approximation theorem is proved. Then in section 3
the computation of perturbation subspaces is described, both in terms of generalized
Krylov subspaces and in terms of smaller, directly computed subspaces. Section 4
gives a first order error analysis and develops a stopping criterion. In section 5 a
hybrid algorithm is developed using perturbation subspaces and block Rayleigh quo-
tients, and in section 6 the complexity of the subspace approximation computations
is considered. Section 7 relates the subspace approximation method to existing meth-
ods. Finally, section 8 illustrates the subspace approximation method, using numerical
examples drawn from structural dynamics applications.

The numerical examples are performed using MATLAB 6.1.0 on a 1 gigahertz Sun
Blade 2000 with 2 gigabytes of main memory, running Solaris 8.

2. Block quadratic equation. Given M, C, and K in R
n×n, with M nonsingu-

lar, let P (λ, t) = λ2M + λtC + K for λ ∈ C and 0 ≤ t ≤ 1. Consider the eigenvalue
problem

P (λ(t), t)x(t) = 0, t ∈ [0, 1].(2.1)
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Because M is nonsingular for t in [0, 1], there exist continuous eigenvalue paths
λ1(t), λ2(t), . . . , λ2n(t). (See, e.g., Ahlfors [1, Section 8.2].) If, instead, M is singular
but K is nonsingular, all the theory of this section still applies to the problem rear-
ranged as P (µ(t), t)x(t) = 0, t ∈ [0, 1], with P (µ, t) ≡ M +µtC +µ2K and λ(t) = 1

µ(t)

for µ(t) �= 0.
When the eigenvalues λ(t) of interest are nondefective, it is useful to compute a

subspace that contains approximations to the associated eigenspaces. We write the
block version of (2.1) as

MX(t)Λ2(t) + tCX(t)Λ(t) + KX(t) = 0,(2.2)

where we know solutions at t = 0 and seek solutions at t = 1. The idea of the subspace
approximation method is to compute subspaces that contain the ranges of the Taylor
approximations to X(t) and then to solve the reduced quadratic eigenvalue problems
in these subspaces to obtain the approximate eigenpairs for (2.1) on the whole space.

The following notational conventions are used in our discussion:
1. The superscript (j) denotes the jth derivative with respect to t, at t = 0

unless t is otherwise specified. For example, if Q(t) is a matrix function of t, then
Q(j) is its jth derivative at t = 0, and Q(j)(t0) is its jth derivative at t = t0.

2. ‖ · ‖ denotes the Euclidean norm unless otherwise stated.
3. Xj(t) is the jth Taylor approximation about t = 0 to the function X(t) in

(2.2).

2.1. Convergence of the block Taylor series. When discussing Taylor ap-
proximations it is, of course, important to explore issues of convergence. In this
section we examine convergence of the block Taylor series for the eigenvector matrix
X(t) in the case of nondefective eigenvalues (including simple eigenvalues), and we
extend the discussion to the case of defective eigenvalues and mention ideas for the
case of distinct but clustered eigenvalues.

Suppose we know a nondefective eigenvalue λ of multiplicity p for (2.1) at t = 0,
along with a corresponding n×p right eigenvector matrix X0. Writing the associated
eigenvalue paths as λ1(t), . . . , λp(t), in (2.2), X(t) is an n × p matrix function of t
with X(0) = X0, and Λ(t) is a p × p matrix function of t whose eigenvalues are
λ1(t), . . . , λp(t). No assumptions are made here regarding the normalization of X(t)
since the results in this section are independent of normalization.

For nondefective λ the matrix function X(t) can be taken to have a convergent
Taylor series as follows. Consider a standard linearized form for (2.1), such as

A(t)z(t) ≡
(−tM−1C −M−1K

I 0

)(
λ(t)x(t)
x(t)

)
= λ(t)

(
λ(t)x(t)
x(t)

)
.(2.3)

When λ0 is a nondefective eigenvalue of some multiplicity p for (2.3) at t = t0,
the corresponding eigenspace projection P (t), also called the total projection for the
λ-group eigenvalues of A(t), is holomorphic (i.e., possesses a derivative everywhere)
in a neighborhood of t0 in C (see Kato [12, Section II.1.4]). It is shown in [12,
Section II.4.2] that if a projection P (t) is holomorphic in some domain D containing
t0, then there is a transformation function U(t) satisfying the following: (1) U(t)−1

exists and both U(t) and U(t)−1 are holomorphic on D, (2) U(t)P (t0)U(t)−1 = P (t)
on D, and (3) U(t0) = I. It follows that if the p columns of Z0 form a basis for P (t0),
then the p columns of Z(t) = U(t)Z0 form a holomorphic basis for P (t). Now taking

Z0 =
(
λ0X0

X0

)
and writing Z(t) =

(
Z1(t)
Z2(t)

)
, the block form of (2.3) is A(t)Z(t) = Z(t)Λ(t),
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and with some manipulation, yields MZ2(t)Λ2(t) + tCZ2(t)Λ(t) + KZ2(t) = 0, where
Z2(t0) = X0. Since Z2(t) is holomorphic and of full rank, taking

X(t) = Z2(t)W (t)(2.4)

for any nonsingular holomorphic p × p matrix W (t) satisfying W (t0) = Ip gives a
holomorphic block eigenvector matrix X(t). In particular if W (t) is holomorphic on
the whole complex plane and ρ is the convergence radius about t0 of the Taylor series
for Z(t), then the convergence radius of the Taylor series for X(t) about t0 is at
least ρ. (A lower bound for ρ may be computed using majorization series, described
in [12, Section II.3.1]; however, this is very expensive, involving explicit formation of
a 2n matrix inverse, a 2n pseudoinverse, and several 2n matrix norms.)

Although multiple nondefective eigenvalues are, in fact, uncommon, much of the
above discussion remains relevant in the case of a cluster of close eigenvalues with λ0

as their arithmetic mean. Also, even when λ0 is a defective eigenvalue of A(t) at t0,
the total projection P (t) onto the associated invariant subspace is holomorphic. Thus
if Ptot(t) is the total projection for the sum of the invariant subspaces associated with
p eigenvalue paths λi1(t), λi2(t), . . . , λip(t), then Ptot can be analytically continued as
t goes from 0 to 1, as long as no other eigenvalue paths intersect these. Z(t) can,
therefore, be analytically continued, as can X(t) if it is defined by (2.4), although, in
this case, X(t) may be rank-deficient.

2.2. A subspace approximation theorem. To specify the perturbation sub-
spaces we first require the definition of a generalized Krylov subspace.

Definition 2.1. For B1, B2, . . . , Bk ∈ C
N×N , and X ∈ C

N×p, 0 < p ≤ N ,
let Sj(B1, B2, . . . , Bk, X), abbreviated Sj(X) when the Bi’s are understood, denote
the jth generalized Krylov subspace generated by B1, B2, . . . , Bk applied j times to X,
i.e.,

Sj(X) =
∑
p≤j

range(Bi1Bi2 · · ·BipX).

As an equivalent definition, let S0(B1, B2, . . . , Bk, X) = range(X), and, for j > 0,
if the columns of Xj−1 form a basis for Sj−1(B1, B2, . . . , Bk, X), let

Sj(B1, B2, . . . , Bk, X) = range([B1Xj−1 B2Xj−1 · · · BkXj−1 Xj−1]).

The following result gives generalized Krylov subspaces containing the ranges of
the Taylor approximations to X(t). These spaces are specified explicitly in terms of
the coefficient matrices and an operator F which depends on a complement to the
range of X and which need only be applied rather than kept available in matrix form.
In the next section this theorem will be used to obtain a sequence of subspaces from
which eigenvector and eigenvalue approximations can be computed.

Theorem 2.2. Let V ∈ C
n×(n−p) be such that range(V ) + range(X0) = C

n, and
let F be an n× n matrix satisfying

FP (λ0, 0)V = V.(2.5)

Then for all t, for all j ≥ 0, range(Xj(t)) ⊆ Sj(FM, FC, X0).
Proof. Since Sj(X0) ⊆ Sj+1(X0) for all j ≥ 0, it is sufficient to show that

range(X(j)) ⊆ Sj(X0) ∀j ≥ 0.(2.6)
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By the definition of Sj(X0), (2.6) is true for j = 0. We proceed by induction on j.
Assume (2.6) holds for all j < k, where k > 0. Then range(X(i)) ⊆ Sj(X0) for all i
and j such that 0 ≤ i ≤ j < k. Taking the kth derivative with respect to t of (2.2),
setting t = 0, and applying F yields

FP (λ0, 0)X(k) = −
k−1∑
r=0

(
k

r

)
MX(r)(Λ2)(k−r) −

k−1∑
r=0

k

(
k − 1

r

)
CX(r)Λ(k−1−r).(2.7)

If the columns of Qk−1 form a basis for Sk−1(X0), then range(X(j)) ⊆ range(Qk−1)
for all j < k, so the range of the right-hand side of (2.7) is contained in

range([FMQk−1, FCQk−1]),

which is in turn contained in Sk(X0). Let the columns of Qk be a basis for Sk(X0)
of size n × pk. Then FP (λ0, 0)X(k) = QkTk for some pk × p matrix Tk. Writing

X(k) = Q
(k)
(1) + Q

(k)
(2) , where the columns of Q

(k)
(1) are in range(X0) and the columns of

Q
(k)
(2) are in range(V ), and using (2.5), we have Q

(k)
(2) = QkTk. Hence

range(X(k)) ⊆ range
(
[Q

(k)
(1)Q

(k)
(2) ]

)
⊆ range([X0Qk]) = Sk(X0).

Thus (2.6) holds for all j ≥ 0, which proves the theorem.

3. Subspace computations.

3.1. Applying the subspace approximation theorem. If V = [v1 · · · vn−p]
satisfies range(V ) + range(X0) = C

n, then clearly V is of full rank and range(V ) ∩
range(X0) = 0. Also, the n − p columns of P (λ0, 0)V are linearly independent and,
therefore, form a basis for range(P (λ0, 0)). Now let y1,y2, . . . ,yp be a basis for
range(P (λ0, 0))⊥. For any p vectorswj ∈ C

n there is an associated matrix F satisfying
(2.5), specified by

F (P (λ0, 0)vi) = vi, i = 1, 2, . . . , n− p,
Fyj = wj , j = 1, 2, . . . , p.

(3.1)

The condition

V ∈ C
n×(n−p), range(V ) + range(X0) = C

n(3.2)

thus implies the existence of a matrix F satisfying (2.5) that is uniquely determined by
w1, . . . ,wp. Also, (3.2) alone uniquely determines FP (λ0, 0) since FP (λ0, 0)V = V
and FP (λ0, 0)X0 = 0.

To apply Theorem 2.2 we must first specify V in some way. A natural choice is
to let V satisfy range(V ) = range(X0)⊥. Let P+

0 be the pseudoinverse of P (λ0, 0).
Then P+

0 P (λ0, 0) is the orthonormal projection into null(P )⊥ = range(V ), and if
P (λ0, 0)∗y = 0, then P+

0 y = 0. Hence the F satisfying (2.5) determined by this
V and wj = 0, j = 1, 2, . . . , p, is exactly P+

0 . (Note that in the version of the
subspace theorem for the standard symmetric eigenvalue problem this choice of F gives
Theorem 1.1 (see [21]).) Now we can compute the subspaces Sj by solving appropriate
least squares problems. The problems min ‖P (λ0, 0)v − y‖ are rank-deficient, but
because null(P (λ0, 0)) = range(X0), deflation using Householder transformations can
be used to obtain equivalent full rank problems. Alternatively, the least squares
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problems may be considered only nearly rank-deficient numerically, in which case we
can choose to solve them directly by decomposing P (λ0, 0). This is an ill-conditioned
problem, resulting in large error components in range(X0) that must then be removed
to gain acceptable solutions.

In the following sections, two algorithms for subspace computation are consid-
ered: one to be used when the left eigenvector matrix of the unperturbed problem is
unknown, and the other to be used when the left eigenvector matrix is known. In the
first situation the subspaces may grow exponentially, but in the second the subspaces
grow linearly in the number of desired eigenvalues.

3.2. Computing the full perturbation subspaces. Suppose we have X1, X2,
. . . , Xj−1 such that

Sj−1 = range(X0) ⊕ range(X1) ⊕ · · · ⊕ range(Xj−1).

Then, writing Yj−1 = [X0 X1 · · · Xj−1], Sj = range([FMYj−1, FCYj−1, Yj−1]). Since,
for k < j− 1, the ranges of FMXk and FCXk are contained in range(Yk+1), which is
contained in range(Yj−1), it follows that

Sj = range([FMXj−1, FCXj−1, Yj−1]).

Setting S−1 = ∅ and S0 = range(X0), we proceed as follows to compute Sj for j > 0.

Algorithm 3.1. This algorithm computes Ŵ such that Sj = Sj−1 + range(Ŵ ).
0. Let Xj−1 satisfy Sj−1 = Sj−2⊕range(Xj−1). That is, Xj−1 is full rank, such

that the span of its columns added to Sj−2 gives the space Sj−1 with dim(Sj−1) =
dim(Sj−2) + rank(Xj−1).

1. Let the columns of W form a basis for range([MXj−1,CXj−1]).
2. Solve the least squares problem min ‖P (λ0, 0)ŵi −wi‖ for each column of W

to get Ŵ . (If solving directly, first project wi into S⊥
0 so that the part of the solution

not in the range of X0 will be numerically significant.)

3. Sj = Sj−1 + range(Ŵ ) because range([Ŵ X0]) = range([FW X0]).

To add range(Ŵ ) to Sj−1, modified Gram–Schmidt is used to get the orthonormal

basis [X0 X1 · · · Xj ] for range([X0 X1 · · · Xj−1 Ŵ ]), so that

Sj = range([X0 X1 · · · Xj ]) = Sj−1 ⊕ range(Xj).

Note that this algorithm computes the generalized Krylov subspace by powers. It will
be interesting, in future work, to consider computing the space using other polyno-
mials. Also note that at each step the dimension of the space may triple (as opposed
to the doubling that may occur when size 2n linearized forms such as (1.2) are used).
The following section discusses a way to avoid exponential subspace growth if possible.

3.3. Directly computing derivative subspaces. The equations leading to
the proof of Theorem 2.2 suggest a way to compute the derivatives X(k) directly within
the generalized Krylov subspace. As mentioned above, the results in section 2.2 are
independent of the normalization of X(t). Now assume the normalization condition

X0
∗X(t) = I, t ∈ [0, 1].(3.3)

In addition, assume we know a matrix of left eigenvectors W0 ∈ C
n×p associated with

λ0 at time t = 0, i.e., W0
∗P (λ0, 0) = 0, such that

2λ0W0
∗MX0 is nonsingular.(3.4)
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In some instances a value of W0 is clear from the properties of the problem. For
example, when M and K are symmetric, if C is skew-symmetric, then W0 = X0, and
if C is symmetric, then W0 = X0, the conjugate of X0. Condition (3.4) is guaranteed,
as the following lemma shows.

Lemma 3.2. Let λ0 be an eigenvalue of geometric multiplicity p for P (λ, 0), and
let X0 and W0 be associated full rank right and left eigenvector matrices. Then (3.4)
holds if and only if λ0 is nondefective.

Proof. Let P (λ, 0) = E(λ)Γ(λ)F (λ) be the Smith canonical decomposition of P
(see Wilkinson [20, pp. 19–20]) so that E(λ) and F (λ) are nonsingular n×n matrices
with determinants independent of λ, and Γ(λ) = diag(aj(λ)), where the functions
aj(λ) are monic polynomials in λ such that each polynomial is a factor of the next
one, i.e., a1(λ) | a2(λ) | · · · | an(λ). Since λ0 is of geometric multiplicity p,

aj(λ0) �= 0 for j ≤ n− p,
aj(λ0) = 0 for j > n− p.

(3.5)

Write f(λ) = W ∗
0 P (λ, 0)X0 = (W0E(λ))Γ(λ)(F (λ)X0), and let Ŵ0(λ) = E(λ)

∗
W0

and X̂0(λ) = F (λ)X0. Ŵ0(λ) and X̂0(λ) are of full rank for all values of λ, and from
(3.5) and the facts

Ŵ0(λ0)
∗
Γ(λ0) = 0, Γ(λ0)X̂0(λ0) = 0,

it follows that Ŵ0(λ0)
∗

= [0 w1(λ0)] and X̂0(λ0) = [0 x1(λ0)]T , where w1(λ0) and
x1(λ0) are nonsingular p× p matrices. Then

W0
∗(2λ0M + C)X0 = f ′(λ0) = Ŵ0(λ0)

∗
Γ′(λ0)X̂0(λ0)

(3.6)
= w1(λ0) diag(a′n−p+1(λ0), . . . , an

′(λ0))x1(λ0).

Condition (3.4) holds exactly when aj
′(λ0) �= 0 for all j > n− p, which is true if and

only if λ0 has algebraic multiplicity p.
To get X(k) directly we again differentiate (2.2),

P (λ0, 0)X(k) +

k−1∑
r=0

(
k

r

)
MX(r)(Λ2)(k−r) +

k−1∑
r=0

k

(
k − 1

r

)
CX(r)Λ(k−1−r) = 0,(3.7)

and, extracting the terms in Λ(k) and using the fact that k
(
k−1
j

)
= (k − j)

(
k
j

)
,

P (λ0, 0)X(k) + (2λ0M)X0Λ(k) = −MX0

k−1∑
l=1

(
k

l

)
Λ(l)Λ(k−l) − M

k−1∑
j=1

(
k

j

)
X(k−j)(Λ2)(j).

(3.8)

Let Vk denote the right-hand side of (3.8). Then, premultiplying (3.8) by W0
∗,

(2λ0W
∗
0 MX0)Λ(k) = W ∗

0 Vk.(3.9)

If all the values of Λ(j) and X(j) are known for j < k, we can compute Vk in a
straightforward manner using its definition, so (3.9) may be solved uniquely for Λ(k).
The columns of −2λ0MX0Λ(k) + Vk are in the range of P (λ0, 0). Let Zk be any
solution to

P (λ0, 0)Zk = −2λ0MX0Λ(k) + Vk.(3.10)
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Then for some vk ∈C
p×p, X(k) =Zk+X0vk. By (3.3) X∗

0Zk + X∗
0X0vk = X∗

0X
(k) = 0,

so vk = −X∗
0Zk and

X(k) = Zk −X0(X∗
0Zk),(3.11)

i.e., X(k) = (I−X0X
∗
0 )Zk, the projection of the columns of Zk into range(X0)⊥. Thus

we compute X(k) as follows.

Algorithm 3.3. Given Λ(0) = λ0I, X(0) = X0, W0, and Λ(1),Λ(2), . . . ,Λ(k−1),
X(1), X(2), . . . , X(k−1), this algorithm computes Λ(k) and X(k).

X0 = X(0); X1 = X(k−1);

ZM = X0

∑k−1
l=1

(
k
l

)
Λ(l)Λ(k−l); ZC = kλ0X1;

for j = 1: k − 1 /* compute sums on the right-hand side of (3.8) */
X2 = X1; X1 = X(k−1−j);

L = Λ(j); L1 =
∑j

l=0

(
j
l

)
Λ(l)Λ(j−l); c =

(
k
j

)
;

ZM = ZM + cX2L1;
ZC = ZC + (k − j)cX1L;

end
Vk = −(MZM + CZC);
Z = 2λ0MX0; Z = Z −X0(X∗

0Z);
Solve W ∗

0 ZΛ(k) = W ∗
0 Vk for Λ(k).

Solve P (λ0, 0)X = −ZΛ(k) + Vk for X.
X(k) = X −X0(X∗

0X).

To compute the subspace associated with s distinct nonconjugate eigenvalues we
perform the above procedure for each eigenvalue independently and then combine the
s computed subspaces to get the desired space. For a conjugate pair of eigenvalues it
is enough to compute the subspace for one of the two since the bases determining the
two subspaces are conjugate.

3.4. Real arithmetic in subspace computations. Under certain conditions
the computation of the subspaces can be arranged in a way that involves only real
arithmetic, as can be seen from the following lemma, the proof of which is a straight-
forward case-by-case check, left to the reader.

Lemma 3.4. Let M and K be symmetric, and let the quadratic eigenvalue problem
(λ2M + K)x = 0 have only real eigenvectors x associated with an imaginary nonde-
fective eigenvalue λ0 = iω0 �= 0. Let Λ(k) and X(k) be as in section 2.2, and suppose
XT

0 MX0 is nonsingular. Assume C is a nonzero matrix. Then

{
Λ(k) ∈ iRp×p and X(k) ∈ R

n×p, when k is even,
Λ(k) ∈ R

p×p and X(k) ∈ iRn×p, when k is odd.

Instead of looking at Λ(k) and X(k), let us look at the imaginary parts when the
matrices are imaginary and the real parts when the matrices are real. Write

Λ(k) = i(1−kmod 2)Ωk, X(k) = ikmod 2Yk,(3.12)

where, by the lemma, Ωk and Yk are real matrices. Since the perturbation subspaces
are determined by the sets range(X(k)) = range(Yk) it suffices to work with (Ωk, Yk)
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rather than (Λk, X
(k)). Substituting (3.12) into (3.8) gives

ikmod 2P (λ0, 0)Yk + (2iω0M)Y0i
(1−kmod 2)Ωk

= −MY0

k−1∑
l=1

(
k

l

)
i(1−lmod 2)+(1−(k−l) mod 2)ΩlΩk−l

(3.13)

−M

k−1∑
j=1

((
k

j

)
i(k−j) mod 2Yk−j

j∑
l=0

(
j

l

)
i(1−lmod 2)+(1−(j−l) mod 2)ΩlΩj−l

)

−C

k−1∑
j=0

k

(
k − 1

j

)
i(k−1−j) mod 2Yk−1−ji

1−j mod 2Ωj ,

which can be rewritten as

P (λ0, 0)Yk + (−1)k−12ω0MY0Ωk

= −MY0

k−1∑
l=1

(
k

l

)
(−1)(k−1)(l−1)ΩlΩk−l

(3.14)

−M

k−1∑
j=1

((
k

j

)
Yk−j

j∑
l=0

(
j

l

)
(−1)(kj−1)(l(j−1)−1)ΩlΩj−l

)

−C

k−1∑
j=0

k

(
k − 1

j

)
(−1)(k−1)(j−1)Yk−1−jΩj .

Just as in section 3.3, we can now compute Ωk and Yk directly, this time using only
real arithmetic.

3.5. Solving the reduced problem. If Q ∈ C
n×r gives an orthonormal basis

for the subspace S, let

Mproj = Q∗MQ, Cproj = Q∗CQ, and Kproj = Q∗KQ,(3.15)

and consider the solutions (λi,yi), i = 1, 2, . . . , 2r, to

(λ2Mproj + λCproj + Kproj)y = 0.(3.16)

The approximate solutions (λi,xi) = (λi, Qyi) are exactly the eigenpairs for the
quadratic problem with the operators M, C, and K replaced by their projections
onto S. See Hochstenbach and van der Vorst [9] for alternative ways of getting
approximate solutions from a given subspace.

The reduced quadratic problem (3.16) has complex matrices Mproj, Cproj, and
Kproj, resulting in a complex linearized problem. These matrices can, instead, be
forced to be real using the fact that, for w ∈ C

r, Qw = [real(Q) imag(Q)]
(
w
iw

)
, which

implies range(Q) ⊆ range([real(Q) imag(Q)]). If Q1 is a matrix whose columns form
an orthonormal basis for [real(Q) imag(Q)], then S ⊆ range(Q1). Thus using Q1

instead of Q in (3.15) results in a reduced problem involving only real matrices, and
the best eigenspace approximations in range(Q1) are at least as good as those in S.
The corresponding linear problem is of a dimension up to twice that of the linear
problem formed using Q, and the question is whether it is cheaper to find the basis
Q1, project M, C, and K onto range(Q1), solve the resulting real linearized problem,
and form the approximate eigenpairs, rather than working with the complex basis Q.
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Table 3.1

Flop comparison between real and complex bases.

Flops, using Q Flops, using [real(Q) imag(Q)]

Forming
basis

done 4nr

Projecting 6(2nr)(r + n) 4nr(2r + n)

Solving
linearized
problem

6(25)(r3) 25(2r)3

Computing
approximate
eigenvectors

6(2r)(2ns) 4r(2ns)

Total 12nr2 + 12n2r + 150r3 + 24nrs 4nr + 8nr2 + 4n2r + 200r3 + 8nrs

A simplified operation count provides an answer. Assume a real scalar operation
counts as one flop and a complex one counts as six. (This is the convention used in
MATLAB 5, for example.) The comparison for computing s nonconjugate eigenpairs
is given in Table 3.1, showing that it is better to use Q1 when

12nr2 + 12n2r + 150r3 + 24nrs > 4nr + 8nr2 + 4n2r + 200r3 + 8nrs,

which holds exactly when the cardinality r of the complex basis satisfies

0 < r <
n

25
+

1

25

√
101n2 + 200ns− 50n.(3.17)

Usually we are interested in the s eigenvalues of smallest (or largest) magnitude,
and the first idea might be to choose as our approximations the s smallest (or largest)
λi and corresponding xi for the projected problem. However, unless the eigenvalues
are known to satisfy a minimax or interlacing property, for example, in the case of
overdamped systems (see, e.g., Duffin [6]) or conservative gyroscopic systems (see [11,
Chapter 4] and Bauchau [2]), a further check is needed to eliminate spurious values.
In the next section an eigenvalue error estimate is introduced that will be used to
weed out these poor approximations.

4. First order error and stopping criterion.

4.1. Error in eigenvalues. For any given matrices M, C, and K, with M non-
singular, suppose the pair (µ,y) is an approximation to an eigenpair (λi,xi) for

(λ2M + λC + K)x = 0,(4.1)

with λi a simple eigenvalue and µ not equal to any eigenvalue of (4.1), and suppose
we know the associated residual r = (µ2M + µC + K)y. Consider the problem(

λ(ε)
2
M + λ(ε)C + K −

(
1 − ε

‖y‖
‖r‖

)
ruT

uTy

)
x(ε) = 0,(4.2)

where u is any vector such that uTy �= 0. It is straightforward to check that (µ,y) is
a solution to (4.2) at ε = 0. Since µ is not an eigenvalue of (4.1), z = y is the unique
solution to (µ2M + µC + K)z = r, and any nonzero vector ŷ satisfying

(µ2M + µC + K)ŷ − r

(
uT ŷ

uTy

)
= 0
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must be a multiple of y. Thus µ is a simple eigenvalue, so for all sufficiently small ε
the solution (λ(ε),x(ε)) with x(ε)

∗
x0 = 1 exists, and we can write the Taylor series

λ(ε) = µ + ελ̇(0) + ε2
λ̈(0)

2
+ · · · ,

x(ε) =
y

‖y‖ + εẋ(0) + ε2
ẍ(0)

2
+ · · · .

(4.3)

Substituting (4.3) into (4.2), and using the fact that the coefficient of the first power
of ε (and, in fact, that of each power of ε) on the left-hand side of (4.2) is zero,(

2µλ̇(0)M + λ̇(0)C +
‖y‖
‖r‖

ruT

uTy

)
y

‖y‖ +

(
µ2M + µC + K − ruT

uTy

)
ẋ(0) = 0,

and

λ̇(0)(2µM + C)
y

‖y‖ +
r

‖r‖ + (µ2M + µC + K)ẋ(0) − r

(
uT ẋ(0)

uTy

)
= 0.(4.4)

Setting

u = (µ2M + µC + K)Tw(4.5)

for any w satisfying

wT r �= 0(4.6)

and premultiplying (4.4) by wT gives λ̇(0)wT (2µM + C) y
‖y‖ + wT r

‖r‖ = 0; thus

λ̇(0) = −‖y‖
‖r‖

(
wT r

wT (2µM + C)y

)
and

λ(ε) − µ = −ε− ‖y‖
‖r‖

(
wT r

wT (2µM + C)y

)
+ O(ε2) as ε → 0.(4.7)

Next observe that at ε = ‖r‖
‖y‖ , λi is by assumption a simple eigenvalue of (4.2), so if

‖r‖
‖y‖ is small enough we have

|λi − µ| =
|wT r|

|wT (2µM + C)y| + O

(( ‖r‖
‖y‖

)2
)

as
‖r‖
‖y‖ → 0.(4.8)

Then a reasonable criterion for a solution pair (µ,y) to be acceptable is

max

(
|wT r|

|wT (2µM + C)y| ,
( ‖r‖
‖y‖

)2
)

< µ tol(4.9)

for some tolerance tol, i.e., the relative error in the eigenvalue is on the order of tol.
A good choice of w is clearly w = r̄ since this w fails to satisfy (4.6) only when r = 0,
in which case the approximate solution is, of course, acceptable. Then (4.9) becomes

‖r‖2

min(|r∗(2µM + C)y|, ‖y‖2)
< µ tol.(4.10)
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Now suppose we want approximations of the form yi = Wzi, with W ∈ C
n×r of full

rank and zi satisfying (µ2
i Mproj + µiCproj + Kproj)zi = 0, where Mproj = W ∗MW ,

Cproj = W ∗CW , and Kproj = W ∗KW . In other words suppose we are interested
in pairs (µi, zi) resulting from solving a reduced quadratic eigenvalue problem as in
section 3.5. Using (3.17), the following is an algorithm to solve the reduced quadratic
eigenvalue problem and to select approximate solutions.

Algorithm 4.1. Given a full rank matrix W ∈ C
n×r, this algorithm computes

approximations to the s < 2r eigenvalues of (4.1) smallest in magnitude, along with
corresponding eigenvector approximations.

1. If r satisfies condition (3.17), compute a real orthonormal basis W1 for
range([real(W ) imag(W )]), and set W = W1.

2. Form Mproj = W ∗MW , Cproj = W ∗CW , and Kproj = W ∗KW .
3. Linearize and use methods for small, dense matrices to compute the eigen-

values µ1, µ2, . . . , µ2r and corresponding eigenvectors z1, z2, . . . , z2r of

(µ2Mproj + µCproj + Kproj)z = 0.

4. For i = 1, 2, . . . , 2r, compute yi = Wzi.
5. Use criterion (4.10) to select the approximate eigenpairs (µij ,yij ), j = 1, 2,

. . . , s, with the smallest values of relerrsi ≡ 1
|µi|

‖ri‖2

min(|r∗
i
(2µM+C)yi|,‖y‖2) .

In steps 4 and 5 of Algorithm 4.1 the computation is done only once for each
complex conjugate pair. Note that if W is orthogonal, ‖yi‖ = ‖zi‖. Also note that
in step 3 we are linearizing the reduced problem in order to solve it, resulting in a
possible lack of backward stability, as discussed in section 1. Alternative approaches,
such as applying the subspace approximation method recursively in order to minimize
this difficulty, have been suggested and remain to be explored.

4.2. Error in eigenvectors. If instead of (4.5) we set u to be the conjugate

u = y(4.11)

and define v = (µ2M + µC + K)−1(2µM + C)y, we can show the following.

Lemma 4.2. If ∠(y,v) �= 0, then ∠(y,xi) = ∠(y,v) + O(( ‖r‖
‖y‖ )2) as ‖r‖

‖y‖ → 0.

For the proof of the lemma two other results are needed.

Proposition 4.3. ‖ẋ(0)‖2
= (‖y‖‖r‖ )2 1∣∣( y

‖y‖

)∗
v
∣∣2 (‖v‖2 − |( y

‖y‖ )∗v|2).

Proof. Applying (µ2M + µC + K)−1 to (4.4),

ẋ(0) = −λ̇(0)
v

‖y‖ +

(
1

‖r‖ − uT ẋ(0)

uTy

)
y,

and since y∗ẋ(0) = 0, it follows that 0 = −λ̇(0)y∗v
‖y‖ + ( 1

‖r‖ − uT ẋ(0)
uTy

)‖y‖2, so

ẋ(0) = −λ̇(0)
v

‖y‖ +
λ̇(0)y∗v

‖y‖3
y.

Now let z be a nonzero vector satisfying

z∗
(
µ2M + µC + K − ruT

uTy

)
= 0.
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Then z∗(µ2M + µC + K) = ( z∗r
uTy

)uT , so z∗ = αuT (µ2M + µC + K)−1 for some α.

Applying z∗ to (4.4) yields

λ̇(0)z∗(2µM + C)
y

‖y‖ +
z∗r

‖r‖ = 0,

λ̇(0) = −‖y‖
‖r‖

z∗r

z∗(2µM + C)y
= −‖y‖

‖r‖
uTy

uTv
.

Hence

ẋ(0) = −‖y‖
‖r‖

uTy

uTv

(
− v

‖y‖ +
y∗v

‖y‖3
y

)
= − 1

‖r‖
uTy

uTv

(
−v +

[(
y

‖y‖
)∗

v

]
y

‖y‖
)
.

Using (4.11),

‖ẋ(0)‖2 =

∣∣∣∣ 1

‖r‖
uTy

uTv

∣∣∣∣2 ∥∥∥∥−v +

[(
y

‖y‖
)∗

v

]
y

‖y‖
∥∥∥∥2

=

(‖y‖
‖r‖

)2 ∣∣∣∣ ‖y‖y∗v

∣∣∣∣2 (‖v‖2 − (v∗y)(y∗v)

‖y‖2
− (y∗v)(v∗y)

‖y‖2
+

|y∗v|2
‖y‖2

)
=

(‖y‖
‖r‖

)2
1

|( y
‖y‖ )∗v|2

(
‖v‖2 −

∣∣∣∣( y

‖y‖
)∗

v

∣∣∣∣2
)
.

Proposition 4.4. If ẋ(0) �= 0,

∠(x(ε),y) = cos−1 1√
1 + ε2‖ẋ(0)‖2

+ O(ε2) as ε → 0.

Proof. The proof is elementary calculus using the Taylor expansion of f(w) =
cos−1(w−1/2) in the appropriate interval.

Proof of Lemma 4.2. ∠(y,v) �= 0 exactly when |( y
‖y‖ )∗v| �= ‖v‖, so, from Propo-

sition 4.3,

‖ẋ(0)‖2
=

(‖y‖
‖r‖

)2
1∣∣( y

‖y‖
)∗
v
∣∣2

(
‖v‖2 −

∣∣∣∣( y

‖y‖
)∗

v

∣∣∣∣2
)

�= 0,

and applying Proposition 4.4 at ε = ‖r‖
‖y‖ we have

∠(xi,y) = cos−1 1√
1 + 1∣∣( y

‖y‖

)∗
v
∣∣2 (‖v‖2 − |( y

‖y‖ )∗v|2)
+ O

(( ‖r‖
‖y‖

)2
)

as
‖r‖
‖y‖ → 0

= cos−1

∣∣( y
‖y‖

)∗
v
∣∣

‖v‖ + O

(( ‖r‖
‖y‖

)2
)

as
‖r‖
‖y‖ → 0

= ∠(y,v) + O

(( ‖r‖
‖y‖

)2
)

as
‖r‖
‖y‖ → 0.

Computing v to examine this eigenvector error estimate at each step would be ex-
pensive; instead it is useful to calculate the estimate at the end of the computation
to look at the final quality of the computed eigenvectors.
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5. A hybrid method. Because the perturbation subspaces are constructed to
contain the ranges of the Taylor series for the eigenspaces, the subspace approxima-
tions discussed above yield, within their convergence radius, eigenpair approximations
that converge at least as well as the corresponding Taylor series, in other words at
least linearly. To accelerate this convergence we would like to switch, at an appro-
priate stage, to a generalization of the quadratically convergent Rayleigh quotient
iteration.

5.1. Block Rayleigh quotient iteration. Suppose that the vectors X =
[x1 x2 · · · xs] form a basis for a space spanned by approximate right eigenvectors of
the problem (4.1), and define a block Rayleigh quotient of (4.1) for X to be any s× s
matrix Λ satisfying

X∗MXΛ2 + X∗CXΛ + X∗KX = 0.(5.1)

One possible block generalization of Lancaster’s Rayleigh quotient iteration (RQI)
[13] can be described as follows.

Algorithm 5.1 (Block RQI 1). This algorithm performs general block Rayleigh
quotient iterations, starting with any X1, to compute approximate eigenpairs for (4.1).
For l = 1, 2, 3, . . .

0. Given range(Xl), an approximate span of right eigenvectors for (4.1).
1. Find Λl (not unique) such that (X∗

l MXl)Λ
2
l + (X∗

l CXl)Λl + (X∗
l KXl) = 0.

2. Solve MYl+1Λ2
l + CYl+1Λl + KYl+1 = Xl for Yl+1.

3. Let W be a basis for range(Yl+1), and apply Algorithm 4.1 to solve the reduced
problem and get approximate solutions (λi,Wxi), i = 1, 2, . . . , s.

4. Set Xl+1 = W [x1 x2 · · ·xs].
The block Rayleigh quotients Λl computed in step 1 need not always exist (see,

e.g., Higham and Kim [8]). However, it is straightforward to check that Λ is a block
Rayleigh quotient of (4.1) for X (i.e., it satisfies (5.1)) if it can be written in the form
Λ = Y ΩY −1, where Ω = diag(ωi) is a matrix of eigenvalues and Y = [y1 y2 · · · ys]
is a full rank matrix of eigenvectors for the associated reduced quadratic eigenvalue
problem, i.e.,

(ω2
iX

∗MX + ωiX
∗CX + X∗KX)yi = 0, i = 1, 2, . . . , s.(5.2)

Now the idea is to pick the first matrix X in Algorithm 5.1 in such a way that the block
Rayleigh quotient exists. Suppose the approximate pairs (λi,xi), i = 1, 2, . . . , s, have
been obtained by choosing s of the 2r approximate solutions resulting from solving
a reduced problem of size r as in section 3.5. Let X be the matrix whose columns
are exactly these approximate eigenvectors xi. Then the problem (5.2) has solutions
(λi, ei), i = 1, 2, . . . , s, where ei ∈ C

s is the ith standard basis vector, so the matrix
Λ = diag(λi) is in fact of the form Y ΩY −1 with Y being the s × s identity matrix.
Hence Λ is a block Rayleigh quotient of (4.1) for X. With these values for Λ and X,
Algorithm 5.1 becomes the following.

Algorithm 5.2 (Block RQI 2). This algorithm performs block Rayleigh quotient
iterations to compute approximate eigenpairs for (4.1), starting only with eigenpairs
obtained by solving a reduced quadratic problem.
For l = 1, 2, 3, . . .

0. Given (λi,xi), i = 1, 2, . . . , s, a set of approximate eigenpairs for (4.1) ob-
tained by solving a reduced problem as in section 3.5.

1. Solve λi
2Myl+1,i +λiCyl+1,i +Kyl+1,i = xl,i, i = 1, 2, . . . , s, for the columns

of Yl+1. (Analogous to “shift-and-invert” in linear problems.)
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2. Let W be a basis for range(Yl+1), and apply Algorithm 4.1 to solve the reduced
problem and get approximate solutions (λi,Wxi), i = 1, 2, . . . , s.

3. Set Xl+1 = W [x1 x2 · · ·xs].
The subspace approximation method switches to this RQI when the largest rel-

ative change in consecutive eigenvalue iterates remains less than some tolerance, i.e.,
when the eigenvalues have in a sense “nearly” converged.

Because of the form of the block equation solved in step 2 of Algorithm 5.1,
the systems solved in step 1 of Algorithm 5.2 are in exactly the same form as the
systems solved in Lancaster’s original vector Rayleigh quotient iteration [13]. Other
generalizations, such as solving MY Λ2 + CY Λ + KY = 2MXΛ + CX, are possible,
and potentially better, although we do not investigate them here.

5.2. Hybrid algorithm. Now we have discussed all the individual parts of the
hybrid method and are ready to summarize the whole algorithm.

Algorithm 5.3. Given nondefective eigenvalues λ1, λ2, . . . , λl of multiplicities
n1, n2, . . . nl, and associated eigenvector matrices X(1) ∈ C

n×n1 , X(2) ∈ C
n×n2 , . . . ,

X(l) ∈ C
n×nl , for (2.1) at t = 0, along with tolerances tol1 (default 10−3) and tol,

this algorithm computes the corresponding values at t = 1.
0. Initialize: relchange = 2tol1 · ones(p, 1); j = 0; W0 = [ ]; convgct = 0;

If we know the left eigenvector matrix, anyleftvec = 1, else anyleftvec = 0.
1. While max(relerrs) > tol and convgct < 2,

j = j + 1;

For i = 1: l, /* compute new vectors, columns of X
(j)
(i) , to add to space */

If anyleftvec = 1, compute X
(j)
(i) using Algorithm 3.3, else compute X

(j)
(i)

using Algorithm 3.1.
Use modified Gram–Schmidt to compute basis Wj for

Sj =
j
+

m=0

(
l
+
i=1

range(X
(m)
(i) )

)
=

(
l
+
i=1

range(X
(j)
(i) )

)
+ range(Wj−1).

Solve reduced problem in Sj; compute new relerrs and approximate (λi,xi) using
Algorithm 4.1.

If j > 1 set relchange to relative changes in computed eigenvalues from previous
step.

If max(relchange) ≤ tol1, convgct = convgct + 1; else convgct = 0.
2. While max(relerrs) > tol,

Apply Block RQI Algorithm 5.2, beginning with X = [x1 x2 · · · xp].

6. Complexity. The subspace approximation method spends over 95% of its
time performing five tasks: computing the right-hand side Vk of (3.8) in the direct
subspace computation; solving the least squares problems in the subspace computa-
tion or the linear systems in the block Rayleigh quotient iteration; applying modified
Gram–Schmidt to compute bases; solving the reduced (projected) quadratic eigen-
value problems; and computing the error estimates.

For a crude analysis of these costs, assume that the maximum relative error
estimate decreases by a factor ρ at each step. (Because the convergence is at least
linear, such a value eventually exists.) If e0 is the original maximum relative error
estimate, the number of steps needed for convergence with tolerance tol is the smallest
integer m greater than or equal to logρ

e0
tol . Starting with p eigenpairs, the following are

computed: pm values of Vk, requiring a total of at most 6pm matrix-vector products
and (m + 1)2 matrix-matrix products of size p × p; pm least square solutions (or
ill-conditioned linear system solutions); orthonormalization of 2p(m + 1) n-vectors;
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Table 6.1

Work performed by the subspace approximation method.

Task Flops

Computing Vk 6(6pm(4nq) + (m+ 1)2p3)

Linear solves (direct) 6(pm)(4nq + 2nq2)

Modified Gram–Schmidt n(2p(m+ 1))2

Solving reduced problems
∑m+1

j=1
(8np2j2 + 4n2jp+ 200(jp)3 + 8npj)

Relative error estimates 6(2p(m+ 1))(24nq + 6n)

Total O(6q2pnm+ 2
3
p2nm3 + pn2m2 + 25p3m4)

solutions of m+1 projected problems, with real bases of dimension 2p, 4p, . . . , 2p(m+
1), requiring work as shown in Table 3.1; and 2p(m+1) error estimates each requiring
six matrix-vector products and three inner-products.

If P (λ, t) is banded, let q denote the maximum of the upper and lower bandwidths
of all the matrices in P (λ, t). When the linear systems are solved directly, the method
performs work at most on the order of that shown in Table 6.1, and, in fact, with
the switch to the locally faster converging block RQI the total amount of work done
should be even less. For general sparse matrices a similar analysis can be performed
using the applicable flop counts for matrix-vector multiplications and the solution of
linear systems or least squares problems.

7. Other methods. The subspace approximation approach described here is
based on higher order perturbation analysis and knowledge of unperturbed solutions.
It is interesting to look at connections with existing methods that either employ lower
order perturbations or use no knowledge of previously computed eigenspaces. For
example, for the problem (λ2I − λA − B)x = 0, especially when A and B commute,
some promising Krylov subspace methods are given by Hoffnung, Li, and Ye [10].
These methods build up the generalized Krylov subspaces Sj(A,B,q) one vector at
a time, starting with some initial guess q. If the matrix K in (1.1) is nonsingular,
then, letting µ = λ−1, (1.1) can be rewritten as (µ2I + µK−1C + K−1M)x = 0, and
the subspaces generated in [10] are Sj(FM, FC,q), with F = K−1 = D(0)−1, where

D(λ) ≡ λ2M + λC + K.(7.1)

One example of a first order perturbation method is, of course, the vector Rayleigh
quotient iteration, on which part of our method is based. In other first order pertur-
bation methods (e.g., Ruhe [16]) the quadratic eigenvalue problem is approximated by
a sequence of linear eigenvalue problems. A natural approach is to use the first order
Taylor approximation D(λ − θ) ≈ D(λ) − θD′(λ). At each step, for each eigenvalue
estimate λ, we can solve the linear eigenvalue problem

D(λ)x = θD′(λ)x,(7.2)

where θ is, for example, the eigenvalue of smallest magnitude. The associated eigen-
vector may be added to the subspace, and a reduced quadratic problem may then
be solved to get the new λ values (or the new values may be taken as just λ − θ).
Clearly this approach avoids the problem of exponential subspace growth. We see
that typically the intermediate problems here are n-dimensional complex generalized
eigenvalue problems, as opposed to the least squares problems solved in the subspace
approximation method. Thus the approach is suitable when D(λ) and D′(λ) are such
that we have a good solver for problem (7.2).
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For computing a single eigenvalue of a large, sparse, quadratic eigenvalue problem,
the Jacobi–Davidson algorithm has been effective. The idea, discussed in Sleijpen
et al. [17], is to build up a search space by (approximately) solving correction equations
of the form (

I − D′(θ)uu∗

u∗D′(θ)u

)
D(θ)(I − uu∗)t = −D(θ)u,(7.3)

where D is given by (7.1), (θ,u) is an approximation to the desired eigenpair, and
the solution t is added to the search space using modified Gram–Schmidt. A reduced
problem is solved in the search space to obtain the next approximate eigenpair. This
method has been shown to be asymptotically quadratically convergent when (7.3) is
solved exactly. Clearly D(θ)t ∈ range([D(θ)u D′(θ)u]), so that the jth space, starting
with the pair (θ,u), is contained in the generalized Krylov subspace Sj(FM, FC,u)
with F = D(θ)−1. The connections among the related methods are compelling and
subtle and should be studied further in the future.

8. Numerical examples.

8.1. A truss problem. Consider a long and slender truss structure shown in
Figure 8.1. This example is designed to measure the effectiveness of the numerical
algorithms for problems with proportional and nonproportional damping.

The element stiffness and mass matrices are given as

Ke =
AE

l


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 and Me =
ρAl

6


2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

.

For each member let the cross-sectional area A be 1.0 and assume the other constants
have the values E = 107 and ρ = 1.0. Values of the length l are given in the figure.
The assembled matrices K and M are symmetric positive definite of order 2000. The
members are numbered as shown, so that K has a bandwidth of 13 and M has a
bandwidth of 12. Assume the eight smallest eigenpairs (µ1,x1), . . . , (µ8,x8) for the
generalized eigenvalue problem Kx = µMx have been computed, i.e., assume the
undamped problem has been solved.

8.1.1. Proportional damping. The first example is of simple proportional
damping, with 5% damping in the first eight modes and zero damping in all the others.
The damping matrix is then Cprop = M(

∑8
j=1 2(.05)ωjφjφ

T
j )M, where ωj =

√
µj and

φj = (xT
j Mxj)

−1/2
xj for j = 1, . . . 8. This is a symmetric positive semidefinite matrix

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✦✦✦✦❛❛❛❛

✛
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✛ ✲
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1
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Fig. 8.1. Truss structure.
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Table 8.1

Comparison of methods for proportionally damped truss problem.

Subsp. Approx. RQI eigs

CPU time (seconds) 0.35 25.4 57

max relerrs (estimate) 6.56× 10−6 8.47× 10−6 9.92× 10−6

max rel.err. (actual) 1.52× 10−8 1.97× 10−8 1.36× 10−8

of rank 8, which is dense but easy to apply as an operator. Taking the undamped
problem (λ2M + K)x = 0 as the original, unperturbed problem, to which solutions
are known, we use the subspace approximation method to solve the damped problem
(λ2M + λCprop + K)x = 0 for the 16 eigenvalues of least magnitude. As shown in
section 3.4, the subspace computation involves only real arithmetic.

The true eigenvalues of the damped equation are simply the roots of the quadratic
polynomials λ2 +0.1λ

√
µj +µj and, as expected, the subspace approximation method

computes these values in the first step, using the first subspace, since the original
eigenspaces and final eigenspaces are the same. The acceptance tolerance is taken
to be 10−5. The first eight pairs of paths are nearly linear and all other eigenvalue
paths are constant; there is no risk of path crossing. Table 8.1 shows a comparison
with vector RQI started from the same original values, and with eigs, the MATLAB

implementation of ARPACK (see [15]), applied to the second linearization of (1.2)
with N = I. All three methods converged to the correct solutions, but the subspace
approximation method is clearly appropriate for this problem, and one sees that
the method’s performance is orders of magnitude better than that of the other two
methods.

8.1.2. Nonproportional damping. In the second example, half the structure
has 1% damping and the other half has 2% damping (to the right and left, resp., of
the dotted vertical center line in Figure 8.1). The resulting damping matrix Cnpr,
assembled as indicated in Figure 8.2, is composed of two overlapping submatrices
along the diagonal, each of which is a different linear combination of the corresponding
submatrices of M and K associated with the two different damping percentages. The
values aij used in the linear combinations are given by

(
ai1

ai2

)
= 2ξi

ω1+ω2

(
ω1ω2

1

)
, where

ξ1 = 0.01, ξ2 = 0.02, and ω1 =
√
µ1 and ω2 =

√
µ2 are the two smallest natural

frequencies for the undamped problem. Because of the elements in common between
the 1% and 2% damping, Cnpr is not itself a combination of M and K of the form∑p

j=0 αjM(M−1K)j , so this is nonproportional damping (see, e.g., Clough and Penzien
[3, Chapter 12]) and cannot be solved using the traditional modal superposition.

M1

M2

K1

K2

a11M1+a12K1

a21M2+a22K2

M K C

Fig. 8.2. Block form of nonproportional damping matrix.
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Table 8.2

Comparison of methods for nonproportionally damped truss problem.

Subsp. Approx. RQI eigs

CPU time (sec.) 1.85 6.58 11.31

Maximum relerrs 8.75× 10−7 9.80× 10−7 7.25× 10−7

Max. ∠ error (rad.) 8.02× 10−8 8.82× 10−8 8.30× 10−8
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Fig. 8.3. Eigenvalue paths and convergence of subspace approximation method for nonpropor-
tional problem.

The results of applying the subspace approximation method to compute the first
16 eigenvalues of the damped problem are summarized in Table 8.2, again compared
with RQI and eigs. The acceptance tolerance is taken to be 10−6. In this prob-
lem, iterative solution via QMR with MATLAB’s default parameters is used both in
the subspace approximation and in the vector RQI. (The Jacobi–Davidson method
was also tried here using QMR, but it required over 383 seconds to achieve the de-
sired accuracy, possibly because a more suitable linear solver is needed. Solving the
quadratic eigenvalue problem via a sequence of linear approximations was tried, us-
ing a symmetric indefinite Lanczos solver for the inner problem, but this approach
did not converge, again probably because a more suitable inner solver is required.)
Linearization ((1.2), first equation) is used in eigs, with the choice N = K and with
the default parameters because no advantage was found in making other choices. One
sees that the relative accuracy of the computed eigenvalues is about the same for
all three methods, as is the order of the error angles in the computed eigenvectors.
Figure 8.3 shows the eigenvalue paths (left graph) and convergence of the subspace
approximation method (right graph). The paths are less linear than those for the
proportional damping problem, but they are smooth and well separated from other
eigenvalue paths, showing that the problem is very suitable for subspace approxi-
mation. Note that faster convergence could have been achieved by switching to the
block RQI early, after step 2, yielding a time savings of 8.6%. However, further work
is needed to automate the “tweaking” of the hybrid method.

8.2. Humboldt Bay Middle Channel Bridge example. This example illus-
trates the possible application of the subspace approximation method in the analysis
of a bridge structure including soil properties. The following is a description from
Conte et al. [4] of the Humboldt Bay Middle Channel Bridge:
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Fig. 8.4. Finite element model of Middle Channel Bridge.

Table 8.3

Mass, stiffness, and damping matrices for the bridge problem.

Matrix Bandedness Sparsity max(eig) min(eig)

M diagonal 5038 nonzero elts. 1.31× 103 0

K bandwidth 5102 0.3% nonzero 4.94 × 1011 9.95× 102

C2 bandwidth 5102 0.3% nonzero 1.12× 109 2.26× 100

C7 bandwidth 5102 0.3% nonzero 1.12× 109 7.93× 100

The Humboldt Bay Middle Channel Bridge, near Eureka in northern Califor-
nia . . . , is a 330 meters long, 9-span composite structure . . . . It is supported
on eight pile groups, each of which consists of 5 to 16 prestressed concrete
piles, in soils vulnerable to liquefaction (under extreme earthquake shaking
conditions). The river channel has an average slope from the banks to the
center of about 7% (4 degrees). The foundation soil is composed of mainly
dense fine-to-medium sand (SP/SM), organic silt (OL), and/or stiff clay lay-
ers. In addition, thin layers of loose sand and soft clay (OL/SM) are located
near the ground surface . . . . A two-dimensional nonlinear model of the Mid-
dle Channel Bridge, including the superstructure, piers, and supporting piles
was developed . . . as shown in [Figure 8.4].

The example here is not intended to accurately model the various soil properties since
each soil type could have its own frequency dependent damping properties. Neverthe-
less, for illustrative purposes, the following realistic damping values are tested: 2%
damping on the bridge structure, and first 2%, then 7% damping on the soil (denoted
here, respectively, as C2 (a proportional damping matrix) and C7 (a nonproportional
damping matrix)). The properties of the 5164 × 5164 symmetric matrices M, C, and
K are given in Table 8.3.

Since M is singular, with 126 zero diagonal elements, and K is positive definite, to
guarantee continuous eigenvalue paths we may swap the roles of M and K and instead
solve for the largest eigenvalues µ for the problems

(µ2K̂ + M̂)x = 0 (undamped),(8.1)

(µ2K̂ + µĈ + M̂)x = 0 (damped).(8.2)

The desired eigenvalues are then the reciprocals λ = 1
µ , and the eigenvectors are

unaffected by the interchange. This interchange is not needed for the subspace ap-
proximation method since we are interested only in the smallest (finite) eigenvalue
paths. However, when the corresponding linearized problem ((1.2), second equation)
is solved for comparison purposes, the interchange is necessary in order to have a
symmetric positive definite matrix on the right-hand side of the linearized eigenvalue
problem, Ax = λBx.
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Table 8.4

CPU times for bridge example.

Problem Method CPU time (sec.)

Undamped eigs 4.7

Damping: C2
Subsp. Approx.
Starting from C = 0

0.9

Damping: C7
Subsp. Approx.
starting from C2

58

Damping: C7
Subsp. Approx.
starting from C = 0

38

Damping: C7
eigs, using
linearization (1.2), second equation

159

We begin by using the MATLAB eigs function to compute the first 20 eigenpairs of
the undamped problem. Taking these as the unperturbed solutions, the subspace ap-
proximation method is then applied to solve the damped problems, with the MATLAB

“slash” operator to solve the least squares problems. The CPU times for these results
are shown in Table 8.4. Solving the undamped problem using eigs and then solving
the problem with damping matrix C7 using the subspace approximation method takes
44 seconds of CPU time, and even when an intermediate problem with damping ma-
trix C2 is computed, the total time required is 64 seconds, 40% of the time required
by eigs to solve the linearized problem. (When started with the undamped problem,
the subspace computation involves only real arithmetic, so less work is performed in
that case.) If the undamped problem has been solved previously and its solutions are
already available, using the subspace approximation method to compute the solutions
with damping matrix C7 requires 25% of the time required by eigs to solve the same
problem.

8.3. Path crossing example. Unlike the previous examples, the problem in
this section displays changes in eigenvalue order as well as some switching from com-
plex to real values along the eigenvalue paths.

In this example, M and K are given as BCSSTM12 and BCSSTK12 from the
Harwell–Boeing collection (see Duff, Grimes, and Lewis [5]). These matrices have
order 1473, and the matrix C is taken to be the block combination of M and K such
that if M1 = M(1: 600, 1: 600) and M2 = M(540: 1473, 540: 1473), and if K1, K2 are
defined in the same way from K, then

cij =


a11mij + a12kij , when i < 540 or j < 540,

(a11 + a21)mij + (a12 + a22)kij , when 540 ≤ i, j ≤ 600,

a21mij + a22kij , when i > 600 or j > 600,

where
(
ai1

ai2

)
= 2ξi

ω1+ω2

(
ω1ω2

1

)
with ξ1 = 0.05, ξ2 = 0.10, and ω1 and ω2 as the first and

tenth natural frequencies for the undamped problem. Now ‖M‖ = 1.34 × 101, ‖C‖ =
6.68×105, and ‖K‖ = 6.56×108. The eigenvalue paths are shown in Figure 8.5. Path
crossing and order changes can be observed. The subspace approximation method
correctly computes, with tolerance 10−5, the first 20 perturbed eigenvalues and vectors
starting with the first 10 complex conjugate pairs of eigenvalues and corresponding
eigenvectors. The vector RQI method, started with the same values and using the
same convergence tolerance, computes only the values numbered 4, 5, 6, 7, 12, 13, 14,
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Fig. 8.5. Eigenvalue paths and moduli of eigenvalues for size 1473 example.

Table 8.5

Results for size 1473 example.

Subsp. Approx. eigs

Maximusm relerrs 2.5× 10−7 1.1× 10−3

Maximum ∠ error est. (rad.) 3.7× 10−6 1.7× 10−3

CPU time 92 77

15, 17, and 18 (ordered by magnitude). Eigs computes all 20 values and takes only 77
seconds of CPU time versus 92 using the subspace approximation method. However
the solutions from eigs are much less accurate, as can be seen in Table 8.5, and
decreasing the tol parameter of eigs by a factor of 105 causes negligible improvement
in the errors while increasing the computation time to 124 seconds.

9. Summary and future directions. In this paper we developed a method
for computing a few eigenvalues and eigenvectors of a quadratic eigenvalue prob-
lem assuming that solutions to the corresponding generalized (undamped) eigenvalue
problem are known. The Taylor series for the block eigenvector matrix X(t) was shown
to converge, and the range of the kth Taylor polynomial was shown to be contained in
the kth generalized Krylov subspace Sk(FM, F∆C, X0), where F is a matrix such that
FP (λ0, 0) fixes a space complementary to the range of the original block eigenvector
matrix X0.

We discussed how to compute the generalized Krylov subspaces by solving a se-
quence of least squares problems, and also how to directly compute the derivative
subspaces range([X0 X(1) · · · X(k)]) assuming that certain additional assumptions
hold. Computing reduced problems in these subspaces was described. Using a first
order error analysis a reasonable acceptance criterion was developed. After gener-
alizing Lancaster’s Rayleigh quotient iteration to a block algorithm, we assembled
a hybrid method starting with the linearly converging subspace approximations and
switching to the faster converging RQI as a finishing procedure. From several nu-
merical experiments it is clear that solving the quadratic eigenvalue problem as a
perturbed quadratic eigenvalue problem using the subspace approximation method
has some advantages both in speed and in accuracy over solving the problem from
scratch using a standard linearization approach.

The theory in this paper extends to more general perturbed quadratic eigen-
value problems and to other polynomial eigenvalue problems [11]. Suppose that
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(λN (t)ÂN (t)+λN−1(t)ÂN−1(t)+ · · ·+λ(t)Â1(t)+Â0(t))x(t) = 0 and that FP (λ0, 0)

fixes a space complementary to range(X0). Then range(X̂(j)) ⊆ Sj(FA1, . . . , FAN ,
F∆A0, F∆A1, . . . , F∆AN , X0) for j = 0, 1, 2, . . . . Future study of such extensions
should prove fruitful.

Another important direction for future work is toward the reduction of the sub-
space dimension. Suppose a dense standard or generalized eigenvalue problem of size
up to N is considered small and a problem of size greater than N is considered large.
Then we should ensure that the reduced problems our method requires to be solved
remain “small.” The derivative subspaces grow linearly, while the generalized Krylov
subspaces Sj can grow exponentially with j; either way a mechanism is needed for
stopping the growth when the subspace reaches size N/2.

Three possible approaches are (1) switching early to block RQI; (2) restarting
with a subspace of dimension s spanned by the approximate eigenvectors based on the
fact that the approximate eigenpairs {(µi,yi)} are exact solutions to the problems(

λ2M̂(1) + λĈ(1) + K̂(1) − riu
T
i

uT
i yi

)
x = 0,

where uT
i yi �= 0, i = 1, 2, . . . , s; and (3) cutting the timestep and using a homotopy

continuation method. (This approach is also appropriate for handling larger pertur-
bations, when the convergence radius of the Taylor series for the eigenvector matrix
X(t) is less than 1.)

In summary, there are several interesting avenues to pursue in continuing this
work on the subspace approximation method for perturbed, quadratic, and polynomial
eigenvalue problems.
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Abstract. The Davidson method is a popular technique to compute a few of the smallest
(or largest) eigenvalues of a large sparse real symmetric matrix. It is effective when the matrix is
nearly diagonal, that is, when the matrix of eigenvectors is close to the identity matrix. However,
its convergence properties are not yet well understood, and neither is how it behaves compared to
the more recent Jacobi–Davidson method, for which a proper convergence analysis exists. In this
paper, we develop a new convergence analysis of the Davidson method. This analysis proves that the
convergence is fast for nearly diagonal matrices when the method is initialized in the standard way.
One may at this stage not expect any significant improvement by shifting to the Jacobi–Davidson
method. On the other hand, the latter may be more effective for more general initial approximations.
It is also best suited for matrices that are not nearly diagonal, thanks to the use of more sophisticated
preconditioning and/or inner iterations.
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1. Introduction. For the computation of a few extreme eigenpairs of a symmet-
ric matrix, the Davidson method [3] has been appreciated since its introduction by
many application scientists working in fields such as quantum chemistry or quantum
physics. In this context, the matrix is often nearly diagonal, and this has been ob-
served over the years to favor a rapid convergence. However, this observation has, up
to now, not been confirmed by proper theoretical results. More surprisingly, available
analyses even lead to fear that the method could stagnate when the matrix is too
close to a diagonal one [2, 23].

From that point of view, the Jacobi–Davidson (JD) method [23] offers a proper
enhancement since this method tends to be very close to the Rayleigh quotient it-
eration [18] when the preconditioner tends to be exact, as it occurs when using a
diagonal preconditioning for a matrix that is very close to a diagonal one. More-
over, recent analyses confirm this claim and, more generally, prove that the better the
preconditioner, the faster the convergence [14, 16, 21, 27].

Now, the JD method has mainly gained popularity in situations for which the
Davidson method would not fit well anyway, such as eigenvalue computation involving
unsymmetric matrices and/or some interior part of the spectrum. Indeed, to the best
of our knowledge, the above-mentioned potential weakness of the Davidson method
has never been reported in practical situations. More generally, considering cases for
which the method works reasonably well, little is known about which benefit could
be obtained by using the more sophisticated JD approach.

In this paper, we investigate this question. The Davidson and JD methods are
described in section 2. They are first numerically compared on a small but instructive
example in section 3. Then, the convergence of the Davidson method is analyzed in
section 3, where we also develop a theoretical comparison with the JD method. These
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results are then illustrated in section 4 by some further (more realistic) numerical
experiments.

Notation. Throughout this paper, A is a real symmetric n × n matrix. (The
extension to complex Hermitian matrices is straightforward, but we confine ourselves
to the real case for sake of simplicity.) The eigenpairs are denoted (λi,xi), i =
1, . . . , n with the eigenvalues ordered increasingly (i.e., λ1 ≤ λ2 ≤ · · · ≤ λn) and the
eigenvectors orthonormal (i.e., (xi,xj) = δij).

For any n × j matrix V , span(V ) is the subspace spanned by the columns of V .
We also denote ej the canonical vector defined by (ej)i = δij .

2. Davidson and JD methods. Both methods obey to the same general tem-
plate, which we give in Algorithm 2.1. (More precisely, we give the version that is
appropriate to the case where one searches for the smallest eigenvalue of a symmetric
matrix.)

Algorithm 2.1 (Davidson/Jacobi–Davidson).

Choose an initial subspace:
Select a set of k0 (≥ 1) orthonormal vectors vi , i = 1, . . . , k0

and set V1 = [v1 · · ·vk0
].

For k = 1, . . . do
1. Compute the interaction matrix Hk = V T

k AVk.
2. Compute the smallest eigenpair (θk, yk) of Hk (with ‖yk‖ = 1).
3. Compute the Ritz vector uk = Vkyk.
4. Compute the residual rk = (A− θkI)uk.
5. if convergence then exit
6. Shrink the search space if needed:

if dim(span(Vk)) ≥ jmax then

compute the jmin smallest eigenpairs (θ
(j)
k , y

(j)
k ) of Hk;

compute the Ritz vectors u
(j)
k = Vky

(j)
k ;

reset Vk = [u
(1)
k · · ·u(jmin)

k ].
7. Compute new direction tk from rk.
8. Orthonormalize [Vk tk] into Vk+1.

End For
jmin, jmax: integer parameters such that 0 < jmin < jmax

Thus, both methods search for the smallest eigenpair in a subspace of increasing
dimension, which is shrunk from time to time to avoid excessive memory requirements
and numerical cost per iteration. They differ in substep 7, by the way tk is computed.

The Davidson method uses

t
(D)
k = M−1

k rk,(2.1)

where Mk is an approximation to A− θkI which is given by

Mk = diag(A) − θkI(2.2)

when one uses the method in its standard settings.
Instead, the JD method computes tk by solving (in general, approximately) the

so-called correction equation(
I − uku

T
k

)(
A− θkI

)(
I − uku

T
k

)
t = −rk; t⊥uk.(2.3)
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Usually, this is done by running a few steps of a Krylov subspace iterative solver with
preconditioning

M̃k =
(
I − uku

T
k

)
Mk

(
I − uku

T
k

)
,(2.4)

Mk being here also some approximation to A− θk I. A scheme relatively close to the
Davidson method is obtained when one skips inner iterations and performs a single
application of the preconditioner (2.4). Indeed, the solution to

M̃k t = −r ; t ⊥ uk(2.5)

is (see [23])

t
(JD)
k = −M−1

k rk +
(uk, M

−1
k rk)

(uk, M
−1
k uk)

M−1 uk.(2.6)

Both methods start then with the same vector t
(D)
k , but JD adds an oblique projection

onto u⊥
k . (Note that substep 8 of Algorithm 2.1 also implies a projection onto u⊥

k ,
but the latter is orthogonal).

Whenever using the preconditioner (2.2), a standard way to initialize the Davidson
method (the default strategy in [26]) consists of selecting a few canonical vectors, more
precisely those corresponding to the k0 smallest diagonal elements. Of course, if A
is nearly diagonal, this is a relevant choice for the JD method, too. Letting aii be
the smallest diagonal element, this strategy ensures θ1 < aii as soon as the starting
basis contains, besides ei, one more canonical vector ej corresponding to an index
j for which aij �= 0 [2]. Since θk forms a nonincreasing sequence [18], it means
that the diagonal preconditioner (2.2) is positive definite for all k. Note that the
convergence of the Davidson method is guaranteed when Mk is positive definite for
all k [2, Theorem 2.1]. However, little is known about the convergence speed.

“Generalized” Davidson methods [2, 8] have been proposed that make use of

Mk = G− θkI(2.7)

instead of (2.2), where G stands for some closer approximation to A, e.g., its tridi-
agonal part (the factorization of Mk has to remain cheap). Observe here that any
analysis developed for the case (2.2) is easily extended to the general case by con-
sidering a basis transformation that makes G diagonal. However, since one does not
know the canonical vectors in this transformed basis (actually the eigenvectors of G),
one cannot in this case apply the above strategy to obtain a nice starting subspace
with Mk positive definite from the beginning. As will be seen below, this may have
practical consequences.

Finally, both Davidson and JD approaches can be used with a constant, θk-
independent preconditioner. Actually, this is the standard choice for the JD method,
for which one usually selects Mk equal to some approximation of A−τI for some “tar-
get” τ [4, 24]. Concerning the Davidson update (2.1), note, however, that if Mk is a
positive definite matrix that does not depend on k anymore, then the method becomes
an (subspace accelerated) inexact inverse iteration scheme, for which proper analy-
ses already exist [6, 10, 11, 15]. Moreover, the locally optimal block preconditioned
conjugate gradient (LOBPCG) method from [5] then seems to be more efficient than
standard subspace acceleration, being close to optimal without need for restarting.
Therefore, in what follows, we only consider the standard Davidson method defined
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by (2.1) or (2.2) (or (2.7)). We refer to [13, 14] for some comparison between inexact
inverse iteration, the LOBPCG and JD methods, and to [7] for a wider survey of
preconditioned eigensolvers.

3. A small illustrative experiment. Qualitative convergence analyses of the
Davidson method have been developed in [2, 8]. Quantitative results seem more
difficult to obtain. Probably connected to this fact is the observation that if Mk

converges to A− θkI, then

t
(D)
k = M−1

k rk = M−1
k (A− θk I)uk

should converge to uk. Hence, either the current subspace is not expanded, or it is
expanded in a random fashion by rounding errors. However, besides some artificial
experiments as those reported in [23], poor behavior of the method because of too good
preconditioning does not seem to correspond to the actual practice. We explain this
by the following observation: Mk converging to A−θk I in the usual sense implies that,
at some stage, Mk becomes indefinite (since A − θk I itself is indefinite). Therefore,
what may then happen does not necessarily correspond to what is observed when one
takes care to preserve the positive definiteness of Mk. As we have already mentioned,
the latter suffices to guarantee the convergence of the method [2, Theorem 2.1].

Before developing our mathematical analysis in the next section, we first illustrate
these considerations by the following small experiment. The matrix is 10 × 10 and
given by

aij =

{
i if j = i,

α otherwise,

where α is a parameter. For both the Davidson method (defined by (2.1), (2.2)) and
the JD method (defined by (2.2), (2.6)), we computed the exact “local” convergence
rate

σ =
(θk+1 − λ1)

(θk − λ1)
(3.1)

when Vk = [uk], that is, when the subspace has just been shrunk with jmin = 1. (Note
that θk is equal to the Rayleigh quotient corresponding to uk and hence cannot be
smaller than λ1.)

Two situations were considered. In the first one,

uk =
√

1 − s2 x1 + s(I − x1 xT
1 ) e,

where s, −1 ≤ s ≤ 1, is a parameter and e =
(
1 · · · 1

)T
. In Figure 1, we have

plotted σ against |s| for both methods and two values of α. Note that in each case
there are two curves, one for positive s and one for negative s. Dotted vertical lines
have been added to indicate the values of |s| corresponding to θk = a11 (i.e., θk = 1)
and θk = λ∗ ≡ (λ1 + λ2)/2. The first value corresponds indeed to the point from
where the convergence of the Davidson method is guaranteed because Mk is positive
definite, whereas the second value corresponds to the point from where the analysis in
[14] applies to prove the convergence of the JD method; note that θk decreases with
|s|, uk becoming closer to x1.

One sees that the convergence of the Davidson method is rather unpredictable
when Mk is not positive definite (θk ≥ 1), stagnation being possible. Beyond this
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Fig. 1. σ versus |s| (first situation).

limit, and as |s| decreases, σ converges quickly to a value independent of α and close
to 10−1. On the other hand, the JD method is stable as soon as θk < λ∗ with the
asymptotic convergence rate approximately equal to 10−2 for α = 10−1 and 10−4 for
α = 10−2.

Now, this example does not represent truly what happens when the Davidson
method is initialized in the standard way. Indeed, by including the first canonical
vector into Vk0 , one not only ensures the positive definiteness of Mk, but one also
enforces the condition (rk)1 = 0 (since, as a result of the Ritz–Galerkin process used
to compute uk, the residual vector is orthogonal to any vector in Vk). To figure why
this may have a significant influence on the computation, observe that e1 is precisely
the eigenvector of Mk corresponding to its smallest eigenvalue—the one which makes
Mk ill conditioned. (When the matrix is close to a diagonal one, θk ≈ λ1 implies
θk ≈ a11.) By making rk orthogonal to e1 one thus ensures that this quasi-singular

mode does not play a role anymore in the computation of t
(D)
k .

This led us to consider the same example, but with a different initialization, for
which (rk)1 = 0 holds. More precisely, in this second situation, we take uk equal to
the Ritz vector associated to the smallest Ritz value from the subspace span{e1,v},
where v is defined as uk in the first considered situation, that is,

v =
√

1 − s2 x1 + s(I − x1 xT
1 ) e.

The results are reported in Figure 2. (Observe that here θk < a11 always holds.) Only
little differences may now be seen between both methods, and the convergence rate
is everywhere approximately equal to or less than α2.

4. Theoretical analysis. We want to develop a mathematical analysis of the
phenomena observed in the previous section. Note that in the considered experi-
ment, Vk = [uk]; that is, θk+1 is the smallest Ritz value associated to the subspace
span{uk, tk}. In general, Algorithm 2.1 extracts the approximate eigenpair from a
larger subspace span(Vk) ⊃ span{uk, tk}. However, the smallest Ritz value associ-
ated to span(Vk) cannot be larger than that associated to span{uk, tk}. An analysis
of the latter thus gives an upper bound on the convergence rate for the general case.

Now, to develop this analysis, it is relevant to consider the projection t̃
(D)
k of t

(D)
k
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onto u⊥
k :

t̃
(D)
k = t

(D)
k −

(
uk, t

(D)
k

)
uk

= M−1
k rk −

(
uk, M

−1
k rk

)
uk.(4.1)

As mentioned at the beginning of section 2, a potential weakness of the Davidson
method is that this vector converges to zero as Mk converges to A − θk I. Besides
the already mentioned argument that this cannot really happen if Mk is kept positive

definite, we further observe that, as long as t̃
(D)
k is not dominated by rounding errors,

what matters is not its length but only its direction. We thus first need an upper
bound on the smallest Ritz value from span{uk, tk} (for any given tk⊥uk), that would
be more tractable than the exact expression, while being independent of the scaling
of tk. This is the purpose of the following lemma.

Lemma 4.1. Let A be a real symmetric n× n matrix with eigenvalues λ1 < λ2 ≤
· · · ≤ λn. Let u be a vector with unit norm such that the associated Rayleigh quotient

θ = (u, Au)

satisfies

θ <
λ1 + λ2

2
.(4.2)

For any vector t⊥u, the smallest Ritz value θ̃ associated to the subspace span{u, t}
satisfies

θ̃ − λ1

θ − λ1
≤ 1 − (r, t)

2

(θ − λ1) (t, (A− θ I) t)
(
1 + ‖r‖2

(λ1+λ2−2 θ)2

) ,
where r = Au − θ u.

Proof. Let θ̂(β) be the Rayleigh quotient associated to a linear combination of
the form

û =
u + β t√

1 + β2 ‖t‖2
.
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Since

θ̃ = min
β

θ̂(β),

θ̂ (β) is an upper bound on θ̃ for any β. Now,

θ̂(β) − θ =
((u + β t), (A− θ I) (u + β t))

1 + β2 ‖t‖2
.

The numerator is minimal when

β =
− ((A− θ I)u, t)

(t, (A− θ I) t)
,(4.3)

and, since (u, (A− θ I)u) = 0, it is then equal to

− ((A− θ I)u, t)
2

(t, (A− θ I) t)
=

− (r, t)
2

(t, (A− θ I) t)
.

Moreover, the denominator of the latter expression is positive when (4.2) holds be-
cause, by [13, Lemma 3.1],1

min
z⊥u
‖z‖=1

(z, (A− θ I) z) ≥ λ1 + λ2 − 2 θ,(4.4)

showing that (A − θ I) is positive definite onto u⊥. On the other hand, for β given
by (4.3), and using (4.4) again,

β2 ‖t‖2 =
((A− θ I)u, t)

2

(t, (A− θ I) t)
2 ‖t‖2

≤ ‖(A− θ I)u‖2 ‖t‖4

(t, (A− θ I) t)
2

≤ ‖r‖2

(λ1 + λ2 − 2 θ)
2 .

We thus find

θ̃ − θ ≤ − (r, t)
2

(t, (A− θ I) t)
(
1 + ‖r‖2

(λ1+λ2−2 θ)2

) ,(4.5)

whence the required result since θ̃−λ1

θ−λ1
= 1 + θ̃−θ

θ−λ1
.

We now develop the core of our quantitative analysis. First, in the following the-
orem, we prove a bound on the convergence rate considering the asymptotic situation
of a matrix increasingly closer to a diagonal one. This is somewhat restrictive, but
observe that this is precisely the situation for which we have little hint on how the
method should behave when Mk is kept positive definite. The stated result is also in

1As pointed out by a referee, this inequality is also an obvious consequence of Cauchy’s interlace
theorem [18, p. 186], which implies that the sum of the p smallest eigenvalues of a symmetric matrix
cannot be larger than the sum of all p Ritz values associated to any p dimensional subspace for any
1 ≤ p ≤ n.
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perfect agreement with the observations from Figure 1, although the matrix there is
not that close to a diagonal one.

In this theorem, we use the assumption that all diagonal entries of the matrix
are distinct. This is required because the proof makes use of standard perturbation
analysis for matrices with distinct eigenvalues [29]; from a practical viewpoint, we
suspect that only the separation of the smallest diagonal entry from the remaining
entries really matters.

Theorem 4.2. Consider step k of Algorithm 2.1 applied to the real symmetric
n× n matrix

A = diag(aii) + εB,

where ε is a running parameter and B is a matrix such that diag(B) = 0. Assume
that the diagonal entries of A are such that a11 < a22 < · · · < ann and that

Mk = diag(A) − θk I

is positive definite. If

tk = M−1
k rk,

then

θk+1 − λ1

θk − λ1
≤ 1

9
+

8
√

3

81
δ +

8
(
9 −

√
3
)

81
δ2 + O(ε),(4.6)

where

δ =

√
θk − λ1

a11 − λ1
.(4.7)

Proof. We first introduce some notation. We denote (xi, λi) the eigenpairs of A
(with λ1 ≤ · · · ≤ λn) and write

uk = cx1 + s

⎛⎝ n∑
j=2

ξj xj

⎞⎠ ,(4.8)

where c2 + s2 = 1 and
∑n

j=2 ξ
2
j = 1; without loss of generality, we assume c, s ≥ 0,

the ξj being allowed to be positive or negative. The Rayleigh quotient and residual
corresponding to uk are, respectively,

θk = λ1 + s2

⎛⎝ n∑
j=2

ξ2
j (λj − λ1)

⎞⎠(4.9)

and

rk = c (λ1 − θk)x1 + s

n∑
j=2

ξj (λj − θk)xj .(4.10)
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We further define the following quantities:

α =
n∑

j=2

ξj b1j , β =

n∑
j=2

b21j
ajj − a11

,

γ =

n∑
j=2

ξ2
j (ajj − a11), η =

α√
β γ

.

We observe for future reference that, by virtue of the Cauchy–Schwarz inequality,

η2 =

(∑n
j=2

(
b1j√

ajj−a11

) (
ξj

√
ajj − a11

))2

(∑n
j=2

b21j
ajj−a11

) (∑n
j=2 ξ

2
j (ajj − a11)

) ≤ 1.(4.11)

Now, the proof is rather technical but may be sketched as follows. We want to
apply Lemma 4.1. As seen below, ‖rk‖ = O(ε). Hence we don’t have to worry about

the term 1 + ‖r‖2/(λ1 + λ2 − 2 θ)
2
, and need only to bound below(

rk, t̃
(D)
k

)2

(θ − λ1)
(
t̃
(D)
k , (A− θ I) t̃

(D)
k

)
with t̃

(D)
k = M−1

k rk−
(
uk, M

−1
k rk

)
uk. This requires the knowledge of M−1

k rk, which
is a difficult task because rk is naturally expressed in terms of the eigenvectors of A
(see (4.10)), whereas the action of M−1

k is easy to express for vectors defined in the
standard canonical basis. However, because of the asymptotic situation considered, we
may use perturbation theory to obtain an asymptotic expression for the eigenvectors
xi in term of the canonical vectors ei. From there, we obtain asymptotic expressions

for rk, M−1
k rk, uk, t̃

(D)
k , and finally for all the scalar quantities needed to apply

Lemma 4.1. This gives an upper bound on the convergence rate that is valid up to
O(ε). This upper bound depends on δ, on the matrix entries ajj and bij , and on
the unknown ξj . (It does not depend on s because the definition (4.7) of δ and (4.9)
imply a relation between δ and s which we use to eliminate s.) Fortunately, the matrix
entries and the ξj influence the result only through the variable η defined above; that
is, the upper bound is a function of δ and η only. The required result is then proved
by analyzing this function over the interval of interest, that is, −1 ≤ η ≤ 1 (see (4.11))
and

0 ≤ δ < 1,

as follows from (4.7) and from the positive definiteness of Mk, which implies θk < a11.
We now enter the core of the proof, stating first the needed results from perturba-

tion theory and some immediate consequences. For i = 1, . . . , n, [29, equations (9.4),
(11.3), and (10.2)] yield

λi = aii + ε2
∑
j �=i

b2ij
aii − ajj

+ O(ε3),(4.12)

xi =
(
1 + O(ε2)

)
ei + ε

∑
j �=i

(
bij

aii − ajj
+ O(ε)

)
ej .(4.13)
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Further, (4.12) implies

a11 − λ1 = ε2 β (1 + O(ε)),(4.14)

λi − λ1 = (aii − a11)
(
1 + O(ε2)

)
, i = 2, . . . , n.(4.15)

Hence (4.7) gives

θk − λ1 = δ2 ε2 β (1 + O(ε)),(4.16)

whereas (4.9) and (4.15) imply

θk − λ1 = s2

⎛⎝ n∑
j=2

ξ2
m(ajj − a11) + O(ε2)

⎞⎠ = s2 γ
(
1 + O(ε2)

)
.

Therefore, comparing with (4.16),

s = δ ε
√

β
γ (1 + O(ε)),(4.17)

which allows us to eliminate s in function of δ .
From these relations, we first deduce that, for ε sufficiently small, a11 < a22

implies λ1 < λ2, whereas θk < a11 implies θk < (λ1 + λ2)/2. Thus, we may apply
Lemma 4.1 whose assumptions are satisfied.

We now use the above relations to obtain asymptotic expressions for the needed

vector quantities rk, M
−1
k rk, uk, and t̃

(D)
k . Observe that since the first diagonal entry

of Mk is small (O(ε2), see below), we need to correctly derive the leading term for
first the component of rk, even though it is one order of magnitude smaller than the
leading term of other components.

Noting that c = 1+O(s2) = 1+O(ε2), we obtain, using first (4.16), (4.17), (4.15),
and then (4.13)2,

rk = −δ2 ε2 β (1 + O(ε)) x1 + δ ε
√

β
γ

n∑
j=2

ξj (ajj − a11) (1 + O(ε)) xj

=

⎛⎝−δ2 ε2 β (1 + O(ε)) + δ ε2
√

β
γ

⎛⎝ n∑
j=2

ξj bj1 + O(ε)

⎞⎠⎞⎠ e1

+ δ ε
√

β
γ

n∑
j=2

(ξj (ajj − a11) + O(ε)) ej

= δ ε2 β (η − δ + O(ε)) e1 + δ ε
√

β
γ

n∑
j=2

(ξj (ajj − a11) + O(ε)) ej .(4.18)

Incidentally, this also shows that ‖rk‖ = O(ε), as claimed above.
Since δ2(a11 − θk) = (1 − δ2)(θk − λ1) (from (4.7)), one has, with (4.16),

θk = a11 − (1 − δ2)ε2 β (1 + O(ε)).

2In which we may consider only the zero order terms and the first order term of xj (j �= 1) along
e1, all other first order terms leading to O(ε2) contributions to the coefficients of ek for k �= 1.
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Therefore,

(Mk)jj = ajj − θk =

{
(1 − δ2)ε2 β (1 + O(ε)) if j = 1,

(ajj − a11)
(
1 + O(ε2)

)
otherwise,

and we further obtain

M−1
k rk =

δ (η − δ + O(ε))

1 − δ2
e1 + δ ε

√
β
γ

n∑
j=2

(ξj + O(ε)) ej .(4.19)

On the other hand, we find, with (4.8), (4.17), and (4.13),

uk =
(
1 + O(ε2)

)
e1 + ε

⎛⎝ n∑
j=2

(
δ
√

β
γ ξj − b1j

ajj−a11
+ O(ε)

)
ej

⎞⎠ ,

from which we deduce(
uk, M

−1
k rk

)
=

(
e1, M

−1
k rk

)
+ O(ε2)

and, therefore,(
e1, t̃

(D)
k

)
=

(
e1, M

−1
k rk

)
(1 − (e1, uk)) + O(ε2)(e1, uk) = O(ε2).

Hence,

t̃
(D)
k = O(ε2) e1 + ε δ

⎛⎝ n∑
j=2

(√
β
γ ξj

1−δ η
1−δ2 + η−δ

1−δ2

b1j
ajj−a11

+ O(ε)

)
ej

⎞⎠ .

We are now able to derive asymptotic expressions for the inner products needed
to apply Lemma 4.1. We find, remembering the definition of α, β, γ, η,(

rk, t̃
(D)
k

)
= ε2 δ2

√
β
γ

(√
β
γ

1−δ η
1−δ2 γ + η−δ

1−δ2 α + O(ε)

)
= ε2 δ2 β (ζ1 + O(ε)),

where ζ1 = 1+η2−2 η δ
1−δ2 . Moreover,(

t̃
(D)
k , (A− θk I) t̃

(D)
k

)
=

(
t̃
(D)
k , (diag(A) − a11 I) t̃

(D)
k + O(ε)

)
= ε2 δ2

(
β
(

1−δ η
1−δ2

)2

+
(

η−δ
1−δ2

)2

β + 2 1−δ η
1−δ2

η−δ
1−δ2

√
β
γ α + O(ε)

)
= ε2 δ2 β

(
(1 − δ η)2 + (η − δ)2 + 2 η (1 − δ η)(η − δ)

(1 − δ2)2
+ O(ε)

)
= ε2 δ2 β

(
ζ2 + ζ2

1 + O(ε)
)
,(4.20)

where ζ2 = (η−δ)2 (1−η2)
1−δ2 . Therefore, Lemma 4.1 gives, using these expressions and

(4.16), and remembering also that ‖rk‖ = O(ε) (see (4.18)),

θk+1 − λ1

θk − λ1
≤ 1 − (ζ1 + O(ε))2

(ζ2
1 + ζ2 + O(ε))(1 + O(ε))

= 1 − ζ2
1

ζ2
1 + ζ2

(
1 + ζ−1

1 O(ε)
) (

1 + (ζ2
1 + ζ2)

−1O(ε)
) (

1 + O(ε)
)
.
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Since ζ2 ≥ 0 and ζ1 = 1+(η− δ)2/(1− δ2) ≥ 1, the O(ε) terms in the right-hand side
are harmless because they simply correspond to the O(ε) error term in the result (4.6)

to be proved. Letting g(δ) = 1
9 + 8

√
3

81 δ +
8(9−

√
3)

81 δ2, we are thus left with proving
that (

1 +
ζ1
ζ2

)−1

≤ g(δ),

i.e., that

f(δ, η) =
ζ2
ζ1

1 − g(δ)

g(δ)
=

(η − δ)2 (1 − η2)

(1 + η2 − 2 η δ)2
1 − g(δ)

g(δ)

does not exceed 1 for 0 ≤ δ < 1 and −1 ≤ η ≤ 1. This function is continuous and
infinitely derivable over this interval. A fine sampling and surface plot further reveals
that it is smooth, has two maxima located around δ = 0, η = ±0.57, and that it
is certainly less than 1 outside the neighborhood of these maxima. Consider then
the function f(0, η) = 8(1 − η2) η2/(1 + η2)2. As easily checked, it is maximal for
η2 = 1/3 and f(0, ± 1√

3
) = 1. Thus, the required result holds if (δ, η) = (0, 1√

3
) and

(δ, η) = (0, − 1√
3
) correspond to maxima of f(δ, η) over the region of interest. To

check this, we used computer algebra to obtain the Taylor expansion around these
points. This gives

f = 1 − 2
√

3 δ − 27
2

(
η − 1√

3

)2

+ O
(
δ2 + δ |η − 1√

3
| +

(
η − 1√

3

)2
)

for the first point and

f = 1 +
1

2

(
δη+ 1√

3

)(
−121+12

√
3

6
15
2

15
2 − 27

2

)(
δ

η+ 1√
3

)
+ O

((
δ + |η + 1√

3
|
)2

)

for the second one, showing that both points correspond indeed to maxima of f(η, δ)
over the region −1 ≤ η ≤ 1, 0 ≤ δ < 1, which concludes the proof.

This theorem essentially proves that, if a matrix is sufficiently close to a diagonal
one, then the Davidson method converges with a convergence rate bounded away from
1 as soon as δ is away from 1 (that is, θk away from a11). Further, the asymptotic
convergence rate for δ → 0 (i.e., θk → λ1) is not larger than 1

9 . Remarkably, this
bound does not depend on the matrix entries. This is in perfect agreement with the
observations from Figure 1, where the asymptotic convergence rate (for θk → λ1)
was found to be slightly less than 1

10 and essentially independent of the size of the
offdiagonal entries.

In the theorem, we assume that all computations are done exactly. One could
then wonder how small ε can be before the results get obscured by rounding errors.

Here, the most dangerous step is certainly the orthogonalization of t
(D)
k against the

previous vectors at substep 8 of Algorithm 2.1, which results in dramatic cancellation

when t
(D)
k is strongly aligned with uk. One has, therefore, to expect severe roundoff

effects when

‖t̃(D)
k ‖ � ‖t(D)

k ‖ = ‖M−1
k rk‖,
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where t̃
(D)
k is the orthogonal projection of t̃

(D)
k against u⊥

k (see (4.1)). Interestingly,
the quantities in this relation may be estimated from the proof of Theorem 4.2. Ne-
glecting O(ε) terms, this gives (see Appendix A for the details of the calculation)

‖t̃(D)
k ‖

‖M−1
k rk‖

≥ ε (1 − δ)2

2

⎛⎝ n∑
j=2

b21j
(ajj − a11)(ann − a11)

⎞⎠1/2

.(4.21)

Thus, when δ is away from 1 (i.e., θk away from a11), severe roundoff effects are not
expected before the offdiagonal entries in A become very small. (To figure how small
they can be, see a related discussion in [25, section 4.3]). This is somewhat surprising,
but remember that we assume Mk is positive definite, and the picture might be well
different for indefinite Mk.

Now, these results do not explain the observations from Figure 2. For this purpose,
we need a further analysis that exploits the relation (rk)1 = 0 to obtain a better bound,
proving increasing convergence speed as the matrix becomes closer to a diagonal one.
This is done in Theorem 4.3 below. Observe that the result is here not restricted to
the asymptotic situation of a matrix converging to a diagonal one.

Theorem 4.3. Consider step k of Algorithm 2.1 applied to a real symmetric
n×n matrix A whose eigenpairs (λi, xi) are such that λ1 < λ2 ≤ · · · ≤ λn and whose
diagonal entries satisfy a11 < a22 ≤ · · · ≤ ann. Assume that

Mk = diag(A) − θk I

is positive definite and that

θk <
λ1 + λ2

2
.(4.22)

Let

δ =

√
θk − λ1

a11 − λ1

and

N = offdiag(A).

If

tk = M−1
k rk,

(rk)1 = 0,(4.23)

and

δ√
1 − δ2

≤ 1√
1 + ‖N‖

λ2−λ1

,(4.24)

then

θk+1 − λ1

θk − λ1
≤ 1 −

(
1 − δ√

1−δ2

√
1 + ‖N‖

λ2−λ1

)2

(
1 + ‖rk‖2

(λ1+λ2−2 θk)2

) (
1 + ‖rk‖+2 ‖N‖

a22−a11

)(
1 + ‖N‖

λ2−λ1

)(4.25)
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and, for ‖rk‖ → 0,

θk+1 − λ1

θk − λ1
≤ ‖N‖

(
1

λ2 − λ1
+

2

a22 − a11

) (
1 + O (‖rk‖)

)
.(4.26)

Proof. All assumptions of Lemma 4.1 are satisfied, and its application yields
(4.25) if we are able to prove that

(
rk, t̃

(D)
k

)2

(θ − λ1)
(
t̃
(D)
k , (A− θk I) t̃

(D)
k

) ≥

(
1√

1+ ‖N‖
λ2−λ1

− δ√
1−δ2

)2

1 + ‖rk‖+2 ‖N‖
a22−a11

,(4.27)

where t̃
(D)
k = M−1

k rk −
(
uk, M

−1
k rk

)
uk. Here, note that (rk, uk) = 0 implies(

rk, t̃
(D)
k

)
= (rk, M

−1
k rk).(4.28)

The proof may then be sketched as follows. First,
(
t̃
(D)
k , (A− θk I) t̃

(D)
k

)
is bounded

above in function of (rk, M
−1
k rk). Considering (4.27), we are then left with the

analysis of (rk, M
−1
k rk)/(θk − λ1), which is developed next.

One has

(A− θk I) t̃
(D)
k = (Mk + N)M−1

k rk − (uk, M
−1
k rk) rk

=
(
1 − (uk, M

−1
k rk)

)
rk + N M−1

k rk,

whence(
t̃
(D)
k , (A− θk I) t̃

(D)
k

)
= (rk, M

−1
k rk)

(
1 − (uk, M

−1
k rk)

)
+ (M−1

k rk, N M−1
k rk) − (uk, M

−1
k rk) (uk, N M−1

k rk).

Further, since N is symmetric,

|(uk, M
−1
k rk)| ≤ ‖M−1

k rk‖,
|(M−1

k rk, N M−1
k rk)| ≤ ‖N‖ ‖M−1

k rk‖2,

|(uk, N M−1
k rk)| ≤ ‖N M−1

k rk‖
≤ ‖N‖ ‖M−1

k rk‖.

Therefore, since by virtue of (4.23)

‖M−1
k rk‖ ≤

√
(rk, M

−1
k rk)

a22 − a11
≤ ‖rk‖

a22 − a11
,

we obtain(
t̃
(D)
k , (A− θk I) t̃

(D)
k

)
≤ (rk, M

−1
k rk)

(
1 +

‖rk‖ + 2 ‖N‖
a22 − a11

)
.

With (4.28), this gives

1

θk − λ1

(
(A− θk I)uk, t̃

(D)
k

)2

(
t̃
(D)
k , (A− θk I) t̃

(D)
k

) ≥ (rk, M
−1
k rk)

(θk − λ1)
(

1 + ‖rk‖+2 ‖N‖
a22−a11

) .(4.29)
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Comparing with (4.27), we are thus, as stated above, left with the analysis of
(rk, M

−1
k rk)/(θk−λ1). For this purpose, let u⊥ = (I−x1 xT

1 )uk. Since (x1, u⊥) = 0
and uk = cx1 + u⊥ (with c = (x1, uk)), one has

rk = (A− λ1)u⊥ − (θk − λ1)uk,

whence

‖rk‖M−1
k√

θk − λ1

≥
‖(A− λ1)u⊥‖M−1

k√
θk − λ1

−
√

θk − λ1 ‖uk‖M−1
k

.

Therefore, since

θk − λ1 = (u⊥, (A− λ1)u⊥),

and ‖M−1
k ‖ ≤ (a11 − θk)

−1, one finds

‖rk‖M−1
k√

θk − λ1

≥ (u⊥, (A− λ1)M
−1
k (A− λ1)u⊥)1/2

(u⊥, (A− λ1)u⊥)1/2
−

√
θk − λ1

a11 − θk

≥ √
νmin − δ√

1 − δ2
,(4.30)

where νmin stands for the smallest nonzero eigenvalue of the pencil (A−λ1 I)−ν Mk,
i.e.,

νmin = min
z⊥ x1
z�=0

(z, (A− λ1 I) z)

(z, Mk z)

≥ min
z⊥ x1
z�=0

(z, (A− λ1 I) z)

(z, (diag(A) − λ1 I) z)

= min
z⊥ x1
z�=0

(
1 − (z, N z)

(z, (A− λ1 I) z)

)−1

≥
(

1 +
‖N‖

λ2 − λ1

)−1

.

With (4.29) and (4.30), this proves (4.27) and, therefore, (4.25).
On the other hand, by [19, Lemma 3.2], (θk − λ1)(λ2 − θk) ≤ ‖rk‖2. Hence, for

‖rk‖ → 0, δ = O(‖rk‖) and (4.25) yields

θk+1 − λ1

θk − λ1
≤ 1 − 1 + O (‖rk‖)(

1 + 2 ‖N‖
a22−a11

)(
1 + ‖N‖

λ2−λ1

) .
Inequality (4.25) then readily follows because 1 − 1/((1 + x)(1 + y)) ≤ x + y for any
nonnegative x, y.

Theorem 4.3 explains, at least qualitatively, the observations from Figure 2: When
(rk)1 = 0 holds, the convergence speed is no longer independent of the matrix entries
but increases as the matrix becomes closer to a diagonal one. However, our result
seems too pessimistic, at least with respect to the situation depicted in Figure 2,
which suggests that the convergence rate is then O

(
α2

)
= O

(
‖N‖2

)
, whereas (4.26)

proves only O (‖N‖) convergence.
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Now, it is worth comparing Theorems 4.2 and 4.3 with the known results appli-
cable to the JD method [14, 16, 21, 27]. Among these, the easiest to express and to
interpret is the one obtained by combining [14, Theorem 3.1] with [14, equation (4.3)].
Assuming only

θk <
λ1 + λ2

2
,(4.31)

this indeed yields

θk+1 − λ1

λ2 − θk+1
≤

(
(θk − λ1) + γ (λ2 − θk)

(λ2 − θk) + γ (θk − λ1)

)2
θk − λ1

λ2 − θk
,(4.32)

where γ is the relative error left in the correction equation (2.3), measured with
respect to the energy norm. (Observe that by (4.4) the system matrix of the correction
equation is indeed positive definite onto u⊥

k when (4.31) holds.) Since the scaling of

tk is unimportant anyway, the case (2.6) where one computes t
(JD)
k with just one

application of the preconditioner is actually equivalent to the situation where one
performs a single steepest descent iteration. Hence (see, e.g., [1, Theorem 1.8]),

γ ≤ κ− 1

κ + 1
,(4.33)

where

κ =
max z⊥uk

z�=0

(z, (A−θk I) z)
(z,Mk z)

min z⊥uk
z�=0

(z, (A−θk I) z)
(z,Mk z)

is the condition number of the system (2.3) preconditioned by (2.4). Further, letting

Ñ = A− θk I −Mk

(i.e., Ñ = N is the offdiagonal part of A whenever using the diagonal preconditioning
(2.2)), one has, using (4.4),

κ =
max z⊥uk

z�=0

(
1 − (z, Ñ z)

(z, (A−θk I) z)

)−1

min z⊥uk
z�=0

(
1 + (z, Ñ z)

(z, (A−θk I) z)

)−1

≤
max z⊥uk

z�=0

(
1 − ‖Ñ‖ (z, z)

(z, (A−θk I) z)

)−1

min z⊥uk
z�=0

(
1 + ‖Ñ‖ (z, z)

(z, (A−θk I) z)

)−1

≤
1 + ‖Ñ‖

λ1+λ2−2 θk

1 − ‖Ñ‖
λ1+λ2−2 θk

.

This yields, with (4.33),

γ ≤ ‖Ñ‖
λ1 + λ2 − 2 θk

,
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which may be combined with (4.32) to obtain an upper bound on the convergence
rate comparable to the ones in Theorems 4.2 and 4.3. In particular, for θk → λ1, this
gives

θk+1 − λ1

θk − λ1
≤ ‖Ñ‖2

λ2 − λ1

(
1 + O(θk − λ1)

)
.

These results indicate that the JD method may improve the Davidson method
in several ways. First, the above analysis of the JD method holds independently of
the positive definiteness of Mk; only (4.31) has to be assumed, which is much weaker
for nearly diagonal matrices. Next, a convergence estimate that vanishes for θk → λ1

and ‖Ñ‖ → 0 is obtained without having to enforce any particular condition on the

residual such as (rk)1 = 0. Further, the latter estimate is O(‖Ñ‖2), whereas (4.25)
proves only O (‖N‖) convergence for the Davidson method. Finally, the above analysis

of the JD method applies to any Mk and corresponding Ñ , whereas Theorem 4.3 is
restricted to diagonal preconditioning. (The latter restriction is actually connected
to the assumption (rk)1 = 0. We could indeed rewrite Theorem 4.2 so that it applies
to general preconditioning of the form Mk = G − θk I, but then (rk)1 = 0 should
be rewritten (w1, rk) = 0, where w1 is the first eigenvector of G. To figure this
out, consider a basis transformation that makes G diagonal, apply the theorem in its
present form to the tranformed matrix, and bring back the result in the original basis.
We did not consider this as it would be of little practical interest.)

Now, in Figure 2, we see only little difference between the JD and the Davidson
methods initialized in the standard way. We explain this as follows. First, θk < a11

and (rk)1 = 0 then always hold because e1 belongs to the starting subspace. Further,

the difference between the O(‖Ñ‖2) convergence estimate for the JD method and
the O (‖N‖) one for the Davidson method might well come from a shortcoming in
our analysis. Indeed, (rk)1 = 0 entails (Mk rk)1 = 0 (remember that Mk is diago-
nal), whereas x1 ≈ e1 for nearly diagonal matrices with uk ≈ x1 when one is close

to convergence. Hence, (uk, M
−1
k rk) ≈ 0, entailing t

(D)
k ≈ −t

(JD)
k (compare (2.1)

and (2.6)). One even has t
(D)
k = −t

(JD)
k when the basis of span(Vk) contains only

conical vectors (as occurs at the first step of Algorithm 2.1 with the standard initial-
ization strategy). Indeed, then rk ∈ span(Vk)

⊥ entails M−1
k rk ∈ span(Vk)

⊥, whence
(uk, M

−1
k rk) = 0. In general, when (rk)1 = 0, the Davidson method corresponds

anyway to a (nonstandard) JD scheme, with skew projection
(
I − uk(uk, e1)

−1eT1
)

instead of the orthogonal projection
(
I − uk uT

k

)
; see [22, section 7.1.1] for details and

discussion.
Therefore, the JD approach is mainly helpful in “nonstandard” situations. For

instance, it is more robust with respect to the choice of the initial approximation.
It may also be better whenever using nondiagonal preconditioners of the form (2.7).
Indeed, nice guaranteed convergence of the Davidson method requires the positive
definiteness of Mk, which, as mentioned at the end of section 2, is more difficult to
ensure from the beginning with general (nondiagonal) preconditioning. Moreover, the
initialization strategy that allows the Davidson method to be as fast as the JD method
in the case of diagonal preconditioning is no longer applicable; hence the JD method
is then expected to be faster in the final phase, too.

Another situation in which one could prefer the JD method is when it is helpful to
use inner iterations to compensate for a too poor preconditioning (and thus avoid too
many steps of Algorithm 2.1 with frequent shrinking of the basis; see next section).
Indeed, the JD method has been explicitly designed to accommodate inner iterations,
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and it is not difficult to extend the above analysis to this framework; see [14] for
details. Concerning the Davidson method, however, although it is in principle possible

to compute t
(D)
k by solving approximately (A− θk I) t = rk, we would not advise one

to do so. Indeed, first this system is hard to solve iteratively, being indefinite and
increasingly ill conditioned as θk converges to an eigenvalue. Next, the preconditioner
implicitly defined in this way is in general not positive definite, and the convergence,
therefore, cannot be guaranteed. Moreover, this is precisely the kind of situation for
which the method may indeed behave poorly in practice, as observed in [23].

Remark. Our analysis disregards the subspace acceleration present in Algorithm
2.1. Its effects are indeed very difficult to analyze. In practice, we generally observed
that they are noticeable in the early stages of the process, especially when the initial
approximation is not very good. In particular, subspace acceleration then most often
suffices to prevent stagnation during the first phase, when Mk is still indefinite. Con-
cerning the final phase, for which Mk is positive definite (and to which our analysis
applies), it is interesting to consider the results in [17], although they do not directly
apply to the present framework. Indeed, they suggest an acceleration similar to that
achieved by Krylov subspace methods compared to standard steepest descent. The
heuristic reasoning in [9] goes along the same lines. It is based on an analogy with
the conjugate gradient method (for solving linear systems), considering the ultimate
phase for which θk has converged and is virtually constant. On this basis, some
shrinking strategies are discussed in [9], where it is also proposed to further improve
the acceleration algorithm by using refined Ritz vectors whenever appropriate. Now,
these developments do not allow a direct comparison between different methods to
compute tk. However, they suggest that working with the whole subspace accelerates
the convergence of all methods in essentially the same way, i.e., a method that is faster
when working with span{uk, tk} only is expected to remain faster with subspace ac-
celeration. From that point of view, the discussion above keeps all its relevance also
in the presence of subspace acceleration.

5. Further numerical results. We now consider a more realistic experiment.
The matrix is 1000 × 1000 and given by

aij =

⎧⎪⎨⎪⎩
i if j = i,

α if 1 ≤ |j − i| ≤ 10,

0 otherwise.

We tested Algorithm 2.1 with two initialization strategies: V1 = [e1 e2] (Init1) and
V1 = [ v

‖v‖ ] with v = 0.99 e1 + 0.01 e (Init2). To define tk at substep 7, we considered

the following variants:
Davidson: the Davidson method defined by (2.1) and (2.2).
JD(D−θk I): the simple JD scheme defined by (2.2) and (2.6).
JDCG(D−θk I): the JD method with inner preconditioned conjugate gradient

iterations to solve the correction equation (2.3), using for these inner iterations the
projected preconditioner (2.4) with Mk given by (2.2).

JDCG(D− τ I): the JD method with inner preconditioned conjugate gradient
iterations to solve the correction equation (2.3), using for these inner iterations the
projected preconditioner (2.4) with Mk = diag(A−τ I), where τ is the largest number
such that A−τ I is (nonstrictly) diagonally dominant (and, therefore, positive definite
because it is irreducibly diagonally dominant; see [28, Theorem 1.8]); note that this
is a θk -independent preconditioner.
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Table 1

Number of multiplications by A needed to reach rk < 10−10.

α 1000 100 10 1 0.1 0.01

jmin = 1 , jmax = 2
Init1:

Davidson > 999 > 999 > 999 101 26 17
JD(D−θk I) > 999 > 999 > 999 93 14 7

JDCG(D−θk I) 532 193 98 28 12 8
JDCG(D−τ I) 466 184 98 40 15 9
JDCG(SSOR) 240 131 86 36 16 9

Init2:
Davidson > 999 > 999 991 > 999 > 999 > 999

JD(D−θk I) > 999 > 999 > 999 94 18 11
JDCG(D−τ I) 391 150 93 43 18 11
JDCG(SSOR) 241 119 78 43 19 12

jmin = 5 , jmax = 10
Init1:

Davidson 460 141 68 21 9 6
JD(D−θk I) 462 141 68 20 9 6

JDCG(D−θk I) 296 153 79 27 12 8
JDCG(D−τ I) 313 146 93 40 15 9
JDCG(SSOR) 208 119 75 33 16 9

Init2:
Davidson 453 138 73 82 55 53

JD(D−θk I) 451 146 73 27 13 10
JDCG(D−τ I) 298 146 91 43 18 11
JDCG(SSOR) 211 118 78 43 19 12

jmin = 25 , jmax = 50
Init1:

Davidson 214 94 39 17 9 6
JD(D−θk I) 214 94 40 17 9 6

JDCG(D−θk I) 310 153 79 27 12 8
JDCG(D−τ I) 301 146 93 40 15 9
JDCG(SSOR) 207 119 75 33 16 9

Init2:
Davidson 212 95 45 48 49 49

JD(D−θk I) 212 98 46 23 13 10
JDCG(D−τ I) 298 146 91 43 18 11
JDCG(SSOR) 212 118 78 43 19 12

JDCG(SSOR): the JD method with inner preconditioned conjugate gradient it-
erations to solve the correction equation (2.3), using for these inner iterations the
projected preconditioner (2.4) with Mk equal to the SSOR preconditioning of A− τ I
with relaxation parameter equal to 1 (see, e.g., [20]); τ is as above the largest number
such that A− τ I is (nonstrictly) diagonally dominant and this preconditioner is also
θk -independent.

For the last three variants, inner iterations were stopped according to the criteria
suggested in [13]. We did not test JDCG(D− θk I) with the second initialization
strategy because Mk might then be indefinite and the present version of the used
code [12] does not allow for indefinite preconditioning.
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We are interested here in the global convergence behavior, and we report in Table 1
the number of multiplications by A needed to achieve ‖rk‖ < 10−10.

As expected from the theory, there is hardly any difference between Davidson and
JD(D−θk I) with Init1, whereas JD(D−θk I) is significantly better with Init 2 for small
α, Davidson not being able to benefit from the improvement of the preconditioner.
The relative behavior of JDCG(D−θk I) is also not surprising. If one can pay for
large shrinking parameters jmin and jmax, then it is faster to skip inner iterations
because the latter combine the search directions in a given way, which cannot compete
with the global optimization performed by the Rayleigh–Ritz procedure. On the
other hand, frequent shrinking of the basis spoils this global optimization, whereas
schemes based on inner conjugate gradient iterations are not deeply affected. The
latter may thus allow substantial savings, according to the case at hand (relative cost
of a multiplication by A and available memory).

Comparing the results for JDCG(D−θk I) with those for JDCG(D−τ I), this
experiment also confirms that JDCG is on the whole as efficient with a θk -independent
preconditioner. This is good news. Indeed, when the matrix is not nearly diagonal,
trying to improve the preconditioner while keeping the θk -dependent form (2.7) is not
easy because indefiniteness may occur and because only relatively small preprocessing
cost is affordable since the preconditioner changes at each step. On the other hand,
plenty of methods are available to precondition A−τ I, especially if τ is such that the
latter matrix is positive definite. Our example was perhaps not very well chosen in
this respect because the band structure of the matrix entails that a mere incomplete
LU factorization of A − τ I actually delivers an exact Cholesky factorization (see,
e.g., [20]). It then would not have been fair to report the results obtained in such a
particular case as representative of the potentialities of this preconditioning method
for general matrices. We, therefore, confined ourselves to SSOR preconditioning,
which may be seen as an intermediate step between diagonal and incomplete LU
preconditioning. The results obtained with JDCG(SSOR) illustrate anyway that, in
hard situations, the best thing to do is try to improve the preconditioner, significant
savings being possible if one is successful.

6. Conclusions. When one considers simple diagonal preconditioning and ini-
tializes the method in the standard way (with few canonical vectors as starting sub-
space), only a little difference may be seen between the Davidson and JD methods.
In particular, one need not fear poor behavior of the Davidson method because the
matrix would be too close to a diagonal one.

On the other hand, the JD method may bring a significant improvement for
matrices not close to a diagonal one, so that the diagonal preconditioning is too
poor. Indeed, one would then like to improve the situation by considering either inner
iterations or more general (nondiagonal) preconditioning (or both). In either case, the
JD method appears better suited, as it has been explicitly designed to accommodate
inner iterations and to work with any type of preconditioning.

Appendix: Proof of (4.21). Using the notation introduced at the beginning
of the proof of Theorem 4.2, and remembering that 0 ≤ |η|, δ ≤ 1, (4.19) gives,
neglecting O(ε) terms,

‖M−1
k rk‖ =

δ |η − δ|
1 − δ2

≤ 2 δ

1 − δ2
,
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whereas (4.20) yields (since (1 + η2 − 2 η δ) ≥ (1 + η2 δ2 − 2 η δ) ≥ (1 − δ)2)

‖t̃(D)
k ‖ ≥

(
t̃
(D)
k , (A− θk I) t̃

(D)
k

)1/2

√
ann − a11

=
ε δ

1 − δ2

(
(η − δ)2 (1 − η2) + (1 + η2 − 2 η δ)2

)1/2 √
β

ann − a11

≥ ε δ

1 − δ2
(1 − δ)2

⎛⎝ n∑
j=2

b21j
(ajj − a11)(ann − a11)

⎞⎠1/2

.

Inequality (4.21) then readily follows.
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Abstract. We describe the improvements to the task scheduling for MUMPS, an asynchronous
distributed memory direct solver for sparse linear systems. In the new approach, we determine,
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1. Introduction. We consider the direct solution of sparse linear systems on
distributed memory computers. Two state-of-the-art codes for this task, MUMPS1

and SuperLU, have been extensively studied and compared in [5]. Specifically, the
authors show that on a large number of processors, the scalability of the multifrontal
approach used by MUMPS [4, 5] with respect to computation time and use of memory
could be improved. This observation is the starting point for this current work.

The solution of a linear system of equations using MUMPS consists of three
phases. In the analysis phase, the matrix structure is analyzed and a suitable ordering
and data structures for an efficient factorization are produced. In the subsequent
factorization phase, the numerical factorization is performed. The final solve phase
computes the solution of the system by forward and backward substitution.

The numerical factorization is the most expensive of these three phases, and we
now describe how parallelism is exploited in this phase. The task dependency graph of
the multifrontal factorization is a tree, the so-called assembly tree. A node of this tree
corresponds to the factorization of a dense submatrix, and an edge from one node to
another describes the order in which the corresponding submatrices can be factorized.
In particular, independent branches of the assembly tree can be factorized in parallel.
Moreover, each node in the tree can further expose parallelism opportunities. The
ScaLAPACK library [8] provides an efficient parallel factorization of dense matrices
and is used for the matrix associated with the root of the assembly tree. But MUMPS
offers another possibility for exploiting parallelism for those nodes that are large
enough. Such nodes can be assigned a master process during analysis that chooses,
during numerical factorization, a set of slave processes to work on subblocks of the
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dense matrix. This dynamic decision about the slaves is based on the load of the
other processors; only the less loaded ones are selected to participate as slaves.

In order to address the scalability issues, we have modified this task scheduling
and the treatment of the assembly tree during analysis and factorization. We now
give a brief description of these new modifications to Version 4.1 of MUMPS (to which
we sometimes refer as the old code or the previous version of MUMPS).

The objective of the dynamic task scheduling is to balance the work load of the
processors at run time. In the previous version of MUMPS, a master process is free
to choose its slaves from among all available processes. Since this choice is taken dy-
namically during the factorization phase, we have to anticipate it by providing enough
memory on every process for the corresponding computational tasks. Since typically
not all processes are actually used as slaves (and, on a large number of processors,
often only relatively few are needed), the prediction of the required workspace can be
severely overestimated. Second, decisions concerning a node should take account of
global information on the assembly tree to localize communication.

With the concept of candidate processors, it is possible to guide the dynamic
task scheduling and to address these issues. The concept originates in an algorithm
presented in [28, 29] and has also been used in the context of static task scheduling
for sparse Cholesky factorization [19]. In this paper, we show how it also extends
efficiently to dynamic scheduling. For each node that requires slaves to be chosen
dynamically during the factorization, we introduce a limited set of processors from
which the slaves can be selected. This allows us to exclude all noncandidates from
the estimation of workspace during the analysis phase and leads to a more realistic
prediction of the workspace needed. Furthermore, the candidate concept allows us
to better structure the computation since we can explicitly restrict the choice of
the slaves to a certain group of processors and enforce, for example, a “subtree-to-
subcube” mapping principle (see [17]). (Throughout this paper, we assume that every
processor has one single message passing interface (MPI) process associated with it so
that we can unambiguously identify a processor and a corresponding MPI process.)

We illustrate the benefits of the new approach by tests using a number of perfor-
mance metrics, including execution time, memory usage, communication volume, and
scalability. Our results demonstrate significant improvements for all these metrics, in
particular when performing the calculations on a large number of processors.

The rest of this paper is organized as follows. In section 2, we review briefly
the general concepts of the multifrontal direct solution of sparse linear systems. We
describe in section 3 the possibilities for exploiting parallelism. We then introduce,
in section 4, the concept of candidate processors. In section 5, we give an overview
of how the candidate concept fits into the scheduling algorithm, and we present the
algorithmic details in section 6. Section 7 gives an overview of the test problems used
in this paper. The presentation of our experimental results begins with parameter
studies and detailed investigations of the improved algorithms in section 8. Afterward,
we present a systematic comparison of the previous version with the new version of the
code on regular grid problems and general matrices in section 9. Finally, we discuss
possible extensions of our algorithm in section 10 and present our conclusions and a
brief summary in section 11.

2. Tasks and task dependencies in the multifrontal factorization. We
consider the direct solution of large sparse systems of linear equations Ax = b on
distributed memory parallel computers using multifrontal Gaussian elimination. For
an unsymmetric matrix, we compute its LU factorization; if the matrix is symmetric,
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its LDLT factorization is computed.
The multifrontal method was initially developed for indefinite sparse symmetric

linear systems [13] and was then extended to unsymmetric matrices [14]. We limit our
attention to general unsymmetric and symmetric indefinite matrices in the following,
but for an overview of the multifrontal method for symmetric positive definite systems
we refer to [11, 13, 23].

In this section, we describe the tasks arising in the factorization phase of a mul-
tifrontal algorithm. Specifically, we investigate the work associated with the factor-
ization of individual frontal matrices and the order in which these factorizations can
be performed.

The so-called elimination tree [13, 22] represents the order in which the matrix
can be factorized, that is, in which the unknowns from the underlying linear system
of equations can be eliminated. For a general sparse matrix, the definition yields
a partial ordering which allows some freedom for the sequence in which pivots can
be eliminated. One central concept of the multifrontal approach [13] is to group (or
amalgamate) columns with the same sparsity structure to create bigger supervariables
or supernodes [13, 24] in order to make use of efficient dense matrix kernels. It is
common to relax the criterion for amalgamation and permit the creation of coarser
supernodes with extra fill-in that, however, improve the performance of the factoriza-
tion (see [7, 13]). The amalgamated elimination tree is called the assembly tree.

Frontal matrices are always considered as dense matrices to allow us to use efficient
BLAS kernels and avoid indirect addressing (see, for example, [10]). Within the frontal
matrix, pivots are eliminated only in the block of so-called fully summed variables.
Afterwards, the contribution block of the node, i.e., the Schur complement matrix, is
computed and used to update the rows and columns of the overall matrix which are
associated with its parent node. The parent node assembles the contribution blocks
from all its children nodes into its own frontal matrix, and the elimination process is
then performed on the parent.

3. Parallelism in the multifrontal factorization. In the following, we iden-
tify different sources of parallelism in the multifrontal factorization and describe how
these are exploited in MUMPS [4].

3.1. The different types of parallelism. In section 2, we mentioned that
the tasks of multifrontal Gaussian elimination for sparse matrices are only partially
ordered. Consequently, independent branches of the assembly tree can be processed
in parallel, and we refer to this as tree parallelism or type 1 parallelism.

It is obvious that in general, tree parallelism can be exploited more efficiently in
the lower part of the assembly tree than near the root node. Experimental results
presented in [3] showed only a limited speedup from tree parallelism. On the other
hand, often more than 75% of the computations are performed in the top three levels
of the assembly tree [2]. For better scalability, additional parallelism is created from
blocked factorization algorithms.

The computation of the Schur complement of frontal matrices with a large enough
contribution block can be performed in parallel using a master-slave computational
model. The contribution block is partitioned and each part of it assigned to a slave.
The master processor is responsible for the factorization of the block of fully summed
variables and sends the triangular factors to the slave processors which then update
their own share of the contribution block independently from each other and in par-
allel. We refer to this approach as type 2 parallelism and call the concerned nodes
type 2 nodes.
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Furthermore, the factorization of the dense root node can be treated in parallel
with ScaLAPACK [8]. The root node is partitioned and distributed to the processors
using a two-dimensional (2D) block cyclic distribution. This is referred to as type 3
parallelism.

MUMPS performs the factorization of the pivot rows of a frontal matrix on a
single processor which can sometimes lead to performance problems. For this reason,
it is possible to create artificial type 2 parallelism by splitting the pivot block [4].

3.2. Parallel task scheduling: Main principles. We describe in this section
the techniques implemented in Version 4.1 of MUMPS [3, 4] which has been exten-
sively tested and compared with SuperLU [5] and WSSMP [18]. We also present the
proportional mapping by Pothen and Sun [28, 29] from which we develop, in section 4,
our idea of the candidate-based scheduling that is used in the new version of MUMPS.

3.2.1. Geist–Ng mapping and layers in the assembly tree. Our previous
scheduling approach consists of two phases. At first, we find the lower part of the as-
sembly tree where enough tree parallelism can be obtained. Afterward we process the
remaining upper part of the tree, exploiting additionally type 2 and type 3 parallelism.

The mapping algorithm by Geist and Ng [15] allows us to find a layer in the
assembly tree so that the subtrees rooted at the nodes of this layer can be mapped
onto the processors for a good balance with respect to floating-point operations. We
call the constructed layer L0. We then recursively define the following layer partition.
Given a node in layer Li−1, the parent of this node belongs to Li if and only if all
the children of this parent node belong to the layers L0, . . . , Li−1. As the nodes in
one layer can be processed only if all their children, belonging to the lower layers,
have already been treated, the layer partition represents not only dependency but
also concurrency of the multifrontal factorization. An example is shown in Figure 3.1.

3.2.2. The proportional mapping of Pothen and Sun. The proportional
mapping approach by Pothen and Sun [28, 29] represents an alternative approach to
task scheduling in both regular and possibly irregular assembly trees.

The assembly tree is processed from top to bottom, starting with the root nodes.
For each root node, we calculate the work associated with the factorization of all
nodes in its subtree, and the available processors are distributed among the root
nodes according to their weight. Each node thus gets its set of preferential processors.
The same partitioning is now repeated recursively. The processors that have been
previously assigned to a node are now distributed among the children proportionally
to their weight (as given by the computational costs of their subtrees). The recursive
partitioning stops once a subtree has only one processor assigned to it.

The proportional mapping (illustrated in Figure 3.2) both achieves locality of
communication and guides the partitioning from a global point of view, taking account
of the weight of subtrees.

3.2.3. Dynamic task scheduling for type 2 parallelism. The static task
mapping is performed on the basis of estimated costs of computational work which
is inaccurate, in particular if pivots have to be delayed for numerical reasons. For a
better equilibration of the actual computational work at run time, both the number
and the choice of the slaves of type 2 nodes are dynamically determined during factor-
ization [3, 4]. When the master of a type 2 node receives the symbolic information on
the structure of the contribution blocks of the children, the slaves for the factoriza-
tion are selected based on their current work load, the least loaded processors being
chosen.
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Fig. 3.1. Layers in the assembly tree.
Fig. 3.2. Proportional mapping of an as-

sembly tree on eight processors.

In MUMPS, if a node above layer L0 possesses a contribution block larger than
a given threshold and the number of eliminated variables in its pivot block is large
enough, then it becomes a type 2 node. In the new version of MUMPS, we restrict the
freedom for the dynamic choice of the slaves to the candidates that have been chosen
for a given node during the analysis phase. This is explained in detail in section 4.2.

4. Combining the concept of candidates with dynamic task scheduling.
In this section, we first give a more detailed illustration of the shortcomings of dynamic
scheduling on a large number of processors and then propose as a solution an algorithm
that exploits the concept of candidate processors.

4.1. Issues of dynamic scheduling. In MUMPS, the amount of memory
needed for each processor is estimated during the analysis phase and is reserved as
workspace for the factorization. Consequently, if every processor can possibly be taken
as a slave of a type 2 node, then enough workspace has to be reserved, on each pro-
cessor, during the analysis phase for the potential corresponding computational task.
This can lead to a dramatic overestimate of memory requirements because, during
the factorization, typically not all processors are actually used as slaves.

Second, the choice of the slaves is completely local. When a type 2 node is to be
processed, its master greedily takes the slaves that seem best to it; those processors
that are less loaded (with respect to the number of floating-point operations) than
itself at the time of the scheduling decision are selected as slaves. Thus, the decision
about the slaves depends crucially on the instant when the master chooses the slaves
(locality in time). Furthermore, no account is taken of other type 2 nodes in the tree
that have to be processed (locality in space). Instead of sharing the available slaves
so that other nodes can be processed in parallel, a master might decide to take all of
them, hindering the work on other branches of the assembly tree.

4.2. Candidate processors for type 2 parallel nodes. In the following, we
present a concept of candidate processors that naturally addresses the issues raised in
section 4.1. For each type 2 node that requires slaves to be chosen dynamically during
the factorization because of the size of its contribution block, we introduce a limited
set of processors from which the slaves can be selected. While the master previously
chose slaves from among all less loaded processors, slaves are now only chosen from
this list of candidates. This effectively allows us to exclude all noncandidates from
the estimation of workspace during the analysis phase and leads to a tighter and more
realistic estimation of the workspace needed. Second, we can expect a performance
gain in cases as described in the previous section where greedy decisions of one type 2
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master can no longer hinder processors from processing another node.
The candidate concept can be thought of as an intermediate step between full

static and full dynamic scheduling. While we leave some freedom for dynamic decisions
at run time, this is guided by static decisions about the candidate assignment during
the analysis phase. We refer to section 6.6 for a full description of the algorithmic
details.

The assignment and the choice of the candidate processors is guided using a
proportional mapping as described in sections 3.2.2 and 5.1. We partition the set of
processors recursively, starting from the root, so that for each subtree there is a well-
defined subset of preferential processors from which the candidates can be selected.

5. Task mapping and task scheduling in MUMPS. In this section, we
discuss in general terms our improvements to MUMPS as they have been integrated
into the new Version 4.2. With task mapping, we refer to the assignment of master
processors and candidates during the analysis phase, and with task scheduling to the
dynamic choice of type 2 slaves during the factorization phase.

5.1. Task mapping algorithm during the analysis phase. A first major
point to emphasize is the greater flexibility and adaptivity of the new algorithm when
mapping the upper part of the assembly tree (that is, above layer L0). The former
version, Algorithm 1, performs a simple mapping of only the master nodes, while
the new version, Algorithm 2, treats the upper part layerwise, mapping both master
nodes and type 2 candidates.

The second contribution of the new algorithm is of course the added features. A
very important feature is the candidate concept guided by a proportional mapping
partition of the processors. Furthermore, we have added to the treatment of each layer
a preprocessing step that performs amalgamations and node splitting. Moreover, we
have improved the construction of layer L0 for better memory scalability. Lastly, we
treat memory imbalances due to type 2 node mapping using a postprocessing step.

Algorithm 1 Old task mapping algorithm.
(1) Given the assembly tree of a sparse matrix A
(2) Build and map initial layer L0

(3) Decide type of parallelism for nodes in upper part of tree
(4) Map master nodes of upper part of tree

The starting point (1) of the original algorithm is the assembly tree that was
constructed from the elimination tree of a given sparse matrix. From this assembly
tree, the algorithm constructs, in step (2), an initial layer L0 following the Geist–Ng
approach (section 3.2.1). Afterward, it is decided for which nodes type 2 or type 3
parallelism is exploited (3), and finally the masters of all nodes above layer L0 are
mapped (4) with the objective of balancing the memory.

The starting point (1′) of the new algorithm is the same assembly tree as for
the old approach (1). Step (2′) differs from the corresponding step (2) in the old
algorithm insofar as the constructed initial layer controls better the memory demands
of the subtree roots; see section 6.1 for the details. In step (3′), we calculate a variant
of the proportional mapping whose algorithmic description is given in section 6.2.
For each node in the assembly tree, we obtain a set of preferential processors that
will guide the selection and mapping of the candidate processors in step (6′). Step
(4′) performs amalgamations and node splitting to improve the nodes of the current
layer. In step (5′), we decide which type of parallelism we exploit for the nodes of the
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Algorithm 2 New task mapping algorithm.

(1′) Given the assembly tree of a sparse matrix A
(2′) Build and map modified initial layer L0

(3′) Calculate relaxed proportional mapping, i.e. the preferential processors
current layer = 1
while there exist unmapped nodes on or above current layer do

(4′) Perform tree modifications if necessary
(5′) Decide type of parallelism for the nodes on current layer
(6′) Map the tasks associated with the nodes on current layer
current layer = current layer + 1

end while
(7′) Postprocessing of the candidate selection to improve memory balance

current layer. The list of tasks associated with the current layer includes the masters
for the type 1 and type 2 nodes, and the type 2 candidates which are derived from
the proportional mapping (2′); see section 6.2. For the task mapping, we use a list
scheduling algorithm that is described in section 6.4. The main difference between the
new mapping (6′) and the old one (4) is that we now preassign candidate processors
for the type 2 nodes. The postprocessing step (7′) intends to improve the memory
balance through remapping of the type 2 masters; see section 6.5.

5.2. Task scheduling during the factorization phase. In this section, we
describe in Algorithm 3 the task management of a processor during the factorization
phase.

Algorithm 3 Dynamic task scheduling performed on a processor during factorization.
(1) Given the task pool of one processor
while (2) Not all tasks processed do

if Work is received from another processor then
(3) Store work in pool of tasks

else
(4) Extract work from the task pool
if Task is master of type 2 node then

(5) Choose and notify the slaves for the type 2 node
end if
(6) Perform pivot elimination and/or contribution block update

end if
end while

The task pool (1) of a processor can contain the following tasks: master of a type 1
node, master of a type 2 node, or slave of a type 2 node. The processor adds new
tasks (3) or extracts them from the pool (4), respectively. If, during the factorization,
the task pool of the processor is empty, it will wait until it receives new tasks and
then re-enter loop (2). If the processor works as a type 2 master, it chooses the slaves
that will participate in the parallel contribution block update (5) before it starts the
elimination of the pivotal block (6). Otherwise, if the processor is a type 1 master or
a type 2 slave, it begins directly with the pivot elimination or the contribution block
update, respectively, (6).

In the new version of the algorithm, only step (5) is modified to ensure that the
type 2 slaves are selected from among the candidates allocated for the type 2 node.
We give the details of the algorithm for choosing the slaves in section 6.6.

6. Details of the improved task mapping and scheduling algorithms.
After the general comparison of the old and new versions of MUMPS task mapping



TASK SCHEDULING IN A PARALLEL MULTIFRONTAL SOLVER 551

and scheduling in section 5, we describe in this section the key points of the new
algorithm in detail.

6.1. The Geist–Ng construction of layer L0. We now describe the construc-
tion of the initial layer L0 that extends the Geist–Ng approach from section 3.2.1.

Algorithm 4 The Geist–Ng algorithm.
(1) Let L0 contain all root nodes of the assembly tree
(2) Map layer L0

while (3) Layer L0 is not acceptable do
(4) Find node in L0 with highest computational costs
(5) Replace this node by its children in L0

(6) Map new layer L0

end while

Starting with a potential layer L0 consisting of the root nodes of the assembly tree
(1), we first compute (2) a mapping of L0 with the list scheduling heuristics described
in section 6.4. The former criterion for accepting the layer in step (3) demands that
the load imbalance between the processors is smaller than a threshold. Here, the
work associated with a node in L0 is defined as the costs for computing the factors
of the subtree rooted at the node and can be estimated during the analysis phase.
If the mapping of layer L0 is not acceptable, then the node with the highest costs
is eliminated from the layer and replaced by its children (4, 5). A new mapping is
computed (6) with the same algorithm as in (2).

The main problem of Algorithm 4 is that balancing the computational work does
not necessarily imply a good memory balance, in particular if nodes with a very small
number of pivots but a big contribution block have to be mapped. For better memory
balance, we modify the criterion of acceptability (3) to demand that both the load
imbalance for the mapping of L0 is smaller than a threshold and that L0 contains no
nodes that would need to be amalgamated.

6.2. The relaxed proportional mapping. Algorithm 5 describes one step of
the proportional mapping presented in section 3.2.2. The preferential processors given
to a node are distributed among its children according to their weight. Note that we
can relax the strict proportional mapping by multiplying the number of preferential
processors na by a relaxation factor ρ ≥ 1 in step (2).

Algorithm 5 One step of proportional mapping.
Given a node n with preferential processors p1, . . . , pna(n) and children s1, . . . , si
for each child s of n do

(1) Calculate relative costs cr(s) of child s, 0 ≤ cr(s) ≤ 1
(2) Calculate number of preferentials na(s) = min {ρ× cr(s) × na(n), na(n)}

for child s
end for
(3) Cyclic assignment of the preferential processors for all children s1, . . . , si

In step (1), we calculate the relative costs cr(s) of a child s, s ∈ {s1, . . . , si}
from the costs c(s) for the factorization of all nodes in the subtree rooted at s as

cr(s) = c(s)/
∑i

k=1 c(sk). From the relative weight cr(s) of child s, we obtain its
share of preferential processors in step (2) that can be relaxed by the factor ρ. After
we have calculated the number of preferential processors for all children, we distribute
in step (3) the processors p1, . . . , pna(n) among the children.
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6.3. Choosing the number of candidates for a type 2 node. Our approach
consists of two steps. For a given layer, we first determine for each type 2 node the
number nc of candidate processors. In a second step, we choose the candidates from
the available processors. As the selection of a candidate processor is conceptually
similar to the selection of the master processors for the type 1 and type 2 nodes, we
hope to obtain better load balancing by mapping the master and candidate processors
together; see section 6.4.

We have experimented with two different ways for determining the number of
candidates for a given type 2 node and describe these in Algorithm 6. In the first
approach, we select its preferential processors as candidates, thus setting the number
of candidates equal to the number of preferentials. In a second approach, we employ
an additional postprocessing step, where we redistribute the candidates of the layer
according to the relative weight of the nodes. As the proportional mapping is cal-
culated from the costs of complete subtrees, not individual nodes, a large node on a
given layer might have only a relatively small number of preferentials. For this reason
we can reassign candidates on the same layer by the optional step in Algorithm 6.

Algorithm 6 Determining the number of candidates using the preferentials.
Given a layer in the assembly tree
for each Type 2 node n with na(n) preferential processors in the layer do

(1) Determine the number of candidates by nc(n) = na(n).
end for
(2) OPTIONAL: Redistribute the total number of candidates of the layer among

the layer’s type 2 nodes according to their relative weight.

6.4. Layerwise task mapping. We use for the task mapping a variant of the
well-known list scheduling algorithm [20]. We first make a list of the tasks sorted by
decreasing costs, and then we map the tasks in this order one after another to the
processor that has the least work assigned so far.

In the case of layer L0, we employ the original list scheduling [20]; however, for all
upper layers L1, L2, . . . our algorithm is more complicated for two reasons. First, we
want to guide mapping decisions by the proportional mapping representing a global
view of the tree. Second, we have to take care of constraints that arise either from
explicit user-given limits on memory or work for each processor, or implicitly from the
fact that any two candidate processors or any candidate and the master of a type 2
node have to be different from each other.

Algorithm 7 Generic mapping algorithm.
(1) Create an ordered task list
while Task list not empty do

(2) Extract the next task ti from the list
(3) Make a preference list for the processors
while Task ti not mapped to a processor do

(4) Try to map ti to the next processor from the preference list
end while

end while

The first two steps (1) and (2) of Algorithm 7 are identical to the original list
scheduling approach: We create a list of all tasks that have to be mapped in the
layer, that is, the work of the type 1 node masters, of type 2 node masters, and of
type 2 node candidates. This list is then ordered by decreasing costs and the tasks
are mapped in the order that they appear in the list.
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Steps (3) and (4) are the generalization of the idea of mapping to the least loaded
processor. We create a preference list containing all the processors, at first the prefer-
ential ones ordered by increasing work load and then the nonpreferential ones ordered
separately, also by increasing work load. The first processor in the preference list that
does not violate the mapping constraints will be the one to which the task is mapped.

6.5. Postprocessing of the assembly tree for an improved memory bal-
ance in the LU factorization. There is an important difference between symmetric
and unsymmetric factorization with respect to memory. In the LDLT factorization,
the master of a type 2 node only holds the pivotal block, whereas, in the LU factor-
ization, the master stores the complete fully summed rows. Thus, in the case of the
LU factorization, the work equilibration can lead to memory imbalances if the same
processor becomes master of several type 2 nodes.

For this reason, after the whole tree is mapped with the objective of balancing
the work, we use a postprocessing step to correct memory problems described by
Algorithm 8. We process the upper part of the assembly tree from the top down
(1), as the type 2 nodes creating the biggest problems are often near a root node.
By swapping a master processor with one of the candidates, we locally improve the
memory imbalance (steps 2 and 3).

Algorithm 8 Postprocessing for better memory equilibration in the LU factorization.
(1) Process the type 2 nodes in the tree from the root downwards
(2) For a node n with master pM (n) select candidate c∗(n) with smallest memory
if memory imbalance can be improved by swapping pM (n) and c∗(n) then

(3) Exchange the roles of master and candidate processor pM (n) ⇔ c∗(n)
end if

6.6. The dynamic scheduling algorithm used at run time. We show how
the candidate concept influences the original scheduling algorithm used in MUMPS
and describe the role of the algorithmic parameter kmax controlling the minimum
granularity for type 2 parallelism at run time.

Algorithm 9 Dynamic choice of the slaves of a type 2 node.

Given a type 2 node n with master processors pM (n) and children s1, . . . , si
(1) The masters of the children pM (s1), . . . , pM (si) send symbolic data to pM (n)
(2) pM (n) analyzes its information concerning the load of all processors
(3) pM (n) decides the partitioning of the frontal matrix of node n and chooses

the slave processors pS1 (n), . . . , pSj (n)

(4) pM (n) informs all processors working on the children about the partition
(5) The numerical data is sent directly to the slaves pS1 (n), . . . , pSj (n)

In a two-phase assembly process (see Algorithm 9), the master receives the integer
data describing the symbolic structure of the front (1) and analyzes the information
on the work load of the other processors (2). At step (3), the master processor pM (n)
selects the least loaded among all processors as slaves.

The number of slaves, ns, for a type 2 node must satisfy the minimum granularity
condition ns ≥ max(� ncb

kmax
�, 1), where ncb denotes the number of rows in the contri-

bution block. The parameter kmax controls the maximum work of a type 2 slave and
thus the maximum buffer size permitted for the factorization of a type 2 node.

Once the slaves participating in the parallel update of the contribution block
have been selected, they obtain the part of the symbolic information from the master
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pM (n) that is relevant for their work (4). Furthermore, they receive the corresponding
numerical data from the processors working on the children (5).

In the candidate-based scheduling approach, we modify step (3) so that the slaves
are always chosen among the candidates provided for the node. At first, we select
all those candidates that are less loaded than the master processor. If minimum
granularity is not satisfied, additional candidates are chosen so that it is.

6.7. Complexity of the new mapping algorithm. In this section, we com-
ment on the complexity of our mapping algorithm. We assume we have p processors.
We denote by d the maximum distance between layer L0 and a root node, by nu the
number of nodes above L0, and by ms the maximum number of sons of a node above
layer L0.

The Geist–Ng construction of layer L0 using Algorithm 4 replaces a node with
its children O(nu) times. The corresponding amount of data stored in a linked list
is also O(nu). We assume that the list is ordered with the greatest work load at its
head. Replacing this node with its children is done with a merge sort of the already
ordered list excluding the head node but including the list of the children. The overall
complexity of step (5) is then O((ms ∗ log(ms) + |L0|) ∗ nu). The mapping of the list
nodes done by Algorithm 7 is then simpler since it does not include step (1) of the
algorithm (ordering of the task list).

The proportional mapping from Algorithm 5 is only calculated from the root
nodes down to layer L0. For this reason, the recursion is bounded by the distance d
between root node(s) and layer L0. The amount of data stored is of order O(p ∗ nu).
For each layer of the assembly tree, a redistribution step is performed. The amount
of computation involved is of order O(d ∗ nu/d) = O(nu), where nu/d denotes the
average number of nodes per layer. We remark that the computational complexity of
this step is similar to the optional redistribution step from Algorithm 6.

The mapping algorithm (Algorithm 7) is of central importance for the overall
scheme and depends crucially on the efficient construction of the task list. The or-
dering of the task list is computed by a merge sort which has a complexity of order
O(n ∗ log(n)), where n denotes the number of nodes in the list. Furthermore, at
each step, it involves a search for the least loaded among p processors. Thus, the
overall complexity is given by O(p ∗ n+ n ∗ log(n)). When constructing layer L0, the
construction of the ordered task list is in fact done at step (5) of Algorithm 4. The
overall complexity of Algorithm 4 is thus O((ms ∗ log(ms)+ |L0|) ∗nu +nu ∗ p ∗ |L0|).

Finally, the postprocessing step from Algorithm 8 is performed for the type 2
nodes in the upper part of the tree, for which we have to find the candidate processor
with the smallest memory. The cost for this step is thus of order O(nu ∗ p).

Our tests with the regular grid problems from section 7 show that in the case of a
nested dissection ordering, the layer L0 typically consists of between p and 2p nodes.
However, the structure of the layer greatly depends on the shape of the assembly
tree which is influenced by the matrix ordering. In practice, for large grid problems,
d = p/4 is an upper bound (node splitting in general increases the expected bound
log(p)), the number of nodes nu above L0 usually does not exceed 3p/2, and ms is
typically less than 3.

7. The test environment. In this section, we present the test matrices that
we use to illustrate the behavior of our algorithm.

For our tests, we use a CRAY T3E-900 (512 processors, 256 megabytes RAM
and 900 peak megaflops per processor), an SGI Origin 2000 (32 processors, 16 giga-
bytes shared memory, 500 peak megaflops per processor), and an IBM SP3 (29 SMP
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nodes with 16 processors and 16 gigabyte memory, 375 megahertz). We consider dif-
ferent orderings including nested dissection from SPARSPAK [16], METIS [21], and
SCOTCH [26, 27], and Approximate Minimum Fill [25, 30].

7.1. Regular grid test problems. We consider a set of test matrices obtained
from an 11-point discretization of the Laplacian on three-dimensional (3D) grids of
either cubic or rectangular shape, the respective grid sizes being given in Table 7.1.
The set of problems is chosen as in [5] and is designed so that when the number of
processors increases the number of operations per processor in the LU factorization
stays approximately constant when employing a nested dissection ordering [16].

Table 7.1

3D grid problems.

Processors Rectangular Cubic Processors Rectangular Cubic
grid sizes grid size grid sizes grid size

1 96 24 12 29 64 184 46 23 57
16 152 38 19 46 128 208 52 26 64
32 168 42 21 51 256 224 56 28 72
48 172 44 22 55 512 248 62 31 80

In Table 7.2, we show for the grid problems the distribution of work for type 1
masters (T1), type 2 masters (TM) and slaves (TS), and the type 3 root node (T3).

In particular for large problems, the work of the type 2 slaves becomes a major
part of the overall work, and the candidate concept will have a great impact in those
cases.

Table 7.2

Percentage distribution of work for 3D grid problems (nested dissection ordering).

cubic rectangular
LU LDLT LU LDLT

Procs. T1 TM TS T3 T1 TM TS T3 T1 TM TS T3 T1 TM TS T3

1 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
16 18 5 63 14 18 2 65 15 25 5 58 12 25 2 61 12
32 7 4 75 14 8 1 77 14 16 4 68 12 16 2 70 12
48 7 4 75 15 8 1 77 14 14 4 70 12 12 2 74 12
64 5 3 78 14 5 1 81 13 10 4 74 12 10 1 77 12

7.2. General symmetric and unsymmetric matrices. The matrices de-
scribed in this section all arise from industrial applications and include test matrices
from the PARASOL Project [1], the Rutherford–Boeing Collection [12], and the Uni-
versity of Florida sparse matrix collection [9].

In Table 7.3, we describe the characteristics of the test matrices arising from
real-life problems. We remark that in the case of the irregular problems, the work
distribution heavily depends on the ordering used. The approximate minimum fill
(AMF) ordering produces assembly trees that are rich in type 2 parallelism; on the
other hand, the root nodes are so small that type 3 parallelism cannot be exploited
effectively. On the other hand, METIS (as well as SCOTCH) provides more type 3
parallelism and, again, the major part of the work is associated with the factorization
of type 2 nodes.
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Table 7.3

Matrix order, type, and number of entries for the irregular test matrices.

Matrix Matrix Matrix No. of Origin
name type order entries
audikw 1 symmetric 943695 39297771 PARASOL
bbmat unsymmetric 38744 1771722 Rutherford-Boeing
bmwcra 1 symmetric 148770 10644002 PARASOL
ecl32 unsymmetric 51993 380415 University of Florida
g7jac200 unsymmetric 59310 837936 University of Florida
inline 1 symmetric 503712 18660027 PARASOL
pre2 unsymmetric 659033 5959282 University of Florida
ship003 symmetric 121728 8086034 PARASOL
twotone unsymmetric 120750 1224224 University of Florida
xenon2 unsymmetric 157464 3866688 University of Florida

8. Experimental investigation of algorithmic details. In this section, we
study the influence and scope of parameters in the algorithms used by Version 4.1 [4, 5]
and by the new version of MUMPS. Furthermore, we present a detailed investigation
of isolated parts of the improved algorithm by typical examples of phenomena that
we have observed in our experiments.

8.1. The impact of kmax on communication and memory. We first show
the impact of the parameter kmax, defined in section 6.6, that controls the minimum
granularity of the type 2 parallelism, on the volume of communication and memory.

We compare the behavior of Version 4.1 of MUMPS and the new code on one
of the test matrices from section 7.1, corresponding to a cubic grid of order 46 and
ordered by nested dissection. Here, we perform an LU factorization on an SGI Origin
2000 with 16 processors. This platform is well suited for testing the kmax parameter
over a wide range of values due to its shared-memory architecture, where a large
amount of memory is available to all processors.

The two graphs in the upper row of Figure 8.1 illustrate that with increasing kmax,
both the total volume of communication and the number of messages associated with
dynamic scheduling decrease. This is due to the fact that a small kmax increases the
required minimum number of slaves for a type 2 node, up to the point where the
minimum granularity condition does not impact our scheduling.

The graph in the left lower corner of Figure 8.1 shows the increase in estimated
and actually used memory with increasing kmax, and the graph in the right lower
corner shows the decomposition of the estimated memory into the space reserved
for the communication buffers, the LU factors, and the stack. As potentially every
processor can be selected as a slave during the factorization and the memory predicted
depends monotonically on kmax, the prediction during the analysis phase will lead
to an increasing gap between real and estimated memory, as can be seen in the
graph on the lower left. On the lower right, we see that the main contribution to
the overestimation of the memory is the stack. As slaves stack their part of the
contribution block until it can be received by the processors working on the parent
of the node, the stack has to grow when kmax increases. Furthermore, a single type 2
slave is authorized to work on larger parts of a contribution block.

We now investigate the behavior of the new candidate-based code on the same test
matrix where candidates are assigned without relaxation and layerwise redistribution,
following the proportional mapping of the assembly tree.

From the two graphs in the bottom row of Figure 8.2 we observe the expected
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Fig. 8.1. Impact of kmax on volume of
communication and memory in Version 4.1 of
MUMPS (Origin 2000, 16 processors).
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Fig. 8.2. Impact of kmax on volume of
communication and memory in the new ver-
sion of MUMPS (Origin 2000, 16 processors).

better estimation of memory. Furthermore, the two graphs in the top row of Figure 8.2
indicate that the communication volume in the new version of MUMPS drops faster
with increasing kmax than it does for the previous version. This can be explained by
the restricted freedom for the dynamic scheduling, so that actually less parallelism
is created and fewer slaves are chosen during factorization. Thus, in the new code,
we can choose a relatively small value of kmax and have the benefits of a relatively
realistic memory estimation together with a reduced communication volume.

8.2. The impact of kmax on performance. In the following example, we
show the impact of the parameter kmax on the factorization time.

Our test matrix comes from a cubic grid of order 51, ordered by nested dissection;
we perform an LU factorization on a CRAY T3E with 64 processors. (Compared to
Table 7.1, we have reduced the problem size to have enough flexibility with respect to
memory for this parameter study.) Furthermore, because of limited memory and in
order to separate the different algorithmic parameters, we use a candidate assignment
without relaxation. The CRAY T3E is well suited for providing reliable timings for
performance measures but has a distributed memory architecture with a fairly small
amount of memory per processor.

From Figure 8.3, we see that with increasing kmax the factorization time decreases
in both versions of the code as the dynamic scheduler has more freedom to decrease
unnecessary parallelism. However, the previous version of MUMPS needs much more
memory than the candidate-based version, and thus the flexibility for increasing kmax

is more strictly limited. Once kmax is sufficiently large, a further increase in kmax

shows no further improvements in performance. This corresponds to the results on
the limited reduction in the volume of communication obtained in section 8.1.

8.3. Modifying the freedom offered to dynamic scheduling. We now in-
vestigate the behavior of the new code when modifying the assignment of candidates.
We study two different approaches. As described in section 6.3, we can increase the
number of candidates given to a node by relaxing its number of preferentials through
the proportional mapping. Furthermore, according to Algorithm 6, we can modify the
candidate assignment for a given layer by an optional redistribution of the candidates
that takes account of the weight of the nodes relative to each other.

For our study, we use the same test case as in section 8.2. Figure 8.4 shows the
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Fig. 8.3. Impact of kmax on the perfor-
mance of the LU factorization time for the
original and the new version (CRAY T3E, 64
processors).
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Fig. 8.4. Comparison of the candidate
assignment with (solid) and without (dotted)
layerwise candidate redistribution when in-
creasing minimum granularity (LU factoriza-
tion time on CRAY T3E, 64 processors, no
candidate relaxation).

factorization time of the new version of MUMPS for the candidate assignment with
and without layerwise candidate redistribution as a function of the minimum granu-
larity. We cannot find significant differences in the behavior of the two approaches.
This example is representative for the results we have obtained on the complete set
of test problems.

We also have analyzed the impact of relaxation with and without layerwise redis-
tribution on the volume of communication, memory, and performance. Our observa-
tion is that, with increasing relaxation, both the total volume of communication and
the number of messages related to dynamic scheduling increase because the flexibility
for choosing the slaves during factorization becomes greater. Likewise, the memory
estimation grows with increasing relaxation. However, we do not observe a positive
impact of relaxation on the performance of the algorithm; a possible interpretation
is that, through the relaxation, we create additional parallelism that is not actually
needed at run time. While this observation holds for all the experiments we have
conducted, we are convinced that relaxation might show a positive impact on cer-
tain irregular problems from real-life applications. This has to be confirmed in future
work.

8.4. Improved node splitting and amalgamation. In this section, we il-
lustrate the additional capabilities for node splitting and node amalgamation and
demonstrate the benefits. The former algorithm authorized node splitting only up
to a fixed distance from the root node, where this distance depended only on the
number of processors but not on the matrix. The new algorithm incorporates the
splitting systematically in the upper part of the tree. We illustrate, in Table 8.1, the
properties and benefits of the improved splitting in a selected case. The additional
splitting slightly increases the number of assembly operations and the average amount
of memory. However, it creates additional type 2 nodes. This significantly improves
the performance and the memory balance.

Amalgamation in the previous version was possible only between a parent node
and its oldest child; the greater freedom in the new code allows many more amal-
gamations. We illustrate in Table 8.2 the properties and benefits of the improved
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Table 8.1

Comparison of the candidate-based LU factorization with and without improved node splitting
(cubic grid of order 57 on CRAY T3E with 64 processors).

Nmb Operations (AMF) Mem. est. Mem. real Facto.
Algorithm type 2 elim. assem. max avg max avg time
no splitting 126 7.98e+11 1.10e+09 196 143 141 92 182

with splitting 140 7.98e+11 1.30e+09 167 150 119 96 145

Table 8.2

Comparison of the candidate-based LDLT factorization with and without improved node amal-
gamation (cubic grid of order 46 on CRAY T3E with 17 processors).

Type of Operations (ND) Mem Mem real Fact.
amalgamation assem. elim. max avg max avg time

Old 2.44e+08 5.91e+10 187 121 175 97 19.4
New 2.35e+08 5.91e+10 108 95 82 71 18.7

amalgamation to memory balance by a selected example. The additional amalgama-
tion decreases the number of assembly operations and allows a better memory balance
because the stacking of several large type 1 nodes can be avoided.

8.5. Postprocessing for a better memory balance. On the CRAY T3E,
we show the benefits obtained by remapping the masters of type 2 nodes for better
memory balance as described in section 6.5.

From Table 8.3, we see that the flop-based equilibration of the scheduling algo-
rithm leads to severe memory imbalance both in the estimated and the actual memory.
Performance reasons would encourage us to increase kmax. However, this is impossible
because of the strong memory imbalance. We observe that with postprocessing, the
difference between average and maximum values for both the estimated and actual
memory are much reduced. This allows us to double the kmax parameter for this test
case and obtain better performance for the factorization.

Table 8.3

Memory (in megabytes) and factorization time (in seconds) of the candidate-based LU factor-
ization with and without postprocessing (cubic grid of order 72 with nested dissection).

No postprocessing With postprocessing
Max Avg Max Avg Fact. Max Avg Max Avg Fact.

kmax est est real real time est est real real time
80 179 117 172 102 165 136 117 123 102 152

160 Not enough memory 193 164 162 132 124

9. Performance analysis. In the following, we compare the performance of the
new MUMPS code with the previous version [5] on the complete set of test problems
presented in section 7.

9.1. Nested dissection ordering. In this section, we use the test matrices from
Table 7.1 ordered by nested dissection. We have observed (see also results in Tables 9.1
and 9.3) that for up to 64 processors the new version has a similar performance to
the good results obtained by the previous version. However, when more processors
are used and the matrices become larger, the new code performs significantly better.
Looking at the results on 128, 256, and 512 processors, we note the greatly improved
scalability of the candidate-based code.
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Table 9.1

Performance of the old and new LU fac-
torization (time in seconds on the CRAY
T3E).

Cubic grids (ND) Rect. grids (ND)

Procs. flops old new flops old new
1 7.2e+09 23.2 23.2 4.5e+09 16.6 16.6

16 1.2e+11 30.8 31.8 7.3e+10 22.4 23.3
32 2.3e+11 43.3 42.2 1.4e+11 25.7 27.4
48 3.6e+11 53.0 57.5 1.8e+11 26.0 23.9
64 4.5e+11 59.0 52.9 2.4e+11 31.2 30.2

128 8.9e+11 93.4 72.7 4.9e+11 44.9 38.5
256 1.8e+12 163.5 119.4 7.7e+11 75.4 47.1
512 3.4e+12 599.6 189.1 1.4e+12 135.5 73.7

Table 9.2

Space for the LU factors (number of re-
als ×106). The grid size and the number of
processors as in Table 9.1.

Cubic grids (ND) Rect. grids (ND)
space estim. estim. space estim. estim.
used old new used old new
11.4 11.4 11.4 10.2 10.2 10.2
77.9 84.3 78.6 70.4 82.3 70.9

121.2 181.5 122.8 107.7 166.8 110.0
165.9 289.5 170.7 130.2 255.5 134.7
193.7 412.6 203.8 158.4 407.2 166.7
309.7 897.9 357.0 260.1 1108.0 296.4
504.4 2678.5 924.6 353.9 2420.5 478.0
780.4 4594.0 1369.7 541.6 5759.0 921.5

Another major advantage of the new candidate-based code is that it better es-
timates the memory used for the factorization. In Table 9.2, we show the memory
space for the LU factors of the old and the new versions of MUMPS. We see that the
candidate-based code significantly reduces the overestimation of the storage required
and that the gains increase with the matrix size and the number of processors.

The big gains of the new candidate-based code are a result of the individual
improvements concerning splitting and amalgamation, reduced communication and
the better locality of the computation as illustrated in section 8. Furthermore, we
need to decrease kmax in the large problems for the old version of MUMPS because
of memory. This limits the performance as we saw in section 8.2. On the other hand,
we do not need to decrease kmax in the candidate-based code as the tighter estimates
stay within the memory available.

As all regular test matrices are symmetric, we also can compare the old with
the new candidate-based LDLT factorization. The results presented in Table 9.3
confirm those obtained for the LU factorization. The candidate-based code shows a
much better performance in particular for the large problems on a large number of
processors due to improved locality of communication and computation and because
of the bigger scope for increasing the kmax parameter.

Table 9.3

Performance of the LDLT factorization (time in seconds on the CRAY T3E).

Cubic grids (ND) Rectangular grids (ND)
Processors flops old new flops old new

1 3.6e+09 19.1 18.7 2.2e+09 13.5 13.1
16 5.9e+10 18.8 19.8 3.6e+10 13.8 13.2
32 1.1e+11 25.8 22.2 6.8e+10 15.5 15.3
48 1.8e+11 28.7 30.4 9.0e+10 14.2 14.8
64 2.2e+11 30.7 25.6 1.2e+11 17.6 16.8

128 4.4e+11 45.6 33.0 2.4e+11 33.5 20.3
256 9.1e+11 109.1 43.0 3.8e+11 45.2 18.4
512 1.7e+12 421.9 64.0 7.1e+11 195.5 24.3

Note that thanks to the improvements in the scalability of the new code, MUMPS
now compares favorably to SuperLU on a large number of processors. The LU factor-
ization times for SuperLU on 128 processors and the same nested dissection ordering,
according to [5], are 71.1 seconds for the cubic and 56.1 seconds for the rectangular
grid and should be compared to timings reported in Table 9.1, 72.7 seconds and 38.5



TASK SCHEDULING IN A PARALLEL MULTIFRONTAL SOLVER 561

seconds, respectively.

9.2. AMF ordering. The AMF ordering [25, 30] produces trees that are dif-
ficult to exploit in MUMPS. The upper part of the tree, where type 2 and type 3
parallelism can be exploited, is usually a long and thin chain. As a typical example,
we consider the case of an LU factorization on 64 processors. On cubic grids, the
number of entries in the factors is 247.8× 106 for AMF versus 193.8× 106 for nested
dissection and is thus larger. On rectangular grids, the number of entries in the factors
is 148.1 × 106 for AMF and 158.4 × 106 for nested dissection. Here, AMF needs less
space for the factors. However, the shape of the assembly tree still offers less potential
for parallelism, and we expect the factorization time for AMF-ordered matrices to be
considerably longer than for the case of nested dissection. This is confirmed by the
results in Table 9.4, where we also show that the new strategy results in significant
gains and that the absolute performance of the AMF ordering on rectangular grids is
good on up to 128 processors.

Table 9.4

Performance of the LU and the LDLT factorization (time in seconds on the CRAY T3E). ∗∗∗
indicates insufficient memory for analysis phase.

LU factorization LDLT factorization
Cubic grids (AMF) Rect. grids (AMF) Cubic grids (AMF) Rect. grids (AMF)

Procs. flops old new flops old new flops old new flops old new
1 8.6e+09 25.7 25.7 3.1e+09 13.4 13.7 4.3e+09 19.5 19.5 1.6e+09 11.3 11.3

16 1.9e+11 55.5 54.9 5.4e+10 34.8 32.6 9.5e+10 29.0 29.2 2.7e+10 15.4 16.7
32 3.8e+11 96.3 81.3 1.0e+11 50.7 49.8 1.9e+11 34.1 33.8 5.1e+10 20.1 20.9
48 4.8e+11 114.6 98.2 1.9e+11 71.0 67.4 2.4e+11 36.3 36.5 9.3e+10 24.6 25.0
64 8.0e+11 188.0 145.4 1.8e+11 46.4 43.3 4.0e+11 51.8 48.6 8.9e+10 23.6 23.7

128 1.7e+12 302.6 242.7 4.6e+11 118.9 114.6 8.4e+11 86.1 67.8 2.3e+11 38.6 34.5
256 4.1e+12 740.9 484.1 8.6e+11 262.5 208.6 2.1e+12 237.7 117.3 4.3e+11 74.6 67.7
512 ∗ ∗ ∗ 1.2e+12 325.7 264.7 ∗ ∗ ∗ 6.2e+11 196.1 73.0

9.3. Performance analysis on general symmetric and unsymmetric ma-
trices. In this section, we compare the performance of the new mapping algorithm
with the previous version on general symmetric and unsymmetric matrices. The main
problem with this comparison is that our algorithm offers the biggest performance
gains only on a large number of processors. However, the unsymmetric matrices
available to us are either too small to offer enough potential for scalability on more
than 64 processors, or they are too large to do the analysis (which is performed on
only one processor). This was already observed in the analysis of the scalability of
both MUMPS and SuperLU [5] and is particularly important for the T3E architec-
ture. However, while the problem in principle stays the same on the IBM SP3, the
situation is alleviated due to the considerably larger amount of memory that is shared
among the processors of an SMP node and thus available for the analysis phase.

For all orderings, we report the number of operations needed for the factorization
phase in Table 9.5. From Table 9.6 we see that in general on the T3E, the new
mapping algorithm performs similarly to the old one. As already noted, we would
expect significant improvements on large matrices and on a number of processors
greater than 64. However, we notice some improvements for the AMF ordering on
bbmat and g7jac200. But since METIS generally provides better orderings, those
improvements on AMF only show the capacity of our algorithm to correctly handle
irregular trees.
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Table 9.5

Number of operations for the factorization phases in Tables 9.6 and 9.7.

Matrix AMF METIS Matrix SCOTCH
bbmat 2.8e+10 2.8e+10 audikw 1 5.5e+12
bmwcra 1 9.9e+10 6.1e+10 bmwcra 1 6.4e+10
ecl32 3.5e+10 2.1e+10 g7jac200 1.6e+11
g7jac200 3.5e+10 5.5e+10 inline 1 1.4e+11
ship003 9.6e+10 8.3e+10 pre2 1.7e+11
twotone 2.9e+10 2.9e+10 ship003 9.3e+10

xenon2 1.1e+11

Table 9.6

Performance of old and new code on the irregular test matrices (factorization time in seconds
on the CRAY T3E).

Matrix Order Alg 8 16 32 64 Matrix Order Alg 8 16 32 64
bbmat AMF old 71.1 50.5 44.3 44.1 g7jac200 AMF old 77.3 63.4 40.2 41.8

new 69.6 44.1 27.6 21.7 new 78.3 61.3 38.6 33.7
METIS old 24.2 14.5 11.8 9.6 METIS old 48.2 27.4 20.3 15.7

new 22.2 14.1 10.8 8.8 new 41.4 26.7 19.9 13.6
bmwcra 1 AMF old - 44.6 30.3 27.6 ship003 AMF old 66.0 34.0 24.4 22.1

new - 42.4 28.5 26.9 new 62.2 33.5 24.2 20.4
METIS old 36.6 20.1 13.5 8.5 METIS old - 29.2 18.2 12.3

new 35.7 20.9 13.2 8.4 new - 28.4 18.0 12.0
ecl32 AMF old 25.7 19.9 16.6 16.0 twotone AMF old 47.1 28.3 20.8 19.1

new 24.2 19.0 16.0 14.5 new 47.4 29.0 20.9 18.7
METIS old 16.7 10.7 7.7 6.3 METIS old 26.9 19.1 13.3 11.4

new 16.0 11.4 7.7 5.6 new 27.9 17.7 11.9 11.2

Table 9.7

Performance of old and new code on large
irregular test matrices (factorization time in
seconds on the IBM SP3).

Matrix Order Alg 16 32 64 128
audikw 1 SCOTCH old - - 300.9 211.1

new - - 289.7 192.4
bmwcra 1 SCOTCH old 8.8 7.6 8.3 7.7

new 9.5 7.9 6.8 4.5
g7jac200 SCOTCH old 28.0 37.2 36.6 39.7

new 29.4 26.4 30.7 28.1
inline 1 SCOTCH old 20.7 14.6 12.8 12.6

new 17.6 14.0 9.3 7.4
pre2 SCOTCH old 35.7 31.6 29.7 31.6

new 31.7 27.3 24.7 26.4
ship003 SCOTCH old 13.7 13.9 11.2 12.4

new 13.6 11.1 7.6 7.1
xenon2 SCOTCH old 16.2 15.6 10.7 12.5

new 16.5 13.0 10.5 10.6

Table 9.8

Time for mapping and complete analysis
phase for large irregular test matrices (64 pro-
cessors, time in seconds on the IBM SP3).

Matrix Order Alg Map. Anal.
audikw 1 SCOTCH old 0.6 139.7

new 2.2 147.0
bmwcra 1 SCOTCH old 0.1 15.3

new 0.3 15.7
g7jac200 SCOTCH old 0.1 7.1

new 0.2 7.2
inline 1 SCOTCH old 0.3 62.2

new 0.9 63.6
pre2 SCOTCH old 1.2 133.3

new 4.6 135.8
ship003 SCOTCH old 0.1 5.9

new 0.3 6.6
xenon2 SCOTCH old 0.1 10.0

new 0.3 10.5

In Table 9.7, we show the performance results for the largest irregular test ma-
trices on the IBM SP3. Here, SCOTCH proved to be the most suitable ordering.
Furthermore, we compare the costs for the mapping in terms of computing time rel-
ative to the costs for the complete analysis phase in Table 9.8.

We see that on the IBM SP3 we significantly improve the scalability on the large
problems that we were not able to run on the CRAY T3E. Comparing the time needed
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for the tree mapping in the analysis phase as reported in Table 9.8, we note that the
new mapping algorithm is approximately three times as expensive as the old one.
Given that the absolute cost for the mapping is small, the benefits from the improved
factorization fully justify the new approach.

10. Perspectives and future work. In this section, we summarize the open
questions that need further investigation.

In section 8.3, we investigated the behavior of the new code when modifying the
assignment of candidates through relaxation and layerwise redistribution. On the test
cases that we have studied in the framework of this paper, these modifications have not
shown a significant positive effect on the overall performance of the code. Still, there
is an intuitive argument suggesting further experiments. The analysis phase tries to
predict the actual factorization of the matrix and takes mapping decisions based on
this symbolic factorization. However, there are cases where this approach might not
be accurate enough; for example, we do not take into account costs of communication
between the processors as is done, for example, by the static scheduler of PaStiX [19].
A correction of the mapping decisions that combines the techniques presented in this
paper could result from the following observation. Since, during factorization, the
assembly tree is treated from bottom up, we might expect mapping problems to have
more severe influence towards the root of the tree. For this reason, we could decide
to offer more freedom to dynamic scheduling near the root nodes so that unfortunate
mapping decisions can be corrected dynamically there.

Finally, our candidate-based approach can be modified to take account of the
system architecture, for example, with respect to nonuniform communication costs
on machines consisting of SMP nodes. We can modify the task scheduling so that
processors which require expensive communications are penalized so that the master-
slave communication costs are reduced. This approach is further described in [6].

11. Summary and conclusions. Previous studies of MUMPS, a distributed
memory direct multifrontal solver for sparse linear systems, indicated that its scala-
bility with respect to computation time and use of memory should be improved. In
this paper, we have presented a new task scheduling algorithm designed to address
these problems. It consists of an approach that treats the assembly tree layer by
layer and integrates tree modifications, such as amalgamation and splitting, with the
mapping decisions. As a major feature, we have adapted the concept of candidate
processors that are determined during the analysis phase of the solver in order to
guide the dynamic scheduling during the factorization.

We have illustrated key properties of the new algorithm by detailed case studies
on selected problems. Afterward, by comparison of the old code with the new code
on a large set of regular and irregular test problems, we have illustrated the main
benefits of the new approach. These include an improved scalability on a large number
of processors, reduced memory demands and a smaller volume of communication,
and the easier handling of parameters relevant for the performance of the algorithm.
Finally, we have pointed out possible extensions of our algorithm, in particular with
respect to its use on SMP architectures.
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Abstract. A new algorithm for information retrieval is described. It is a vector space method
with automatic query expansion. The original user query is projected onto a Krylov subspace gener-
ated by the query and the term-document matrix. Each dimension of the Krylov space is generated
by a simple vector space search, using first the user query and then new queries generated by the
algorithm and orthogonal to the previous query vectors.

The new algorithm is closely related to latent semantic indexing (LSI), but it is a local algorithm
that works on a new subspace of very low dimension for each query. This makes it faster and more
flexible than LSI. No preliminary computation of the singular value decomposition (SVD) is needed,
and changes in the data base cause no complication.

Numerical tests on both small (Cranfield) and larger (Financial Times data from the TREC
collection) data sets are reported. The new algorithm gives better precision at given recall levels
than simple vector space and LSI in those cases that have been compared.

Key words. information retrieval, vector space model, query expansion, latent semantic index-
ing, singular value decomposition, Lanczos algorithm, Krylov subspace
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1. Introduction. The purpose of an information retrieval (IR) system is to seek
through a large collection of information items, or documents, to retrieve those rele-
vant to information requests, or queries, stated by a user. In the present contribution,
we will show how computational tools from numerical linear algebra can be helpful.
We will use IR criteria to decide success or failure of the algorithms developed: What
proportion of the relevant documents are found, and how many of the retrieved doc-
uments are relevant to the user?

The documents may be books in a library, entries in a data base of news telegrams,
scientific papers in journals, or web pages on the World Wide Web (WWW). Each
document contains terms, words that are significant in some way. The query is also
formulated in terms of the same kind. We will look at the document collection as
a huge matrix, where there is one row for each term that occurs anywhere in the
collection and each column represents one document. This term-document matrix is
denoted A throughout this paper. We let the element aij in row i and column j of A
be nonzero if the ith term is present in document number j, and zero otherwise. The
term-document matrix will typically be very large and very sparse. The query will be
expressed in the same terms as the documents, i.e., as a column vector q, where the
ith element qi is nonzero if the ith term is a part of the query, and zero otherwise.

A very simple IR algorithm is to choose those documents that contain any of the
terms in the query. This Boolean search can be expressed as a row vector pT = qTA,
where each element pj is the scalar product between the query vector q and a document

∗Received by the editors December 15, 2003; accepted for publication (in revised form) by D.
Boley April 27, 2004; published electronically January 12, 2005.

http://www.siam.org/journals/simax/26-2/39226.html
†Department of Computing Science, Chalmers Institute of Technology and the University of
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column vector aj of A, and choosing those documents for which pj is nonzero. (We
use the common linear algebra convention of letting a Latin letter stand for a column
vector and T stand for transposing a column into a row. The matrix A has the columns
A = [a1, a2, . . . , an].)

The vector space model is a refinement of Boolean search. The numerical values
of the scalar products pj are used to get angles between the query vector q and the
document vectors aj . The documents are scored, starting with those that make the
smallest angle to the query vector.

In the present contribution we will study refinements of the vector space model.
The main emphasis is on subspace methods, where we project the query and document
vectors on a carefully chosen subspace and use the angles between these projected
vectors to determine closeness. We show that in many cases subspace methods behave
similarly to methods based on query expansion, another common class of refined vector
space methods.

One subspace method is latent semantic indexing (LSI) [8], where the dominant
principal component subspace computed by the singular value decomposition (SVD)
is used. It is supposed to filter away noisy and particular information from the general
and relevant information that we need to distinguish between documents on different
subjects. Another subspace method is based on a known classification and uses concept
vectors [6, 13]. One may also apply a probability model; this leads to computing
convex combinations of nonnegative basis vectors [12, 2].

The purpose of this contribution is to develop a new subspace method based on
Krylov sequences of subspaces reachable from the query vector. The first steps of
the Krylov sequence correspond to a query expansion that is closely related to query
expansion based on co-occurrences as introduced by Sparck Jones [14] and studied by
Xu and Croft [15].

The advantages of our approach, as compared to LSI, are that it works on the
original term-document matrix A, no SVD computation is needed in the outset, and
it is trivial to add and delete terms and documents between queries. The main
computational work is the same as a few applications of a naive vector space search;
the rest is manipulation of small matrices.

1.1. Summary of contents. After some preliminary explanations of numeri-
cal linear algebra and IR notation in this section, we describe subspace methods in
section 2. We explain their common characteristics and show that some well-known
algorithms can be characterized as subspace methods, using different subspaces. We
also discuss the relation between subspace methods and query expansion. In section 3
we describe the Krylov subspace algorithm we have used. It is simply the well-known
Golub–Kahan bidiagonalization [9] applied to the term-document matrix A, starting
at the query q. It is used to find an expanded query q̂, which is used to compute
angles for scoring the document vectors aj . We also give quantities that can be used
to determine convergence. In our context the algorithm is stopped at a much earlier
stage than, for instance, when solving least squares problems. Finally, in section 4,
we show results of some numerical experiments, using both the small and well-known
Cranfield data and a larger test matrix coming from the Financial Times collection
in the TREC material (from a text retrieval conference) [11].

We have formulated our algorithm and gotten some preliminary results in the
licentiate thesis of the first author [3]. Further developments, like term weighting,
experiments on more data sets, and the inclusion of relevance feedback, are discussed
in the thesis [4]. Experiments on small matrices are reported in more detail in the
conference contribution [5].
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1.2. Notation.
Matrices. Throughout this paper, A will denote the m×n term-document matrix.

The jth column vector of the matrix A will be denoted aj , and the jth column vector
of the identity matrix I will be denoted ej .

Singular value decomposition. Let

A = UΣV T(1.1)

be the SVD of A; see [10]. The best rank s approximation to A in the Frobenius or
sum of squares norm is

A(s) = UsΣssV
T
s ,(1.2)

where Us and Vs are formed by the first s columns of U and V and the s× s diagonal
matrix Σss has the s largest singular values σ1 ≥ σ2 ≥ · · · ≥ σs in its diagonal.

Seen as a mapping, the m × n matrix A maps the n-dimensional space Rn into
its range space R(A), the subspace of Rm which is spanned by the columns of A. Its
dimension is r, the rank of A.

Krylov spaces. A Krylov subspace of a square matrix C, starting at the vector v,
is a subspace of the form

Kr(C, v) = span{v, Cv,C2v, . . . , Cr−1v}.(1.3)

Increasing the dimension r, we finally get the entire reachable subspace of the pair
(C, v). Its dimension is r ≤ n, the dimension of v.

Measures. Two standard measures used by the IR community are precision and
recall. Precision is the ratio of the number of relevant documents retrieved for a given
query over the total number of documents retrieved. Recall is the ratio of relevant
documents retrieved over the total number of relevant documents for that query.
Precision and recall are usually inversely related (when precision goes up, recall goes
down and vice versa). A recall level for a particular query can be arbitrarily chosen
from 1

t ,
2
t , . . . , 1, where t is the number of documents relevant to this particular query.

In order to show precision at various recall levels graphically, interpolation may
be used. The interpolated precision at a recall cutoff R for one query is defined to be
the maximum precision at all recall levels greater than or equal to R.

The average precision is a single valued measure that reflects performance over all
relevant documents. Average precision is the average of the precision value obtained
after each relevant document is retrieved. Average precision will reward systems
that rank all relevant documents high; the last relevant document found is equally
important as the first.

When reporting results for test sets with multiple queries, we will consider the
mean interpolated average precision over all queries at a fixed sequence of recall cutoff
values.

A way to compare performance when finding the first relevant documents is doc-
ument level average, DLA(i), the precision when a certain number, i, of documents
are retrieved. It mimics the use of a search engine where 10 documents are presented
to the user each time. Then DLA(10) is the fraction of those that are relevant. For
further details, see Harman [11].

Relevance is always judged by comparing the results of an algorithm to relevance
judgments provided with the test sets. These have been compiled by a panel of human
experts who have considered at least all those documents marked as relevant.
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2. Subspace methods. In a general sense, the vector space method works in a
space D of all documents that can be expressible as texts. This space of all possible
documents has a countably infinite number of dimensions, and it is not simple to de-
termine closeness between two documents. We therefore choose to see each document
as a bag of terms, and represent it as a vector aj ∈ Rm in the m-dimensional space
of document vectors. This is already a rather severe restriction: we have reduced the
dimension from infinity to m. We have also made a choice of which words we regard
as significant, and used these words as terms.

When terms are chosen, we represent the query as a vector q ∈ Rm. We use
angles between the query vector q and the document vectors aj to determine which
documents to retrieve in the naive vector space method.

In our IR task, we have a finite collection of n documents to choose from; they
build up a document collection space A = R(A), the range space of the term-document
matrix A, which is of dimension at most n. Most often the number of terms m is larger
than the number of documents, m > n, and the documents are linearly independent,
making A into an n-dimensional subspace A ⊂ Rm. The query vector q is not in
this subspace A, but we may use the projected query vector PAq and retrieve those
documents aj that are closest to that vector. If we use angles in the Euclidean space
to decide closeness, this will yield the same ranking as when we use the angles between
the document vectors and the original query vector.

A wide class of IR algorithms can now be classified as subspace algorithms where
we restrict our view to a subspace S ⊂ A and use angles between a projected query
q̂ = PSq and projected documents âj = PSaj .

Let us look at some natural choices of subspaces S in what follows.

2.1. Dominant subspace: LSI. LSI [8] uses the SVD (1.1) of the term-
document matrix

A = UΣV T

and chooses the space of the leading s singular vectors (1.2),

S = span [Us] .

It separates the global and general structure, corresponding to the large singular
vectors, from local or noisy information, which hides among the small. LSI has been
reported to perform quite well on both rather large and small document collections.
See, for example, Dumais [7]. It can handle synonymy (when two words mean the
same thing) and polysemy (when one word has several distinct meanings depending
on context) quite well. However, LSI needs substantial computational work to get
the SVD, and there is no simple way to determine how many singular vectors s are
needed to span the leading subspace. Work on this has been done by Berry [1] and
by Zha, Marques, and Simon [16].

2.2. Classification: Centroid vectors. The singular vectors make up a basis
of the best rank s approximation to the given term-document matrix A, and this can
be considered as the best subspace if nothing else is known. On the other hand, if we
know that the documents are taken from a set of subclasses, we may use a carefully
selected set of centroid or concept vectors as the basis of another subspace S; see
Dhillon and Modha [6]. Park, Jean, and Rosen [13] compare the use of singular and
centroid vectors in a general formulation of low rank approximations of the term-
document matrix A.
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2.3. Reachable subspaces: Krylov sequences. In the present contribution,
we will try a third sequence of subspaces. We will let the subspaces be determined by
the query vector q, taking the Krylov sequence of subspaces of vectors reached from
q via a small number k of naive vector space searches.

In matrix language, this means that we take the query vector q, and multiply
it with the transposed term-document matrix A to get a ranking or scoring vector
p = AT q. Each element pj of p is a scalar product between the query vector q and
the corresponding document vector aj , so the elements of p give a ranking from the
naive vector space method (if the columns of A are normalized). In this first step of
the Krylov sequence, we find those documents that are directly related to the query,
let us say its sisters.

In the second step, we multiply this scoring vector p with the term-document
matrix A to get a new vector q2 = Ap, a new query that contains all the terms that
were contained in the documents that p pointed to. If we apply this new query, we
get p2 = AT q2, which points to all documents that contain any of all the terms in q2,
i.e., those two links away from the query, let us say its cousins.

In later steps this continues in a chain letter fashion, and soon we will reach all
documents in the collection that are reachable from the query, to borrow a term from
control theory. In matrix language,

S = Kk(AAT , q)(2.1)

after k steps; see (1.3).
In our computation we not only follow the Krylov sequence, but also make the

vectors q1, q2, . . . , qr and p1, p2, . . . , pr into orthogonal bases. Intuitively this means
that we remember what we asked for in the first query, q1, and make a totally different
query next time, q2. This is standard practice in numerical linear algebra.

2.4. Relevant subspaces. There is a fourth subspace that is of theoretical
interest and can be used for comparison purposes. That is the relevant subspace Z
spanned by those documents that are relevant to the query q. This subspace is not
possible to use in any practical algorithm; it supposes that all the relevant documents
are already known. However, it is interesting to see whether the query q is closer
to the relevant subspace Z than to any other subspace spanned by a similar number
of document vectors. Are there many irrelevant documents that are closer to the
relevant subspace Z than the query q?

In a way, the properties of the relevant subspace determine whether there is any
hope for any algorithm, built up by tools from numerical linear algebra, to find the
documents relevant to a given query.

2.5. Subspaces and query expansion. Subspace algorithms are closely re-
lated to another class of refined vector space IR methods built up around query
expansion. Say that the subspace algorithm takes a subspace S in any of the manners
described in the previous subsections, and uses the angles between the projected query
q̂ = PSq and the projected documents âj = PSaj to determine which documents aj
are relevant to the query q. The cosine of this angle is

ĉj =
q̂T âj

‖q̂‖2‖âj‖2
.

The scalar product in the numerator is

q̂T âj = (PSq)
TPSaj = qTPT

S PSaj = qTPSaj = (PSq)
Taj = q̂Taj ,
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provided that the projection is orthogonal, PT = P . We see that the scalar product
between the projected query vector q̂ and the projected document vector âj is the
same as that between the projected query q̂ and the original document vector aj .
Using scalar products to determine closeness, the subspace method based on S gives
the same result as a straightforward vector space method using the expanded query
q̂. The angles are not invariant, however, since the norms in the denominator differ.
We know that ‖âj‖2 ≤ ‖aj‖, giving a larger cosine or smaller angle in the subspace
than in the query expansion case.

Still, the result of a subspace method based on S is closely related to using the
expanded query q̂ = PSq in the original vector space method.

When we choose S as a Krylov subspace (2.1), our choice of query expansion is
related to the technique of Sparck Jones [14]. The second vector in the Krylov se-
quence (2.1), q̃2 = AAT q, weighs in components of all terms that are co-occurring with
the terms in the original query. The weights give an emphasis to the co-occurrence
in the documents that are ranked highest in the vector space search, p = AT q, giving
an effect similar to the local expansions of Xu and Croft [15].

3. The Krylov subspace algorithm. We use the Golub–Kahan bidiagonaliza-
tion algorithm [9] to compute the Krylov sequence of subspaces (2.1). It is a variant
of the Lanczos tridiagonalization algorithm and is widely used in the numerical linear
algebra community.

The Golub–Kahan algorithm starts with the normalized query vector q1 = q/‖q‖
and computes two orthonormal bases P and Q, adding one column for each step k;
see [10, section 9.3.3].

Algorithm Bidiag.

Start with q1 = q/‖q‖2 , β1 = 0.
For k = 1, 2, . . . , r do

1. αkpk = AT qk − βkpk−1

2. βk+1qk+1 = Apk − αkqk
End.

The scalars αk and βk are chosen to normalize the corresponding vectors.

Define

Qr+1 =
[
q1 q2 . . . qr+1

]
,

Pr =
[
p1 p2 . . . pr

]
,

(3.1)

Br+1,r =

⎡⎢⎢⎢⎣
α1

β2 α2

. . . αr

βr+1

⎤⎥⎥⎥⎦ .

After r steps we have the basic recursion,

ATQr = PrB
T
r,r,

APr = Qr+1Br+1,r.

The columns of Qr will be an orthonormal basis of the Krylov subspace (2.1),

span [Qr] = Kr(AAT , q) ⊆ R([Aq]),(3.2)
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in the document space, spanned by the query q and the columns of A. The columns
of Pr similarly span a basis of the Krylov subspace,

span [Pr] = Kr(A
TA,AT q) ⊆ R(AT ),(3.3)

in the term space spanned by the rows of A.
We see that Br+1,r = QT

r+1APr is the projection of A into these Krylov subspaces,
and the singular values of Br+1,r will be approximations to those of A.

If βk = 0 for some k ≤ r, we have exhausted the Krylov space (3.2), reachable
from the query q. Then QkBk,kP

T
k is the restriction of A to this reachable subspace,

and the singular values of Bk,k are a subset of those of A.
The columns of APr span the reached subspace after r steps starting from q. It

is the intersection between the Krylov subspace (3.2) and the column space of A,

R(APr) = span [Qr+1Br+1,r] ⊆ R(A).(3.4)

The basic recursion (3.2) implies that the rescaled subspace has the orthonormal basis
Wr, where

Wr = Qr+1Hr+1,r ,(3.5)

with Hr+1,r+1 the orthogonal factor in the QR factorization,

Br+1,r = Hr+1,r+1R .(3.6)

Note that since Br+1,r is bidiagonal, Hr+1,r+1 will be both orthogonal and Hessenberg
and can be computed as a product of r elementary rotations.

The projected query vector. It is now easy to use the basis Wr (3.5) to project
the query and the documents into the reached subspace (3.4). The projected query q̂
is

q̂ = PR(APr)q = WrW
T
r q = WrH

T
r+1,re1 = Wr

⎛⎜⎜⎜⎝
h1,1

h1,2

...
h1,r

⎞⎟⎟⎟⎠ ,(3.7)

and we see that the first row of H gives the coordinates of the query in the basis W .
When we run several steps r of our algorithm, new columns are added to H, but when
one column r + 1 is added in step r, it is only the last rth column that is modified.

We get the projected document âj similarly as

âj = WrW
T
r aj .(3.8)

3.1. Scoring documents. We may regard our algorithm as a subspace method
and choose the angles between the query and each of the document vectors, projected
onto the reached subspace (3.4),

Css
(r)
j =

q̂T âj
‖q̂‖2‖âj‖2

, j = 1, . . . , n.(3.9)

Alternatively, we may regard our algorithm as a query expansion method and use the
angles between the projected query and the original documents,

Cqe
(r)
j =

q̂Taj
‖q̂‖2‖aj‖2

, j = 1, . . . , n.(3.10)
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We compute these quantities using the basis W from (3.5) and the small orthogo-
nal Hessenberg Hr+1,r+1 of (3.6). Apply an elementary orthogonal transformation Sr

to make all elements but the first in the first row of Hr+1,rSr zero. Then WrSr forms

a new basis of the reached subspace (3.4). The first element (y
(r)
j )1 in the vector

y
(r)
j = ST

r W
T
r aj

will give the component of aj along q̂ and the rest of the projected âj (3.8) as the

norm of the remaining elements in y
(r)
j . Thus the subspace cosine (3.9) is

Css
(r)
j =

(y
(r)
j )1

‖y(r)
j )‖2

,

while the query expansion cosine (3.10) is slightly smaller at

Cqe
(r)
j =

(y
(r)
j )1

‖aj‖2
.

Our experiments have shown that using the query expansion cosines Cqej (3.10)
of the angles between projected query and original documents for scoring often gives
better performance than the subspace cosines Cssj (3.9), so we use query expansion,
Cqej , as our standard. It gives a preference for documents whose vectors aj are closer
in angle to the reached subspace.

3.2. Following progress. In the Krylov method, a new bidiagonalization is
performed for every query vector q. Thus the number of iterations must be small.
The optimal number of iterations r is different for various queries. Choosing the opti-
mal number r of iterations is an interesting and important problem. Figure 3.1 shows
performance for the Cranfield set using different numbers of iterations r. Perfor-
mance is measured by average precision. It is clear from this figure that best average
performance for all queries is reached when three iterations are performed. When
more than three iterations are used, the performance rapidly converges towards the
performance of the vector model. Note that some queries show optimal performance
after two iterations and very few after one iteration. For one iteration, performance
is worse than the performance for the vector model for most queries. This pattern of
performance (initial worse than the vector model, increasing performance, and then
a rapid convergence towards the vector model) was observed for most of the queries
in all data sets we tested.

The convergence towards the vector model performance can easily be explained
and estimated using quantities from the bidiagonalization algorithm presented.

Consider the least squares problem

min
x

‖Ax− q‖2,(3.11)

where A is the term-document matrix and q is the query vector. It can be solved using
the Bidiag algorithm (see, for example, the textbook [10]). In step k the distance
between the query vector and the projected query vector q̂(k) is the residual

d(k) = q −Ax(k) = q − q̂(k).

Here x(k) is the solution to problem (3.11) in step k. The distance decreases as we
let k grow, but will not tend to zero unless the query is a linear combination of the
documents in A.1

1In our tests no query vector is completely in the range of A.
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Fig. 3.1. Average precision (apr) for all 225 queries using the Cranfield set for r = 1, 2, . . . , 6
in the Bidiag algorithm. The dark lines are the vector model, and the dotted lines are the Krylov
subspace model. Queries are sorted after increasing vector model apr.

The normal equation residual AT d(k) = AT (q − q̂(k)) to the problem (3.11) will
tend to zero as k grows. If the normal equation residual converges monotonously
to zero,2 then it is not surprising that the average precision for the Krylov method,

using the query expansion scoring Cqe
(k)
j of (3.10), tends to the scoring of the vector

model. This is precisely what we see in Figure 3.1. Note that, even if the convergence
of AT d(k) is monotonous, the convergence for the average precision does not have to
be monotonous. Looking closely at Figure 3.1, a few such examples are visible.

Finally d(k), the distance between the query and its projection and the normal
equation residual AT d(k), can easily be computed for each step k in the bidiagonal-
ization procedure.

In step k the distance between the query q and the projected query q̂(k) is

d(k) = q − q̂(k)

= Qk+1e1 −Qk+1Hk+1,kH
T
k+1,ke1

= Qk+1(I −Hk+1,kH
T
k+1,k)e1

= Qk+1h
(k)
k+1h

(k)T
k+1 e1

= Qk+1h
(k)
k+1h

(k)
1,k+1,

(3.12)

2The convergence of the normal equation residual is not in general monotonous. For all tests
that we made, however, the convergence was monotonous for at least the first 10 iterations.
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and its norm is just

‖d(k)‖ = |h(k)
1,k+1|.(3.13)

The normal equation residual is

AT d(k) = ATQk+1h
(k)
k+1h

(k)
1,k+1

= Pk+1B
T
k+1,k+1h

(k)
k+1h

(k)
1,k+1

= Pk+1

(
BT

k+1,k

0 αk+1

)
h

(k)
k+1h

(k)
1,k+1

= Pk+1

(
0

αk+1h
(k)
k+1,k+1

)
h

(k)
1,k+1.

(3.14)

Its norm is

‖AT d(k)‖ = |αk+1h
(k)
k+1,k+1h

(k)
1,k+1|.(3.15)

3.3. Complexity of the algorithm. In the Bidiag algorithm, the matrix vec-
tor multiplications are performed between a sparse matrix and a dense vector. The
number of operations needed is proportional to the number of nonzero elements in A.
The rest of the algorithm consists of subtracting and normalizing vectors of length
m. In exact arithmetic we will have QT

r+1Qr+1 = I and PT
r Pr = I (3.1). In standard

floating point arithmetic, fully accurate orthogonality of these vectors is observed only
at the beginning of the process. In order to recover the orthogonality some type of
reorthogonalization would be necessary. This would of course add operations to the
complexity of the algorithm. Since we keep the number of iterations r very small, we
believe that no reorthogonalization is needed. The main computational work for the
document scoring (3.9), (3.10) again is in the size of multiplying a sparse matrix by
a dense vector.

4. Numerical experiments.
Data sets. Each one of the test collections we have used consists of a document

data base and a set of queries for which relevance judgments are available.
For illustration and comparison purposes, we have used the small and widely

circulated data sets Medline, Cranfield, ADI, and CICI.
We have also used larger test collections received from a recent Text Retrieval

Conference (TREC) [11]. The TREC 4 disc contains three data collections, the Finan-
cial Times 1991–1994 (FT), the Federal Register 1994 (FR94), and the Congressional
Record 1993 (CR). The FT collection, FR94 collection, and CR collection consist of
210,158, 55,630, and 27,922 documents, respectively.

Tests on data from the Cranfield collection and from the FT collection will be
reported here. Similar tests have been made for the Medline, ADI, CICI, and CR
collections. See reports in [4, 5]!

Parsing the data sets. For both collections, any nonzero length string of charac-
ters, delimited by white space or a return, was regarded as a term. All terms that
occurred in more than 10% of the documents were removed; they were considered
to be common words of no interest for the retrieval. Each element ai,j in the term-
document matrix was set to the number of occurrences of term number i in document
j.
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The size of the Cranfield matrix is 7, 776 terms× 1, 400 documents. Before start-
ing the bidiagonalization process, first the rows and then the columns of the term-
document matrix were normalized. This tends to deemphasize common terms and
long documents.

The FT term-document matrix is of size m = 343,578 terms × n = 210,158
documents with 26,790,949 nonzero elements. The columns were normalized before
the bidiagonalization algorithm Bidiag was started.

Results for the Cranfield collection. There are 225 queries supplied with the test
matrix, together with indices j of relevant documents for each query. This gives
between 2 and 40 relevant documents for each query; 476 documents were not relevant
to any of the queries, 417 documents were relevant to just one, while the remaining
507 documents were relevant to more than one and at most 8 of the 225 queries. We
compare our results to these correct answers.

We first summarize the performance in an averaged precision-recall graph. In
Figure 4.1 the vector model is compared to LSI and our algorithm, as described in
section 3, run for r = 3 steps. For the LSI method the optimal rank s = 296 in the
low rank approximation of A (1.2) was obtained by computing the sum of the average
precisions for each query and simply picking the s with the largest sum. It is clear
that our Krylov algorithm gives the best averaged precision at all recall levels for
these Cranfield data.

Let us look into the details and follow the Golub–Kahan algorithm on one query.
Take query 1: it has 29 relevant documents, which is rather many for a Cranfield
query. Our algorithm scores this query reasonably well. In Figure 4.2 we follow the
progress in linear algebra terms as we execute the algorithm for steps k = 1, . . . , 12.
Circles are the residual norms ‖r(k)‖ (see (3.13)); they decrease unnoticeably slowly
from 1 to 0.879. This means that the query q is at a rather large angle to the reached
subspace (3.4); it has a projection of length 0.477. We plot the normal equation
residuals ‖AT r(k)‖ (see (3.15)), as pluses, and note that they decrease reasonably fast
at a linear rate. After 12 steps we have found the projection of the query into the
document space spanned by A to nearly 3 decimals.

We were curious to see how the singular values converged, and so we plotted
estimates of their accuracies as points. Note that the leading singular value converged
very quickly; after 12 steps its vector is accurate to 9 decimals, and the singular value
to full machine precision. It is well known that the basis vectors Qk remain orthogonal
until one of the singular values converges. We plotted the orthogonality of each basis
vector qk to its predecessors Qk−1 as crosses and, true to theory, the crosses and
points intersect at half the machine accuracy level, 10−8, during step 10.

Let us now turn to a view of all the documents, and see how well we find the
relevant documents for query 1. We plot them in a two-dimensional coordinate system
in Figure 4.3. The x-axis is along the projected query q̂ (3.7). The y-axis is used to
plot the component of each aj in the reached subspace (3.8) orthogonal to q̂. This
makes up two of the three components of each aj vector. We can infer the length of
the third component, which is orthogonal to the reached subspace, by remembering
that all vectors aj were normalized to unit length, so the distances of the points
plotted to the origin indicate how close the vectors are to the reached subspace.
Those shown close to the origin are far from the reached subspace. If we continue
the bidiagonalization to full length r = n, most of the vectors will get unit length,
because then the reached subspace is the whole span of A, except in the rare case
when the query is totally unrelated to a part of the document collection.
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Fig. 4.1. Precision as a function of recall for the Cranfield collection. Left: Interpolated and
averaged over all queries (recall level precision average). Dashed (- -) is the vector model, line with
circles (-o) is LSI for rank s = 296, and plain line (-) is our Krylov algorithm for r = 3 steps.
Right: Our Krylov algorithm to r = 3 for three different queries, precision at actual recall levels.

If we use our standard query expansion-based scoring method (3.10), taking angles
between the original documents and the projected query, we would choose documents
from right to left as plotted in Figure 4.3, and we can check how well we find the
relevant documents. We show this by giving the ranking beside each of the ten
highest scored relevant documents. Look at the lower part of Figure 4.3, which shows
the situation after r = 2 steps. First come documents 1, 2, and 3; they are all
relevant. Then the next relevant document is retrieved as number 6; we see two
nonrelevant documents as points above and close below the circle with number 6.
Then the next relevant document is retrieved as number 9. Now our algorithm has
given us 10 suggestions, of which we find that 5 are relevant. We say that DLA(10),
the document level average precision after 10 documents, is 0.5. The average precision
over all relevant documents [11] is lower, 0.297, since the last relevant documents are
found much later; we see that the 10th relevant document scores as number 30, while
the 29th and last one does not appear until 1029.

Look at the upper half of Figure 4.3, the final one after r = 12 steps. There
are many points along the y-axis; they denote documents that are orthogonal to the
projected query, and will be the last ones scored. Actually 933 of the 1400 documents
are orthogonal to the original query.

When scoring documents by angles in the reached plane (3.9), these can be seen as
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Fig. 4.2. Convergence of the bidiagonalization procedure starting at query q1 for the Cranfield
matrix.

angles to the x-axis in Figure 4.3. This scoring did not differ much from the standard
query expansion scoring (3.10); for some queries it was better, and for others it was
worse. For Query 1, it gave about the same average precision at 0.296 and retrieved
relevant documents ranked as 1,2,3,4,5,9, giving a DLA(10) = 0.6. The third scoring
choice (angles to Krylov subspace) amounts to choosing those documents plotted far
from the origin in Figure 4.3, and gives about the same choices but with lower average
precision, 0.180, and DLA(10) = 0.4.

Results for the FT collection. There are several queries provided with the TREC
collection. We have used queries 251 to 350. Nine of the queries do not have any
relevant answers among the FT documents, and for the rest of the queries there are
between 1 and 280 relevant documents. Altogether 3,044 of the 210,158 documents are
relevant to some query, 116 documents are relevant to two queries, and 7 documents
are relevant to three queries.

In Figure 4.4 the vector model is compared to our algorithm run to r = 3. The
experiments were made in the same way as for Figure 4.1, but we did not have
results for LSI for this large matrix. Documents were scored using the standard query
expansion scores (3.10). We did choose r = 3 as dimension of the Krylov subspace;
here the results were better for larger subspaces for some of the queries.

We choose such a query, number 344, to report in Figure 4.5. As for Figure 4.3,
the x-axis is along the projected query q̂ (3.7), and the y-axis is used to plot the
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Fig. 4.3. Results for the Cranfield matrix for Query 1 at steps r = 12 (upper panel) or r = 2
(lower panel). Numbers are rankings given by the algorithm to relevant documents. Circles mark
relevant documents, while points mark those not relevant. An asterisk marks the projected query.
Horizontal (x-axis): component in direction of the projected query q̂; vertical (y-axis): component
orthogonal to q̂ in reached subspace.

component of each document vector in the reached subspace. The labels show the
ranking of the relevant documents; there are only 3 relevant documents among all the
210,158, quite like seeking a needle in a haystack. Note that the relevant documents
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Fig. 4.4. Interpolated precisions for recall levels 0, 0.1, . . . , 1 for the FT collection from the
TREC data base. The vector model (–) is compared to our algorithm for r = 3 (- -). The average
of the 25 documents that are best ranked by the vector space method is included.

get better ranking for the larger subspace r = 6 than for r = 3. This question is not
one of the 25 best questions included in Figure 4.4.

Discussion. The experiments have shown good performance for the small data
set (Cranield) but not very good performance for the larger FT set. Although we
cannot notice any major differences in the structure of the term-document matrices
or the distribution of singular values, there are differences between the two sets. The
FT set consists of news telegrams and Cranfield of scientific papers. For the Cranfield
collection, most users will probably agree on the relevance judgments given for this set,
while for the FT documents more subjectivity is involved in the relevance judgments.
We believe the larger sets do reflect a more realistic case.

The construction of the FT matrix also plays a role in the performance of our
algorithm. Perhaps more care has to be taken when deciding what terms to use for
the matrix. It might not be enough to remove all terms occurring in more than 10%
of the documents; maybe that figure should be 5% or something else.

Some type of row and column normalization is useful. In our Cranfield exper-
iments, we first normalized the row vectors, and then the column vectors. Even if
the normalization of the column vectors destroys the row normalization, a smoothing
effect remains. This had some effect on the performance for the Cranfield matrix. For
the FT matrix only the columns were normalized.

The starting vector (the query) in our algorithm plays an important role, and it
might also benefit our algorithm to pay more attention to how to construct the query
vector. We have only tried our algorithm for at most r = 12 steps, since generating a
larger subspace is too time-consuming to be interesting in a realistic case. Moreover,
the starting vector loses its importance the longer we iterate. For our future work we
will concentrate on improving the starting vector, and we will investigate how to add
relevance feedback to the algorithm.
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Fig. 4.5. Results for the TREC FT matrix for Query 344, at steps r = 3 (upper panel) and
r = 6 (lower panel). Numbers indicate rankings of relevant documents. For the upper panel, 97% of
the documents are in the interval < 0.1, and for the lower panel, 99% of the documents are in that
interval; only a sample of those are shown. An asterisk marks the projected query.
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1. Introduction. One of the key elements in solving practical problems is con-
struction of computationally efficient and stable algorithms. Different matrix fac-
torizations are widely used for this purpose. There are many known matrix decom-
positions, and the list is growing. A powerful tool allowing one to obtain various
factorizations of a matrix was described in [4], where different matrix factorizations
have been unified.

For solving linear least squares problems the QR decomposition is often used and
there are different methods for computing the QR factorization [1, 2, 4, 5, 7, 8, 9, 11,
14, 15].

In this paper, we suggest such an approach to solving the linear least squares
problem that can provide computational savings in comparison with the algorithms
using modified Gram–Schmidt orthogonalization and Householder transformations.
The key idea here is to create a special decomposition of the matrix by utilizing a
partial orthogonalization process proposed in 1980 [18], which is indeed a special case
of the generalized process described in 1995 [4].

In [18, 19] it was proposed to choose k elements simultaneously—the pivot vector
of length k—instead of the pivot element in the Gauss transformation of the elimina-
tion method, where k ∈ {1, . . . , n}, n is the number of columns of a matrix A. This
idea leads to a parametric linear transformation depending on k, which in geomet-
rical terms is a realization of the idea of partial orthogonalization and in algebraic
terms it is a “convex” combination of the Gauss transformation of the elimination
method (k = 1) and the Gram–Schmidt transformation of the orthogonalization pro-
cess (k = n). Using this transformation the parametric partial orthogonalization
process was obtained (see, for example, [19]).

This paper is organized as follows. Section 2 describes the parametric linear
transformation, the partial orthogonalization process, and its modified version. The
stability analysis of the modified partial orthogonalization process is also given. It
is shown that the modified version provides computational stability if the growth
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factor is not large. Section 3 presents the generalization of QR decomposition by
performing the modified partial orthogonalization process and section 4 uses this
development to calculate the normal pseudosolution by the obtained decomposition.
In section 5 the block approach to this problem is described and section 6 illustrates
how to calculate normal pseudosolution of the linear least squares problem in this case.
The concepts presented in sections 2–6 are illustrated by some numerical examples.
Section 7 gives the number of required arithmetical operations for solving the least
squares problem in two cases (general and block approaches). It is shown that in
the block case the proposed method can be more effective at the certain values of
parameters than the algorithms using modified Gram–Schmidt orthogonalization and
Householder transformations.

2. Partial orthogonalization process. Let N = {1, . . . , n}, M = {1, . . . ,m}.
By x[K] we denote the corresponding K-piece of the vector x ∈ R

n, where K ⊂ N .
We do not distinguish between row and column vectors.

2.1. Parametric linear transformation. Let a system of vectors a1, . . . , am ∈
R

n be given. Let K ⊂ N and the Euclidean norm of a1[K] be ‖a1[K]‖ �= 0. Set

b1 =
a1

‖a1[K]‖ ,

bi = ai + αib1 for all i > 1

⎫⎪⎬⎪⎭ ,

where αi = αi(K) = −ai[K]b1[K], i > 1.
Let K = {1, . . . , k}, where k ≤ n. This transformation is a generalization of

both the Gauss transformation (for k > 1) and the Gram–Schmidt transformation
(for k < n). Note that for all i > 1

bi[K]b1[K] = (ai[K] + αib1[K])b1[K] = −αi + αi = 0;

that is, the subvectors bi[K] are orthogonal to b1[K].
The vectors a and b ∈ R

n are called partially orthogonal if a[K]b[K] = 0, K ⊂ N ,
and are called partially orthonormal if the norms of these subvectors are equal to 1.

2.2. Partial orthogonalization process and its modification. Consider a
system of vectors a1, . . . , am ∈ R

n, where m ≤ n. Let K ⊂ N and the number of
elements in the set K be equal to k, k ≥ m. Without loss of generality, we assume that
K = {1, . . . , k}, and the subvectors a1[K], . . . , am[K] ∈ R

k are linearly independent.
Then the partial orthogonalization process permits one to obtain from the system of
vectors a1, . . . , am another system of linearly independent vectors b1, . . . , bm ∈ R

n,
where the subvectors b1[K], . . . , bm[K] ∈ R

k are orthonormal.
The system of vectors b1, . . . , bm is obtained in the following way. Successively

for s = 1, . . . ,m

bs =
bs

‖bs[K]‖
(b1 = a1),

bs = as + α1b1 + · · · + αs−1bs−1,

(2.1)

where

αi = αi(K) = −as[K]bi[K], i = 1, . . . , s− 1.(2.2)

If K = N in (2.1) and (2.2), then we obtain the Gram–Schmidt orthogonalization;
that is, the system of vectors b1, . . . , bm is orthogonal (orthonormal).
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If K ⊂ N , then the process (2.1)–(2.2) is called a partial orthogonalization process
and the system of vectors b1, . . . , bm is called partially orthogonal.

The number of arithmetical operations (1 operation = 1 addition + 1 mul-
tiplication) for the partial orthogonalization process is (k + n)m2/2, where k ∈
{m,m + 1, . . . , n}. If k = n, then we obtain the number of operations for the or-
thogonalization process, that is, nm2.

Further we will use the modified partial orthogonalization process, where at each
sth step we transform not only one row, but all the rows which are below the sth row.
At the end of this process we obtain the system of partially orthogonal vectors. To
obtain a partially orthonormal system we partially orthonormalize this system.

Let us consider the modified partial orthogonalization process. Denote

a1
i = ai, i = 1, . . . ,m,

and further successively for s = 1, . . . ,m− 1 set

as+1
i = asi + αia

s
s, i = s + 1, . . . ,m,

where

αi = αs
i (K) = −asi [K]ass[K]

ass[K]ass[K]
, i = s + 1, . . . ,m.

After m steps we obtain the system of partially orthogonal vectors a1
1, . . . , a

m
m.

Partially normalizing these vectors, that is, by setting

qs =
ass

‖ass[K]‖ , s = 1, . . . ,m,

we obtain the system of partially orthonormal vectors q1, . . . , qm.
Note that if we obtain the system {bs} ∈ R

n by the partial orthogonalization
process, then bs = qs for s = 1, . . . ,m.

Example. Let us consider the modified partial orthogonalization process on the
next example. Let m = 3, n = 6, and the vectors

a1 = (1 1 1 1 1 1), a2 = (1 0 0 0 0 1), a3 = (0 0 1 1 − 1 0)

be given.1 Select K = {1, 2, 3, 4}. Then after each of three steps we obtain Tables 2.1–
2.3, respectively.

Denote

a1
1 = (1 1 1 1 1 1), a2

2 =

(
3

4
− 1

4
− 1

4
− 1

4
− 1

4

3

4

)
,

a3
3 =

(
0 − 2

3

1

3

1

3
− 5

3
0

)
.

Since the norms ‖a1
1[K]‖ = 2, ‖a2

2[K]‖ =
√

12
4 , ‖a3

3[K]‖ =
√

6
3 , the vectors

q1 =

(
1

2

1

2

1

2

1

2

1

2

1

2

)
, q2 =

(
3√
12

− 1√
12

− 1√
12

− 1√
12

− 1√
12

3√
12

)
,

q3 =

(
0 − 2√

6

1√
6

1√
6

− 5√
6

0

)
are partially orthonormal.

1Note that this example will be used again later on.
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Table 2.1

K N\K
1 2 3 4 5 6 αi

1 1 1 1 1 1 −

1 0 0 0 0 1 − 1
4

0 0 1 1 −1 0 − 1
2

Table 2.2

K N\K
1 2 3 4 5 6 αi

1 1 1 1 1 1 −
3
4

− 1
4

− 1
4

− 1
4

− 1
4

3
4

−

− 1
2

− 1
2

1
2

1
2

− 3
2

− 1
2

2
3

Table 2.3

K N\K
1 2 3 4 5 6

1 1 1 1 1 1

3
4

− 1
4

− 1
4

− 1
4

− 1
4

3
4

0 − 2
3

1
3

1
3

− 5
3

0

A ∈ R
m×n is called a partially orthogonal matrix if its submatrix A1 ∈ R

m×k,
k < n, is a matrix with orthogonal rows.

2.3. On stability of the modified partial orthogonalization process. Sev-
eral authors have discussed the stability of both the Gaussian elimination and the
Gram–Schmidt orthogonalization (see, for example, [2, 3, 5, 6, 7, 8, 9, 11, 13, 14,
15, 20, 21]). Both processes are unstable. Nevertheless, it has been shown that if
the procedures are organized in a proper way, then more accurate results are pos-
sible. In particular, the Gaussian elimination with partial pivoting provides stable
computation if the growth factor is not large (see, for example, [5, 7, 8, 14, 17, 20,
21]).

On the other hand, the modified Gram–Schmidt orthogonalization has signifi-
cantly different numerical properties than the classical one [5, 7, 8, 11, 15, 20, 21], but
both of them require reorthogonalization for stable computations. It was also demon-
strated that, for solving the linear least squares problem by the modified version,
reorthogonalization is not needed [3]. Besides, the stability of the modified version is
independent of the pivoting strategies, even though they can readily be adopted to
this version [3, 13].

We propose to use the modified partial orthogonalization process with the fol-
lowing pivoting rule. At each sth step (s = 1, . . . ,m) as a pivot row we choose the
ith row, where ‖asi [K]‖, s ≤ i ≤ m, is maximized. Now we can guarantee that the
absolute values of all multipliers αs

i are bounded by 1. Therefore, each element of the
current matrix may at most double. Indeed,

|asij | = |as−1
ij + αs

ia
s−1
sj | ≤ |as−1

ij | + |as−1
sj | ≤ 2 max

i,j
|as−1

ij |, i, j > s.

A growth factor for this method can be calculated similarly to the one for the
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Gaussian elimination, that is,

ρ =

max
i,j,s

|asij |

max
i,j

|aij |
= 2τ−1,

which in the extreme case τ = n coincides with the estimation obtained by Wilkin-
son [21]. Since the growth factor for the proposed method with suggested pivoting
rule is bounded, we can conclude that the method is stable for a given pivoting
strategy if the growth factor is small, which is usually the case in the practical appli-
cations.

For the pivoting strategy it is required to perform additionally mk operations and
m comparisons.

To ensure stability it is convenient to assume hereafter that the “modified partial
orthogonalization process” means the “modified partial orthogonalization process with
the proposed pivoting rule.”

3. Development of QR decomposition. Let A ∈ R
m×n, m ≤ n, be a full

rank matrix. It is well known that in this case using the orthogonalization process the
matrix A can be represented in the form A = RQ, where R ∈ R

m×m is a nonsingular
lower triangular matrix and Q ∈ R

m×n is a matrix with orthogonal (orthonormal)
rows.

Using the modified partial orthogonalization process we now generalize the QR
decomposition.

Theorem 3.1. Let the rank of the submatrix A1 ∈ R
m×k, k ≥ m, of the matrix

A ∈ R
m×n be equal to m. Then

A = RQ = R(Q1, Q2),(3.1)

where R ∈ R
m×m is a nonsingular lower triangular matrix and Q = (Q1, Q2) ∈ R

m×n

is a partially orthogonal matrix; that is, Q1 ∈ R
m×k is a matrix with orthogonal rows.

Proof. Denote A1 = A. Construct the matrix

M1 =

⎡⎢⎢⎢⎣
1 0 · · · 0
α21 1 · · · 0
...

...
. . .

...
αm1 0 · · · 1

⎤⎥⎥⎥⎦ ,

where αi1 = α1
i (K) = −a1

i [K]a1
1[K]

a1
1[K]a1

1[K]
, i = 2, 3, . . . ,m.

Since we assume A1 ∈ R
m×k to be a full rank matrix, a1

1[K] will be a nonzero
vector. Define the matrix

A2 = M1A1.(3.2)

Note that the matrix A2 is obtained from the matrix A1 by the modified partial
orthogonalization (first step, s = 1).
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Similarly, successively for s = 2, 3, . . . ,m− 1 we construct the matrices

Ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
0 · · · αs+1,s · · · 0
...

. . .
...

. . .
...

0 · · · αms · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(3.3)

where αis = αs
i (K) = −as

i [K]as
s[K]

as
s[K]as

s[K]
, i = s + 1, . . . ,m, and find

As+1 = MsAs.(3.4)

For s = m− 1

Am = Mm−1Am−1,

where the matrix Am ∈ R
m×n is partially orthogonal, since its submatrix Am

1 ∈ R
m×k

is a matrix with orthogonal rows. From (3.2) and (3.4) we can see that

Am = MA1 = MA,(3.5)

where M = Mm−1Mm−2 . . .M1. Since the matrices Ms have the form (3.3) for
s = 1, . . . ,m− 1, then we obtain the inverses of these matrices by reversing the signs
of their underdiagonal elements. Therefore, the inverse of M is

M̃ =

⎡⎢⎢⎢⎣
1 0 · · · 0

−α21 1 · · · 0
...

...
. . .

...
−αm1 −αm2 . . . 1

⎤⎥⎥⎥⎦ .

From (3.5) we obtain the decomposition

A = M̃Am,(3.6)

where M̃ ∈ R
m×m is a nonsingular lower triangular matrix and Am ∈ R

m×n is
a partially orthogonal matrix. To partially orthonormalize the rows of Am we set

qs =
am
s

‖am
s [K]‖ and R = (r1, . . . , rs, . . . , rm), where Rs = α̃s‖ams [K]‖, s = 1, . . . ,m

(α̃s are the columns of M̃). Thus, from (3.6) we obtain the decomposition (3.1), that
is, A = RQ = R(Q1, Q2).

If in the matrix A ∈ R
m×n the number of rows is greater than the number of

columns (m > n), then the decomposition of A has the form

A = QR =

[
Q1

Q2

]
R,(3.7)

where Q1 ∈ R
k×n is a matrix with orthonormal columns and R ∈ R

n×n is a nonsin-
gular upper triangular matrix.

If k = n in the decomposition (3.1), then we obtain the QR decomposition of A.
If k < n, then the decomposition (3.1) is called a partially orthogonal decomposition
of A, or a QKRK decomposition.
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Example. Consider the example given for the modified partial orthogonalization
process. In this case, according to Theorem 3.1, we obtain

A3 =

⎡⎢⎣ 1 1 1 1 1 1
3
4 − 1

4 − 1
4 − 1

4 − 1
4

3
4

0 − 2
3

1
3

1
3 − 5

3 0

⎤⎥⎦ , M̃ =

⎡⎢⎣ 1 0 0
1
4 1 0
1
2 − 2

3 1

⎤⎥⎦ .

Therefore,

Q =

⎡⎢⎣
1
2

1
2

1
2

1
2

1
2

1
2

3√
12

− 1√
12

− 1√
12

− 1√
12

− 1√
12

3√
12

0 − 2√
6

1√
6

1√
6

− 5√
6

0

⎤⎥⎦ is a partially orthonormal matrix,

R =

⎡⎢⎢⎣
2 0 0

1
2

√
12
4 0

1 −
√

12
6

√
6

3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0

1
4 1 0

1
2 − 2

3 1

⎤⎥⎥⎦
⎡⎢⎢⎣

2 0 0

0
√

12
4 0

0 0
√

6
3

⎤⎥⎥⎦ .

It is easy to see that A = RQ, that is,⎡⎢⎢⎣
1 1 1 1 1 1

1 0 0 0 0 1

0 0 1 1 −1 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2 0 0

1
2

√
12
4 0

1 −
√

12
6

√
6

3

⎤⎥⎥⎦
⎡⎢⎢⎣

1
2

1
2

1
2

1
2

1
2

1
2

3√
12

− 1√
12

− 1√
12

− 1√
12

− 1√
12

3√
12

0 − 2√
6

1√
6

1√
6

− 5√
6

0

⎤⎥⎥⎦ .(3.8)

4. Calculation of normal pseudosolution by partially orthogonal de-
composition. Let the rank of A ∈ R

m×n, m > n, be equal to n.
Consider the least squares problem

Ax ∼= b,(4.1)

where x ∈ R
n is an unknown column. We will show that if the QKRK decomposition

(3.7) is known, then the calculation of the normal pseudosolution of the system (4.1)
is reduced to the problem of solving the system

URx = r,

or the following two systems:

Uy = r,(4.2)

Rx = y,(4.3)

where U = QTQ = I + QT
2 Q2 ∈ R

n×n is a symmetric and positive definite matrix,
R ∈ R

n×n is an upper triangular matrix, r = QT b ∈ R
n, I ∈ R

n×n is the identity
matrix, and y ∈ R

n is an unknown column.
To prove this statement we consider the solvable normal system

ATAx = AT b(4.4)
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instead of (4.1). Let k < m and the QKRK decomposition (3.7) be obtained. Since
Q1 ∈ R

k×n is a matrix with orthonormal columns, QT
1 Q1 = I. Therefore,

ATA = (QR)TQR = RTQTQR = RT

[
Q1

Q2

]T [
Q1

Q2

]
R

= RT (QT
1 Q1 + QT

2 Q2)R = RT (I + D)R = RTUR.

Here D = QT
2 Q2 is a symmetric matrix, and it is well known that the matrix in the

form U = I + D is symmetric and positive definite. Thus

ATA = RTUR.(4.5)

On the other hand, the right side of the normal system (4.4) is

AT b = (QR)T b = RTQT b = RT r,(4.6)

where r = QT b.
Taking into account (4.5) and (4.6), we represent the system (4.4) in the form

RTURx = RT r. By left-multiplying both sides of this system with the inverse of RT ,
we obtain URx = r.

From here it follows that for the calculation of a normal pseudosolution it is
necessary to solve two systems, (4.2) and (4.3).

Remark 4.1. If we select k = m, then U ∈ R
n×n is an identity matrix and the

solution of the system (4.2) is y = r. In other words, at k = m, the calculation
of a normal pseudosolution is reduced to solving only the triangular system (4.3).
This result coincides with the result obtained by using the QR decomposition of the
orthogonalization process [3, 7].

Example. Let us consider the example of problem (4.1), where A and b are

A =

⎡⎣ 1 1 1 1 1 1
1 0 0 0 0 1
0 0 1 1 −1 0

⎤⎦T

, b = ( 1 1 −1 1 1 1 )T .

Taking into account (3.7) and the form of decomposition (3.8), we have A = QR,
where

A Q R

K

−−
M\K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1 0 0

1 0 1

1 0 1

1 0 −1

1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

3√
12

0
1
2 − 1√

12
− 2√

6
1
2 − 1√

12
1√
6

1
2 − 1√

12
1√
6

1
2 − 1√

12
− 5√

6
1
2

3√
12

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ 2 1
2 1

0
√

12
4 −

√
12
6

0 0
√

6
3

⎤⎥⎦ ,

or in the block form,

A =

[
A1

A2

]
=

[
Q1

Q2

]
R.
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For this example we obtain

D = QT
2 Q2 =

⎡⎢⎢⎣
1
2

1√
12

− 5
2
√

6

1√
12

5
6

5
6
√

2

− 5
2
√

6
5

6
√

2
25
6

⎤⎥⎥⎦ ,

U = I + D =

⎡⎢⎢⎣
1 + 1

2
1√
12

− 5
2
√

6

1√
12

1 + 5
6

5
6
√

2

− 5
2
√

6
5

6
√

2
1 + 25

6

⎤⎥⎥⎦ , r = QT b =

⎡⎢⎢⎣
2

2√
3

− 7√
6

⎤⎥⎥⎦ .

Solving the system (4.2) by the Cholesky method, we obtain y = ( 10
11

2
√

12
11 − 2

√
6

11 )T .
Further, solving the triangular system (4.3), we obtain the normal pseudosolution
x = ( 7

11
4
11 − 6

11 )T .

5. Further development of QR decomposition (block approach). Con-
sider the matrix A ∈ R

m×n, m ≤ n. To obtain the QKRK decomposition of the
matrix A for the modified partial orthogonalization process we assume that the num-
ber of elements of the set K is equal to k, where k ∈ {m,m+ 1, . . . , n}, and the rank
of the submatrix A1 ∈ R

m×k is equal to m. Now we remove these restrictions and
assume only that the rank of A is equal to m. In this case we consider a new process
based on the modified partial orthogonalization process. This process permits one to
obtain a decomposition of A in the form

A = RQ,(5.1)

where R ∈ R
m×m is a nonsingular lower triangular matrix, Q ∈ R

m×n is a rectangular
upper block-diagonal matrix with τ blocks, and each block (not necessarily square) is
a matrix with orthogonal rows. In other words, the matrix Q has the form

K1 K2 . . . Kτ Nτ

R1 Q11 . . .

R2 Q22 . . .

0 .
... 0 .

.
Rτ . . . Qττ

Q

(5.2)

where Ks ⊆ N (s = 1, . . . , τ, τ ≤ m), Ki

⋂
Kj = o/ (i �= j for all i, j), M =

⋃
τ
s=1Rs,

the submatrices Qss (s = 1, . . . , τ) are matrices with orthogonal rows, 0 is a zero
submatrix. Note that depending on the selection of Ks the set Nτ can be empty.

To obtain the decomposition (5.1) we consider the process consisting of τ itera-
tions. In each sth iteration we select the set Ks (the number of elements in the set
Ks is ks) and apply the modified partial orthogonalization process with respect to the
chosen system of vectors.
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Let us consider this process.

First iteration. Set A1 = A. Select K1 ⊂ N . Let the rank of the submatrix
A1

1 ∈ R
m×k1 be equal to r1 and the first r1 rows be linearly independent. Using the

modified partial orthogonalization process, after r1 steps from the matrix A1, that is,

K1 N1 = N\K1

M A1
1

A1 = A

we obtain the matrix A2 of the form

K1 K2 N2 = N1\K2

R1 A2
11

M1 = M\R1

0 A2
2

A2

Here R1 = {1, . . . , r1} and A2
11 ∈ R

r1×k1 is a matrix with orthogonal rows. Since
in this process the modified orthogonalization goes with respect to the rows of the
submatrix A1

1 ∈ R
m×k1 , then the rank of A1

1 is calculated during this process.

Second iteration. Select K2 ⊂ N1. Let the rank of the submatrix A2
2 ∈ R

(m−r1)×k2

be equal to r2 and the first r2 rows be linearly independent. Again, using the modified
partial orthogonalization process, after r2 steps from the matrix A2 we obtain the
matrix A3 of the form

K1 K2 N2 = N1\K2

R1 A3
11

R2 A3
22

0
0

A3
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Here R2 = {r1 + 1, . . . , r1 + r2} and the submatrix A3
22 ∈ R

r2×k2 is a matrix with
orthogonal rows.

Continuing this process, after τ iterations we obtain the matrix of the form (5.2).
Example. Let

A1 = A =

⎡⎢⎢⎢⎣
1 1 1 1 1 1

1 0 0 0 0 1

0 0 1 1 −1 1

−1 −1 0 0 0 −1

⎤⎥⎥⎥⎦ .

First iteration. Select K1 = {1, 2}. Using the modified partial orthogonalization
process we obtain Tables 5.1–5.3.

Second iteration. Select K2 = {3, 4, 5}. By performing the second iteration we
obtain Table 5.4.

Note that the rows of the diagonal submatrices

A4
11 =

[
1 1
1
2 − 1

2

]
and A4

22 =

[
1 1 −1
2
3

2
3

4
3

]
are orthogonal.

Using this example, by analogy with Theorem 3.1 we will now show how to obtain
the decomposition (5.1). Using the columns αi of Tables 5.1–5.3 we have A4 = MA,
where M = M3M2M1. From this we obtain

A = M̃A4,(5.3)

where

M̃ =

⎡⎢⎢⎢⎣
1 0 0 0
1
2 1 0 0

0 0 1 0

−1 0 1
3 1

⎤⎥⎥⎥⎦
is the inverse of M .

In order to partially normalize the rows of the matrix A4 we calculate the norms

of the subvectors ‖a4
1[K1]‖ =

√
2, ‖a4

2[K1]‖ =
√

2
2 , ‖a4

3[K2]‖ =
√

3, ‖a4
4[K2]‖ = 2

√
6

3 ,
and set

K1 K2 N2

Q =

⎡⎢⎢⎢⎢⎢⎣
1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

− 1√
2

− 1√
2

− 1√
2

− 1√
2

1√
2

0 0 1√
3

1√
3

− 1√
3

1√
3

0 0 1√
6

1√
6

2√
6

− 1
2
√

6

⎤⎥⎥⎥⎥⎥⎦
R1

−−

R2

,

where Q11 ∈ R
r1×k1 and Q22 ∈ R

r2×k2 are the matrices with orthonormal rows.
Further we calculate

R =

⎡⎢⎢⎢⎣
1 0 0 0
1
2 1 0 0

0 0 1 0

−1 0 1
3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

√
2 0 0 0

0
√

2
2 0 0

0 0
√

3 0

0 0 0 2
√

6
3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
√

2 0 0 0
√

2
2

√
2

2 0 0

0 0
√

3 0

−
√

2 0
√

3
3

2
√

6
3

⎤⎥⎥⎥⎥⎦ .
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Table 5.1

K1 N1 = N\K1

1 2 3 4 5 6 αi

1 1 1 1 1 1 −
1 0 0 0 0 1 − 1

2

0 0 1 1 −1 1 0

−1 −1 0 0 0 −1 1

A1 = A

Table 5.2

K1 N1 = N\K1

1 2 3 4 5 6 αi

1 1 1 1 1 1 −
R1

1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

−
0 0 1 1 −1 1 0

0 0 1 1 1 0 0

A2

Table 5.3

Here R1 = {1, 2}.

K1 K2 N2

1 2 3 4 5 6 αi

1 1 1 1 1 1 −
R1

1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

−
0 0 1 1 −1 1 −
0 0 1 1 1 0 − 1

3

A3

Table 5.4

Here R2 = {3, 4}, M = R1 ∪R2.

K1 K2 N2

1 2 3 4 5 6
1 1 1 1 1 1

R1
1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

0 0 1 1 −1 1

R2 0 0 2
3

2
3

4
3

− 1
3

A4

Due to (5.3) it is easy to see that A = RQ. Thus we obtain the following statement.
Theorem 5.1. Let A ∈ R

m×n, m ≤ n, be a full rank matrix. Let N = {1, . . . , n},
K = {K1, . . . ,Kτ}, where

Ks ⊆ N, s = 1, . . . , τ, τ ≤ m, Ki

⋂
Kj = o/, i �= j for all i, j, Nτ = N\K.

Then the matrix A can be represented in the form

A = RQ,(5.4)

where R ∈ R
m×m is a nonsingular lower triangular matrix, and Q ∈ R

m×n has the
form (5.2), where the diagonal submatrices Qss, s = 1, . . . , τ have orthogonal rows.



AN EFFICIENT APPROACH TO THE LEAST SQUARES PROBLEM 595

The decomposition (5.4) is called a partially orthogonal decomposition, or a QKRK

decomposition (block approach). If all Ks = K, then we obtain the decomposition
(3.1).

If in the matrix A the number of rows is greater than the number of columns
(m > n), then

A = QR.(5.5)

Here Q ∈ R
m×n has the form of the transposed matrix with respect to (5.2); that

is, Q is a rectangular lower block-diagonal matrix with τ blocks, where each block
is a corresponding rectangular matrix with orthogonal columns, and R ∈ R

n×n is a
nonsingular upper triangular matrix.

6. Calculation of normal pseudosolution by QKRK decomposition
(block approach). Again consider the least squares problem Ax ∼= b, where A ∈
R

m×n, m > n, and x ∈ R
n is an unknown column.

By analogy with discourses provided in section 4 using the QKRK decomposition
(5.5) we reduce the calculation of the normal pseudosolution to solving the system

URx = r,

or to solving two systems

Uy = r,(6.1)

Rx = y,(6.2)

where U = QTQ is a symmetric and “positive definite” matrix2, R ∈ R
n×n is an

upper triangular matrix, r = QT b, and y ∈ R
n is an unknown column.

Consider this statement on the example from section 5, setting A = AT , that is,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 −1

1 0 0 −1

1 0 1 0

1 0 1 0

1 0 −1 0

1 1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−1

1

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(6.3)

For the matrix A, at K = {K1,K2}, where K1 = {1, 2}, K2 = {3, 4, 5},
K1 K2 N2

Q =

⎡⎢⎢⎢⎢⎢⎣
1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2
− 1√

2
− 1√

2
− 1√

2
− 1√

2
1√
2

0 0 1√
3

1√
3
− 1√

3
1√
3

0 0 1√
6

1√
6

2√
6
− 1

2
√

6

⎤⎥⎥⎥⎥⎥⎦

T

R1

−−
R2

or in the block form, Q =

⎡⎢⎣Q11 0

Q21 Q22

Q31 Q32

⎤⎥⎦ ,

R =

⎡⎢⎢⎢⎢⎣
√

2
√

2
2 0 −

√
2

0
√

2
2 0 0

0 0
√

3
√

3
3

0 0 0 2
√

6
3

⎤⎥⎥⎥⎥⎦ .(6.4)

2We will call U a “positive definite” matrix, if the diagonal submatrices Uss are positive definite
for all s.
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Since matrices Q11 and Q22 have orthonormal columns, QT
11Q11 = I, QT

22Q22 = I.
Therefore,

U = QTQ =

⎡⎢⎣ Q11 0

Q21 Q22

Q31 Q32

⎤⎥⎦
T ⎡⎢⎣ Q11 0

Q21 Q22

Q31 Q32

⎤⎥⎦ =

[
I + D11 D12

D21 I + D22

]
= I + D.

Here D11 = QT
21Q21 + QT

31Q31 is a symmetric matrix; D12 = QT
21Q22 + QT

31Q32,

D21 = QT
22Q21 + QT

32Q31, that is, D12 = DT
21; D22 = QT

32Q32 is a symmetric matrix.
In our example,

D11 =

[
2 −1

−1 2

]
, D12 =

[
2√
6

7
2
√

12

0 − 9
2
√

12

]
,

D21 =

[
2√
6

0

7
2
√

12
− 9

2
√

12

]
, D22 =

[
1
3 − 1

6
√

2

− 1
6
√

2
1
24

]
,

D =

[
D11 D12

D21 D22

]
.

Finally,

U = I + D =

⎡⎢⎢⎢⎢⎢⎣
1 + 2 −1 2√

6
7

2
√

12

−1 1 + 2 0 − 9
2
√

12
2√
6

0 1 + 1
3 − 1

6
√

2
7

2
√

12
− 9

2
√

12
− 1

6
√

2
1 + 1

24

⎤⎥⎥⎥⎥⎥⎦ .(6.5)

The solution of the first system (6.1) with the matrix (6.5) and with the right side

r = QT b = ( 2√
2

2√
2

1√
3

− 1
2
√

6
)T is y = (

√
2

2

√
2

2 0 0)T , and the solution of the

second system (6.2) with the matrix R, which has the form (6.4), is x = (0 1 0 0)T .
Remark 6.1. To calculate the pseudoinverse of A we consider the matrix equation

AX ∼= I. In this case we solve two matrix systems UY = QT and RX = Y instead
of the systems (4.2) and (4.3), or instead of (6.1) and (6.2) in case of using the
decomposition (5.4).

7. On the number of arithmetical operations for solving the least
squares problem. The number of operations for reducing the least squares problem
to the triangular form (4.3), using the QKRK decomposition (3.7) of the partial
orthogonalization process, is equal to

(m + k)n2

2
+

(m− k)n2

2
+

n3

6
= mn2 +

n3

6
,(7.1)

where k ∈ {n, n + 1, . . . ,m − 1}; (m+k)n2

2 is the number of operations of the partial

orthogonalization process; (m−k)n2

2 is the number of operations for forming the matrix

U ∈ R
n×n; and n3

6 is the number of operations for solving system (4.2) by the Cholesky
method.

Let us now consider the block decomposition (5.4) in the case where the number
of iterations is equal to 2 and K1 = {1, . . . , k}, K2 = {k + 1, . . . ,m}. Let the rank
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of the submatrix A1 ∈ R
k×n be equal to r. In this case the number of operations for

reducing the least squares problem to the triangular form (6.2) is equal to

rm(2n− r) + (m− k)(n− r)2 +
n3

6
,(7.2)

where n3/6 is the number of operations for solving the system (6.1) by the Cholesky
method.

Let us now compare the estimations (7.1) and (7.2) with the estimations for the
orthogonalization process (mn2) and for the Householder method (mn2 − n3/3) [11].

In comparison with the orthogonalization process according to (7.1) we have

∆1 =

(
mn2 +

n3

6

)
−mn2 =

n3

6
> 0,

and in comparison with the Householder method we have

∆2 =

(
mn2 +

n3

6

)
−
(
mn2 − n3

3

)
=

n3

2
> 0.

In other words, the number of operations using the partial orthogonalization process is
greater than the number of operations using the orthogonalization process by the value
n3/6, and it is greater than the number of operations using the Householder method by
n3/2. Note that the estimations ∆1 and ∆2 do not depend on k ∈ {n, n+1, . . . ,m−1}.

For the block case (τ = 2), in comparison with the orthogonalization process
according to (7.2) we have

∆k1 = mn2 −
(
rm(2n− r) + (m− k)(n− r)2 +

n3

6

)
= k(n− r)2 − n3

6
,(7.3)

and in comparison with the Householder method we have

∆k2 =

(
mn2 − n3

3

)
−
(
rm(2n− r) + (m− k)(n− r)2 +

n3

6

)
= k(n−r)2−n3

2
.(7.4)

We can see that in the block case (approach) the estimations ∆k1 and ∆k2 depend
on k and r. If, for example, the rank of A1 ∈ R

m×k is equal to r = n/2 then according
to (7.3) the number of operations is less by ∆k1 for any k > 2n/3 in comparison with
the orthogonalization process, and according to (7.4) it is less by ∆k2 for any k > 2n
in comparison with the Householder method. Notice that these estimations do not
include the number of operations required for pivoting, which is less than mn.

Note also that obtained estimations can be improved by taking into account that
the submatrix U ∈ R

(n−r)×(n−r) of the symmetric matrix U ∈ R
n×n is identity.

8. Conclusions. In many applications, for example, in signal and image pro-
cessing, it is necessary to identify such a special class of oblique projections for which
it is possible to construct fast algorithms [12]. Partial orthogonalization process al-
lows the extraction of such an important subclass of matrix decompositions, that is,
to obtain special decompositions of a matrix. Our approach using the modified partial
orthogonalization process allows the linear least squares problem to be decomposed
into simpler subproblems, yielding computational efficiency. It is shown that the num-
ber of operations with our approach (block QKRK decomposition) is less than that
of the classical QR decomposition.

Since the proposed method is parametric there are various possibilities to choose
the pivot vectors in the sense of their lengths and indices. The choice of the set K
will depend on the class of the practical applications.
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ON SYMMETRIC EIGENPROBLEMS INDUCED BY THE
BIDIAGONAL SVD∗
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Abstract. The relatively robust representations (RRR) algorithm is the method of choice to
compute highly accurate eigenvector approximations for symmetric tridiagonal matrices. The task
of computing singular vector pairs for a bidiagonal matrix B = UΣV T is closely connected to the
RRR algorithm regarding BTB, BBT , or the Golub–Kahan matrix TGK. Nevertheless, separate
application of the RRR algorithm to these matrices leads to poor results regarding either numerical
orthogonality or the residual ‖BV − UΣ‖. It turns out that the coupling strategy proposed in
[B. Grosser and B. Lang, Linear Algebra Appl., 358 (2003), pp. 45–70] resolves this problem. This
article provides the corresponding perturbation theory: We compare the eigenvalues of the separate
and coupled decompositions and explain why singular vector pairs approximated via couplings are
of superior quality.

Key words. bidiagonal SVD, relatively robust representations, coupling relations, stability

AMS subject classifications. 15A18, 65G50, 65F15
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1. Introduction. The singular value decomposition (SVD) of a real n×n upper
bidiagonal matrix is given by B = UΣV T (bidiagonal SVD, bSVD). The diagonal
matrix Σ = diag([σ1, . . . , σn]) contains the singular values in descending order, while
the left and right singular vectors make up the orthogonal matrices U and V . It is
possible to reduce any general complex matrix to real bidiagonal form by a sequence
of unitary transformations [17].

We can establish connections to the tridiagonal symmetric eigenproblem (tSEP)
via the normal equations T̂ = BTB = V Σ2V T and Ť = BBT = UΣ2UT or the
so-called Golub–Kahan matrix TGK. The latter is obtained by applying the “perfect
shuffle” permutation [22] to the Jordan–Wielandt form of B: TGK = Pps[

0 B
BT 0

]PT
ps.

This permutation interleaves the diagonal and superdiagonal elements of B onto the
subdiagonal of the 2n × 2n symmetric tridiagonal matrix TGK, whereas its diagonal
is zero. An eigendecomposition TGK = X̃ · Λ̃ · X̃T can be related to the bSVD of
B, noting that the eigenvalues are given by {σj | j = 1 : n} ∪ {−σj | j = 1 : n}. In
addition we can extract the (scaled) left and right singular vectors of B from the even
and the odd rows of X̃.

The tight relations between the bSVD and the tSEP immediately suggest four
methods for computing the SVD of a bidiagonal matrix B:

1. Compute the eigendecomposition T̂ = X̂Λ̂X̂T of the symmetric tridiagonal
matrix T̂ = BTB. The eigenvalues λ̂j = σ2

j give the singular values σj of B,
and the eigenvectors x̂j = vj are B’s right singular vectors. To obtain the
left singular vectors uj , compute uj = 1

σj
Bvj .

2. Determine the singular values σj = λ̌
1/2
j and the left singular vectors uj = x̌j
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from the eigendecomposition Ť = X̌Λ̌X̌T of Ť = BBT and the right singular
vectors vj by solving the linear systems Bvj = σjuj .

3. Compute both eigendecompositions T̂ = X̂Λ̂X̂T and Ť = X̌Λ̌X̌T to obtain

the singular values σj = λ̂
1/2
j = λ̌

1/2
j and the left and right singular vectors

uj = x̌j and vj = x̂j , respectively.

4. Compute the eigendecomposition TGK = X̃Λ̃X̃T . The nonnegative eigenval-
ues λ̃j are B’s singular values, and the corresponding eigenvectors x̃j yield the
singular vectors vj and uj by extracting the odd-numbered (even-numbered,
resp.) components from x̃j .

Each of these methods involves computing a full eigendecomposition T = XΛXT

of an n × n or 2n × 2n symmetric tridiagonal matrix T . A few years ago, the rela-
tively robust representations (RRR) algorithm [10] was discovered, which is able to
determine such an eigendecomposition with O(n2) operations such that

• ‖XTX − I‖ is small (i.e., the computed eigenvectors are numerically orthog-
onal), and

• the residuals ‖Txj − xjλj‖ are small for all j (i.e., the computed eigenvalues
and eigenvectors are “consistent”).

Note that T̂ = BTB, Ť = BBT , and TGK are relatively robust representations, and
therefore the RRR algorithm encounters no problems in computing the respective
eigendecompositions. (For a thorough discussion of the existence of (partial) RRRs,
see [9, 10].)

Despite this fact, unfortunately, none of the above four methods is able to produce
a “consistent” SVD of the matrix B, in the sense that

• both ‖UTU−I‖ and ‖V TV −I‖ are small, i.e., the computed singular vectors
uj and vj are numerically orthogonal, and

• the residuals ‖Bvj − ujσj‖ are small.

For methods 1 and 2 it is well known that the multiplication with B (the linear solves)
may destroy the orthogonality of U (V , resp.).

The reason for the failure of the third approach is more subtle. The RRR al-
gorithm does produce consistent eigendecompositions T̂ = X̂Λ̂X̂T and Ť = X̌Λ̌X̌T .
More precisely, for each cluster of very close eigenvalues λk ≈ λk+1 ≈ · · · ≈ λk+�,
a numerically orthogonal basis of the corresponding invariant subspace is computed.
But there is no guarantee that the computed eigenvectors are close to the exact eigen-
vectors. In fact, the orientation of the computed basis is almost random, depending
heavily on the rounding errors made during the RRR algorithm, and the RRR al-
gorithm owes much of its immense success to the fact that any orthogonal basis of
the invariant subspace leads to small residuals. However, this is no longer true in the
bSVD context, since the left and right singular vectors are coupled via the relations
Bvj = ujσj . That is, if we apply the RRR algorithm independently to T̂ and Ť , and
if σj belongs to a cluster, then vj and uj will be (almost) random unit vectors from

T̂ ’s and Ť ’s invariant subspaces corresponding to the cluster, and ‖Bvj − ujσj‖ may
be large. In section 4.3 we will illustrate this fact with a numerical example and give
a geometric interpretation. This interpretation also shows that large residuals can be
avoided if the eigenvalues λ̂j and λ̌j of certain shifted matrices T̂ − µ̄2I and Ť − µ̄2I
agree to high relative accuracy. In section 4.2 we will show that applying the RRR
algorithm independently to T̂ and Ť cannot guarantee small relative differences of
these eigenvalues.

The failure of the fourth approach can be explained in a similar manner. While
extracting U and V from the exact eigenvectors x̃j would produce orthogonal matrices,
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the computed U and V may be far from orthogonality if an arbitrary orthonormal
base x̃k, . . . , x̃k+� of an invariant subspace corresponding to a cluster of eigenvalues is
used instead.

To summarize, the failure of the standard RRR algorithm (and any other tSEP
algorithm as well) used in a “black-box” manner in the bSVD context cannot be
attributed to deficiencies of these algorithms themselves, but to the fact that—by
their very design—they do not take into account the coupling of the left and right
singular vectors.

In [18, 19] we have proposed an alternative approach: Run the RRR algorithm
explicitly on one of the tridiagonal matrices, say, TGK. This will produce certain
intermediate quantities, such as decompositions T̃ − µ̄I = L̃D̃L̃T of shifted matrices.
The corresponding quantities L̂, D̂ and Ľ, Ď for the matrices T̂ and Ť can be obtained
directly from L̃, D̃ via so-called coupling relations, so that we can apply the RRR
algorithm implicitly to T̂ and Ť without actually running it. In section 5 we will
show that in this way the respective eigenvalues λ̂j and λ̌j do agree to high relative
accuracy, which in turn leads to small residuals. In section 5.4 we will briefly outline
how to incorporate the coupling relations into the RRR algorithm and in particular
we will discuss the question for which of the matrices T̂ = BTB, Ť = BBT , or TGK

the RRR algorithm should be run explicitly. The resulting RRR algorithm for the
bSVD is described in [19]. The error analyses given in the present paper provide the
theoretical justification for this approach.

2. The tridiagonal RRR algorithm in the context of the bSVD. The
RRR algorithm computes a full eigenvector basis of a symmetric tridiagonal matrix
T with a complexity of O(n2). It can be implemented in a fast and accurate way and
is inherently parallel. Although we give a very brief overview of the RRR algorithm
in the following and a geometric interpretation in section 4.3, we recommend that the
reader has some acquaintance with the relevant work in [8, 9, 10].

Starting with a symmetric tridiagonal matrix T , the RRR algorithm computes
eigenvectors for isolated eigenvalues using so-called “twisted factorizations,” T − λ̄I =
NkGkN

T
k , where λ̄ is a very good approximation to an eigenvalue λj of T [7, 11, 12, 15,

16]. Twisted factorizations are a generalization of the standard symmetric indefinite
factorizations T − λ̄I = LDLT . Eigenvalue clusters are treated by applying this
technique recursively to T − αI = LDLT , where a different shift α is chosen for each
cluster in order to increase the relative distances of the eigenvalues λj − α within
the cluster. (The relative distance of two numbers, p and q, is given by |p − q|/|p|.)
Therefore the RRR algorithm can use the original data T only on the first level. By
contrast, we have to operate with preprocessed matrices at deeper recursion levels.

While the classical RRR algorithm for the tSEP is applied only to a single
base matrix (the symmetric tridiagonal matrix T given by its entries), we have three
choices—BTB, BBT , and TGK—when computing singular vector pairs for the bSVD;
see Figure 2.1.

Applying the RRR algorithm to these tridiagonal matrices requires considering
factorizations

BTB − µ̄2I = L̂D̂L̂T , BBT − µ̄2I = ĽĎĽT , and TGK − µ̄I = L̃D̃L̃T ,(2.1)

where the shift parameter µ̄ is chosen close to a singular value of B, i.e., as a floating
point number approximating a certain σj . Throughout this article, we use the ,̂ ,̌ and
˜ superscripts to distinguish between the decompositions belonging to BTB, BBT ,
and TGK, respectively.
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indefinite
initial matrices

positive definite
initial matrices

ν

µ̄2

BTB

ν

µ̄2

BBT

µ

µ̄

D̂+, L̂+ D̃+, L̃+ Ď+, Ľ+

D̂, L̂ Ď, ĽD̃, L̃

TGK

Fig. 2.1. Forming LDLT factorizations for translates of the normal equations BTB and BBT

and of the Golub–Kahan matrix TGK. The shift parameters µ, ν for the indefinite initial matrices
are chosen such that (µ̄+µ)2 = µ̄2 + ν. Setting up the respective decompositions can be done either
by explicit factorizations (vertical arrows) or by implicit couplings (horizontal arrows).

Clusters of singular values require recursion in the RRR algorithm and therefore
make it necessary to consider decompositions

L̂D̂L̂T − νI = L̂+D̂+(L̂+)T ,(2.2)

ĽĎĽT − νI = Ľ+Ď+(Ľ+)T ,(2.3)

L̃D̃L̃T − µI = L̃+D̃+(L̃+)T(2.4)

as well, where the initial matrices L̂D̂L̂T , etc., on the left-hand side are formed
according to (2.1). Thus they are typically indefinite. By contrast, the three factor-
izations from (2.1) are referred to as the case of positive definite initial matrices; see
Figure 2.1. As in (2.2)–(2.4), the + label will be used in the remainder of the article
as a symbol for successive factorizations at deeper recursion levels. We point out that
this notation is different from [8, 9, 10]. There the + and − labels are used in the
context of the twisted factorizations (“from top to bottom” versus “from bottom to
top”).

In exact arithmetic, the eigenvalues (again in descending order) of the right-hand

sides of (2.1) are related to the singular values of B via λ̂j = λ̌j = σ2
j − µ̄2 and

λ̃j = σj − µ̄, λ̃2n−j+1 = −σj − µ̄. Analogously, choosing the shift parameters in
(2.2)–(2.4) such that (µ̄+µ)2 = µ̄2 +ν leads to the eigenvalues of the right-hand sides

being given by λ̂+
j = λ̌+

j = σ2
j − (µ̄ + µ)2 and λ̃+

j = σj − (µ̄ + µ).
Since there are inevitable rounding errors when computing the corresponding de-

compositions in floating point arithmetic, the above relations do not hold in practice.
For example, we have λ̂+

j �= λ̌+
j . In section 4.3 we show that λ̂+

j and λ̌+
j must be very

close in order to obtain approximations to singular vectors uj and vj with a small
residual ‖Bvj − σjuj‖. Note that we need not distinguish between the computed and
exact eigenvalues of the computed decompositions since we employ the concept of rel-
atively robust representations defined in section 4.1 to ensure that these eigenvalues
can be approximated to high relative accuracy. Therefore the focus of this article is
on exact eigenvalues of perturbed factorizations. In particular we will show that the
quality of the singular vector pairs depends heavily on the way the decompositions
are obtained.

There are several ways to determine factorized representations of the three base
matrices: If we compute the decompositions separately, i.e., independently from each
other (vertical arrows in Figure 2.1), it turns out that the exact eigenvalues of the
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Table 2.1

Deviation of eigenvalues corresponding to normal equations. For separate factorizations we
have absolute bounds on the eigenvalues’ deviation. If we use couplings, then the respective eigen-
values are close with small relative deviations.

Separate Coupling

positive definite
initial matrices

∣∣∣λ̂j − λ̌j

∣∣∣ = O(εµ̄2)
|λ̂j−λ̌j |

|λ̂j |
= O(ε)

indefinite
initial matrices

∣∣∣λ̂+
j − λ̌+

j

∣∣∣ = O(εµ2)

D̃+ → [D̂+, Ď+] D̂+ → D̃+ → Ď+

|λ̂+
j −λ̌+

j |
|λ̂+

j |
= O(ε) only a posteriori and

numerically

perturbed factorizations differ significantly. This effects poor results regarding ei-
ther numerical orthogonality or the residual ‖BV − UΣ‖. The alternative is to use
coupling transformations relating the data of the respective LDLT decompositions
implicitly (horizontal arrows in Figure 2.1). Determining numerical data with the
help of couplings leads to favorable results: We show that the respective eigenval-
ues agree to most of their digits, independently from their magnitude. This leads to
superior quality of the approximated singular vector pairs.

In Table 2.1 we summarize the main results of this article. They are derived as
follows: First we review appropriate factorization procedures as well as a correspond-
ing mixed stability analysis in section 3. In section 4 we first introduce the concept of
relatively robust representations and then show why eigenvalues of separate factoriza-
tions generally do have unfavorable absolute deviations; see also the second column in
Table 2.1. (Since µ̄ is typically chosen to approximate σj , we have λ̂j = λ̌j = O(εµ̄2),

where ε is the machine precision. Thus λ̂j and λ̌j may differ in almost all significant
digits.) As a solution we propose to factorize only one of the three base matrices
explicitly, while the remaining decompositions are set up implicitly. To this aim we
present a set of coupling transformations in section 5 and prove that the eigenvalues
of these coupled factorizations agree to high relative accuracy; see the right column in
Table 2.1. Concluding remarks briefly sketch how these results can be incorporated
into an extension of the RRR algorithm to the bSVD.

Most of the matrices we consider contain only a few nonzero entries. For a
given n-vector x we define diag(x, k) as a square matrix of order n + |k| with the
elements of x on the kth diagonal. Thus, a lower unit bidiagonal matrix can be
represented by L = I + diag([l1, . . . , ln−1],−1), where I is the identity matrix of
dimension n. Diagonal matrices are described with D = diag([d1, . . . , dn]). Sticking
to this notation, we also describe certain auxiliary quantities as diagonal matrices S
and P . The upper bidiagonal matrix B is given by its entries B = diag([a1, . . . , an])+
diag([b1, . . . , bn−1], 1). Using the auxiliary vector c := [a1, b1, a2, . . . , bn−1, an], the
Golub–Kahan matrix can be written as TGK = diag(c, 1) + diag(c,−1). Also recall
that the ,̂ ,̌ and ˜ superscripts refer to decompositions belonging to BTB, BBT , and
TGK, respectively, and that the + label indicates right-hand sides of factorizations
(2.2)–(2.4) at deeper recursion levels.

3. Factorizations. In this section we review certain procedures to compute
LDLT factorizations. We demonstrate that these so-called differential quotient-
difference transformations (qd) are well suited for a relative mixed stability anal-
ysis.
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3.1. Building decompositions with qd-like recurrences. First we point out
that explicitly forming BTB or BBT typically causes a substantial loss of accuracy
of the singular values and is no longer considered.

The classical factorization procedure for BTB−µ̄2I = L̂D̂L̂T is based on equating
the diagonal and off-diagonal elements

a2
i+1 + b2i − µ̄2 = d̂i+1 + d̂i l̂

2
i and aibi = d̂i l̂i.

Thus we can determine the elements d̂i and l̂i alternatingly [21]. By introducing the
auxiliary variable

ŝi = d̂i − a2
i =

bi−1 l̂i−1

ai−1
ŝi−1 − µ̄2

it is possible to avoid cancellation which might occur in the classical version. The
usage of the auxiliary variables Ŝ leads to the so-called differential stationary qd
transformation described in Algorithm 1. For computational purposes it is convenient
to define q̂i = a2

i and êi = aibi and to aggregate these numbers in a vector Ẑ. Note
that these quantities are independent from the shift parameter µ̄ and can be computed
in advance.

Algorithm 1. Factorize BTB − µ̄2I (left) and BBT − µ̄2I (right).

Input: Ẑ, µ̄
Output: D̂, L̂, Ŝ
1: ŝ1 = −µ̄2

2: for i = 1 : n− 1 do
3: d̂i = ŝi + q̂i
4: l̂i = êi

d̂i

5: ŝi+1 = êi l̂i
q̂i

ŝi − µ̄2

6: end for
7: d̂n = ŝn + q̂n

Input: Ž, µ̄
Output: Ď, Ľ, P̌
1: p̌1 = a2

1 − µ̄2

2: for i = 1 : n− 1 do
3: ďi = p̌i + q̌i
4: ľi = ěi

ďi

5: p̌i+1 = ěi ľi
q̌i

p̌i − µ̄2

6: end for
7: ďn = p̌n

Analogously, comparing entries in BBT − µ̄2I = ĽĎĽT yields

a2
i+1 + b2i+1 − µ̄2 = ďi+1 + ďi ľ

2
i and ai+1bi = ďi ľi,

leading to the auxiliary quantities

p̌i = ďi − b2i =
ai ľi−1

bi−1
p̌i−1 − µ̄2.

The resulting differential progressive qd transformation is also given in Algorithm 1.
The vector Ž contains the predefined variables q̌i = b2i and ěi = ai+1bi.

For factorizing TGK − µ̄I = L̃D̃L̃T we exploit the fact that the diagonal entries
of the Golub–Kahan matrix are zero to obtain

−µ̄ = d̃i+1 + d̃i l̃
2
i and ci = d̃i l̃i.

Here, the resulting Algorithm 2 does not involve auxiliary variables.
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Algorithm 2. Factorize TGK − µ̄I = L̃D̃L̃T .

Input: c := [a1, b1, a2, . . . , bn−1, an], µ̄
Output: D̃, L̃
1: d̃1 = −µ̄
2: for i = 1 : 2n− 1 do
3: l̃i = ci

d̃i

4: d̃i+1 = − c2i
d̃i

− µ̄ = −ci l̃i − µ̄

5: end for

Finally, the indefinite cases LDLT − τI = L+D+(L+)T from (2.2)–(2.4) give the
relations

di+1 + dil
2
i − τ = d+

i+1 + d+
i (l+i )2 and dili = d+

i l
+
i .

Introducing the quantities si = d+
i − di yields the (differential stationary) qd trans-

formation in Algorithm 3.

Algorithm 3. Factorize LDLT − τI = L+D+(L+)
T
.

Input: D,L, τ
Output: D+, L+, S
1: s1 = −τ
2: for i = 1 : n− 1 do
3: d+

i = di + si
4: l+i = dili

d+
i

5: si+1 = l+i lisi − τ
6: end for
7: d+

n = dn + sn

All these transformations turn out to have very pleasant features with respect to
roundoff error analysis [8, 10, 14, 21]. Moreover, in the case of positive definite initial
matrices we can make use of the auxiliary variables Ŝ and P̌ to establish coupling
formulas for converting one of the factorizations into the others [13, 19].

3.2. Mixed stability analysis. In the remainder of this section we recapitulate
the fundamental ideas and techniques of mixed stability analysis. We consider this
useful for a better understanding of the results presented in Theorems 5.2 and 5.4.
The experienced reader might go directly to the next section.

In the following we discuss the numerical quality of the data generated by Algo-
rithms 1, 2, and 3 in floating point arithmetic. To this aim we use the standard model
for elementary floating point operations ◦ ∈ {+,−, ∗, /},

fl(x ◦ y) = (x ◦ y)(1 + ε1) = (x ◦ y)/(1 + ε2).(3.1)

The relative error terms ε1 and ε2 depend on the operation ◦, its arguments x and
y, and the underlying arithmetic. Their absolute values are bounded by the machine
precision ε.

We now study the roundoff errors introduced when determining the factorization
BTB − µ̄2I = L̂D̂L̂T with the left-hand side of Algorithm 1. We point out that we
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interpret Ẑ as input data for the computation. Note that the preprocessed quantities
q̂i and êi are the result of a floating point operation themselves:

q̂i = fl(a2
i ) = a2

i (1 + εa2
i
) = â2

i with âi = ai
√

1 + εa2
i
,

êi = fl(aibi) = aibi(1 + εaibi) = âib̂i with b̂i = bi(1 + εaibi)/
√

1 + εa2
i
.

Thus performing Algorithm 1 with Ẑ means working on a slightly perturbed bidiago-
nal matrix B̂. We will discuss the consequences of these small relative componentwise
perturbations in section 4.1.

Following the basic idea of a mixed stability analysis, we first impose small relative
perturbations on the input data Ẑ. We then apply Algorithm 1 to the resulting
quantities �Z in exact arithmetic to get �D, �L, and �S. (Thus the � superscript denotes
perturbed ˆ quantities.) In the last step we interpret these results as componentwise
perturbations of the computed output data D̂, L̂, and Ŝ. A remarkable point of this
approach is that it is almost independent from the shift parameter µ̄. The only
requirement is the absence of over- and underflows.

Note that the following lemma is very similar to [14, Theorem 4] and [8, Theo-
rem 4]. We prove it nevertheless to give the reader an idea of the underlying concepts.

Lemma 3.1 (mixed stability analysis for BTB− µ̄2I = L̂D̂L̂T
). Suppose that the

left-hand side of Algorithm 1 can be performed without over- and underflow. Then
the following diagram commutes:

Ẑ

perturbation (3.2)

��

computed

Alg. 1, left
�� D̂, L̂, Ŝ

�Z
exact

Alg. 1, left
�� �D, �L, �S

perturbation (3.3)

��

The multiplicative perturbations are given as follows:

�qi = q̂i

(
1 + κ

(i)
q ε

)
,

∣∣∣κ(i)
q

∣∣∣ ≤ 1

�ei = êi

(
1 + κ

(i)
e ε

)
,

∣∣∣κ(i)
e

∣∣∣ ≤ 3 + O(ε)

⎫⎬⎭ ,(3.2)

�di = d̂i

(
1 + κ

(i)
d ε

)
,

∣∣∣κ(i)
d

∣∣∣ ≤ 2 + O(ε)

�li = l̂i

(
1 + κ

(i)
l ε

)
,

∣∣∣κ(i)
l

∣∣∣ ≤ 3 + O(ε)

�si = si

(
1 + κ

(i)
s ε

)
,

∣∣∣κ(i)
s

∣∣∣ ≤ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .(3.3)

Proof. We first consider the computations in exact arithmetic:

�di = �si + �qi (A1),

�li =
�ei

�si+�qi

(B1),

�si+1 =
�ei

�li
�qi

�si − µ̄2 (C1).
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We use the model of floating point operations (3.1) to describe the computation in
finite precision. Thus

d̂i = (ŝi + q̂i)/(1 + ε
(i)
+ ) (A2),

l̂i = êi
ŝi+q̂i

(1 + ε
(i)
+ )(1 + ε

(i)
/ ) (B2).

For the sake of simplicity we drop the (i) superscripts whenever the correlation is clear
from the context. Proceeding like this we obtain

ŝi+1 =

(
êi l̂i
q̂i

ŝi(1 + ε∗)(1 + ε∗∗)(1 + ε//) − µ̄2

)
/(1 + ε

(i+1)
µ̄2 ),

which can be written as

(1 + ε
(i+1)
µ̄2 )ŝi+1 = êi l̂i

q̂i
ŝi(1 + δ′) − µ̄2 (C2),

using 1 + δ′ = (1 + ε∗)(1 + ε∗∗)(1 + ε//). We can omit the respective superscripts
except for the ones in εµ̄2 .

Now there is some freedom in describing the perturbations Ẑ −→ �Z and [ �D, �L, �S] −→
[D̂, L̂, Ŝ]. For example, if we choose

�qi = q̂i

(
1 + ε

(i)
µ̄2

)
,

�ei = êi
√

(1 + δ′)(1 + δ′′),

�si = ŝi

(
1 + ε

(i)
µ̄2

)
,

�di = d̂i

(
1 + ε

(i)
µ̄2

)
(1 + ε+),

�li = l̂i
√

(1 + δ′)/(1 + δ′′)

with 1+δ′′ = (1+ ε
(i)
µ̄2 )(1+ ε+)(1+ ε/), it is easy to prove (A1) ⇔ (A2), (B1) ⇔ (B2),

and (C1) ⇔ (C2).

The main advantage of mixing forward and backward stability analysis for this
kind of transformation is that we need only to impose small relative perturbations on
single components of the decompositions. Within the context of RRR (cf. section 4.1)
this means that we are able to guarantee high relative accuracy of the corresponding
eigenvalues.

Remark 3.2 (successive factorizations). A similar mixed stability analysis for
the factorization

LDLT − τI = L+D+(L+)T

generated with Algorithm 3 is given in [10]. It is obvious that several transformations
computed one after another can be described with small relative errors. In particular,
in combination with a preceding factorization

L−D−(L−)T − τ−I = LDLT
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the following diagrams are equivalent:

D−, L−

pert. B1

��

computed

Alg. 3
�� D,L

pert. B2

���
��

��
��

��
��

��
�

computed

Alg. 3
�� D+, L+

D̄−, L̄− exact

Alg. 3
�� D̄, L̄

pert. F1

����������������
¯̄D, ¯̄L

exact

Alg. 3
�� ¯̄D+, ¯̄L+

pert. F2

��

D−, L−

pert. B1

��

computed

Alg. 3
�� D,L

computed

Alg. 3
�� D+, L+

D̄−, L̄− exact

Alg. 3
�� D̄, L̄

pert. F1 and B2 �� ¯̄D, ¯̄L
exact

Alg. 3
�� ¯̄D+, ¯̄L+

pert. F2

��

4. Exact eigenvalues of perturbed factorizations. Given the RRR algo-
rithm for the tSEP, a natural approach for determining the bSVD would be to apply
it as a black box to solve the normal equations BTB = V Σ2V T and BBT = UΣ2UT

separately. But in this section it is shown that the computed approximations to U
and V can be poorly coupled for clusters of large singular values; i.e., the residual
‖Bv̄ − σ̄ū‖ strongly exceeds acceptable thresholds. An explanation for this phe-
nomenon is given in Theorem 4.4 together with a geometric interpretation in sec-
tion 4.3. It is prepared by reviewing the concept of RRRs.

4.1. Relatively robust representations. In the previous section we demon-
strated that differential qd transformations are well suited for a mixed stability anal-
ysis by introducing small relative perturbations into the components. If in addition
a matrix shares the property that it can be written as an RRR (see below), then we
can even conclude small relative changes in the eigenvalues.

Definition 4.1 (relatively robust representations). An RRR of a matrix A is a
set of numbers A = {αi} having the following properties:

• A is fully described by A.
• A defines all eigenvalues of A to high relative accuracy; i.e., small relative

perturbations αi �→ αi(1 + κiε) cause only small relative perturbations of the
eigenvalues.

Example 4.2. The entries of a bidiagonal matrix B, i.e., A = {a1, . . . an,
b1, . . . , bn−1}, form an RRR for all singular values [4]. This fact is exploited in the
LAPACK implementation of the QR method as well as in the qd and the bisection
algorithm [13, 14, 20].

If the matrix T defining the tSEP is one of BTB, BBT , or the Golub–Kahan
matrix with the entries of B given, then this representation defines all eigenvalues to
high relative accuracy.

By contrast, if the matrix T is given explicitly by its main and first off-diagonals,
then these entries generally do not form an RRR [9, 10]. On the other hand, a bi- or
tridiagonal structure is not mandatory for having an RRR [3, 5, 6].
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Remark 4.3 (partial RRRs for indefinite matrices). Sometimes it is sufficient
that A defines at least a subset of its eigenvalues, e.g., λf ≥ · · · ≥ λl, to high relative
accuracy. The RRR algorithm makes heavy use of such partial RRRs. There are
a priori and a posteriori criteria to find out if a given decomposition of a symmetric
tridiagonal matrix forms a (partial) RRR [9, 10].

In this article we generally assume that the LDLT decompositions of certain in-
definite matrices form a partial RRR. This is not a severe restriction because decom-
positions that do not form a suitable partial RRR are rejected later on in the RRR
algorithm anyway.

We do not try to estimate bounds for the eigenvalues’ errors. The important point
is that under a relative perturbation

D,L
perturbation �� �D, �L,

the error remains small, i.e., λj = �λj(1 + κε) for j = f : l with a moderate value for
κ.

4.2. Eigenvalues of separate factorizations. A central building block of the
RRR algorithm is the computation of LDLT (and, more generally, twisted) factoriza-
tions of symmetric tridiagonal matrices. What can we conclude from the eigenvalues
of the perturbed decompositions of BTB − µ̄2 and BBT − µ̄2 if they are computed
independently from each other?

We first study the situation in exact arithmetic: Suppose that B has a cluster
σf ≥ · · · ≥ σl of singular values with small relative distances and that we choose a
shift “close” to one of them:

µ̄2 = (1 + κ0ε)σ
2
j for some f ≤ j ≤ l.

Thus the shift parameter µ̄ is a floating point number approximating σj . Now we

generate D̂, L̂, Ď, and Ľ with Algorithm 1. Thus λ̂j = σ2
j − µ̄2 is an eigenvalue of

L̂D̂L̂T , and λ̌j = σ2
j − µ̄2 is an eigenvalue of ĽĎĽT . Note that λ̂j = λ̌j = O(εµ̄2).

In floating point arithmetic λ̂j and λ̌j typically do not agree. To assess their
difference we first apply the mixed stability analysis from Lemma 3.1 to the factor-
ization BTB − µ̄2 = L̂D̂L̂T computed with Algorithm 1. For the second explicit
factorization BBT − µ̄2I = ĽĎĽT we proceed analogously to Lemma 3.1, introducing
perturbations Z̆ for Ž, as well as D̆ and L̆ for Ď and Ľ. That is, we consider the
commuting diagrams

B, (σj)
initial

perturbation
�� Ẑ, (σ̂2

j )

perturbation

��

computed

Alg. 1, left
�� D̂, L̂, (λ̂j)

�Z, (�σ2
j )

exact

Alg. 1, left
�� �D, �L, (�λj)

perturbation

��



610 BENEDIKT GROSSER AND BRUNO LANG

for the factorization BTB − µ̄2I = L̂D̂L̂T and

B, (σj)
initial

perturbation
�� Ž, (σ̌2

j )

perturbation

��

computed

Alg. 1, right
�� Ď, Ľ, (λ̌j)

Z̆, (σ̆2
j )

exact

Alg. 1, right
�� D̆, L̆, (λ̆j)

perturbation

��

for the factorization BBT − µ̄2I = ĽĎĽT .
Combining the two mixed analyses we can bound |λ̂j − λ̌j |; see the following

theorem. To be technically precise, we hint at the fact that using Ẑ and Ž as input
vectors imposes only minimal changes on the corresponding singular values, i.e.,

B
inital

perturbation
�� Ẑ ⇒ |σj − σ̂j |

|σj |
= O(ε).

Theorem 4.4 (on the eigenvalues of separate factorizations). Let D̂ and L̂, as
well as Ď and Ľ, form a partial RRR for the eigenvalues of interest:

λ̂j = �λj

(
1 + �κ

(j)
1 ε

)
and λ̌j = λ̆j

(
1 + κ̆

(j)
1 ε

)
for j = f : l.

Then we have for j = f : l ∣∣∣λ̂j − λ̌j

∣∣∣ = O
(
σ2
j ε
)

= O
(
µ̄2ε

)
.(4.1)

Proof. As bidiagonals always form RRRs for all singular values, the exact singular
values of the perturbations �Z and Z̆ of B (including the initial perturbations) are
described by

�σ2
j = σ2

j

(
1 + �κ

(j)
2 ε

)
and σ̆2

j = σ2
j (1 + κ̆

(j)
2 ε)

with suitable �κ
(j)
2 , κ̆

(j)
2 = O(1). By our RRR assumption the eigenvalues of the

computed factorizations can similarly be written as

λ̂j = �λj

(
1 + �κ

(j)
1 ε

)
=

(
�σ2
j − µ̄2

) (
1 + �κ

(j)
1 ε

)
=

(
σ2
j − µ̄2

) (
1 + �κ

(j)
1 ε

)
+ σ2

j �κ
(j)
2 ε + O(σ2

j ε
2)

and

λ̌j =
(
σ2
j − µ̄2

) (
1 + κ̆

(j)
1 ε

)
+ σ2

j κ̆
(j)
2 ε + O(σ2

j ε
2),

respectively. Now (4.1) follows easily, given that µ̄2 ≈ σ2
j .

Note that since µ̄ is chosen close to the cluster of singular values, we have a strong
dominance of σ2

j compared to σ2
j − µ̄2 ≈ λ̂j ≈ λ̌j . Therefore σ2

j − µ̄2 and λ̂j may differ
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λ̌jλ̂j σ2
j − µ̄2

Fig. 4.1. The eigenvalues of separate factorizations typically have a large absolute deviation
|λ̂j − λ̌j | = O(µ̄2ε).

Table 4.1

Comparison of the eigenvalue approximations. For j = 1, 3, . . . , 13 the third and fourth columns
list the approximations to the jth and (j + 1)st eigenvalues of L̂D̂L̂T and ĽĎĽT . The numbers of
the second column which are marked with a ∗ are used as shift parameter µ̄2 for the respective
factorizations.

j σ2
j λ̂j λ̌j

1 ∗12.748194182904 -1.8608310027439D-14 -1.8992680959841D-14
2 12.748194182904 -9.0249074144178D-14 -9.0667129038281D-14
3 ∗11.212678647362 -1.2794598835728D-14 -1.2744594323512D-14
4 11.212678647305 -5.6426308574546D-11 -5.6426258580880D-11
5 ∗10.040941122829 -1.2922467590762D-14 -1.2999176683819D-14
6 10.040941115815 -7.0147628503429D-09 -7.0147629270521D-09
7 ∗9.005952209529 -1.4882896339264D-14 -1.4366985384200D-14
8 9.005951798617 -4.1091231558744D-07 -4.1091231507153D-07
9 ∗8.002234031585 -1.2863778785396D-14 -1.2488543209404D-14

10 8.002217522257 -1.6509327081740D-05 -1.6509327081365D-05
11 7.002244425002 4.6194725901782D-04 4.6194725901810D-04
12 ∗7.001782477743 6.6765339180722D-15 6.9574116568442D-15
13 6.006354023441 8.3058220572403D-03 8.3058220572403D-03
14 ∗5.998048201384 8.6013525452083D-15 8.6448127042717D-15

in all significant digits. Thus σ2
j − µ̄2 typically is not a good choice to approximate the

eigenvalues of L̂D̂L̂T to high relative accuracy. Figure 4.1 illustrates the situation.
Theorem 4.4 says that the smallest eigenvalues of L̂D̂L̂T and ĽĎĽT may have

large absolute deviations. We point out that the differences are tied to the exact
eigenvalues of the perturbed decompositions. Thus they are solely induced by the
rounding errors that occur if we compute the factorizations separately with Algo-
rithm 1—numerical computation of the eigenvalues is not involved in any way. We
illustrate the negative impact of absolute deviations with an example.

Example 4.5 (the Wilkinson matrix Wilk+
21). A standard test problem for the

computation of eigensystems is given by

Wilk+
21 = diag([10, 9, 8, . . . , 8, 9, 10])

+ diag([1, . . . , 1], 1) + diag([1, . . . , 1],−1).

Although it is of moderate condition and unreduced it has pairs of eigenvalues which lie
very close, i.e., agreeing to a considerable number of digits [23]. Using a shift param-
eter τ < λ21, we can get an upper bidiagonal matrix B as Cholesky factor regarding
Wilk+

21 − τI = BTB. The singular values of B can be computed to high relative
accuracy (e.g., using the QR method or the qd algorithm). The approximations to
their squares—the eigenvalues of BTB and BBT—are shown in the second column of
Table 4.1.

The spectrum is structured in a number of close pairs of eigenvalues. We choose
one eigenvalue approximation from each cluster for the shift µ̄2 and form

BTB − µ̄2I = L̂D̂L̂T and BBT − µ̄2I = ĽĎĽT
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residual

σ2
j ≈ σ2

j+1

BTB = V Σ2V T

σ2
j ≈ σ2

j+1

BBT = UΣ2UT

L̂D̂L̂T : λ̂j = ĉjε, λ̂j+1 = ĉj+1ε ĽĎĽT : λ̌j = čjε, λ̌j+1 = čj+1ε

‖BV − UΣ‖

Fig. 4.2. Round and stretched ellipsoids. The grey segments symbolize the area of uncertainty.
The stretched ellipsoids are well suited to compute orthogonal basis vectors, but the large absolute
deviations of the new eigenvalues lead to poor couplings. Thus the residual ‖BV̄ − ŪΣ̄‖ for the com-

puted approximations is typically too large. Note that due to |λ̂j | = O(εσ2
j ) the stretched ellipsoids

are by several orders of magnitude smaller than the round ones; in our pictures they are heavily
magnified.

separately with the left- and right-hand sides of Algorithm 1. It is possible to verify
numerically (e.g., by checking relative condition numbers a posteriori [9, 10]; see also
Remark 4.3) that all factorizations form a partial RRR. Thus the computed eigenvalues
in the third and fourth columns of Table 4.1 represent the exact eigenvalues of the
factorizations with high relative accuracy. Comparing these approximations to λ̂j and
λ̌j manifests large deviations particularly for small eigenvalues. This is exactly the
behavior predicted by the absolute deviation bound given in (4.1).

4.3. A geometric interpretation. According to the Courant–Fischer minimax
theorem [17], the computation of an eigenvector qj corresponding to λj can be inter-
preted as finding an extremal point on a projected ellipsoid given by the symmetric
matrix A:

λj = max
‖x‖2=1

x⊥span{q1,...,qj−1}

xTAx for x = qj .

The projection of the ellipsoid onto the subspace corresponding to a tight cluster of
eigenvalues is almost a perfect sphere. Finding the solutions for the extremal points
of such “round” ellipsoids is the main challenge for all methods computing eigenvec-
tor approximations, because in floating point arithmetic we typically cannot reach
the extremal points exactly. The best we can achieve is to construct a numerically
orthogonal basis, but this basis is by no means unique even if the eigenvalues are
distinct. There is a significant amount of freedom for choosing such a basis; see the
shaded segments in Figure 4.2.

Suppose that the RRR algorithm is applied to compute eigenvector approxima-
tions for Wilk+

21 − τI = BTB and BBT separately using the shift parameters marked
with the ∗ from Table 4.1 for each cluster. A key idea of the method can be formulated
as follows: Eigenvectors are shift-invariant, whereas relative distances are not. Using
the shifted matrices BTB − µ̄2I = L̂D̂L̂T and BBT − µ̄2I = ĽĎĽT means working
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on “stretched” ellipsoids because, noting that

|λ̂j − λ̂j+1|
|λ̂j |

�
|σ2

j − σ2
j+1|

|σ2
j |

,

we typically have sufficiently large relative distances between the new eigenvalues λ̂j

and λ̂j+1, as well as between λ̌j and λ̌j+1. Thus we can easily compute numerically
orthogonal bases of the subspaces for the left and for the right singular vectors from
the stretched ellipsoids. In this way we have found a good basis approximation for
the original round ellipsoids, too.

Although this strategy is fully adequate for the respective tSEPs, we point out
that the choice of these orthogonal bases strongly depends on the new eigenvalues
of the computed matrices L̂D̂L̂T and ĽĎĽT . Due to the large absolute deviations
of these eigenvalues (4.1) it is obvious that these bases can be poorly coupled: The
stretched ellipsoids for the right and left subspaces—defined by the computed matrices
and {λ̂j , λ̂j+1} and {λ̌j , λ̌j+1}—may differ significantly. This situation is illustrated in

the lower right picture of Figure 4.2, where the stretched ellipsoids for L̂D̂L̂T (dotted
line) and ĽĎĽT (solid line) are sketched.

Some of the approximated singular vector pairs from Example 4.5 do in fact show
such an insufficient quality with respect to the residual, e.g, in double precision (ε ≈
2 · 10−16) we observe Ū(:, 16)

T
BV̄ (:, 17) = O(10−7) and even Ū(:, 20)

T
BV̄ (:, 21) =

O(10−2), whereas both values should be zero.

5. The impact of couplings. This section describes how to construct repre-
sentations of translates of BTB and BBT which preserve small residuals of the ap-
proximated singular vectors. The key idea is to form an explicit LDLT factorization
of translates of the Golub–Kahan matrix TGK and to use coupling transformations to
set up the corresponding decompositions for the normal equations (cf. the horizontal
arrows in Figure 2.1). Theorem 5.2 shows that the eigenvalues of these coupled fac-
torizations agree to high relative accuracy. Moreover, in the case of positive definite
initial matrices it is possible to convert directly from [D̂, L̂] to [Ď, Ľ] in a stable way
without accessing the data from TGK.

5.1. Couplings of the diagonal pivot elements. In exact arithmetic the
LDLT decompositions of (translates of) BTB, BBT , and TGK can be related by a
set of coupling transformations stated in the following lemma.

Lemma 5.1 (coupling [D̂+, L̂+] ↔ [D̃+, L̃+] ↔ [Ď+, Ľ+]). If the factorizations
(2.2)–(2.4) exist, we have for i = 1 : n− 1:

d̂+
i = −d̃+

2i−1d̃
+
2i, d̂+

n = −d̃+
2n−1d̃

+
2n, l̂+i = −l̃+2i−1 l̃

+
2i,

ď+
i = −d̃+

2id̃
+
2i+1, ď+

n = −d̃+
2nd̃

+
1 , ľ+i = −l̃+2i l̃

+
2i+1.

See [19] for a proof.
Thus we can relate the diagonal pivots, di (as well as the off-diagonal elements

of the bidiagonal factors, li), using only multiplications. If we can compute an RRR
for a translate of the Golub–Kahan matrix, it is straightforward to set up a backward
stable algorithm to find representations for the normal equations; cf. Figure 5.1. Note
that the relations between the diagonal pivots are also valid for the factorizations in
(2.1).

To characterize the quality of the coupled eigenvalues we briefly recall the situa-
tion in exact arithmetic. For the jth eigenvalue of L̃+D̃+(L̃+)T we have λ̃+

j = σj −
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Ď+D̂+

D̃+

Fig. 5.1. Data flow for the conversion [D̃+] → [D̂+, Ď+].

(µ̄+µ). The corresponding eigenvalues λ̂+
j and λ̌+

j of L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T ,
respectively, can be written as

λ̂+
j = λ̌+

j = σ2
j − (µ̄ + µ)2 = λ̃+

j (σj + (µ̄ + µ)) = λ̃+
j (2(µ̄ + µ) + λ̃+

j ).

The effects of floating point arithmetic are discussed in the following theorem.

Theorem 5.2 (on the eigenvalues of coupled factorizations). Let L̃+D̃+(L̃+)T

form a partial RRR for the eigenvalues of interest and suppose that D̂+, L̂+, Ď+, and
Ľ+ are computed according to Lemma 5.1. Then both L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T

also form a partial RRR, and we can relate the eigenvalues via

λ̂+
j = λ̃+

j

(
2(µ̄ + µ) + λ̃+

j

)
(1 + κ̂ε)(5.1)

and

λ̌+
j = λ̃+

j

(
2(µ̄ + µ) + λ̃+

j

)
(1 + κ̌ε),(5.2)

where κ̂, κ̌ = O(1). Thus we have a small relative deviation∣∣∣∣∣ λ̂
+
j − λ̌+

j

λ̂+
j

∣∣∣∣∣ = ε

∣∣∣∣ κ̂− κ̌

1 + κ̂ε

∣∣∣∣ = O(ε).(5.3)

Proof. Performing the computations of Lemma 5.1 in floating point arithmetic
yields

d̂+
i = −d̃+

2i−1d̃
+
2i

(
1 + ε

(i)
1

)
, i = 1 : n,

l̂+i = −l̃+2i−1 l̃
+
2i

(
1 + ε

(i)
2

)
, i = 1 : n− 1

with |ε(i)1 |, |ε(i)2 | ≤ ε. Therefore the computed data D̂+, L̂+ could also have been
obtained by applying Lemma 5.1 in exact arithmetic to a slightly perturbed decom-
position L̄+D̄+(L̄+)T , where

d̄+
2i−1 = d̃+

2i−1, d̄+
2i = d̃+

2i

(
1 + ε

(i)
1

)
, i = 1 : n,

l̄+2i−1 = l̃+2i−1, l̄+2i = l̃+2i

(
1 + ε

(i)
2

)
, i = 1 : n− 1,

and l̄+2n−1 = l̃+2n−1; see the following diagram.
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D̃+, L̃+, (λ̃+
j )

pert. ε(i)

�����������������������

computed

Lemma 5.1
��

pert. ε(i),η(i)

��

D̂+, L̂+, (λ̂+
j )

pert. η(i)

��

D̄+, L̄+, (λ̄+
j )

exact

Lemma 5.1

�����������������������

¯̄D
+
, ¯̄L

+
, (¯̄λ

+

j )
exact

Lemma 5.1
�� �D+, �L+, (�λ+

j )

By the RRR property of L̃+D̃+(L̃+)T this perturbation only slightly changes the
eigenvalues of interest:

λ̄+
j = λ̃+

j (1 + κ1ε) with κ1 = O(1).

As the transition [D̄+, L̄+] −→ [D̂+, L̂+] is exact, we have

λ̂+
j = λ̄+

j

(
2(µ̄ + µ) + λ̄j

)
= λ̃+

j (1 + κ1ε)
(
2(µ̄ + µ) + λ̃+

j (1 + κ1ε)
)

= λ̃+
j

(
2(µ̄ + µ) + λ̃+

j

)[
1 + κ1ε +

λ̃+
j (1 + κ1ε)κ1

2(µ̄ + µ) + λ̃+
j

ε

]
.

Now, since µ̄ + µ was chosen as an approximation to σj , we have

|λ̃+
j | ≈ |σj − (µ̄ + µ)| � |σj + (µ̄ + µ)| ≈ |λ̃+

j + 2(µ̄ + µ)|,

and therefore setting

κ̂ := κ1 +
λ̃+
j (1 + κ1ε)κ1

2(µ̄ + µ) + λ̃+
j

immediately shows (5.1).
Note that a similar argument also holds for an arbitrary perturbation

d̂+
i �→ d̂+

i

(
1 + η

(i)
1

)
=: �d+

i , i = 1 : n,

l̂+i �→ l̂+i

(
1 + η

(i)
2

)
=: �l+i , i = 1 : n− 1.

By introducing

¯̄d
+

2i−1 = d̃+
2i−1,

¯̄d
+

2i = d̃+
2i

(
1 + ε

(i)
1

)(
1 + η

(i)
1

)
, i = 1 : n,

¯̄l
+

2i−1 = l̃+2i−1,
¯̄l
+

2i = l̃+2i

(
1 + ε

(i)
2

)(
1 + η

(i)
2

)
, i = 1 : n− 1,

and ¯̄l
+

2n−1 = l̃+2n−1, we see that the eigenvalues of �L+ �D+(�L+)T can also be written in
the form

�λ+
j = λ̃+

j

(
2(µ̄ + µ) + λ̃+

j

)
(1 + �κε).
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σ2
j − (µ̄ + µ)2 λ̌+,separate

jλ̂+,separate
j

λ̌+,coupled
j

λ̂+,coupled
j

Fig. 5.2. The eigenvalues of the coupled representations agree to high relative accuracy in
contrast to those produced by separate factorizations.

Together with (5.1) this implies that �λ+
j and λ̂+

j agree up to a small relative difference,

and thus L̂+D̂+(L̂+)T is shown to be an RRR.
The proof for (5.2) and for Ľ+Ď+(Ľ+)T being an RRR is completely analogous,

and (5.3) follows immediately from (5.1) and (5.2).

The key message of Theorem 5.2 is that the exact eigenvalues λ̂+
j and λ̌+

j of the

matrices L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T generated by the coupling transformation of
Lemma 5.1 do agree to almost all digits; see Figure 5.2.

We now revisit the geometric interpretation of section 4.3 with the new approach:
First form an explicit factorization of the Golub–Kahan matrix and then determine
representations for the normal equations using Lemma 5.1. Theorem 5.2 says that the
new eigenvalues may have at most a small relative deviation. Thus we can conclude
that the stretched projected ellipsoids are nearly identical, and therefore the choice of
the bases leads to well-coupled singular vector pairs. Numerical orthogonality is still
intact: If a new eigenvalue λ̃+

j derived from TGK is isolated, then this also holds for the
new eigenvalues of the coupled representations. Note that this cannot be guaranteed
in the case of separate factorizations because we may have different shift parameters
at deeper recursion levels when applying the RRR algorithm to BTB and BBT as a
black box.

We point out that a black box application to the Golub–Kahan matrix itself may
lead to problems for matrices B having a large condition number and clusters of
tiny singular values: Factorizing TGK with tiny shift parameters typically results in
diagonal pivots which strongly alternate from very large to very small magnitudes
[18]. Thus an LDLT decomposition computed with Algorithms 2 and 1 is unlikely to
form a partial RRR. An alternative would be to use a block decomposition

Pblock(TGK − (µ̄ + µ)I)PT
block = MDMT ,

where Pblock is a suitable permutation and D is block diagonal with blocks of order
one or two [2].

If we consider the corresponding LDLT decompositions for the normal equations,
the problem of strongly alternating pivot elements vanishes: Although we have large
fluctuations for two consecutive elements d̃+

2i−1 and d̃+
2i, their pairwise products—the

diagonal pivots derived from the normal equations—typically remain at moderate
values.

There is another unfavorable consequence of strongly alternating pivot elements
when applying the RRR algorithm to TGK solely. Although it generates an adequate
approximation to the eigenvector basis Q(:, n + 1 : 2n) ∈ R

2n×n, the approximations
to U and V extracted from the even and odd rows turn out to have sufficient quality
regarding the residual, but they may be far from numerical orthogonality.

5.2. Couplings for positive definite initial matrices. As seen in the previ-
ous section there are cases where it is preferable to work on the normal equations and
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Fig. 5.3. Data flow for the conversion D̂ → Ď.

to abstain from decompositions based on the Golub–Kahan matrix. To this aim we
formulate coupling transformations for positive definite initial matrices.

Lemma 5.3 (coupling D̂ ↔ Ď directly). Supposing that the factorizations in
(2.1) can be computed using Algorithms 1 and 2, we have for i = 1 : n

µ̄d̃2i−1 = ŝi and µ̄d̃2i = p̌i.(5.4)

Moreover, setting ŝn+1 = ŝ1 = −µ̄2 and ď0 = p̌0 = 1, we have for i = 1 : n

ďi = ŝi+1
d̂i
ŝi

and d̂i = p̌i
ďi−1

p̌i−1
.(5.5)

See [13] for a proof of (5.4) and [19] for (5.5).
Using Lemma 5.3 we can set up a transformation D̂ → Ď which connects the

data from the LDLT decompositions of BTB − µ̄2I and BBT − µ̄2I directly using
only multiplications and divisions; cf. Figure 5.3.

Theorem 4.4 gave an absolute bound for the difference of eigenvalues of separate
factorizations: ∣∣∣λ̂j − λ̌j

∣∣∣ = O(µ̄2ε) for j = f : l.

Again, couplings provide a major improvement. Suppose that [D̂, L̂] is formed by
an explicit factorization with the left-hand side of Algorithm 1, whereas [Ď, Ľ] is
constructed using Lemma 5.3. The next theorem shows that then∣∣∣∣∣ λ̂j − λ̌j

λ̂j

∣∣∣∣∣ = O(ε) for j = f : l.

Thus the eigenvalues of L̂D̂L̂T and ĽĎĽT have a small relative distance.
Note that as in Theorem 4.4, using Ẑ as input vector imposes a small initial

perturbation on the singular values.
Theorem 5.4 (on the eigenvalues of coupled factorizations). We assume that

[D̂, L̂] forms a partial RRR for the eigenvalues of interest and that [Ď, Ľ] is computed
according to Lemma 5.3. Then [Ď, Ľ] also forms a partial RRR and we have

λ̌j = λ̂j(1 + κ̌(j)ε) for j = f : l.

Proof. As the computation [D̂, L̂] −→ [Ď, Ľ] involves only multiplications and
divisions, the backward error analysis we gave in the proof of Theorem 5.2 carries
over—with straightforward modifications—to this case.
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λ̂j σ2
j − µ̄2

λ̌coupled
j

λ̌separate
j

Fig. 5.4. Location of the eigenvalues using the direct couplings from Lemma 5.3.
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Fig. 5.5. Data flow for the conversion [D̂+] → [D̃+
even] → [D̃+

odd] → [Ď+].

Using the auxiliary variables from the differential qd transformations allows us
to couple the LDLT decompositions for positive definite initial matrices directly. The
eigenvalues of these coupled representations do agree to high relative accuracy; cf.
Figure 5.4 and Table 2.1. Together with the geometric interpretation from section 4.3
we can conclude that the corresponding singular vector pairs are well coupled.

5.3. Coupling [D̂+] → [D̃+
even] → [D̃+

odd] → [Ď+]. We finally discuss how

to transform D̂+ → Ď+ for indefinite initial matrices.

Therefore we suppose that the factorization L̂D̂L̂T−νI = L̂+D̂+(L̂+)T from (2.2)
is given explicitly. Here, we cannot utilize the auxiliary variables from the differential
qd transformations generated by Algorithm 3 to find direct couplings D̂+ → Ď+

which are backward stable. Instead we have to perform a partial factorization of
L̃D̃L̃T −µI: We can exploit the data of D̂+ to compute the even-numbered elements
of D̃+ (arrows with empty heads in Figure 5.5). But the successive odd-numbered
elements have to be determined by applying one step of Algorithm 3 or the classical
factorization procedure (arrows with filled heads in Figure 5.5) [19].

Theorem 5.2 assures that if L̃+D̃+(L̃+)T forms a partial RRR, then both
L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T also form a partial RRR. On the other hand, it is not
clear if the property of L̂+D̂+(L̂+)T to form a partial RRR implies that L̃+D̃+(L̃+)T

also shares this feature. (We have mentioned the large changes in the diagonal piv-
ots when factorizing a translate of the Golub–Kahan matrix in the case of tiny and
clustered singular values in section 5.1.) Since we cannot find a backward stable
transformation from L̂+D̂+(L̂+)T to Ľ+Ď+(Ľ+)T in the case of indefinite initial ma-
trices, it is hard to give theoretical criteria to decide if the eigenvalues of the latter
representation can be determined to high relative accuracy and additionally lie close
to those of L̂+D̂+(L̂+)T . Thus we can control the deviation of the eigenvalues only
a posteriori, e.g., by comparing the eigenvalues determined with a highly accurate
numerical approximation procedure.

5.4. Using the couplings in the RRR algorithm. We finally propose a strat-
egy to find LDLT decompositions which form partial relatively robust representations
and in addition are well coupled.
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5.4.1. Positive definite initial matrices. Here, the only requirement is to find
a shift parameter µ̄ such that the explicit factorization BTB−µ̄2I = L̂D̂L̂T computed
with Algorithm 1 forms a partial RRR for the eigenvalues of interest. We then use
Lemmas 5.3 and 5.1 to compute the data of L̃D̃L̃T and ĽĎĽT implicitly. Theorem 5.4
says that the latter matrices form a partial RRR and that the respective eigenvalues
lie close. In a computer implementation we then can determine approximations to
λ̂f , . . . , λ̂l, which in turn also yield precise guesses for the eigenvalues of the two
coupled factorizations.

5.4.2. Indefinite initial matrices. If we can show that the decomposition
L̃D̃L̃T −µI = L̃+D̃+(L̃+)T based on the Golub–Kahan matrix forms a partial RRR,
e.g., by checking the a priori criteria proposed in [9, 10], we can proceed as follows:
We use Lemma 5.1 to determine the data [D̂+, L̂+] and [Ď+, Ľ+]. According to
Theorem 5.2, these quantities form a partial RRR. With respect to performance
issues (length of inner loops), a computer implementation should avoid computing

λ̃+
f , . . . , λ̃

+
l and approximate λ̂+

f , . . . , λ̂
+
l instead.

In some cases it is easier to show that the factorizations of the normal equations
form a partial RRR, while the quality of [D̃+, L̃+] is unknown. We then compute
L̂D̂L̂T − νI = L̂+D̂+(L̂+)T explicitly and use the scheme described in Figure 5.5 to
determine the coupled data [D̃+, L̃+] and [Ď+, Ľ+]. We then compute highly accurate

approximations to λ̂+
f , . . . , λ̂

+
l as well as to λ̌+

f , . . . , λ̌
+
l . The deviation of the respective

eigenvalues is thus controlled a posteriori and numerically. Various experiments show
that in most cases the eigenvalues are very close and the couplings are adequate even if
this could not be proved a priori. Nevertheless, there are few cases where the coupling
between L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T has to be considered to be insufficient. Then
we can try varying the shift parameter and restart.

5.4.3. Implementation. Embedding the coupling transformations does not re-
quire substantial changes of the algorithmic structure of the RRR procedure for sym-
metric tridiagonal matrices as implemented, e.g., in the LAPACK routine DSTEGR [1].
Whenever an LDLT factorization is computed there, we can easily add a call to a
routine performing the coupling transformations.

Note that DSTEGR typically can resolve most of the eigenvalue clusters by shifting
only once. Thus the initial matrices are positive definite in the majority of cases, and
we can use Lemma 5.3 for the couplings.

6. Conclusions. This article provides a theoretical framework explaining how
to compute singular vector pairs of a bidiagonal matrix B efficiently. This task is
closely connected to the symmetric eigenproblems given by the tridiagonals BTB,
BBT , and TGK.

If translates of these three matrices are factorized separately according to (2.1),
roundoff errors cause large, i.e., absolute, deviations of the corresponding new eigen-
values of the shifted representations. Using a geometric interpretation (stretched
ellipsoids, area of uncertainty; cf. Figure 4.2) we explain why the singular vector pairs
are poorly coupled in this case.

As a solution we relate the factorizations implicitly by a set of coupling transfor-
mations. We prove that the eigenvalues of these coupled representations have small,
i.e., relative, deviations leading to well-coupled singular vector pairs. These results
are used for generalizing the RRR algorithm to the solution of the bidiagonal SVD.



620 BENEDIKT GROSSER AND BRUNO LANG

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] J. Bunch, L. Kaufman, and B. Parlett, Decomposition of a symmetric matrix, Numer.
Math., 27 (1976), pp. 95–107.

[3] J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veselić, and Z. Drmač, Computing
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Abstract. Given a sparse, symmetric positive definite matrix C and an associated sparse
Cholesky factorization LDLT, we develop sparse techniques for updating the factorization after a
symmetric modification of a row and column of C. We show how the modification in the Cholesky
factorization associated with this rank-2 modification of C can be computed efficiently using a sparse
rank-1 technique developed in [T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl., 20 (1999),
pp. 606–627]. We also determine how the solution of a linear system Lx = b changes after changing
a row and column of C or after a rank-r change in C.
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1. Introduction. The problem of updating a Cholesky factorization after a
small rank change in the matrix is a fundamental problem with many applications,
including optimization algorithms, least-squares problems in statistics, the analysis
of electrical circuits and power systems, structural mechanics, boundary condition
changes in partial differential equations, domain decomposition methods, and bound-
ary element methods (see [12]). Some specific examples follow.

1. A linear programming problem has the form

min cTx subject to Ax = b, x ≥ 0,(1.1)

where A is m-by-n, typically n is much larger than m, and all vectors are of compatible
size. In this formulation, the vector x is called the primal variable. The dual approach
utilizes a multiplier λ corresponding to the linear equation Ax = b. In each iteration
of the linear programming dual active set algorithm (LPDASA) (see [5, 13, 14, 15,
16, 17]), we solve a symmetric linear system of the form

Cλ = f , C = AFAT
F + σI,

where σ > 0 is a small parameter, F ⊂ {1, 2, . . . , n} are the indices associated with
“free variables” (strictly positive primal variables), AF is a submatrix of A associated
with column indices in F , and f is a function of b and c. As the dual iterates converge
to optimality, the set F changes as the primal variables either reach their bound or
become free. Since C can be expressed as

C =
∑
j∈F

A∗jA
T
∗j + σI,
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where A∗j denotes the jth column of A, it follows that a small change in F leads to
a small rank change in C; hence, we solve a sequence of linear systems where each
matrix is a small rank modification of the previous matrix.

2. Consider a network of resistors connecting nodes {1, 2, . . . , n} in a graph.
Let Ai denote the set of nodes adjacent to i in the graph, let Rij be the resistance
between i and j, and let Vj be the potential at node j (some of the nodes may be held
at a fixed potential by a battery). By Kirchhoff’s first law, the sum of the currents
entering each node is zero: ∑

j∈Ai

Vj − Vi

Rij
= 0.

If the resistance on an arc (k, l) is changed from Rkl to R̄kl, then there is a rank-1
change in the matrix given by(

1

Rkl
− 1

R̄kl

)
wwT, w = ek − el,

where ei is the ith column of the identity matrix. In other words, the only change in
the coefficient matrix occurs in rows k and l and in columns k and l. Changing the
resistance on r arcs in the network corresponds to a rank-r change in the matrix.
Additional illustrations can be found in [12].

A variety of techniques for modifying a dense Cholesky factorization are given
in the classic reference [11]. Recently in [3, 4] we considered a sparse Cholesky fac-
torization LDLT of a symmetric, positive definite matrix C, and the modification
associated with a rank-r change of the form C = C ± WWT, where W is n-by-r
with r typically much less than n. In a rank-1 update of the form C = C + wwT,
the columns that change in L correspond to a path in the elimination tree of the
modified factor L. The path starts at the node corresponding to the row index of
the first nonzero entry in w. The total work of the rank-1 update is proportional to
the number of entries in L that change, so our algorithm is optimal. A downdate is
analogous; it follows a path in the original elimination tree, which becomes a subtree
in the new elimination tree.

A rank-r update of the form C = C + WWT, where W has r columns, can be
cast as a sequence of r rank-1 updates. In [4], we show that a rank-r update can be
done more efficiently in a single pass. Rather than following a single path in the tree,
multiple paths are followed. When paths merge, multiple updates are performed to
the corresponding columns of L. Our rank-r algorithm is also optimal.

Figure 1.1 shows an example of a sparse rank-2 update (see Figure 4.1 in [4]).
Entries that change in C are shown as a plus. It is not shown in the figure, but the
updates follow two paths in the tree, one with nodes {1, 2, 6, 8} and the second one
with nodes {3, 4, 5, 6, 7, 8}.

In this paper, we consider a special, but important, rank-2 change corresponding
to a symmetric modification of a row and column of C. Although we could, in
principle, use our previous methodology to update the factorization, we observe that
this rank-2 approach is much less efficient than the streamlined approach we develop
here. In fact, the rank-r approach with r = 2 could result in a completely dense
modification of the factorization, where nonzero entries are first introduced and then
canceled out. Figure 1.2 shows a sparse modification to row 4 and column 4 of the
matrix C from Figure 1.1.
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C = C + WWT

Fig. 1.1. Rank-2 update, C = C + WWT.

new elimination tree

8

6 7

2 5

4

31

New factor LC, row/column 4 changed

Fig. 1.2. Modification to a row and column of C.

With the new approach, the work connected with removing a nonzero row and
column is comparable to the work associated with a sparse rank-1 update, while the
work associated with adding a new nonzero row and column is comparable to the work
associated with a sparse rank-1 downdate. This connection between the modification
of the matrix and the modification of the factorization is nonintuitive: When we
remove elements from the matrix, we update the factorization; when we add elements
to the matrix, we downdate the factorization.

As a byproduct of our analysis, we show how the solution to a triangular system
Lx = b changes when both L and b change as a result of the row and column
modification problem discussed in this paper, or as a result of a rank-r change to C
[3, 4].

One specific application for the techniques developed in this paper is LPDASA.
An inequality aTx ≤ b in a primal linear program is converted to an equality, when
the problem is written in the standard form (1.1), by introducing a primal slack
variable: aTx + y = b, where y ≥ 0 is the slack variable. If the index j corresponds
to a primal slack variable in equation i, and if j ∈ F , then it can be shown that
λi = cj . In essence, we can eliminate the ith dual variable and the ith equation:
The ith equality is satisfied by simply solving for the value of the slack variable, and
the ith dual variable is λi = cj . Thus, in this dual approach to linear programming,
inactive inequalities are identified dynamically, during the solution process; dropping
these inactive inequalities amounts to removing a row and a column from a Cholesky
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factorized matrix. In the same way, when a dropped inequality later becomes active,
a new row and column must be inserted in the matrix, and the resulting modification
in the Cholesky factorization evaluated. In general, the techniques developed in this
paper are useful in any setting where a system of equations is solved repeatedly with
equations added or dropped before each solve.

A brief overview of our paper follows. In section 2 we consider the row addition
problem, in which a row and column, originally zero except for the diagonal element,
are modified in a matrix. The row deletion problem is the opposite of row addition
and is discussed in section 3. Section 4 describes modifications to a row and column
of sparse or dense C. We show that arbitrary modifications can be efficiently im-
plemented as a row deletion followed by a row addition. In contrast, we also show
that if sparse modifications to a sparse row of C are made, some improvement can
be obtained over a row deletion followed by a row addition. The efficient methods
presented in sections 2 through 4 are contrasted with performing the modifications
as a rank-2 outer product modification in section 5, which is shown to be costly, par-
ticularly in the sparse case. Section 6 shows how to efficiently modify the solution to
Lx = b when L and b change. A brief presentation of the experimental performance
of these methods in the context of matrices arising in linear programming is given in
section 7.

We use the notation C to denote the matrix C after it has been modified. Bold
uppercase A refers to a matrix. Bold lowercase italic a is a column vector; thus, aT

always refers to a row vector. Plain lowercase letters (such as a and α) are scalars.
We use |A| to denote the number of nonzero entries in the sparse matrix A. Without
parentheses, the notation Ai or Aij refers to submatrices of a matrix A (sometimes
1-by-1 submatrices). We use parentheses (A)ij to refer to the entry in row i and
column j of the matrix A, (A)∗j to refer to column j of A, and (A)i∗ to refer to row
i of A. When counting floating-point operations (flops), we count one flop for any
arithmetic operation including ∗, /, +, −, and

√
.

2. Adding a row and column to C. If we have a rectangular n-by-m matrix
A, and C = αI + AAT, then modifying row k of A leads to changes in the kth row
and column of C. In this section, we consider the special case where row k is initially
zero and becomes nonzero in A (the row addition case). Equivalently, the kth row
and column of C is initially a multiple of the kth row and column of the identity
matrix and changes to some other value.

We first discuss the linear algebra that applies whether C is dense or sparse.
Specific issues for the dense and sparse case are discussed in sections 2.1 and 2.2.

Let aT
2 be the new nonzero kth row of A,

A =

⎡⎣ A1

0T

A3

⎤⎦ , A =

⎡⎣ A1

aT
2

A3

⎤⎦ ,

where 0T is a row vector whose entries are all 0. This leads to a modification to row
and column k of C,

C =

⎡⎣ αI + A1A
T
1 0 A1A

T
3

0T α 0T

A3A
T
1 0 αI + A3A

T
3

⎤⎦ =

⎡⎣ C11 0 CT
31

0T c22 0T

C31 0 C33

⎤⎦ ,

where c22 = α. We can let α be zero; even though C would no longer be positive
definite, the submatrix excluding row and column k could still be positive definite.



SPARSE CHOLESKY ROW MODIFICATIONS 625

The linear system Cx = b is well defined in this case, except for xk. The new matrix
C is given as

C =

⎡⎢⎢⎣
αI + A1A

T
1 A1a2 A1A

T
3

aT
2AT

1 α + aT
2 a2 aT

2AT
3

A3A
T
1 A3a2 αI + A3A

T
3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
C11 c12 CT

31

cT
12 c22 cT

32

C31 c32 C33

⎤⎥⎥⎦ .

Thus, adding a row k to A is equivalent to adding a row and column k to C. Note
that changing row and column k of C from zero (except for the diagonal entry) to a
nonzero value also can be viewed as increasing the dimension of the (n−1)-by-(n−1)
matrix [

C11 CT
31

C31 C33

]
.

The original factorization of the n-by-n matrix C may be written as

LDLT =

⎡⎢⎢⎣
L11

0T 1

L31 0 L33

⎤⎥⎥⎦
⎡⎣ D11

d22

D33

⎤⎦
⎡⎢⎢⎣

LT
11 0 LT

31

1 0T

LT
33

⎤⎥⎥⎦

=

⎡⎢⎢⎣
C11 0 CT

31

0T α 0T

C31 0 C33

⎤⎥⎥⎦ ,

which leads to the four equations

L11D11L
T
11 = C11,

d22 = α,

L31D11L
T
11 = C31,

L31D11L
T
31 + L33D33L

T
33 = C33.(2.1)

After adding row and column k to obtain C, we have the factorization

LDL
T

=

⎡⎢⎢⎣
L11

l
T

12 1

L31 l32 L33

⎤⎥⎥⎦
⎡⎢⎢⎣

D11

d22

D33

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

LT
11 l12 LT

31

1 l
T

32

L
T

33

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎣
C11 c12 CT

31

cT
12 c22 cT

32

C31 c32 C33

⎤⎥⎥⎦ .(2.2)

Note that L11 and L31 do not change as a result of modifying row and column k of
C. From (2.2), the relevant equations are

L11D11l12 = c12,(2.3)

l
T

12D11l12 + d22 = c22,

L31D11l12 + l32d22 = c32,

L31D11L
T
31 + l32d22l

T

32 + L33D33L
T

33 = C33.(2.4)
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Let w = l32
√
d22. Combining (2.4) with the original equation (2.1), we obtain

L33D33L
T

33 = (C33 − L31D11L
T
31) − l32d22l

T

32 = L33D33L
T
33 − wwT.

The factorization of L33D33L
T
33−wwT can be computed as a rank-1 downdate of the

original factorization L33D33L
T
33 (see [3]). This derivation leads to Algorithm 1 for

computing the modified factorization LDL
T
, which is applicable in both the dense

and sparse cases.
Algorithm 1 (row addition).

1. Solve the lower triangular system L11D11l12 = c12 for l12.

2. d22 = c22 − l
T

12D11l12
3. l32 = (c32 − L31D11l12)/d22

4. w = l32
√
d22

5. Perform the rank-1 downdate L33D33L
T

33 = L33D33L
T
33 − wwT.

end Algorithm 1

2.1. Dense row addition. Consider the case when C is dense.
1. Step (1) of Algorithm 1 requires the solution of a unit lower triangular system

L11y = c12 of order k − 1. The computation of y takes (k − 1)2 − (k − 1) flops, and
computing l12 = D−1

11 y takes another k − 1 flops.
2. Step (2) requires 2(k − 1) work, using y.
3. Step (3) is the matrix-vector multiply L31y, where L31 is (n− k)-by-(k − 1)

and thus takes 2(n− k)(k − 1) operations and k − 1 more to divide by d22.
4. Step (4) requires one square root operation and n− k multiplications.
5. Finally, the rank-1 downdate of step (5) takes 2(n−k)2 +4(n−k) operations

using method C1 of [11] (see [4]).
For the dense case, the total number of flops performed by Algorithm 1 is 2n2 +

3n+k2−(2nk+2k+1). This is roughly 2n2 when k = 1, n2 when k = n, and (5/4)n2

when k = n/2.

2.2. Sparse row addition. If C is sparse, each step of Algorithm 1 must operate
on sparse matrices. The graph algorithms and data structures must efficiently support
each step. We will assume that L is stored in a compressed column vector form, where
the row indices in each column are sorted in ascending order. This is the same data
structure used in [3, 4], except that the algorithms presented there do not require
sorted row indices, but they do require the integer multiplicity of each nonzero entry
of L to support an efficient symbolic downdate operation. The algorithm discussed
below will not require the multiplicities.

Maintaining the row indices in sorted order requires a merge operation for the
set union computation to determine the new nonzero patterns of the columns of L,
rather than a simpler unsorted set union used in [3, 4]. It has no effect on asymptotic
complexity and little effect on the run time. Although more work is required to
maintain the row indices in sorted order, time is gained elsewhere in the algorithm.
Operating on columns in sorted order in the forward solve of Lx = b, for example,
is faster than operating on a matrix with jumbled columns. No additional space is
required to keep the columns sorted.

Step (1) of Algorithm 1 solves the lower triangular system L11y = c12, where all
three terms in this system are sparse. Gilbert and Peierls have shown how to solve
this system optimally, in time proportional to the number of flops required [9, 10].
We review their method here.
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Consider the n-by-n system Lx = b, where L is lower triangular and both L and
b are sparse. The solution will be sparse, and the total work may be less than O(n).
We cannot use a conventional algorithm that iterates over each column of L and skips
those for which x is zero since the work involved will then be at least n. Instead, the
nonzero pattern of x must first be computed, and then the corresponding columns of
L can be used to compute x in time proportional to the floating-point work required.

Let GL be a graph with n nodes and with a directed edge from node j to node
i if and only if lij is nonzero. Gilbert and Peierls show that xj is nonzero (ignoring
numerical cancellation) if and only if there is a path of length zero or more from some
node i, where bi �= 0, to node j in the graph GL. Computing the pattern of x requires
a graph traversal, starting from the nodes corresponding to the nonzero pattern of b.
It can be done in time proportional to the number of edges traversed. Each of these
edges is a nonzero in L that takes part in the subsequent numerical computation.

The above result holds for any lower triangular matrix L. In our case, L arises
from a Cholesky factorization and has an elimination tree [18, 19]. The elimination
tree of L has n nodes. The parent of node j in the elimination tree is the smallest index
i > j for which lij �= 0; node j is a root if there is no such i. Since the nonzero pattern
of (L)∗j is a subset of its path to the root of the elimination tree [20], all the nodes in
GL that can be reached from node j correspond to the path from node j to the root of
the elimination tree. Traversing the paths in the tree, starting at nodes corresponding
to nonzero entries in b, takes time proportional to the number of nonzero entries in
x. A general graph traversal of GL is not required. Step (1) of Algorithm 1 takes

O

⎛⎝ ∑
(l12)j �=0

|(L11)∗j |

⎞⎠
time to compute the nonzero pattern and numerical values of both y and l12. The
insertion of the nonzero entries of l12 into the data structure of L is performed in
conjunction with step (3).

Step (2) is a scaled dot product operation and can be computed in time propor-
tional to the number of nonzero entries in l12.

Step (3) is a matrix-vector multiply operation. It accesses the same columns of
L used by the sparse lower triangular solve, namely, each column j for which the jth
entry in l12 is nonzero. These same columns need to be modified by shifting entries
in L31 down by one and inserting the new entries in l12, the kth row of L. No other
columns in the range 1 to k− 1 need to be accessed or modified by steps (1) through
(3). When step (3) completes, the new column k of L needs to be inserted into the
data structure. This can be done in one of two ways. In the general case, we can store
the columns themselves in a noncontiguous manner and simply allocate new space for
this column. A similar strategy can be used for any columns 1 through k − 1 of L
that outgrow their originally allocated space with no increase in asymptotic run time.
Alternatively, we may know an a priori upper bound on the size of each column of L
after all row additions have been performed. In this case, a simpler static allocation
strategy is possible. This latter case occurs in our use of the row addition algorithm
in LPDASA, our target application [5]. In either case, the time to insert l12 into the
data structure and to compute l32 in step (3) is

O

⎛⎝ ∑
(l12)j �=0

|(L31)∗j |

⎞⎠ .
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Step (4) is a simple scalar-times-vector operation. The total time for steps (1)
through (4) is

O

⎛⎝ ∑
(l12)j �=0

|(L)∗j |

⎞⎠ .

Step (5) almost fits the specifications of the sparse rank-1 modification in [3],
but with one interesting twist. The original kth row and column of C are zero,
except for the placeholder diagonal entry, α. The new row and column only add
entries to C, and thus the nonzero pattern of the original factor L is a subset of the
nonzero pattern of L (ignoring numerical cancellation). The rank-1 modification in
Algorithm 1 is a symbolic update (new nonzero entries are added, not removed) and a
numeric downdate L33D33L

T
33 −wwT. Since the multiplicities used in [3] are needed

only for a subsequent symbolic downdate, they are not required by the row addition
algorithm. They would be required by a row deletion algorithm that maintains a
strict nonzero pattern of L; this issue is addressed in section 3.2.

The rank-1 modification to obtain the factorization L33D33L
T

33 takes time pro-
portional to the number of nonzero entries in L33 that change. The columns that
change correspond to the path from node k to the root of the elimination tree of L.
This path is denoted P in [3]. At each node j along the path P, at most four flops
are performed for each nonzero entry in (L)∗j .

With our choice of data structures, exploitation of the elimination tree, and the
rank-1 modification from [3], the total time taken by Algorithm 1 is proportional to
the total number of nonzero entries in columns corresponding to nonzero entries in l12,
to compute steps (1) through (4), plus the time required for the rank-1 modification
in step (5). The total time is

O

⎛⎝ ∑
(l12)j �=0

|(L)∗j | +
∑
j∈P

|(L)∗j |

⎞⎠ .

This time includes all data structure manipulations, sparsity pattern computation,
and graph algorithms required to implement the algorithm. It is identical to the total
number of flops required, and thus Algorithm 1 is optimal. In the sparse case, if every
column j takes part in the computation, the time is O(|L|). Normally, not all columns
will be affected by the sparse row addition. If the new row and column of L are very
sparse, only a few columns take part in the computation.

3. Row deletion. By deleting a row and column k from the matrix C, we mean
setting the entire row and column to zero, except for the diagonal entry (C)kk which
is set to α. This is the opposite of row addition. Here, we present an algorithm that
applies whether C is sparse or dense. Specific issues in the dense case are considered
in section 3.1, and the sparse case is discussed in section 3.2.

Prior to deleting row and column k, we have the original factorization

LDLT =

⎡⎣ L11

lT12 1
L31 l32 L33

⎤⎦⎡⎣ D11

d22

D33

⎤⎦⎡⎣ LT
11 l12 LT

31

1 lT32
LT

33

⎤⎦
=

⎡⎣ C11 c12 CT
31

cT
12 c22 cT

32

C31 c32 C33

⎤⎦ .
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After deleting row and column k, we have

LDL
T

=

⎡⎣ L11

0T 1
L31 0 L33

⎤⎦⎡⎣ D11

α
D33

⎤⎦⎡⎣ LT
11 0 LT

31

1 0T

L
T

33

⎤⎦
=

⎡⎣ C11 0 CT
31

0T α 0T

C31 0 C33

⎤⎦ .

Thus we only need to set row and column k of L to zero, set the diagonal entry to α,
and compute L33 and D33. The original factorization is

L33D33L
T
33 = C33 − L31D11L

T
31 − l32d22l

T
32,

while the new factorization is given as

L33D33L
T

33 = C33 − L31D11L
T
31.

Combining these two equations, we have a numeric rank-1 update,

L33D33L
T

33 = L33D33L
T
33 + wwT,(3.1)

where w = l32
√
d22. Algorithm 2 gives the complete row deletion algorithm, which is

applicable in both the dense and sparse cases.
Algorithm 2 (row deletion).

1. l12 = 0

2. d22 = α

3. l32 = 0
4. w = l32

√
d22

5. Perform the rank-1 update L33D33L
T

33 = L33D33L
T
33 + wwT.

end Algorithm 2

3.1. Dense row deletion. When C is dense, the number of flops performed by
Algorithm 2 is 2(n−k)2 +5(n−k)+1 (the same as steps (4) and (5) of Algorithm 1).
This is roughly 2n2 when k = 1, and (1/2)n2 when k = n/2. No work is required
when k = n.

3.2. Sparse row deletion. When row and column k of a sparse C are deleted
to obtain C, no new nonzero terms will appear in L, and some nonzero entries in L
may become zero. We refer to the deletion of entries in L as a symbolic downdate
[3]. The symbolic downdate is combined with a numeric rank-1 update because of the
addition of wwT in (3.1).

We cannot simply delete entries from L that become numerically zero. An entry
in L can be removed only if it becomes symbolically zero (that is, its value is zero
regardless of the assignment of numerical values to the nonzero pattern of C). If
entries are zero because of exact numerical cancellation and are dropped from the
data structure of L, then the elimination tree no longer characterizes the structure
of the matrix. If the elimination tree is no longer valid, subsequent updates and
downdates will not be able to determine which columns of L must be modified.

Steps (1) through (3) of Algorithm 2 require no numerical work, but they do
require some data structure modifications. All of the entries in row and column k
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of L become symbolically zero and can be removed. If L is stored by columns, it is
trivial in step (3) to immediately delete all entries in column l32. On the other hand,
the statement l12 = 0 in step (1) is less obvious. Each nonzero element in row k lies in
a different column. We must either set these values to zero, delete them from the data
structure, or flag row k as zero and require any subsequent algorithm that accesses
the matrix L to ignored flagged rows. The latter option would lead to a sparse row
deletion algorithm with optimal run time but complicates all other algorithms in our
application and increases their run time. We choose to search for the row k entries in
each column in which they appear and delete them from the data structure.

To set l12 to zero and delete the entries from the data structure for L requires
a scan of all the columns j of L for which the jth entry of l12 is nonzero. The time
taken for this operation is asymptotically bounded by the time taken for steps (1)
through (3) of sparse row addition (Algorithm 1), but the bound is not tight. The
nonzero pattern of row k of L can easily be found from the elimination tree. Finding
the row index k in the columns takes less time than step (1) of Algorithm 1 since a
binary search can be used. Deleting the entries takes time equivalent to step (3) of
Algorithm 1 since we maintain each column with sorted row indices.

The immediate removal of entries in L33 can be done using the symbolic rank-1
downdate presented in [3]. However, this requires an additional array of multiplicities,
which is one additional integer value for each nonzero in the matrix. Instead, we can
allow these entries to become numerically zero (or very small values due to numerical
roundoff) and not remove them immediately. Since they become numerically zero
(or tiny), they can simply remain in the data structure for the matrix and have no
effect on subsequent operations that use the matrix L. The entries can be pruned
later on by a complete symbolic factorization, taking O(|L|) time [6, 7, 8]. If this is
done rarely, the overall run time of the application that uses the sparse row deletion
algorithm will not be affected adversely.

The asymptotic run time of our sparse row deletion algorithm is the same as
sparse row addition (or less, because of the binary search), even though sparse row
addition requires more numerical work. This is nonoptimal but no worse than sparse
row addition, whose run time is optimal.

4. Row modification. It is possible to generalize our row deletion and addition
algorithms to handle the case where the kth row and column of C is neither originally
zero (the row addition case) nor set to zero (the row deletion case), but is changed
arbitrarily. Any change of this form can be handled as a row deletion followed by a
row addition, but the question may remain as to whether or not it can be done faster
as a single step. Here, we show that an arbitrary row modification can be efficiently
implemented as a row deletion followed by a row addition. If the changes to the row
are sparse, however, some work can be saved by combining the two steps.

4.1. Arbitrary row modification. In this section we show that no flops are
saved in a single-pass row modification algorithm, as compared to the row deletion +
row addition approach, if the change in the kth row and column is arbitrary. This is
true whether C is sparse or dense.

The original matrix C and the new matrix C are

C =

⎡⎣ C11 c12 CT
31

cT
12 c22 cT

32

C31 c32 C33

⎤⎦ and C =

⎡⎣ C11 c12 CT
31

cT
12 c22 cT

32

C31 c32 C33

⎤⎦ .(4.1)
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Computing l12, d22, and l32 is the same as the row addition algorithm and takes
exactly the same number of flops. The original factorization of the (33)-block is

L33D33L
T
33 = C33 − L31D11L

T
31 − l32d22l

T
32,

while the new factorization is

L33D33L
T

33 = C33 − L31D11L
T
31 − l32d22l

T

32.

These can be combined into a rank-1 update and rank-1 downdate

L33D33L
T

33 = L33D33L
T
33 + w1w

T
1 − w2w

T
2 ,(4.2)

where w1 = l32
√
d22 and w2 = l32

√
d22. The multiple rank update/downdate pre-

sented in [4] cannot perform a simultaneous update and downdate, but if the sparse
downdate (removal of entries that become symbolically zero) is not performed, it
would be possible to compute the simultaneous update and downdate (4.2) in a single
pass. This may result in some time savings since the data structure for L is scanned
once, not twice. No floating-point work would be saved, however. The total flop
count of the row modification algorithm is identical to a row deletion followed by a
row addition.

4.2. Sparse row modification. Suppose we modify some, but not all, of the
elements of the kth row and column of C. In this case, we can reduce the total

amount of floating-point work required to compute the modified factorization LDL
T
,

as shown below.
More precisely, consider the case where only a few entries in row and column k

of C are changed. Let

∆c12 = c12 − c12,

∆c22 = c22 − c22,

∆c32 = c32 − c32,

and assume that the change in the kth row and column is much sparser than in the
original kth row and column of C (for example, |∆c12| � |c12|).

If we consider (2.3) and its analog for the original matrix C, we have

L11D11l12 = c12,(4.3)

L11D11l12 = c12.(4.4)

Combining these two equations gives

L11D11∆l12 = ∆c12,

where ∆l12 = l12 − l12. Since ∆c12 is sparse, the solution of this lower triangular
system will be sparse in general. It can be solved in time proportional to the time
required to multiply L11 times ∆l12, or

O

⎛⎝ ∑
(∆l12)j �=0

|(L11)∗j |

⎞⎠
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[9, 10]. We can then compute l12 = l12 + ∆l12. This approach for computing l12 can
be much faster than solving (4.4) directly, which would take

O

⎛⎝ ∑
(l12)j �=0

|(L11)∗j |

⎞⎠
time. Computing d22 can be done in time proportional to |∆l12|, using the following
formula that modifies the dot product computation in Algorithm 1:

d22 = d22 + ∆d22 = d22 + ∆c22 −
∑

(∆l12)j �=0

(∆l12)j((l12)j + (l12)j)(D11)jj .

Similarly, the kth column of L can be computed as

l32 = (∆C32 + l32d22 − L31D11∆l12) /d22.

The key component in this computation is the sparse matrix-vector multiplication
L31D11∆l12, which takes less time to compute than the corresponding computation
L31D11l12 in step (2) of Algorithm 1.

The remaining work for the rank-1 update/downdate of L33D33L
T
33 is identi-

cal to the arbitrary row modification (4.2). If k is small, it is likely that this up-
date/downdate computation will take much more time than the computation of l12,
d22, and l32. If k is large, however, a significant reduction in the total amount of work
can be obtained by exploiting sparsity in the change in the row and column of C.

5. Row modifications as a rank-2 outer-product. Modifying row and col-
umn k of a symmetric matrix C can be written as a rank-2 modification C =
C + w1w

T
1 − w2w

T
2 . Suppose C and C are as given in (4.1). Let

d =

⎡⎣ c12 − c12

(c22 − c22)/2
c32 − c32

⎤⎦ .

Let ek be the kth column of the identity. Then C = C + deT
k + ekd

T. This can be
put into the form C = C+w1w

T
1 −w2w

T
2 using the following relationship (note that

e, below, is an arbitrary column vector, not necessarily ek). Given d and e ∈ R
n,

define

p =
d

‖d‖ +
e

‖e‖ and q =
d

‖d‖ − e

‖e‖ .

Then we have

deT + edT =
‖d‖‖e‖

2

(
ppT − qqT

)
.(5.1)

In our case, e = ek and ||e|| = 1. Defining

w1 =

√
‖d‖
2

(
d

‖d‖ + ek

)
and w2 =

√
‖d‖
2

(
d

‖d‖ − ek

)
,

it follows from (5.1) that

C = C + w1w
T
1 − w2w

T
2 .(5.2)
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C + w1wT
1

Fig. 5.1. Modifying C after the first outer product.

In the dense case, computing (5.2) using a rank-1 update and rank-1 downdate
takes 4n2 + 11n flops, independent of k (including the work to compute w1 and w2).
If we use Algorithms 1and 2 to make an arbitrary change in the kth row and column
of C, the total work is 4n2 +8n+3k2 − (6nk+7k), which is roughly 4n2 when k = 1,
n2 + n when k = n, and (7/4)n2 when k = n/2. Using the rank-2 update/downdate
method to modify row and column k of C can thus take up to four times the work
compared to the row addition/deletion presented here.

If the modification requires only the addition or deletion of row and column k,
then only Algorithm 1 or 2 needs to be used, but the entire rank-2 update/downdate
method presented in this section is still required (about 4n2 work, independent of
k). Considering only the quadratic terms, Algorithm 1 performs 2n2 + k2 − 2nk
operations, and Algorithm 2 performs 2(n − k)2 operations. The row modification
methods require much less work, particularly for the row deletion case when k ≈ n,
in which the work drops from 4n2 for the rank-2 update/downdate method to nearly
no work at all.

In the sparse case, the differences in work and memory usage can be extreme.
Both the rank-1 update and downdate could affect the entire matrix L and could
cause catastrophic intermediate fill-in. Consider the row addition case when k ≈ n
and the new row and column of C is dense. The factorization of C will still be fairly
sparse, since the large submatrix C11 does not change, and remains very sparse. The
factor L11 can have as few as O(n) entries. However, after one rank-1 update, the (11)-
block of C+ w1w

T
1 is completely dense, since w1 is a dense column vector. After the

rank-1 downdate (with −w2w
T
2 ), massive cancellation occurs, and the factorization

of C11 is restored to its original sparse nonzero pattern. But the damage has been
done, since we require O(n2) memory to hold the intermediate factorization. This
is infeasible in a sparse matrix algorithm. The memory problem could be solved if
a single-pass rank-2 update/downdate algorithm were used, but even then, the total
work required would be O(n2), which is much more than the O(|L|) time required for
Algorithm 1 in this case. The same problem occurs if the downdate with −w2w

T
2 is

applied first.

Figure 5.1 illustrates the change in C after the first rank-1 update, if the row
modification of Figure 1.2 is performed as the rank-2 modification C = C + w1w

T
1 −

w2w
T
2 . The vectors w1 and w2 have the same nonzero pattern as the change in row

k of C. The graph of the matrix w1w
T
1 is a single clique; its entries are shown as

pluses in Figure 5.1. If column 8 of this matrix were modified to become completely
dense, then Figure 5.1 would be a full matrix of pluses.

6. Modifying a lower triangular system. We now consider a related opera-
tion that can be performed efficiently at the same time that we modify the Cholesky
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factorization. Suppose we have a linear system Cx = b and the system is modified,
either by changing a row and column of C as discussed above, or due to a low-rank
change C = C ± WWT as discussed in [3, 4]. After the factorization is modified,

the new factorization LDL
T

= C will normally be used to solve a modified linear
system Cx = b. The complete solution x will likely be different in every component
because of the backsolve, but a significant reduction of work can be obtained in the
forward solve of the lower triangular system Lx = b. We thus focus only on this lower
triangular system, not the complete system.

First, consider the simpler case of a low-rank change of a dense matrix. As shown
below, it takes double the work to modify the solution instead of computing it from
scratch, but the dense matrix method can be used for submatrices in the sparse case,
resulting in a significant reduction in work. Suppose we have the system Lx = b,
including its solution x, and the new linear system is Lx = b. Combining these two
equations gives

Lx = b − b + Lx = ∆b + Lx,

where ∆b = b − b. Suppose we are given L, x, and ∆b. The matrix L is computed
column-by-column by either the low-rank update/downdate algorithm in [3, 4] or the
row and column modification algorithm discussed in this paper. We can combine the
modification of L with the computation of x, as shown in Algorithm 3.

Algorithm 3 (dense modification of Lx = b to solve Lx = b).
x = ∆b
for j = 1 to n do

x = x + (L)∗jxj

compute the new column (L)∗j
(x)j+1...n = (x)j+1...n − (L)j+1...n,jxj

end for
end Algorithm 3

The total work to modify the solution to Lx = b is roughly 2n2, as compared to
n2 work to solve Lx = b from scratch. One would never use this method if L and b
are dense.

Now consider the sparse case. Suppose we have a low-rank sparse update of L.
The columns that change in L correspond to a single path P in the elimination tree
for a rank-1 update. Every entry in these specific columns is modified. For a rank-r
update, where r > 1, the columns that change correspond to a set of paths in the
elimination tree, which we also will refer to as P in this more general case. In both
cases, the nonzero pattern of each column j in the path P is a subset of the path [20].
We can thus partition the matrices L and L into two parts, according to the set P.
The original system is [

L11 0
L21 L22

] [
x1

x2

]
=

[
b1

b2

]
,

where the matrix L22 consists of all the rows and columns corresponding to nodes in
the path P. If the changes in the right-hand side b are also constrained to the set P,
the new linear system is [

L11 0
L12 L22

] [
x1

x2

]
=

[
b1

b2

]
.
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[
L11 0
L21 L22
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=

P = {1, 2, 6, 8}

L partitioned according to the path P

Fig. 6.1. Modifying Lx = b after a rank-1 update.

Note that L11, L12, and b1 do not change, and thus x1 does not change. If the
change in the right-hand side is arbitrary (not constrained to P, for example), then
x1 changes and no work is saved over solving Lx = b from scratch.

We have made a sparse change to both the matrix L and the right-hand side.
The solution to the subsystem L11x1 = b1 does not change. We have

L21x1 + L22x2 = b2,

L21x1 + L22x2 = b2.

We can apply Algorithm 3 to the subsystem

L22x2 = ∆b2 + L22x22,

where ∆b2 = b2−b2, to obtain the new solution x2. Algorithm 3 takes 4|L22|+O(P)
flops to compute x2. An additional 4r|L22| + O(P) flops are required to update L22.
Solving Lx = b after L is updated takes 2|L| flops. If the path P is short, making
a sparse modification to the old solution x to obtain the new solution x during the
update of L takes much less work than solving the new linear system after L is
updated.

Figure 6.1 shows a matrix C, its factorization, and its elimination tree after a
rank-1 update, using just the first column of W from the example shown in Figure 1.1.
As in our other figures, a plus denotes an entry that changes, or an entry of w. The
subtree of the original elimination tree consisting of nodes {1, 2, 6, 8} becomes a single
path P = {1, 2, 6, 8} in the new elimination tree. The rows and columns of L can be
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partitioned according to the path P, as shown in Figure 6.1. We do not perform this
permutation, of course, but only illustrate it here. The algorithm that updates L and
x accesses only columns {1, 2, 6, 8} of L (the submatrix L22) and the same rows of x
and b.

Finally, consider the case discussed in this paper of modifying row and column k
of C. If we add row k, the original lower triangular system is⎡⎣ L11

0T 1
L31 0 L33

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ b1

b2
b3

⎤⎦ .(6.1)

The new lower triangular system is⎡⎣ L11

l
T

12 1

L31 l32 L33

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ b1

b2
b3

⎤⎦ ,(6.2)

where we assume b1 does not change, and the entries that change in b3 are a subset
of the path P. Let ∆b3 = b3 − b3. The term x2 can be computed as

x2 = b2 − l
T

12x1.

The (33)-blocks of (6.1) and (6.2) give the equations

L33x3 = b3 − L31x1,

L33x3 = (b3 − L31x1) + (∆b3 − l32x2).(6.3)

The change in the right-hand side of this system is ∆b3 − l32x2. Since the nonzero
pattern of l32 is a subset of P, this computation fits the same requirements for the
sparse change in x due to a sparse low-rank change in L and b, discussed above. The
row deletion case is analogous.

The number of flops in Algorithm 3 to modify the solution to Lx = b is roughly
the same as a rank-1 update to compute the modified L. However, the run time is
not doubled compared to a stand-alone rank-1 update. At step j, for each j in the
path P, the rank-1 update must read column j of L, modify it, and then write the
jth column of L back into memory. No extra memory traffic to access L is required
to compute the solution to the lower triangular system using (6.3). With current
technology, memory traffic can consume more time than flops. Thus, when modifying
the kth row and column of C, or performing a rank-r update/downdate to C, we can
update the solution to the lower triangular system at almost no extra cost. In our
target application [5], solving the linear system Cx = b, given its LDLT factorization,
can often be the dominant step. The method presented here can cut this time almost
in half since the forward solve time is virtually eliminated, leaving us with the time
for the upper triangular backsolve.

7. Experimental results. To illustrate the performance of the algorithms de-
veloped in this paper in a specific application, Table 7.1 gives the flops associated with
the solution of the four largest problems in the Netlib linear programming test set
using the LPDASA [5]. The problems passed to the solver were first simplified using
the ILOG CPLEX [2] version 7.0 presolve routine. An LP presolver [1] preprocesses
the problem by removing redundant constraints and variables whose values can be
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Table 7.1

Experimental results.

Problem Performance Forward Column Row
solve updates deletions

dfl001 number: 2629 87
n: 3881 avg. mod. rank 1.2 1

avg. mod. flops 2.43 × 106 1.64 × 106

avg. solve flops 1.46 × 106 2.03 × 106 1.64 × 106

pds20 number: 1736 65
n: 10214 avg. mod. rank 3.5 1

avg. mod. flops 3.37 × 106 2.13 × 106

avg. solve flops 1.11 × 106 1.21 × 106 2.12 × 106

ken18 number: 2799 23
n: 39856 avg. mod. rank 15.6 1

avg. mod. flops 61.7 × 103 2242
avg. solve flops 195.8 × 103 7155 2075

osa60 number: 71 277
n: 10209 avg. mod. rank 58.9 1

avg. mod. flops 4415 62
avg. solve flops 11.0 × 103 270 37

easily determined. Hence, the number of rows n of the problems listed in the first
column of Table 7.1 is much smaller than the number of rows in the original Netlib
problems.

The third column (labeled “Forward solve”) gives the average number of flops
that would have been required if forward solves were done in a conventional way, by
a forward elimination process. This number is simply twice the average number of
nonzeros in L. As the LP is solved, the sparsity of L changes slightly due to changes in
the current basis. Hence, we give the average flops needed for a conventional forward
solve, which can be compared with the average flops in modifying the solution using
the technique developed in this paper. The problems are sorted according to this
column.

The fourth column of the table, entitled “Column updates,” lists the number of
rank-r column updates performed (of the form C + WWT), the average rank r of
those updates, the flops required to modify L, and the flops required to modify the
solution to the forward solve when L changes as a result of a column update. Since
we have developed [4] a multiple-rank approach for performing column updates, the
average ranks listed are all greater than 1. They are near 1 for the densest problem
dfl001 and near 60 for the sparsest problem osa60. Recall that the column update
requires about 4r flops per entry in L that change. Modifying the forward solve takes
4 flops per entry in L that change. The average flops associated with the modification
of L is thus always greater than the flops associated with the forward solve update,
especially for multiple rank column updates. The conventional forward solve requires
2 flops for each nonzero entry in L, whether they change or not. In the worst case,
when all of the entries in L change, modifying the forward solve takes no more than
twice the work of the conventional forward solve, and a column update takes no more
than 2r times the work of a conventional forward solve.

The last column of the table, entitled “Row deletions,” lists the number of dele-
tions of a row (and column) from C, the average number of flops required to modify
L after deleting a row from C, and the average number of flops required to modify
the solution to the forward solve when L changes as a result of a row deletion. Since
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the row deletion algorithm developed in this paper is a single-rank process, the ranks
listed are all 1.

When the matrix L is very sparse (such as osa60), both the column update and
row deletion methods modify only a small portion of the matrix. The elimination tree
tends to be short and wide, with short paths from any node to the root. Thus, for
very sparse problems the conventional forward solve (which accesses all of L) takes
much more work than either the column update or the row deletion. For the osa60

matrix, the conventional forward solve takes about 40 times the work compared to
modifying the forward solve during a column update.

For a matrix L that is fairly dense (such as dfl001), the elimination tree tends to
be tall and thin, and the column updates or row deletions modify most entries in L. In
this case, the work required to modify the forward solve is more on average than that
of a full forward solve, but it is never more than twice the work. A combined update of
the factorization and forward solve cuts the memory traffic at least in half compared
with an update of L followed by a conventional forward solve. The update accesses
only the parts of L that change, whereas the conventional forward solve accesses all
of L. The performance of most modern computers is substantially affected by the
amount of memory transfers between cache and main memory, so cutting memory
traffic at least in half at the cost of at most doubling the flop count will normally lead
to an overall improvement in performance, even when the matrix is fairly dense.

8. Summary. We have presented a method for modifying the sparse Cholesky
factorization of a symmetric positive definite matrix C after a row and column of C
have been modified. One algorithm, the sparse row addition, is optimal. The corre-
sponding row deletion algorithm is not optimal but takes no more time than the row
addition. Although changing a row and column of C can be cast as rank-2 change of
the form C + w1w

T
1 − w2w

T
2 , the latter is impractical in a sparse context. We have

shown how to modify the solution to a lower triangular system Lx = b when the ma-
trix L changes as a result of either the row addition/deletion operation discussed here
or an update/downdate of the form C±WWT described in our previous papers [3, 4].
By postponing the symbolic downdate, the memory usage has been reduced by 25%
(assuming 8-byte floating-point values and 4-byte integers), compared with the col-
umn update/downdate methods described in [3, 4], which also store the multiplicities.
Together, the row addition/deletion algorithms and the column update/downdate al-
gorithms form a useful suite of tools for modifying a sparse Cholesky factorization
and for solving a sparse system of linear equations. Using these algorithms, the linear
programming solver LPDASA is able to achieve an overall performance that rivals,
and sometimes exceeds, the performance of current commercially available solvers [5].
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Abstract. We first introduce a second-order Krylov subspace Gn(A,B;u) based on a pair of
square matrices A and B and a vector u. The subspace is spanned by a sequence of vectors defined
via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and
an initial vector u. It generalizes the well-known Krylov subspace Kn(A;v), which is spanned by
a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single
coefficient matrix A and an initial vector v. Then we present a second-order Arnoldi (SOAR)
procedure for generating an orthonormal basis of Gn(A,B;u). By applying the standard Rayleigh–
Ritz orthogonal projection technique, we derive an SOAR method for solving a large-scale quadratic
eigenvalue problem (QEP). This method is applied to the QEP directly. Hence it preserves essential
structures and properties of the QEP. Numerical examples demonstrate that the SOAR method
outperforms convergence behaviors of the Krylov subspace–based Arnoldi method applied to the
linearized QEP.
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1. Introduction. The Krylov subspace

Kn(A;v) = span{v,Av,A2v, . . . ,An−1v}(1.1)

based on a square matrix A and a vector v plays an indispensable role in modern
numerical techniques for solving large-scale matrix computation problems, such as the
linear eigenvalue problem of the form Ax = λx. A Krylov subspace–based method is
often the method of choice due to its simplicity, its availability of reliable and efficient
processes for generating its orthonormal basis, and the superiority of convergence
behaviors [5, 6, 12, 15, 16]. Many state-of-the-art Krylov subspace methods for solving
large-scale eigenvalue problems are presented in [3].

The generalized eigenvalue problem of the form Ax = λBx must be reduced, ex-
plicitly or implicitly, to the linear eigenvalue problem in a form such as (B−1A)x = λx,
and then a Krylov subspace–based method can be applied. The quadratic eigenvalue
problem (QEP) of the form

(λ2M + λD + K)x = 0(1.2)

is usually processed in two stages, as recommended in most literature, public domain
packages, and proprietary software today. At the first stage, it transforms the QEP
into an equivalent generalized eigenvalue problem:

Cy = λGy,(1.3)
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where yT =
[
λxT xT

]
, and C and G are in forms such as

C =

[
−D −K
I 0

]
, G =

[
M 0
0 I

]
,

where we assume throughout the report that M is nonsingular. At the second stage,
it reduces the generalized eigenvalue problem (1.3) to a linear eigenvalue problem
“Ax = λx” and then applies a Krylov subspace–based method. Such an approach
takes advantages of Krylov subspace–based methods, such as the fast convergence
rate and the simultaneous convergence of a group of eigenvalues. However, it also suf-
fers some disadvantages, such as having to solve the generalized eigenvalue problem
(1.3) of twice the dimension of the original QEP and, more importantly, the loss of
the original structures of the QEP in the process of linearization. For example, when
coefficient matrices M, D, and K are symmetric positive definite, the transformed gen-
eralized eigenvalue problem (1.3) has to be either intrinsically nonsymmetric, where
one of C and G has to be nonsymmetric, or symmetric indefinite, where both C
and G are symmetric but neither will be positive definite. Subsequently, essential
spectral properties of the QEP are not guaranteed to be preserved. The reader is
referred to [24] for a recent survey on theory, applications, and algorithms of the
QEP.

For years, researchers have been studying numerical methods which can be ap-
plied to the large-scale QEP directly. In these methods, they do not transform the
QEP into an equivalent linear form; instead, they project the QEP onto a properly
chosen low-dimensional subspace to reduce to a QEP directly with matrix dimen-
sion of lower order. The reduced QEP problem can then be solved by a standard
dense matrix technique. The Jacobi–Davidson method [17, 18] is one such method.
The method targets one eigenvalue at a time with local convergence versus Krylov
subspace methods in which a group of eigenvalues is approximated with global conver-
gence. A direct Krylov-type subspace method with a generalized Arnoldi procedure
is briefly described in [13]. However, the procedure presented in [13] in fact does not
compute an orthonormal basis of the desired Krylov-type subspace. In [7], Arnoldi-
and Lanczos-type processes are developed to construct projections of the QEP. The
convergence of these methods is usually slower than a Krylov subspace method applied
to the mathematically equivalent linear eigenvalue problem. Finally, a subspace ap-
proximation method that uses perturbation theory of the QEP was recently presented
in [8]. The success of the method is strongly dependent on the initial approximation,
although Rayleigh quotient iteration can be used for acceleration.

Motivated by striking an ideal method which not only can be applied to the QEP
directly to preserve the essential structures of the QEP but also achieves the supe-
rior global convergence behaviors of Krylov subspace methods via linearization, in
this paper, we first introduce a second-order Krylov subspace Gn(A,B;u) based on a
pair of square matrices A and B and a vector u. The basis vectors of the subspace
are defined via a linear homogeneous recurrence of degree 2 with coefficient matri-
ces A and B. Consequently, a second-order Arnoldi (SOAR) procedure is presented
for generating an orthonormal basis of Gn(A,B;u). As an application of the SOAR
procedure, a Rayleigh–Ritz orthogonal projection technique based on Gn(A,B;u) is
discussed for finding a few of the largest magnitude eigenvalues and the correspond-
ing eigenvectors of the large-scale QEP (1.2). This method is applied to the QEP
directly. Hence it preserves essential structures and properties of the QEP. Numerical
examples presented in section 5 demonstrate that the new QEP solver outperforms
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convergence behaviors of the Krylov subspace–based Arnoldi method when applied
to the linearized QEP.

In order to solve the large-scale QEP and, more generally, the matrix polynomial
eigenvalue problem efficiently, the necessity for the extension of the standard Krylov
subspace to explicitly involve more than one matrix has been recognized. In section
2, we will see that the definition of the subspace Gn(A,B;u) is a natural extension in
the context of solving the QEP by a projection technique. It has been an interesting
problem to find a scheme which can efficiently construct an orthonormal basis of
Gn(A,B;u) that is comparable to the Arnoldi process for generating an orthonormal
basis of the standard Krylov subspace Kn(A;u). The first procedure presented in this
paper is inspired by the work of Su and Craig [22], to which we are gratefully indebted.

The rest of this report is organized as follows. In section 2, we introduce the
second-order Krylov subspace Gn(A,B;u) and a simple SOAR procedure for gener-
ating an orthonormal basis of the subspace. In section 3, we discuss the possible
deflation and breakdown situations of the SOAR procedure, and we present a revised
version of the SOAR procedure with deflation and memory saving. In section 4, we
present a Rayleigh–Ritz procedure for solving the QEP (1.2). For completeness, we
also present the basic Arnoldi method for solving the equivalent generalized eigenvalue
problem (1.3). Numerical examples are presented in section 5. Discussion and future
work are in section 6.

Throughout the paper, we follow the notational convention commonly used in
matrix computation literature. Specifically, we use boldface letters to denote vectors
(lower cases) and matrices (upper cases), I for the identity matrix, ej for the jth
column of the identity matrix I, and 0 for zero vectors and matrices. The dimensions
of these vectors and matrices are conformed with dimensions used in the context. We
use ·T to denote the transpose. N denotes the order of the original matrix triplet
(M,D,K) and associated QEP (1.2). span{q1,q2, . . . ,qn} and span{Q} denote the
space spanned by the vector sequence q1,q2, . . . ,qn and the columns of the matrix
Q, respectively. ‖·‖1 and ‖·‖2 denote the 1-norm and 2-norm, respectively, for vector
or matrix. x(i : j), as used in MATLAB, denotes the ith to jth entries of the vector
x. A(i : j, k : �) denotes the submatrix of A by the intersection of rows i to j and
columns k to �.

2. A second-order Krylov subspace. In this section, we first define a gen-
eralized Krylov subspace induced by a pair of matrices A and B and a vector u.
Then we discuss the motivation for such a generalization and present an Arnoldi-like
procedure for generating an orthonormal basis of the generalized Krylov subspace.

Definition 2.1. Let A and B be square matrices of order N , and let u �= 0 be
an N vector. Then the sequence

r0, r1, r2, . . . , rn−1,(2.1)

where

r0 = u,
r1 = Ar0,
rj = Arj−1 + Brj−2 for j ≥ 2,

is called a second-order Krylov sequence based on A, B, and u. The space

Gn(A,B;u) = span{r0, r1, r2, . . . , rn−1}

is called an nth second-order Krylov subspace.
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First, we note that the subspace Gn(A,B;u) generalizes the standard Krylov
subspace Kn(A;u) in the way that when B is a zero matrix, the second-order Krylov
subspace is the standard Krylov subspace, namely,

Gn(A,0;u) = Kn(A;u).

Second, we know that the Krylov subspace Kn(A;u) has an important character-
ization in terms of matrix polynomials, which forms a foundation for convergence
analysis of a Krylov subspace–based method. There is a similar one for the second-
order Krylov subspace Gn(A,B;u). With the starting vector u, the first few vectors
in the second-order Krylov sequence can be written as

r0 = u,

r1 = Au,

r2 = (A2 + B)u,

r3 = (A3 + AB + BA)u,

r4 = (A4 + A2B + ABA + BA2 + B2)u.

In general, the jth vector rj in the second-order Krylov sequence defined by a linear
homogeneous recurrence relation of degree 2 with coefficient matrices A and B can
be written as

rj = pj(A,B)u,

where pj(α, β) are polynomials in α and β, defined by the recurrence

pj(α, β) = α · pj−1(α, β) + β · pj−2(α, β)

with p0(α, β) ≡ 1 and p1(α, β) = α.
We now discuss the motivation for the definition of the second-order Krylov sub-

space Gn(A,B;u) in the context of solving the QEP (1.2). Recall that the QEP (1.2)
can be transformed into an equivalent generalized eigenvalue problem (1.3). If one
applies a Krylov subspace technique to (1.3), then an associated Krylov subspace
would naturally be

Kn(H;v) = span{v,Hv,H2v, . . . ,Hn−1v},(2.2)

where v is a starting vector of length 2N , and

H = G−1C =

[
−M−1D −M−1K

I 0

]
.(2.3)

Let A = −M−1D, B = −M−1K, and v = [uT 0]T; then we immediately derive that
the second-order Krylov vectors {rj} of length N defined in (2.1) and the standard
Krylov vectors {Hjv} of length 2N defined in (2.2) are related as the following form:[

rj
rj−1

]
= Hjv for j ≥ 1.(2.4)

In other words, the generalized Krylov sequence {rj} defines the entire standard
Krylov sequence based on H and v. Equation (2.4) indicates that the subspace
Gj(A,B;u) of RN should be able to provide sufficient information to let us directly
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work with the QEP, instead of using the subspace Kn(H;v) of R2N for the linearized
eigenvalue problem (1.3). We will discuss this further in section 4.

We now turn to the question of how to construct an orthonormal basis {qi} of
Gj(A,B;u). Namely,

span{q1,q2, . . . ,qj} = Gj(A,B;u) for j ≥ 1.

The following is a procedure to implicitly apply to the sequence of the second-order
Krylov vectors {rj} to generate an orthonormal basis {q1,q2, . . . ,qj}. Later we will
see that it is an Arnoldi-like procedure. We call it an SOAR (second-order Arnoldi)
procedure.

Algorithm 1. SOAR procedure.
1. q1 = u/‖u‖2

2. p1 = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bpj

5. s = qj

6. for i = 1, 2, . . . , j do
7. tij = qT

i r
8. r := r − qitij
9. s := s − pitij

10. end for
11. tj+1 j = ‖r‖2

12. if tj+1 j = 0, stop
13. qj+1 = r/tj+1 j

14. pj+1 = s/tj+1 j

15. end for

We note that matrices A and B are referenced only via the matrix-vector mul-
tiplications in line 4 of the algorithm above. Therefore, it is ideal for large and
sparse matrices A and B. Sparsity or structures of A and B can be exploited in the
matrix-vector multiplications. This enjoys the same feature as the Arnoldi process
for generating an orthonormal basis of the standard Krylov subspace Kn.

The for-loop in lines 6–10 is an orthogonalization procedure with respect to the
{qi} vectors. The vector sequence {pj} is an auxiliary sequence. In section 3, we
will present a modified version of the algorithm to remove the requirement of explicit
reference of the sequence {pj}. This will reduce the memory requirements by almost
half.

Algorithm 1 stops prematurely when the norm of r computed at line 12 vanishes
at a certain step j. In this case, we encounter either deflation or breakdown. We delay
the discussion of deflation and breakdown till the next section.

We now consider basic relations between quantities generated by the algorithm.
If Qn denotes the N × n matrix with column vectors q1,q2, . . . ,qn, Pn denotes the
N × n matrix with column vectors p1,p2, . . . ,pn, and Tn denotes the n × n upper
Hessenberg matrix with nonzero entries tij as defined in the algorithm, then the
following relations hold:

AQn + BPn = QnTn + qn+1e
T
n tn+1n,(2.5)

Qn = PnTn + pn+1e
T
n tn+1n(2.6)

with the orthonormality of the vector sequence {q1,q2, . . . ,qn,qn+1}. Let T̂n be an

(n + 1) × n upper Hessenberg matrix of the form T̂n = [
Tn

eT
ntn+1 n

]. Then equations
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(2.5) and (2.6) can be rewritten in the compact form[
A B
I 0

] [
Qn

Pn

]
=

[
Qn+1

Pn+1

]
T̂n.(2.7)

This relation assembles the similarity between the SOAR procedure and the well-
known Arnoldi procedure [1]. Let us recall the following Arnoldi procedure for gener-
ating an orthonormal basis {v1,v2, . . . ,vn} of the Krylov subspace Kn(H;v), where
H and v are defined in (2.4).

Algorithm 2. Arnoldi procedure.
1. v1 = v/‖v‖2

2. for j = 1, 2, . . . , n do
3. r = Hvj

4. for i = 1, 2, . . . , j do
5. hij = vT

i r
6. r := r − vihij

7. end for
8. hj+1 j = ‖r‖2

9. if hj+1,j = 0, breakdown
10. vj+1 = r/hj+1 j

11. end for

If Vn denotes the 2N × n matrix with column vectors v1,v2, . . . ,vn and Hn de-
notes the n×n Hessenberg matrix with nonzero entries hij as defined in the algorithm,
then the Arnoldi procedure can be compactly expressed by the equation

HVn = VnHn + vn+1e
T
nhn+1n

or be cast in the form similar to (2.7),[
A B
I 0

]
Vn = Vn+1Ĥn,(2.8)

where Vn+1 =
[
Vn vn+1

]
is a (2N) × (n + 1) orthonormal matrix, and Ĥn =

[
Hn

eT
nhn+1 n

] is a (n + 1) × n upper Hessenberg matrix. By comparing (2.7) and (2.8),

we see that the essential difference between the SOAR procedure and the Arnoldi
procedure is that in SOAR, the nonzero elements tij of the (n+ 1)×n upper Hes-

senberg matrix T̂n are chosen to enforce the orthonormality of the vectors {qj} of
dimension N , whereas in Arnoldi, the nonzero elements hij of (n+ 1)×n upper Hes-

senberg matrix Ĥn are determined to ensure the orthonormality of the vectors {vj}
of dimension 2N . In the next section, we will further exploit the relationship between
SOAR and Arnoldi to derive a revised version of the SOAR procedure, which remedies
the deflation and saves half the memory requirement and floating point operations.

For the rest of this section, we prove that the vector sequence {q1,q2, . . . ,qn}
indeed is an orthonormal basis of the second-order Krylov subspace Gj(A,B;u). First,
we have the following lemma, which reveals the connection between decomposition
characteristics in (2.7) and (2.8) and a related Krylov subspace.

Lemma 2.2. Let A be an arbitrary n× n matrix. Let Vm+1 =
[
Vm vm+1

]
be

an n× (m + 1) rectangular matrix that satisfies

AVm = Vm+1Ĥm
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for an (m + 1) ×m upper Hessenberg matrix Ĥm. Then there is an upper triangular
matrix Rm such that

VmRm =
[
v1 Av1 · · · Am−1v1

]
.(2.9)

Furthermore, if the first m− 1 subdiagonal elements of Ĥm are nonzero, then Rm is
nonsingular and

span{Vm} = Km(A,v1).(2.10)

Proof. We first prove (2.9) by induction on m. When m = 1, (2.9) holds with
R1 = 1. Assume that (2.9) holds for m− 1. Then for m,[

v1 Av1 · · · Am−1v1

]
=

[
v1 A

[
v1 Av1 · · · Am−2v1

] ]
=

[
v1 AVm−1Rm−1

]
=

[
Vme1 VmĤm−1Rm−1

]
= Vm

[
e1 Ĥm−1Rm−1

]
≡ VmRm.

The fact of the upper triangularity of Rm is immediately followed by its definition.
Furthermore, note that the diagonal elements of Rm are 1 and the products of the
first m − 1 subdiagonal elements of Ĥm. Therefore, if these subdiagonal elements
are nonzero, then Rm is nonsingular. Finally, (2.10) is established by (2.9) and the
nonsingularity of Rm.

We note that in Lemma 2.2, the column vectors of Vn span the Krylov subspace
Kn(A,v1) as long as (2.9) is satisfied and Rm is nonsingular. It is still true even
when some of the columns of Vn are zero vectors. Lemma 2.2 can be viewed as a
generalization of the second part of Theorem 1.1 in [21, p. 298]. We will apply this
fact when we discuss the deflation in the SOAR procedure. We now prove that
Algorithm 1 generates an orthonormal basis of the second-order Krylov subspace
Gj(A,B;u).

Theorem 2.3. If tj+1,j �= 0 for j≥ 1 in Algorithm 1, then the vector sequence
{q1,q2, . . . ,qj} forms an orthonormal basis of the second-order Krylov subspace
Gj(A,B;u), i.e.,

span{Qj} = Gj(A,B;u) for j ≥ 1(2.11)

and qT
i qk = 0 if i �= k and qT

i qi = 1 for i, k = 1, 2, . . . , j.
Proof. Equation (2.11) is established by the following sequence of equalities:

Gj(A,B; r0) = span{r0, r1, . . . , rj−1}

= span

{[
I 0

] [ r0 r1 · · · rj−1

0 r0 · · · rj−2

]}
= span

{[
I 0

] [
v1 Hv1 . . . Hj−1v1

]}
by (2.4)

= span

{[
I 0

] [Qj

Pj

]
Rj

}
by (2.7) and Lemma 2.2

= span

{[
I 0

] [Qj

Pj

]}
by the assumption that Rj is nonsingular

= span {Qj} .
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Finally, the orthogonality of the basis vectors {q1,q2, . . . ,qj} is directly obtained
from the orthogonalization inner for-loop (lines 6–10) and the normalization step at
line 13 of the SOAR procedure.

3. An SOAR procedure. As we pointed out in the previous section, Algo-
rithm 1 stops prematurely when the norm of r computed at line 12 vanishes at a
certain step j. There are two possible explanations for this. One is that the vector
sequence {ri} for i = 0, 1, . . . , j−1 is linearly dependent, but the double length vector
sequence {[ rT

i rT
i−1 ]T} is linearly independent. We call this situation deflation. We

will show that with a proper treatment, the SOAR procedure can continue. Another
possible explanation is that both vector sequences {ri} and {[ rT

i rT
i−1 ]T} are linearly

dependent at a certain step j. In this situation, the SOAR procedure terminates. We
call this breakdown.

The Arnoldi procedure (Algorithm 2) terminates when the norm of the vector r
computed at line 9 vanishes at a certain step j. It happens when the vector sequence
{Hiv} = {[ rT

i rT
i−1 ]T} for i = 0, 1, . . . , j − 1 is linearly dependent. This is known as

the breakdown of the Arnoldi procedure.
In this section, we first discuss the deflation and then the breakdown. We will

show the connection of breakdowns between the SOAR and Arnoldi procedures.

3.1. Deflation. We now present the following modified version of Algorithm 1,
which remedies the deflation.

Algorithm 3. SOAR procedure with deflation.
1. q1 = u/‖u‖2

2. p1 = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bpj

5. s = qj

6. for i = 1, 2, . . . , j do
7. tij = qT

i r
8. r := r − qitij
9. s := s − pitij

10. end for
11. tj+1 j = ‖r‖2

12. if tj+1 j = 0
13. if s ∈ span{pi | i : qi = 0, 1 ≤ i ≤ j}
14. breakdown
15 else % deflation
16. reset tj+1 j = 1
17. qj+1 = 0
18. pj+1 = s
19. end if
20. else % normal case
21. qj+1 = r/tj+1 j

22. pj+1 = s/tj+1 j

23. end if
24. end for

We note that in the modified SOAR procedure above, when deflation is detected
(line 15), it simply takes qj+1 = 0 and sets the scaling element tj+1 j to a nonzero
value (line 16). Then the procedure continues.
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Without repeating the discussion in section 2, we state that quantities generated
by Algorithm 3 hold the same relations as Algorithm 1, e.g., (2.7) is still true and
the vector sequence {q0,q1, . . . ,qn−1} still spans the second-order Krylov subspace
Gn(A,B;u), except that some of the q vectors are zero vectors when deflations occur
at the corresponding steps. The set of nonzero q vectors forms an orthonormal basis
of Gn(A,B;u).

3.2. Breakdown. Let us discuss the situation where breakdown occurs. We
have the following theorem.

Theorem 3.1. The SOAR procedure (Algorithm 3) with matrices A and B and
starting vector u breaks down at a certain step j if and only if the Arnoldi procedure
with matrix H and starting vector v breaks down at the same step j.

To prove Theorem 3.1, we need the following lemma.
Lemma 3.2. For a sequence of linearly independent vectors {v1,v2, . . . ,vn}

with partition vi = {[qT
i pT

i ]T}, if there exists a subsequence {qi1 ,qi2 , . . . ,qik}
of the q vectors that are linearly independent and the remaining vectors are zeros,
qik+1

= qik+2
= · · · = qin = 0, then a vector v = {[0 pT ]T} ∈ span{v1,v2, . . . ,vn}

if and only if p ∈ span{pik+1
,pik+2

, . . . ,pin}.
Proof. If v ∈ span{v1,v2, . . . ,vn}, then there exist scalars αi, such that

v =
∑n

i=1 αivi. By the assumption that v = {[0 pT ]T} ∈ span{v1,v2, . . . ,vn} and

some zero vectors in the q vector sequence, we have 0 =
∑n

j=1 αjqj =
∑k

j=1 αijqij .
Since vectors qi1 ,qi2 , . . . ,qik are linearly independent, it yields that αij = 0 for
j = 1, 2, . . . , k. Hence v =

∑n
j=k+1 αijvij , which means that p =

∑n
j=k+1 αijpij or,

equivalently, p ∈ span{pik+1
,pik+2

, . . . ,pin}.
Proof of Theorem 3.1. Let us first consider that the Arnoldi procedure breaks

down at a certain step j. This implies that

dim(Kn(H,v)) = j and Hnv ∈ Kj(H,v) for n ≥ j(3.1)

From (2.7) and Lemma 2.2, we have

span

{[
Qj

Pj

]}
= Kj(H,v).

Since dim(Kj(H,v)) = j, [ Qj

Pj
] is full column rank. By Lemma 2.2 again and (3.1),

we have [
r
s

]
∈ span

{[
Qj

Pj

]}
.(3.2)

We now show that r = 0 (at line 11 of Algorithm 3). Suppose r �= 0. Since rTqi = 0
for i = 1, 2, . . . , j, it implies that

r �∈ span{q1,q2, . . . ,qj},

which indicates that [
r
s

]
�∈ span

{[
Qj

Pj

]}
.

This contradicts (3.2). Therefore r = 0. Thus Algorithm 3 proceeds to execute
line 13. By (3.2) and Lemma 3.2, we have

s ∈ span{pi | i : qi = 0, 1 ≤ i ≤ j}.
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Therefore, Algorithm 3 also breaks down (line 14 of Algorithm 3).
Conversely, if Algorithm 3 breaks down at a certain step j, then[

r
s

]
=

[
0
s

]
∈ span

{[
Qj

Pj

]}
.(3.3)

Note that (2.7) still holds with the choice of tj+1 j = 1. Thus by Lemma 2.2, we have

span

{[
Qj

Pj

]}
= Kj(H,v) and span

{[
Qj+1

Pj+1

]}
= Kj+1(H,v).

On the other hand, by induction, we can show that after j − 1 steps in Algorithm 3,
we have

rank

([
Qj

Pj

])
= j.(3.4)

Combining (3.3) and (3.4), it yields that dim(Kj(H,v)) = j and Kj(H,v) = Kj+1

(H,v). These two conditions ensure that the Arnoldi procedure breaks down at the
same step j.

In the Arnoldi procedure, when breakdown occurs, it indicates that the Krylov
subspace Kj(H,v) is an invariant subspace of H, and the vector sequence
{v1,v2, . . . ,vj} is an orthonormal basis of the subspace. It is regarded as a lucky
breakdown. For the SOAR procedure (Algorithm 3), by (2.7) we know that the col-

umn vectors of the 2N × j matrix [ Qj

Pj
] also span an invariant subspace of H, but it

is not an orthonormal basis.

3.3. An SOAR procedure. Now we further exploit the relations in Algorithm
3 to derive a new version, which avoids the explicit references and updates of the p
vectors at lines 9 and 22. The resulting algorithm reduces memory requirement by
almost half.

First, by (2.6) and noting that p1 = 0, we have

Qn = Pn+1T̂n = Pn+1(:, 2 : n + 1) · T̂n(2 : n + 1, 1 : n).

Then (2.5) can be rewritten as

AQn + BQnSn = QnTn + qn+1e
T
n tn+1n,(3.5)

where Sn is an n× n strictly upper triangular matrix of the form

Sn =

[
0 T̂n(2 : n, 1 : n− 1)−1

0 0

]
.

Equation (3.5) suggests a method for computing vector qj+1 from q1,q2, . . . ,qj . This
leads to the following algorithm, which needs only about a half of the memory and
floating point operations of Algorithm 3.



650 ZHAOJUN BAI AND YANGFENG SU

Algorithm 4. SOAR procedure with deflation and memory saving.
1. q1 = u/‖u‖2

2. f = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bf
5. for i = 1, 2, . . . , j do
6. tij = qT

i r
7. r := r − qitij
8. end for
9. tj+1 j = ‖r‖2

10. if tj+1 j �= 0,
11. qj+1 := r/tj+1 j

12. f = QjT̂(2 : j + 1, 1 : j)−1ej
13. else
14. reset tj+1 j = 1
15. qj+1 = 0

16. f = QjT̂(2 : j + 1, 1 : j)−1ej
17. save f and check deflation and breakdown
18. end if
19. end for

Note that at line 17 of the algorithm above, if f belongs to the subspace spanned
by previously saved f vectors, then the algorithm encounters breakdown and termi-
nates. Otherwise, there is a deflation at step j; after setting tj+1 j to 1 or any nonzero
constant, the algorithm continues. Those saved f vectors are the pi vectors corre-
sponding to the vector qi = 0 in Algorithm 3. To check whether f is in the subspace
spanned by the previously saved f , we can use a modified Gram–Schmidt procedure
[21]. It is not necessary to use extra storage to save those f vectors. They can be
stored at the columns of Qn where the corresponding qi = 0.

4. A projection method applied directly to the QEP. In this section,
we apply the concept of the second-order Krylov subspace and its orthonormal basis
generated by the SOAR procedure to develop a projection technique to solve the QEP
(1.2). We follow the orthogonal Rayleigh–Ritz approximation procedure to derive a
method which approximates a large-scale QEP by a small-scale QEP.

Following the standard derivation, to apply the Rayleigh–Ritz approximation
technique based on the subspace Gn(A,B;u) with A = −M−1D and B = −M−1K,
we seek an approximate eigenpair (θ, z), where θ ∈ C and z ∈ Gn(A,B;u), by imposing
the following orthogonal condition, also called the Galerkin condition:

(θ2M + θD + K)z ⊥ Gn(A,B;u)

or, equivalently,

vT(θ2M + θD + K)z = 0 for all v ∈ Gn(A,B;u).(4.1)

Since z ∈ Gn(A,B;u), it can be written as

z = Qmg,(4.2)

where the N ×m matrix Qm is an orthonormal basis of Gn(A,B;u) generated by the
SOAR procedure (Algorithm 4), and g is an m vector and m ≤ n. When there are
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deflations, m < n. By (4.1) and (4.2), it yields that θ and g must satisfy the reduced
QEP:

(θ2Mm + θDm + Km)g = 0(4.3)

with

Mm = QT
mMQm, Dm = QT

mDQm, Km = QT
mKQm.(4.4)

The eigenpairs (θ,g) of (4.3) define the Ritz pairs (θ, z). The Ritz pairs are approxi-
mate eigenpairs of the QEP (1.2). The accuracy of the approximate eigenpairs (θ, z)
can be assessed by the norms of the residual vectors (θ2M + θD + K)z.

We note that by explicitly formulating the matrices Mm, Dm, and Km, essential
structures of M, D, and K are preserved. For example, if M is symmetric positive
definite, so is Mm. As a result, essential spectral properties of the QEP will be pre-
served. For example, if the QEP is a gyroscopic dynamical system in which M and
K are symmetric, one of them is positive definite, and D is skew-symmetric, then the
reduced QEP is also a gyroscopic system. It is known that in this case, the eigenval-
ues λ are symmetrically placed with respect to both the real and imaginary axes [10].
Such a spectral property will be preserved in the reduced QEP.

The following algorithm is a high-level description of the Rayleigh–Ritz projection
procedure based on Gn(A,B;u) for solving the QEP (1.2) directly.

Algorithm 5. SOAR method for solving the QEP directly.
1. Run the SOAR procedure (Algorithm 4) with A = −M−1D and B = −M−1K

and a starting vector u to generate an N ×m orthogonal matrix Qm whose
columns span an orthonormal basis of Gn (A,B;u).

2. Compute Mm, Dm, and Km as defined in (4.4).
3. Solve the reduced QEP (4.3) for (θ,g) and obtain the Ritz pairs (θ, z), where

z = Qmg/‖Qmg‖2.
4. Test the accuracy of Ritz pairs (θ, z) as approximate eigenvalues and eigen-

vectors of the QEP (1.2) by the relative norms of residual vectors:

‖(θ2M + θD + K)z‖2

|θ|2‖M‖1 + |θ|‖D‖1 + ‖K‖1
.(4.5)

A few remarks are in order:
• At step 1, the matrix-vector product operations −M−1Du and −M−1Ku for

an arbitrary vector u must be provided to run the SOAR procedure (Algo-
rithm 4). A factorized form of M, such as the LU factorization, should be
made available outside of the first for-loop of Algorithm 4 for computational
efficiency.

• At step 2, the orthonormal basis matrix Qm computed in step 1 is used to ex-
plicitly compute the projection matrices Mn, Dn, and Kn. This can be done
by using matrix-vector product operations Mq, Dq, and Kq for an arbitrary
vector q. This is an overhead comparison of the method based on the Arnoldi
procedure, in which the projection of the matrix is obtained as a by-product
without any additional cost (see Algorithm 6 below). This overhead could
be significant in some applications. However, this is a numerically better
way to use the computed orthonormal basis Qm since we can preserve the
structures of coefficient matrices as we discussed early. Structure preserva-
tion often outweighs the extra cost of floating point operations in the modern
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computing environment. For the numerical examples, presented in the next
section, we observed that this step takes a small fraction of the total work,
due to extreme sparsity of the matrices M, D, and K in practical problems
we encountered. The bottleneck of computational costs is often associated
with the matrix-vector multiplication operations involving M−1 at step 1.

• At step 3, to solve the small QEP (4.3), we transform it to a generalized
eigenvalue problem in the form of (1.3) and then use a dense matrix method,
such as the QZ algorithm [5, 6], to find all eigenvalues and eigenvectors (θ,g)
of the small QEP.

• At step 4, we use the relative residual norms (4.5) as the accuracy assessment
to indicate the backward errors of the approximate eigenpairs (θ, z). The
discussion of forward errors of approximate eigenvalues and eigenvectors is
beyond the scope of this report; the interested reader is referred to [11, 23, 24].

Let us review the basic Arnoldi method for solving the QEP (1.2) based on
linearization (1.3). At this stage of our study, we are concerned only with the funda-
mental properties and behaviors of the SOAR method. It is implemented in a straight-
forward way as outlined in Algorithm 5. Therefore, we will compare the SOAR method
with the following simple implementation of the Arnoldi method for solving the QEP
via linearization.

Algorithm 6. Basic Arnoldi method for linearized QEP.
1. Transform the QEP (1.2) into the equivalent generalized eigenvalue problem

(1.3).
2. Run the Arnoldi procedure (Algorithm 2) with the matrix H = G−1C and the

vector v = [uT 0 ]T to generate an orthonormal basis {v1,v2, . . . ,vn} of the
Krylov subspace Kn(H;v). Let Vn = [v1,v2, . . . ,vn].

3. Solve the reduced eigenvalue problem

(VT
nHVn)t = θt

and obtain the Ritz pairs (θ,y) of the eigenvalue problem of the single matrix
H, where y = Vnt. Note that by (2.8), VT

nHVn = Hn(1 : n, 1 : n) is an
n × n upper Hessenberg matrix returned directly from the Arnoldi procedure
without additional cost.

4. Extract the approximate eigenpairs (θ, z) of the QEP (1.2) and test their ac-
curacy by the residual norms as described in (4.5), where z = y(N + 1 :
2N)/‖y(N + 1 : 2N)‖2.

Finally, we discuss a hybrid method of the SOAR method (Algorithm 5) and the
Arnoldi method (Algorithm 6) to solve the QEP directly. This method provides a
good verification for the SOAR method. Let Kn denote the matrix of the explicit
Krylov basis of Kn(H,v):

Kn = [ v Hv H2v · · · Hn−1v ].

Then it is well known (for example, see [21, section 5.1]) that Vn, generated by the
Arnoldi procedure with H and v, is the Q-factor of the QR factorization of Kn:

Kn = VnRn.

By (2.4), the equation above can be written in the form[
r0 r1 · · · rn−1

0 r0 · · · rn−2

]
=

[
V

(1)
n

V
(2)
n

]
Rn,
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where Vn is partitioned into a 2 × 1 block matrix with N × n subblocks V
(1)
n and

V
(2)
n . From the first N rows of the previous equation, we have[

r0 r1 · · · rn−1

]
= V(1)

n Rn.(4.6)

Hence, we have

Gn(A,B;u) = span{V(1)
n }.

Therefore, an alternative way to generate an orthonormal basis of Gn(A,B;u) is to
first run the Arnoldi procedure with 2N × 2N matrix H and starting vector

v = [ uT 0]T, then orthonormalize the first block V
(1)
n of Vn to obtain an orthonormal

basis of the projection subspace Gn(A,B;u). This method provides a good verification
for the SOAR method, although it is expensive in terms of memory and computa-
tional requirements. For numerical results presented in the next section, we observed
that the convergence rate and behaviors of this method and the SOAR method are
essentially the same.

5. Numerical examples. In this section, we present numerical examples to
demonstrate the promises of the SOAR method (Algorithm 5) for solving the QEP
(1.2). Following the discussion presented in the previous sections, we focus on the il-
lustration of the fundamental properties of the SOAR method in terms of the following
two aspects:

1. The convergence behaviors of the SOAR method applied directly to the QEP
are generally comparable to the Arnoldi method applied to the linearized
QEP. Specifically,
(a) eigenvalues with the largest magnitude converge first;
(b) the convergence rate of the SOAR method is at least as fast as the

Arnoldi method.
2. The SOAR method preserves the essential structures of the QEP, such as

symmetry and positive definiteness in coefficient matrices M, D, and K. As
a result, we should expect the preservation of spectral properties of the large
QEP (1.2) in the reduced QEP (4.3).

In the following examples, the starting vector u of the SOAR method is chosen as
a vector with all components equal to 1. v = [uT 0]T is used as the starting vector of
the Arnoldi-based methods (Algorithms 6 and 7). The so-called exact eigenvalues of
the QEP are computed by the dense method, namely, the QZ method for computing
all eigenvalues and eigenvectors of the generalized eigenvalue problem (1.3). The
deflation and breakdown thresholds are set to be the same, namely, 10−10. In fact,
with this threshold, deflation and breakdown were detected only in Example 1.

Example 1. This example shows the deflation and breakdown phenomena in the
SOAR procedure (Algorithm 4). The matrices M, D, and K are from the modeling
of a simple vibrating spring-mass system with damping in linear connection [5, 9]. M
and D are diagonal matrices, and K is tridiagonal. For this particular run, we choose
50 × 50 matrices, where M = 0.1 × I, D = I, and

K =

⎡⎢⎢⎢⎢⎢⎣
0.2 −0.1

−0.1 0.2 −0.1
. . .

. . .
. . .

−0.1 0.2 −0.1
−0.1 0.1

⎤⎥⎥⎥⎥⎥⎦ .



654 ZHAOJUN BAI AND YANGFENG SU

–10 –5 0 5 10
–10

–8

–6

–4

–2

0

2

4

6

8

10

real part

im
ag

in
ar

y 
pa

rt

Approximate Eigenvalues

Exact
SOAR (Alg.5)
Arnoldi (Alg.6)

0 5 10 15 20 25 30 35 40
10

–16

10
– 14

10
– 12

10
– 10

10
– 8

10
– 6

10
– 4

10
– 2

10
0

Relative Residual Norms of Approximate Eigenpairs

eigenvalue index

re
si

du
al

 n
or

m

SOAR (Alg.5)
Arnoldi (Alg.6)

Fig. 5.1. Random nonsymmetric QEP; exact and approximate eigenvalues (left), and relative
residual norms (right) (Example 2).

This example illustrates the following two main issues:
1. Deflation occurs at every even step of the SOAR procedure, i.e., qj = 0 for

all even number j.
2. Suppose the starting vector u is chosen as a linear combination of κ eigen-

vectors of the matrix K corresponding to the κ eigenvalues closest to 0. For
κ= 1, 2, 3, both the SOAR procedure (Algorithm 4) and the Arnoldi pro-
cedure (Algorithm 2) break down at steps j = 2κ. However, for large κ,
breakdown has not been detected due to numerical noises.

Example 2. The purpose of this example is to show that the convergence be-
haviors of the SOAR and Arnoldi methods are generally the same for a “general”
QEP. Let M, D, and K be 200 × 200 random nonsymmetric matrices. Elements of
these matrices are chosen from a normal distribution with mean zero, variance one,
and standard deviation one. The left plot of Figure 5.1 shows the partial approx-
imate eigenvalues computed by two methods with the reduced dimension n = 20.
The right plot of Figure 5.1 shows the relative residual norms. This example shows
that the convergence behaviors of the two methods are essentially the same, as we
expected.

Example 3. As in Example 2, this example is to show that the convergence
rates of the SOAR and Arnoldi methods are comparable. However, only the SOAR
method preserves the essential properties of the QEP. Specifically, M, D, and K
are chosen as 200 × 200 random matrices with the elements chosen from a normal
distribution with mean zero, variance one, and standard deviation one. Furthermore,
M is symmetric positive definite, D is skew-symmetric, and K is symmetric negative
definite, as one encounters in a gyroscopic dynamical system. The gyroscopic system
is a widely studied system. There are many interesting properties associated with
such a system. For example, it is known that the distribution of the eigenvalues of the
system in the complex plane is symmetric with respect to both the real and imaginary
axes. The left plot of Figure 5.2 shows the approximate eigenvalues computed by two
algorithms with n= 20. The right plot of Figure 5.2 shows the relative residual norms.
This example shows that the SOAR method (Algorithm 5) preserves the gyroscopic
spectral property. Furthermore, the residual norms indicate that the SOAR method
has a slightly better convergence rate.
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Fig. 5.2. Random gyroscopic QEP; exact and approximate eigenvalues (left) and relative resid-
ual norms (right) (Example 3).
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Fig. 5.3. Acoustic QEP; exact and approximate eigenvalues (Example 4).

Example 4. This is a QEP encountered in modeling the propagation of sound
waves in a room in which one wall was made of a sound-absorbing material. This is
a scaled-down version of the test problem as presented in [18]. The matrices M, D,
and K are of order 1331. Furthermore, M and K are real symmetric positive definite,
and D is complex non-Hermitian. The largest magnitude eigenvalue computed by the
standard dense matrix method (for all eigenvalues) and by the SOAR and Arnoldi
methods with n = 30 are

λmax = −1.952652244810165 × 102 − 4.314162072894026 × 103i (“exact”),

λS
max = −1.952652244809287 × 102 − 4.314162072894454 × 103i (SOAR),

λA
max = −1.952652250694968 × 102 − 4.314162072541710 × 103i (Arnoldi).

We observed that both the SOAR and Arnoldi methods converge to the largest magni-
tude eigenvalue first. The relative errors are |λS

max −λmax|/|λmax| = 2.64× 10−12 and
|λA

max − λmax|/|λmax| = 1.95 × 10−8, respectively. The largest magnitude eigenvalues
produced by the SOAR method (Algorithm 5) are more accurate than the Arnoldi
method (Algorithm 6). Furthermore, Figure 5.3 shows that all eigenvalues of the



656 ZHAOJUN BAI AND YANGFENG SU

0 50 100 150 200
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Scaled Relative Residual Norms of Approximate Eigenpairs

eigenvalue index

re
si

du
al

 n
or

m

SOAR (Alg.5)
Arnoldi (Alg.6)

Fig. 5.4. Scaled relative residual norms of Example 5.

original QEP are distributed in the left half of the complex plane, known as stable
eigenvalues. The reduced QEP by the SOAR method inherits such a property in the
process of approximation. On the other hand, the linearized QEP used in the Arnoldi
method loses this important property.

Example 5. This is a QEP problem from the NASTRAN simulation of a fluid-
structure coupling cylinder model with both acoustic elements and structure elements.
The order of the matrices M, D, and K is N = 3600. The following table is a profile
of other properties of the matrix triplet. The last column is an estimated lower bound
for the 1-norm condition number using MATLAB’s condest function.

Nonzeros Symmetry Pos.def. 1-norm Cond.est

M 5521 yes no 36.00 Inf
D 19570 yes no 1.025 Inf
K 59062 yes no 2.19 × 1012 8.42 × 1016

We solved the shift-and-invert QEP

(µ2M̂ + µD̂ + K̂)x = 0,(5.1)

where µ = 1/(λ − σ), M̂ = σ2M + σD + K, D̂ = D + 2σM, and K̂ = M. The
largest (in modulus) eigenvalue µ approximates the eigenvalues λ of the original QEP
closest to the shift σ. These eigenvalues are given by σ+1/µ. With the shift σ = 104,

a lower bound for the 1-norm condition number of the matrix M̂ is 4.09 × 1013.
Figure 5.4 reports the scaled relative residual norms of the two methods with the
subspace dimension n = 100. The scaled relative residual norm for an approximate
eigenpair (θ, z) is defined by

‖(θ2M + θD + K)z‖2

ε (|θ|2‖M‖1 + |θ|‖D‖1 + ‖K‖1)
,

where ε is the machine precision, which is at the order of 10−16 in double precision
arithmetic. Since the norm of the matrix M is at the order of 1012, it is better to
show the scaled relative residual norm. To machine precision backward accuracy, the
scaled relative residual norm should be about one.

Example 6. This final example arises from a finite element analysis of dissipative
acoustics [4, 24]. Our matrix data for the associated algebraic quadratic eigenvalue
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Fig. 5.5. Relative residual norms of Example 6.

problem are from [7]. The dimension of the QEP is N = 9168. Matrix M is sym-
metric positive definite, and matrices D and K are symmetric positive semidefinite.
As described in [7], to find the eigenvalues of interest, we solve the shift-and-invert
QEP (5.1) with the shift σ = −253. Figure 5.5 shows the relative residual norms
for the approximated eigenpairs computed by the SOAR and Arnoldi methods with
n = 50. We observe that SOAR converges faster than Arnoldi. By the Krylov-type
subspace method proposed in [7], it is reported that with the number of iterations
n = 250 to 300, three approximated eigenpairs converge with relative residual norms
less than 10−12. By contrast, the SOAR method delivers twice as many approximated
eigenpairs with the same accuracy but only uses one-fifth of the number of iterations.

6. Discussion and future work. The primary purpose of this paper is to
present the basic concept of the second-order Krylov subspace Gn(A,B;u) and its
straightforward application for solving a large-scale QEP. There are many issues to
examine. Foremost, one can ask whether the subspace Gn(A,B;u) is a better projec-
tion subspace to work with for an iterative solution of the QEP. A partial answer is
based on the following observation. Let A = −M−1D and B = −M−1K; then the
QEP (1.2) is equivalent to the QEP

(λ2I − λA − B)x = 0,(6.1)

which can be written as the linear eigenvalue problem[
A B
I 0

] [
λx
x

]
= λ

[
λx
x

]
.(6.2)

In the Arnoldi basis Vn of the Krylov subspace Kn, the coefficient matrix of (6.2) is
represented by an upper Hessenberg matrix of order n,

VT
n

[
A B
I 0

]
Vn = Hn.(6.3)

On the other hand, using an orthonormal basis Qn of the second-order Krylov sub-
space Gn(A,B;u), the coefficient matrix of (6.2) is represented by a 2×2 block matrix
of order 2n, [

QT
n 0

0 QT
n

] [
A B
I 0

] [
Qn 0
0 Qn

]
=

[
An Bn

In 0

]
.(6.4)
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It can be shown that the subspace spanned by the columns of Vn can be embedded into
the subspace spanned by the columns of the 2×2 block diagonal matrix diag(Qn,Qn),
namely,

span{Vn} ⊂ span

{[
Qn 0
0 Qn

]}
.

Therefore, the 2n × 2n block matrix in (6.4) should deliver at least as many good
approximations of eigenpairs as the n× n Hessenberg matrix Hn does.

We note that the explicit triangular inversion in the SOAR procedure (Algorithm
4) brings the potential numerical instability. Many elaborate and proven techniques
for robust and efficient implementation of Krylov subspace techniques developed over
the years could be considered for the second-order Krylov subspace Gn(A,B;u). The
other subjects of further study include maintaining the orthogonality in the presence
of finite precision arithmetic and a restarting strategy for solving the QEP by the
SOAR method.

Krylov subspaces have an important characterization in terms of univariate ma-
trix polynomials. Convergence theory of a Krylov subspace–based method has been
established based on the theory of univariate polynomials and the distribution of
eigenvalues of the underlying matrix. In section 2, we showed the connection between
the second-order Krylov subspace Gn(A,B;u) and the bivariate polynomials pj(α, β).
It is unclear whether it can be used to develop a convergence theory which is directly
based on the distribution of the matrices A and B.

A closely related problem to the central theme of this paper is that of model-order
reduction of a second-order dynamical system. The problem is about how to produce
a reduced-order system of the same second-order form. One pioneering work is due
to Su and Craig [22] back to 1991. In recent years, this approach has been repeatedly
applied, studied, and improved; for example, see [2, 14, 19, 20]. In particular, the
dissertation work of Slone [19] has essentially extended Su and Craig’s approach to
the model reduction of high-order dynamical systems but is based the popular AWE
(asymptotic waveform evaluation) approach as widely known in interconnect analysis
of integrated circuits and computational electromagnetics. In a forthcoming work,
we will examine the application of the SOAR method for the model reduction of a
second-order dynamical system and its connections to those previous works.
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INEXACT MATRIX-VECTOR PRODUCTS IN KRYLOV METHODS
FOR SOLVING LINEAR SYSTEMS: A RELAXATION STRATEGY∗
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Abstract. Embedded iterative linear solvers are being used more and more often in linear
algebra. An important issue is how to tune the level of accuracy of the inner solver to guarantee
the convergence of the outer solver at the best global cost. As a first step towards the challenging
goal of controlling embedded linear solvers, inexact Krylov methods are used as a model of inner-
outer iterations with external Krylov scheme. This paper experimentally shows that Krylov methods
for solving linear systems can still perform very well in the presence of carefully monitored inexact
matrix-vector products. This surprising behavior of inexact Krylov methods, as opposed to Newton-
like methods, is investigated in detail, and potentially important applications are mentioned. A new
relaxation strategy for the inner accuracy is proposed for Krylov methods with inexact matrix-vector
products; its efficiency is supported by a wide range of numerical experiments on different algorithms
and contrasted against other potential approaches.

Key words. inner-outer iterations, Krylov method, inexact matrix-vector products, embedded
iterative linear solvers.
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1. About inner-outer iterations in linear algebra. Iterative processes are
widely used in linear algebra for treating large sets of data. It is becoming more and
more common that one iterative solver has to be embedded in an outer one: this is the
case, for instance, for solving eigenproblems with inverse iterations or with a Krylov
method with invert. Each outer step (that is, each step of the eigensolver) requires
the solution of a linear system which, if too large, must be solved in turn with an
iterative method (inner steps). The question arises then: What is the best strategy for
stopping the inner iterations in order to ensure the convergence of the outer iterations
while minimizing the global computational cost? This question has been partially
addressed by numerical experts since the eighties in the context of Newton-like and,
more generally, fixed point methods [5, 7, 11]. It is generally concluded, as one could
expect, that the accuracy of the inner iteration is a threshold for the convergence
of the outer process: it cannot be weakened when the outer process comes closer
to the solution. The proposed strategies for monitoring the inner iterations have so
far been very problem- and method-dependent. More recently in the late nineties,
the different behavior of embedded solvers involving a Krylov outer process has been
emphasized [8, 12, 13, 19]. For instance, the strikingly different behaviors of inverse
iterations and Krylov methods for the solution of eigenproblems with respect to inner
iterations are mentioned in [13] for symmetric and in [3] for nonsymmetric matrices. It
is observed, as for Newton-like methods, that inverse iterations require inner iterations
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to be more and more accurate while approaching the solution. But for Lanczos or
Arnoldi methods, on the contrary, the first Krylov vectors need to be known with full
accuracy, and this accuracy can be relaxed as the convergence proceeds. A strategy for
monitoring the accuracy of inner iterations is proposed in the framework of symmetric
eigenvalue problems with homogeneous linear constraints in [13].

In order to examine closely the seemingly counterintuitive behavior of inner-outer
Krylov methods, we investigate in this paper the behavior of Krylov methods when
information on the matrix may be partially unavailable, resulting in the use of inexact
basis vectors. In order to focus on the root phenomenon, we set up this study in the
context of linear systems (see [3] for a similar work on eigenproblems). We will show
that, when the inaccuracy of the basis vectors is controlled by a carefully designed
relaxation strategy, the Krylov method for solving linear systems can still perform
with a remarkable efficiency. It is beyond the scope of this paper to provide a detailed
comparison of the many possible relaxation strategies, although we will contrast a few
of them in order to expose the reasons that motivated our choices. The inexact Krylov
scheme serves here as a simple model for understanding more complex embedded
iterative schemes where the outer iteration would be a Krylov method.

1.1. Some important applications. Understanding the effects of inexact
matrix-vector products can have many applications. As such, inexact matrix-vector
products are encountered in multipole methods, which have recently become popular
in the numerical solution of large electromagnetism problems. The main feature of
multipole methods is that the matrix-vector product is computed through an expan-
sion whose order can be monitored [9]. In such a situation, the matrix is not formed
explicitly and its application to a vector is computed within some level of accuracy
only. The higher the order, the more expensive the product. Therefore, relaxation
on the accuracy of the matrix-vector products would directly decrease the cost of the
iterative method.

Moreover, embedded iterations involving an outer Krylov solver also fit within the
scope of this study. This is the case, for instance, of the Arnoldi method with invert
for computing the smallest eigenvalue of a large sparse matrix. Although the matrix
A may be known exactly, the matrix A−1 is not: in order to compute an orthonormal
basis for the Krylov space

span{v1, A
−1v1, A

−2v1, . . . }

one needs to solve a linear system Az = vk in order to get the next Krylov vector vk+1.
If one uses an approximate linear solver (such as an iterative method), the approximate
solution ẑ satisfies (A+∆Ak)ẑ = vk. The backward error analysis viewpoint amounts
to considering that the algorithm is applied to an approximation (A + ∆Ak) of A
changing at each step. Again, it is possible to relax the accuracy on ẑ as long as the
outer process converges so that both the cost of the inner iterations and the global
cost are reduced [3].

Another application of importance arises in the context of domain decomposi-
tion methods for partial differential equations (PDEs). For large problems, the local
subproblems induced by the decomposition have to be solved by an iterative process
which is embedded in the outer iterative process used to solve the Schur comple-
ment equation. The results from the present work readily apply. In [4], it is shown
that, when the Schur complement equation is solved by the conjugate gradient (CG)
method, a significant reduction of the computational cost can be obtained from a
relaxation strategy on the inner iteration accuracy.
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1.2. Outline. This paper is organized as follows. Section 2 defines the basic
inexact Krylov scheme derived from the GMRES algorithm. A relaxation strategy,
chosen for its good performance, is then described before its numerical behavior is
illustrated in section 3 on a set of test matrices taken from the Harwell–Boeing col-
lection and on various algorithms including CG (for short-recurrence algorithms),
GMRES, and BiCGStab.

Then in section 4, we give the reasons that lead to the choice of the proposed
relaxation strategy which we contrast against other possible relaxation schemes. We
also discuss potential scaling issues and give some considerations on a practical imple-
mentations of such a strategy, based on our experience of real-world applications. The
last section concludes this work by giving some hints and tracks to be investigated in
order to progress towards a fully justified approach of inexact Krylov schemes.

2. Inner-outer iterations in Krylov methods.

2.1. The basic inexact Krylov scheme. We consider the GMRES method for
solving the linear system Ax = b, where A ∈ C

n×n and x and b are two vectors of C
n.

This method, detailed in Algorithm 1, is one of the simplest and, at the same time,
one of the most widely used Krylov-type methods for solving a linear system [17].

Algorithm 1. GMRES.

r0 = b−Ax0; β = ‖r0‖2

v1 = r0/β
for k = 1, 2, . . . , do
z = Avk
for i = 1 to k do
hik = v∗i z
z = z − hikvi

end for
hk+1k = ‖z‖
vk+1 = z/hk+1k

Solve the least-squares problem min
∥∥βe1 − H̄ky

∥∥
2

for y
Set xk = x0 + Vky
Exit if satisfied

end for

Let x0 be the initial guess and let r0 = b−Ax0 be the initial residual. We denote
by ek the kth canonical vector and by ‖ · ‖ the Euclidean norm. The GMRES method
builds a basis Vk = [v1, . . . , vk] for the Krylov space

Kk = span{r0, Ar0, . . . , Ak−1r0},

and the Hessenberg matrix Hk = V ∗
k AVk ∈ C

k×k is the orthogonal projection of A
onto Kk. Let H̄k ∈ C

(k+1)×k be the Hk matrix augmented by the row vector hk+1ke
T
k .

The Krylov process can be viewed as the QR decomposition

[v1 AVk] = Vk+1[e1 H̄k].

The outer iteration corresponds to the addition of a new Krylov vector in the
basis z = Avk. As such, the GMRES method does not show any inner iteration. To
simulate the effects of an inner iteration, we perform inexact matrix-vector products
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Algorithm 2. GMRES with inexact matrix-vector products.

Set the initial guess x0 = 0
r0 = b−Ax0 = b; β = ‖r0‖2

v̂1 = r0/ ‖r0‖;
for k = 1, 2, . . . , do
ẑ = (A + ∆Ak)v̂k
for i = 1 to k do
ĥik = v̂∗i ẑ

ẑ = ẑ − ĥikv̂i
end for
ĥk+1k = ‖ẑ‖
v̂k+1 = ẑ/ĥk+1k

Solve the least-squares problem min ‖βe1 − Ĥky‖ for y

Set xk = x0 + V̂ky and rk = b−Axk

Exit if satisfied
end for

in the computation of the Krylov vectors, as shown in Algorithm 2. More precisely,
the vector v̂k+1 is obtained by computing

ẑ = (A + ∆Ak)v̂k

and then orthonormalizing ẑ against all the previous vectors v̂i, i = 1, . . . , k. Although
one could think of perturbing directly the result of the matrix-vector product Avk,
we think it is more realistic to apply the perturbation on the matrix A, thus modeling
the effect of incomplete information available from the matrix itself (as would be the
case in the multipole application, for instance) in addition to setting our analysis in
a natural backward analysis framework. The matrix ∆Ak is a perturbation matrix
satisfying some prescribed properties. A similar trick was used in [12] to simulate an
inexact preconditioner for CG. Therefore, instead of working on the Krylov space Kk,
we use instead the space

K̂k = span{v̂1, v̂2, . . . , v̂k},

where ẑ is orthonormalized against V̂k = [v̂1, . . . , v̂k] to produce V̂k+1. We set v̂1 =
v1 = r0/ ‖r0‖. The underlying QR decomposition is turned into

[v̂1 AV̂k] + [0 ∆A1v̂1, . . . ,∆Akv̂k] = V̂k+1[e1 Ĥk ].

Therefore, the Hessenberg matrix Ĥk does not represent anymore the projection of
A onto K̂k.

The aim of this work is to propose and experiment with a strategy which monitors
the perturbations ∆Ai (in structure and in size) in such a way that the outer process
still converges within only a few extra iterations (at most).

A preliminary remark is that if all the ∆Ai are equal to the same matrix E, then
one solves in fact the linear system (A+E)x = b. The backward error for the computed
solution x̃ with respect to the original system Ax = b is ‖Ex̃‖2 /(‖A‖2 ‖x̃‖2). It is
bounded above by ‖E‖2 / ‖A‖2 and should not be much smaller unless x̃ specifically
lies in the subspace associated with the smallest singular values of E. Similarly,
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numerical experiments show that if all the ∆Ai differ but stay equal in norm to η ‖A‖,
then in most of the cases the computed solution of the linear system is computed with a
backward error of the order of η. This is not unexpected if one thinks of the GMRES
process applied in finite precision: each matrix-vector product is indeed computed
within a limited accuracy. It amounts to using a slightly perturbed matrix at each
step, where the relative perturbation size is of the order of machine precision.

More surprisingly, this paper will show the remarkable fact that it is indeed pos-
sible to let the size of the perturbations ∆Ak grow significantly throughout the outer
process. This fact is supported by a wide set of numerical experiments. An impor-
tant feature of our approach is that it is set in the framework of the backward error
analysis. We have chosen indeed to express the inexact matrix-vector product under
the form ẑ = (A + ∆Ak)v̂k. This is important for two reasons: first, because the
backward error analysis is the tool of choice for understanding computational pro-
cesses with inexact data; second, because this powerful framework naturally applies
to inner-outer processes. With this modelization, we are then able to treat in a unified
way inexact matrix-vector products (such as in the multipole methods for electromag-
netism), or inner-outer methods with outer Krylov scheme (where the inaccuracy of
the inner scheme can be interpreted if not monitored in terms of a backward error on
the matrix).

In addition, we will be dealing with perturbations having a relative size always
larger than machine precision, and often significantly larger: the observed phenomena
are primarily due to the perturbations we apply and are not artifacts due to the finite
precision of the computer arithmetic.

2.2. A relaxation strategy on the inner accuracy. Let us now define a
strategy to increasingly perturb the matrix-vector product as long as the outer process
converges. Let rk be the residual Axk − b at step k. Let η be the final tolerance
required for the solution of the linear system. More precisely we aim at computing a
solution x̃ with a backward error ‖Ax̃− b‖ /(‖A‖ ‖x̃‖) smaller than η.

The proposed strategy for performing the inexact matrix-vector products is the
following. Let αk be the scalar defined by

αk =
1

min(‖rk−1‖ , 1)
.

Each matrix-vector product involved in the computation of the Krylov basis is re-
placed by

ẑ = (A + ∆Ak)vk,

where ∆Ak is a random matrix satisfying

‖∆Ak‖ = εk ‖A‖ , εk = min(αkη, 1).(2.1)

Therefore at each step the applied perturbation is always larger than or equal to the
targeted tolerance η, and always smaller than or equal to 1, in a normwise relative
sense:

‖∆Ak‖
‖A‖ ∈ [η, 1] .(2.2)

We have forced εk ≤ 1 to avoid too large relative perturbations that would not retain
information on A. We see that when rk decreases, εk increases (or stays at 1). The
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first vectors of the Krylov basis are computed with a backward error of the order of
the targeted tolerance η as long as the norm of the residual is larger than 1. On the
contrary, the last vectors may correspond to relatively large perturbations of A. The
accuracy of the matrix-vector products is therefore relaxed while the outer process
converges.

It has to be noted that αk is an absolute quantity because it involves the resid-
ual without normalization, whereas εk = ‖∆Ak‖ / ‖A‖ is relative. As discussed in
section 4, we have found this choice to be the best in our experimental practice.

We may impose additionally some structure on ∆Ak. We have performed tests
with dense matrices ∆Ak and with matrices having the same sparsity pattern of
A. Both approaches gave similar results. We report only the results obtained when
preserving the sparsity structure (sprand from MATLAB).

3. Numerical experiments.

3.1. Test algorithms. The first algorithm we present is the GMRES method;
its inexact version is described above in Algorithm 2. However, since the full GM-
RES does not always converge on our set of test matrices within a reasonably small
projection size, we also use its restarted version, denoted GMRES(m). Let m be the
value of the restart parameter, that is, the maximal size allowed for the projection.
The restarted method with inexact matrix-vector products is detailed in Algorithm 3.

The strategy for choosing ∆Ak for k > 0 is the same as for the full GMRES. Let ∆A
(j)
k

be the perturbation introduced at step k of the jth restart; then

‖∆A
(j)
k ‖ = ε

(j)
k ‖A‖ with ε

(j)
k = min(α

(j)
k η, 1)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
α

(j)
1 =

1

min(‖r(j−1)
m ‖, 1)

, α
(1)
1 = 1,

α
(j)
k =

1

min(‖r(j)
k−1‖, 1)

if k > 1.

Therefore, the accuracy of ẑ1 in Algorithm 3 is controlled by the reciprocal of the
residual associated with the solution obtained at the end of the previous restart (j−1).

However, the residual r0 which initiates each restart is also computed inexactly
at the targeted tolerance: r0 = b− (A + ∆A0)x0 with ‖∆A0‖ = η ‖A‖, as this is the
only quantity in the algorithm that carries information about the right-hand side. In
a context where the matrix A is accessed only via inexact matrix-vector products, it
is important to be able to deal with an inexact r0. But we observed that we could
not allow perturbations of size larger than η on the computation of r0.

However, this approach is quite different from the one chosen in [13], where the
inner accuracy is increased at each restart while the projection size decreases.

To broaden our choice of algorithms, we have also implemented an inexact version
of the following:

• CG, as a representative of short-term recurrence algorithms [14]. We would
like to mention that we have also been able to combine successfully inexact
CG with the inexact preconditioner proposed by Golub and Ye [12], which is
an additional illustration of the remarkable robustness of Krylov methods.

• BiCGStab. We apply the same perturbation strategy as for GMRES. How-
ever, since one iteration of BiCGStab involves two matrix-vector products,
we have chosen to use the same perturbation matrix for both products.
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Algorithm 3. GMRES(m) with inexact matrix-vector products.

Set the initial guess x0 = 0
for j = 1, 2, . . . , do {The subscript (j) is omitted}
r0 = b− (A + ∆A0)x0; β = ‖r0‖2

v̂1 = r0/ ‖r0‖
for k = 1, 2, . . . ,m do
ẑk = (A + ∆Ak)v̂k
for i = 1 to k do
ĥik = v̂∗i ẑk
ẑk = ẑk − ĥikv̂i

end for
ĥk+1k = ‖ẑk‖
v̂k+1 = ẑk/ĥk+1k

Solve the least-squares problem min ‖βe1 − Ĥk(1 : k + 1, 1 : k)y‖ for y

Set xk = x0 + V̂ky and rk = b−Axk

Exit if satisfied
end for
Set x0 = xm

end for

Finally, we may also need a preconditioner that we usually take as an incom-
plete LU factorization with some threshold t [16]. We denote it by ILU(t). The
preconditioner is applied on the left after the inexact matrix-vector product.

We present a series of experiments done with MATLAB 5 on a set of matrices
taken from the Harwell–Boeing collection [6]. The right-hand side has been computed
so that the exact solution is the vector of all ones.

3.2. Convergence process under inexact matrix-vector products. A typ-
ical observed behavior is shown in Figure 3.1 for the matrix e05r0400 of order 236.
In this case we use GMRES(m) with a restart m = 10 and ILU(10−3). The iteration
number is shown on the horizontal axis and should be read in the following sense:
iteration 25 (= (3 − 1) × m + 5) means the fifth step of the third restart. Each
figure also bears the condition number and the norm of the matrix. The line with
“◦” is the convergence curve with exact matrix-vector products, and the line with
“+” corresponds to inexact products. By convergence curve we mean the evolution
of the normwise backward error associated with the current estimate of the solution.
The line with “×” represents the relative size εk = ‖∆Ak‖ / ‖A‖ of the perturbation
imposed on the matrix-vector product at each outer iteration. Finally the straight
horizontal line represents the final targeted tolerance η.

We see in Figure 3.1 that the first 7 vectors of the first restart have been computed
with a perturbation size equal to η: this is because the norm of the outer residual is still
≥ 1. As soon as the norm of the residual becomes less than 1, then εk = η/ ‖rk‖ > η
and the matrix-vector product is computed with less and less accuracy, as shown by
the increasing line (×). In this case, we see that the convergence curves with exact
(◦) and inexact (+) products cannot be distinguished (at the graphical level) before
the targeted tolerance is reached. This amazing fact is observed in many experiments.
When the backward error associated with the current iterate becomes of the order
of η, the convergence curve corresponding to inexact products stalls at a value of
the order of η, as expected. In this particular example, the linear system is solved
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Fig. 3.1. Exact (◦) vs. inexact (+) matrix-vector products in GMRES(m). η = 10−14, m = 10.

in 25 steps (to reach a tolerance of 10−14), whether the matrix-vector products are
exact or perturbed. In practice, perturbing the matrix-vector products should result
in an increase in the number of steps. It is remarkable to see that many (19 out
of 26 in this example) of the Krylov vectors can be significantly perturbed (up to
10−3 in this example, to be compared to η = 10−14) without altering the convergence
process. Moreover, it was quite unexpected to see that all the Krylov vectors of
the last restarts are computed with a high perturbation apart from the first vector
v1 = r0/ ‖r0‖, which is perturbed at the level of η.

3.3. Summary of the experiments. Let us now browse through a variety of
matrices while testing several Krylov solvers. We first need to state more precisely the
definition of convergence. Indeed, it may seem quite ambitious to expect the backward
error to be of the order of η when each matrix-vector product is perturbed by at least
the order of η. It is somehow like requiring a backward error to be less than machine
precision in finite precision arithmetic. Therefore it is already very satisfactory to
reach a final backward error of the order of 10η or even 102η. To illustrate this
point, we record the number of iterations N1 (resp., N10 and N100) necessary for the
backward error to become smaller than η (resp., 10η and 100η) when possible. These
numbers have to be compared with the number of iterations Nex for the backward
error to become smaller than η with exact products, to serve as a reference.

Table 3.1 (resp., Table 3.2) summarizes the experiments performed with GMRES
(resp., GMRES(m)) according to Algorithm 2 (resp., Algorithm 3). Using a precondi-
tioned restarted version of GMRES allows us to solve a wider range of linear systems
(with or without a relaxation strategy), which is why Table 3.2 contains more test
matrices than Table 3.1. Tables 3.3 and 3.4 are devoted to the results obtained with
similar experiments on the CG and the BiCGStab methods, respectively. When an
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Table 3.1

GMRES with inexact matrix-vector products.

Inexact products
Matrix n η Nex N1 N10 N100 Figure

ARC130 130 10−14 16 16 15 14
130 10−11 12 12 5 5

FS 183 6 183 10−12 40 44 32 23
183 10−14 44 47 44 42

GRE115 115 10−14 80 – 77 75
115 10−05 51 – 46 30

GRE185 185 10−12 161 – 159 158
185 10−10 158 – 156 154 Fig. A.1

WEST0132 132 10−10 130 130 124 114
132 10−08 114 111 91 16

Table 3.2

GMRES(m) with inexact matrix-vector products.

Inexact products
Matrix n t m η Nex N1 N10 N100 Figure

e05r0400 236 10−3 10 10−14 26 26 25 24 Fig. 3.1
e05r0000 236 10−2 20 10−14 95 110 93 76

236 10−2 20 10−10 59 69 57 55
236 10−2 20 10−06 36 63 34 30

GRE115 115 10−1 10 10−10 18 18 17 15
GRE185 185 10−2 10 10−14 91 – 80 73

185 10−2 10 10−10 59 166 53 43
185 10−2 15 10−10 29 155 39 27 Fig. A.3

GRE343 343 10−1 10 10−10 42 43 38 33
CAVITY03 317 10−3 10 10−10 24 24 21 16
PDE225 225 10−1 10 10−14 26 27 24 22

225 10−1 10 10−13 24 24 22 21
225 10−1 10 10−10 19 20 18 16

SAYLR1 238 10−1 10 10−13 131 131 110 90 Fig. A.2
238 10−1 10 10−10 81 91 66 51

UTM300 300 10−3 15 10−11 56 – – 46
300 10−3 15 10−06 30 – 28 16
300 10−3 20 10−11 34 – 28 21
300 10−3 20 10−06 18 – 17 16

WEST0381 381 10−2 10 10−10 29 30 28 24
381 10−2 10 10−06 17 16 15 11

BFW398A 398 10−1 20 10−12 148 – 138 116
398 10−1 20 10−08 93 – 73 62

incomplete LU preconditioner with threshold is applied to the left of the system, the
value t of the threshold is also reported in the tables. In the appendix, we present
four figures of the same kind as Figure 3.1 selected from the experiments among those
reported in the three tables. The interested reader is referred to [2] for the complete
set of plots associated with Tables 3.1, 3.2, and 3.4.

In the experiments on GMRES and GMRES(m) with inexact products, we have
always been able to obtain a backward error at least smaller than 100η with GM-
RES and GMRES(m). Even more, the cases where the backward error could not
be lower than 10η are very seldom. It is also very interesting that the convergence
with inexact products is achieved within a number of iterations which is of the order
of the one obtained with exact products. Exceptionally, it may even happen that
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Table 3.3

CG with inexact matrix-vector products.

Inexact products
Matrix n t η Nex N1 N10 N100 Figure

BCSSTK27 1224 10−2 10−12 50 52 48 45
1224 10−2 10−14 55 57 53 51

BCSSTK14 1806 5.10−3 10−12 54 – 51 47
1806 5.10−3 10−14 60 – 58 55
1806 10−2 10−12 69 – 66 61

BCSSTK15 3948 5.10−3 10−12 145 – 141 131
3948 10−1 10−12 221 – 224 210

S1RMQ4M1 5489 10−2 10−12 135 147 129 116
5489 5.10−2 10−12 245 284 256 236 Fig. A.5
5489 10−1 10−08 210 224 193 158
5489 10−1 10−10 246 260 232 213
5489 10−1 10−12 283 296 267 248

Table 3.4

BiCGStab with inexact matrix-vector products.

Inexact products
Matrix n t η Nex N1 N10 N100 Figure

BFW398A 236 10−1 10−12 84 – – – Fig. A.4
236 10−3 10−12 11 – 10 10

CAVITY03 317 10−3 10−10 23 – – 18
317 10−3 10−08 16 – – 13

e05r0000 236 10−2 10−10 51 – – 43
236 10−2 10−06 40 – 34 26

e05r0400 236 10−3 10−12 20 – – 17
236 10−3 10−06 10 – 10 2

GRE115 115 10−1 10−12 24 27 24 24
115 10−1 10−09 21 – 20 18

GRE185 185 10−2 10−10 34 – – –
GRE343 343 10−1 10−10 38 – 36 32
PDE225 225 10−1 10−13 25 25 22 21

225 10−1 10−10 20 20 18 16
SAYLR1 238 10−1 10−13 44 – 44 39

238 10−1 10−10 32 43 37 36

GMRES or GMRES(m) with perturbed matrix-vector products converge faster than
their exact counterparts by a few iterations (see WEST0132 in Table 3.1 and WEST0381

in Table 3.2). In some cases, the convergence of the perturbed algorithm is achieved
with many extra iterations: see, for instance, GRE185 in Table 3.2. But usually in
those cases convergence within 10η is always achieved with a number of iterations
comparable to that for the exact algorithm. Therefore, the overhead in terms of iter-
ations induced by the inexact matrix-vector products is quite low. This is all the more
remarkable because the size of the perturbations allowed by the strategy described
in (2.1) can grow fast and reach large values (see, for instance, Figure 3.1 or A.3).
This shows that the Krylov process is robust to perturbations of the matrix-vector
products provided that the first Krylov vectors are computed with the full targeted
accuracy.

The results obtained for CG with inexact matrix-vector products (symmetry is not
maintained) in Table 3.3 confirm that the observed robustness is inherent to Krylov
processes and should be shared by other numerical Krylov schemes. The results,
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obtained on matrices of larger size than in the previous cases, show that decreasing
the backward error below 10η was always achievable, and that the threshold of η was
reached in more than half of the cases with a reasonable overhead in terms of additional
steps. We refer the interested reader to [4] for a more detailed evaluation of the gain
obtained with relaxation schemes for CG in the context of domain decomposition
methods. The picture is slightly less clear with BiCGStab; if in most of the cases
the backward error is smaller than 100η, we have also encountered a few examples
where the backward error could not decrease significantly. Anyway, the possibility of
applying a relaxation strategy still holds: the gain is just not as high.

3.4. Practical implementation. It has to be noted that the definition of εk in
(2.1) relies upon information about the true residual rk−1 = b−Axk−1 at step k− 1.
However, in the context of avoiding exact matrix-vector products, ‖rk−1‖ needs to
be replaced by a quantity directly available from the algorithm, such as the GMRES
residual, which is a by-product of the QR factorization of the augmented Hessenberg
matrix arising in the least-squares solution. However, whether this GMRES residual
still gives information about the true residual when the Krylov space is perturbed
has to be tested carefully. Experiments with embedded CG algorithms in domain
decomposition techniques performed on realistic PDE problems are encouraging: a
comparison of the true and the by-product residuals during the relaxation strategy can
be found in [4] for CG, where it appears that the difference between both quantities
is not particularly affected by the introduction of the relaxation scheme.

Note also that the quantities we have reported as the “true” or “exact” residual
or any by-product quantity given by the algorithm were indeed computed in finite
precision. However, we are dealing here with matrix perturbations of relatively large
size (see (2.2)) so that effects of finite precision should not be dominant.

4. Variations on relaxation strategies.

4.1. Other relaxation schemes. The relaxation strategy proposed above ba-
sically varies as the reciprocal of the residual. One can legitimately wonder why, and
whether other indexations such as those on the reciprocal of the square of the residual
or its square root, for instance, would not be equally applicable.

A strategy indexed on the reciprocal of the square of the residual would generate
larger inaccuracies, and our practice has shown us that not enough information would
be retained to ensure the global convergence of the outer Krylov scheme in most of
our attempts.

On the contrary, it is expected that a relaxation strategy based on the reciprocal
of the square root of the residual would work in a larger number of cases than the
strategy proposed above since the size of the perturbation would be smaller for a
similar convergence pattern. This is observed on Tables 4.1 and 4.2, which offer the
same test cases as in Tables 3.1 and 3.2 but with a relaxation scheme where αk has
been replaced by

γk =
1

min(
√
‖rk‖, 1)

.

It is clear that this more conservative strategy recovers the global convergence of
GMRES (see GRE115 and GRE185) or GMRES(m) (see UTM300 and BFW398A) in most
of the cases where the strategy indexed on the reciprocal of the residual would fail to
ensure a final backward error smaller than η or would require a very high overhead
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Table 4.1

GMRES with inexact matrix-vector products. Strategy indexed on 1/
√

‖rk‖.

Inexact products
Matrix n η Nex N1 N10 N100

ARC130 130 10−14 16 16 15 14
130 10−11 12 12 5 5

FS 183 6 183 10−12 40 44 32 23
183 10−14 44 47 43 42

GRE115 115 10−14 80 80 77 75
115 10−05 51 51 46 30

GRE185 185 10−12 161 161 159 158
185 10−10 158 158 156 154

WEST0132 132 10−10 130 130 124 114
132 10−08 114 111 91 16

Table 4.2

GMRES(m) with inexact matrix-vector products. Strategy indexed on 1/
√

‖rk‖.

Inexact products
Matrix n t m η Nex N1 N10 N100

e05r0400 236 10−3 10 10−14 26 28 25 24
e05r0000 236 10−2 20 10−14 95 96 93 76

236 10−2 20 10−10 59 72 57 55
236 10−2 20 10−06 36 38 34 30

GRE115 115 10−1 10 10−10 18 18 17 15
GRE185 185 10−2 10 10−14 91 94 81 73

185 10−2 10 10−10 59 61 54 43
185 10−2 15 10−10 29 30 28 27

GRE343 343 10−1 10 10−10 42 43 38 33
CAVITY03 317 10−3 10 10−10 24 24 20 16
PDE225 225 10−1 10 10−14 26 27 24 22

225 10−1 10 10−13 24 24 22 21
225 10−1 10 10−10 19 20 18 16

SAYLR1 238 10−1 10 10−13 131 140 111 99
238 10−1 10 10−10 81 91 66 51

UTM300 300 10−3 15 10−10 52 53 46 41
300 10−3 15 10−06 30 – 61 19
300 10−3 20 10−11 34 35 33 21
300 10−3 20 10−06 18 – 17 17

WEST0381 381 10−2 10 10−10 29 29 28 26
381 10−2 10 10−06 17 16 15 11

BFW398A 398 10−1 20 10−12 148 152 137 121
398 10−1 20 10−08 93 82 62 62

of outer iterations to meet this criterion. In the cases where the strategy indexed
on 1/ ‖rk‖ succeeds in ensuring the global convergence, the strategy with γk may
require fewer outer iterations (see GMRES(m) on GRE185, for instance) but not always
(see GMRES(m) on e05r0000). However, both strategies behave similarly when one
considers obtaining a final backward error of the order of 10η as a satisfactory final
goal. In order to achieve a final backward error of η on a given linear system, one
may apply, for instance,

• a relaxation strategy indexed on the reciprocal of the square root of the
residual (i.e., using γk) and η;

• a relaxation strategy indexed on the reciprocal of the residual and η′ = η/10
with a stopping criterion chosen as 10η′.
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The quality of the computed solution would be the same, but the global computational
cost may differ.

Indeed, many variants may be thought of as one starts playing with the parameters
of the relaxation scheme, such as η, αk, or the stopping criterion. It is particularly
difficult to compare the different strategies on our model problem of inexact Krylov
schemes because we do not have a good way to measure the performance of these
strategies: the number of outer iterations itself is not a good criterion since it does
not take into account the gain obtained from using inaccurate matrix-vector products.
In practice, the choice of a good strategy will result from some trade-off between the
cost of the inner iteration and the overhead on the outer iterations.

Therefore, so far we have been primarily interested in the achievable accuracy of
the relaxation schemes. A general comparison of these schemes in terms of compu-
tational cost is beyond the scope of this paper. Such a study requires the knowledge
of the inner process modeled here by a perturbation. We refer, for instance, to our
work on domain decomposition methods with Giraud where the gain can be effectively
measured in terms of a significant reduction of matrix-vector products [4].

The strategy which indexes the perturbation size on the reciprocal of the residual
was therefore privileged because it is the one that allows the larger perturbations sizes
while preserving the global convergence. If the inaccuracies allowed on the matrix-
vector product translate into a significant gain in the computational cost, then the
proposed strategy has a strong potential for reducing the global computational cost
of the complete solution of the linear system.

4.2. Preconditioning. In the experiments proposed here, we have focused on
the influence of perturbations of the matrix A (i.e., on inexact matrix-vector products)
on the convergence of GMRES, regardless of the preconditioner. As a matter of fact,
our strategy makes use of the residual of the original system Ax = b. However, in the
case of left preconditioning, for instance, this residual may not be readily available:
only the preconditioned residual would appear naturally in the algorithm. In such a
case, it may be more appropriate to base the relaxation strategy on the preconditioned
matrix, rather than on the original matrix.

4.3. Scaling issues. As mentioned in section 2.2, the relaxation strategy is
based on the choice εk = min(αk−1η, 1), where αk−1 = 1/min(‖rk−1‖ , 1) retains only
an absolute information (the residual) from the outer process. Clearly this strategy
suffers from the drawback of being scaling-dependent. Indeed, scaling the linear sys-
tem Ax = b by a constant will not change the convergence of GMRES but would
definitely affect the relaxation strategy. It is therefore desirable to design a scaling-
independent strategy. For instance, what would happen if one uses the backward
error ‖rk−1‖ /(‖A‖ ‖xk−1‖) instead of the residual ‖rk−1‖ alone? The corresponding
strategy would be defined by

ε′k = min(α′
k−1η, 1) with α′

k−1 =
1

min
(

‖rk−1‖
‖A‖‖xk−1‖ , 1

) .
Surprisingly, this idea, which would seem natural a priori, does not lead to good
results. Indeed, with such a choice, the convergence of the outer process is significantly
delayed or even impeached (see Figures 4.1 and 4.2). Again, changing εk into ε′k may
be seen as another possible variant of the relaxation strategy if one also plays with the
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Fig. 4.1. GMRES with inexact matrix-vector products. ARC130. η = 10−14. Relaxation strategy
with ε′k.
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choice of the parameter η, the targeted tolerance, and the stopping criterion, which
can be any multiple of η. However, this means that further work remains to be done
in order to obtain a deeper interpretation of the relaxation strategy, and why it seems
to work so well.

4.4. Dependency on the starting vector. The dependency of the proposed
relaxation strategy on the choice of the starting vector has also been explored. In
practice we found that changing the initial vector, and thus the initial residual, would
have no more effect on the global convergence than one would observe without using
a relaxation scheme.

5. Conclusion and perspectives. Golub, Zhang, and Zha have been among
the first to expose the robustness of Krylov schemes to variable inaccuracies in their
work on inner-outer Lanczos processes in [13]. The inner process solves a linear
least-squares problem with a tolerance τj which varies at each outer step j of the
Lanczos algorithm. The authors discuss a way to deduce the sequence {τj} from the
eigenvector associated with the smallest eigenvalue of the Lanczos tridiagonal matrix.
It is noted that the sequence {τj} can grow (implying a lesser inner accuracy) and
yet the outer process converges and the overall computation is cheaper.

Similarly, our experiments clearly demonstrate that Krylov methods are robust
to inexact matrix-vector products, provided an appropriate strategy (of type (2.1),
for example) is applied. In particular, the first vectors of the Krylov space need to
be computed with full accuracy, while this constraint can be relaxed further on. It
is remarkable that the Krylov process still converges while the Krylov vectors are
significantly perturbed. In the case of linear systems, we have proposed a practical
way (chosen amongst possible others for its large scope of good performance) to control
the inner accuracy: the relaxation strategy indexes the accuracy of the kth Krylov
vector (in terms of its backward error) on the reciprocal of the residual of the current
iterate. Since inexact matrix-vector products induce an overhead in terms of outer
iterations, it is crucial to see whether this overhead is compensated at the global level
by the reduction of the cost of the inner level. Only then will a complete comparison
of different relaxation schemes be possible.

This paper sets up a framework, inspired by the backward error analysis, which
seems extremely promising for future investigations on the robustness of Krylov meth-
ods. Although essentially experimental, this work and the applications performed on
eigenproblems [3] and on domain decomposition techniques with Giraud [4] seem
to have captured the interest of engineers and researchers since the first time it
was presented [1]. Among the practical uses of this relaxation scheme, we wish to
cite the work of [21] and [15]. More recently, a few papers have shown significant
progress in building the basis for a more theoretical explanation of the phenom-
ena explored here: [10, 18, 20] show sufficient conditions for convergence of Krylov
schemes under a relaxation scheme indexed on the reciprocal of the residual. Not
surprisingly, these sufficient conditions on the perturbation size involve factors such
as the condition number of the computed Hessenberg matrix or the matrix itself.
Further work should be performed in order to check whether these conditions pro-
vide the full explanation for the robustness of Krylov methods observed in practice.
Once their estimation using quantities readily available in the inner-outer schemes
has been worked out carefully, these promising results may lead to more refined and
more efficient relaxation strategies.
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Appendix. Some convergence plots for inexact Krylov methods.
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Fig. A.1. GMRES with inexact matrix-vector products. GRE185. η = 10−10.
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Fig. A.2. GMRES(m) with inexact matrix-vector products. SAYLR1. η = 10−13, m = 10.
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Fig. A.3. GMRES(m) with inexact matrix-vector products. GRE185. η = 10−10, m = 15.
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[8] E. Giladi, G. H. Golub, and J. B. Keller, Inner and outer iterations for the Chebyshev
algorithm, SIAM J. Numer. Anal., 35 (1998), pp. 300–319.

[9] L. Giraud, Private communication, 1999.
[10] L. Giraud, S. Gratton, and J. Langou, A Note on Relaxed and Flexible GMRES, Technical

report TR/PA/04/41, CERFACS, Toulouse, France, 2004.
[11] G. H. Golub and M. L. Overton, The convergence of inexact Chebyshev and Richardson

iterative methods for solving linear systems, Numer. Math., 53 (1988), pp. 571–593.
[12] G. H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer

iteration, SIAM J. Sci. Comput., 21 (1999), pp. 1305–1320.
[13] G. H. Golub, Z. Zhang, and H. Zha, Large sparse symmetric eigenvalue problems with

homogeneous linear constraints: The Lanczos process with inner-outer iterations, Linear
Algebra Appl., 309 (2000), pp. 289–306.

[14] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers Appl. Math. 17, SIAM,
Philadelphia, 1997.

[15] K. Mer-Nkonga and F. Collino, The fast multipole method applied to a mixed integral
system for time-harmonic Maxwell’s equations, in Proceedings of the European Symposium
on Numerical Methods in Electromagnetics, B. Michielsen and F. Decavèle, eds., 2002,
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Abstract. We are interested in computing the minimal positive solution of a nonsymmetric
algebraic Riccati equation arising in transport theory. We show that this computation can be done
via computing only the minimal positive solution of a vector equation, which is derived from the
special form of solutions of the Riccati equation. A simple iterative method is presented for solving
the vector equation. The simple iteration is much more efficient than the Gauss–Jacobi method
presented by Juang in [Linear Algebra Appl., 230 (1995), pp. 89–100] for the Riccati equation.
The symmetric case and bounds of the minimal positive solution are also considered. Numerical
experiments are given.

Key words. nonsymmetric algebraic Riccati equations, simple iteration, minimal positive so-
lution

AMS subject classifications. 15A24, 65F10, 82C70

DOI. 10.1137/S0895479801397275

1. Introduction. In this paper we are interested in iteratively solving the fol-
lowing algebraic Riccati equation arising in transport theory (see [6], [7] and the
references cited therein):

XCX −XE −AX + B = 0,(1)

where A,B,C,E ∈ Rn×n are given by

A = ∆ − eqT , B = eeT , C = qqT , E = D − qeT .(2)

Here e = (1, 1, . . . , 1)T , q = (q1, q2, . . . , qn)T with qi = ci
2ωi

,{
∆ = diag(δ1, δ2, . . . , δn) with δi = 1

cωi(1+α) ,

D = diag(d1, d2, . . . , dn) with di = 1
cωi(1−α) ,

(3)

and 0 < c ≤ 1, 0 ≤ α < 1, 0 < ωn < · · · < ω2 < ω1 < 1,

n∑
i=1

ci = 1, ci > 0, i = 1, 2, . . . , n.

It has been shown in [6] and [7] that (1) has positive solutions (in the componen-
twise sense). Since only the minimal positive solution is physically meaningful, some
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iterative methods have been developed for computing the minimal positive solution
of (1) (see [6] and [7]). More general nonsymmetric algebraic Riccati equations have
also been studied in [5] and [4].

However, the matrix equation (1) is in essence equivalent to a “vector equation.”
This fact is shown here and utilized to develop a simple but efficient iterative procedure
to compute the minimal positive solution of (1) and estimate its bounds.

This paper is organized as follows. In section 2, we derive a vector equation from
the special form of solutions of (1), and we show that the minimal positive solution of
(1) can be computed via computing only the minimal positive solution of the vector
equation. A simple but efficient iteration for the vector equation is given in this
section. In section 3, we give some estimations for bounds of the minimal positive
solution. In section 4, the symmetric case of (1) is discussed. Sections 5 and 6 give
some numerical examples and conclusions, respectively.

In this paper, we will use the standard notation for matrices with nonnegative
elements, as, e.g., used in [2]. Let A = (ai,j), B = (bi,j) be n × n matrices with real
entries. The Hadamard product of A and B is defined by A ◦B = (ai,jbi,j).

2. Solution form and simple iteration. Rewrite (1) as

∆X + XD = (Xq + e)(qTX + eT ),(4)

and let

u = Xq + e, vT = qTX + eT .(5)

Then any solution of (1) must be of the form

X = T ◦ (uvT ) = (uvT ) ◦ T,(6)

where

T = (ti,j) =

(
1

δi + dj

)
,(7)

X = (xi,j), u = (u1, u2, . . . , un)T , and vT = (v1, v2, . . . , vn).
Remark 1. It has already been noted in [6] and [7] that the positive solutions of

(1) are of the form (6).
To find the minimal positive solution of (1), we need to find proper positive vectors

u and v in (6). For this, substituting (6) into (5), we obtain a “vector equation”:{
u = u ◦ (Pv) + e,
v = v ◦ (P̃ u) + e,

(8)

where

P = (pi,j) =

(
qj

δi + dj

)
, P̃ = (p̃i,j) =

(
qj

δj + di

)
.(9)

To get the positive vectors u and v from (8), we define a simple iteration for (8):{
u(k+1) = u(k) ◦ (Pv(k)) + e,
v(k+1) = v(k) ◦ (P̃ u(k)) + e, k = 0, 1, . . . ,
u(0) = v(0) = 0.

(10)
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Then we have the following.
Lemma 1. For all 0 < c ≤ 1 and 0 ≤ α < 1, the sequence {(u(k), v(k))} defined

by (10) is strictly monotonically increasing, bounded above and thus converging.
Proof. It is easy to show by the induction that {(u(k), v(k))} is strictly mono-

tonically increasing. To show that {(u(k), v(k))} is bounded above, we observe the
following Gauss–Jacobi (GJ) method defined by Juang (see [6] in the componentwise
form): {

X(k+1) = T ◦ [(X(k)q + e)(qTX(k) + eT )], k = 0, 1, . . . ,
X(0) = 0.

(11)

An easy induction will give the following relation between iterations (10) and (11):

X(k) = T ◦ [u(k)(v(k))T ], k = 0, 1, 2, . . . .(12)

Since {X(k)} is bounded above (see [6]), so is {(u(k), v(k))}. Thus both the convergence
of the simple iteration (10) and the existence of the positive solutions of (8) are
assured.

Now we can present our main result.
Theorem 2. The minimal positive solution X∗ of (1) can be computed by

X∗ = T ◦ (u∗(v∗)T ),

where (u∗, v∗) is the limit of {(u(k), v(k))} defined by the simple iteration (10).
Proof. Since the limit of X(k), produced by (11), is the minimal positive solution

of (1) (see [6]), Theorem 1 thus follows by taking k → ∞ on the two sides of (12).
We know from Theorem 2 that the minimal positive solution of (1) can be obtained

by computing the positive solution of (8). It should be easily understood that the
vector equation (8) is simpler and should be easier to solve than the matrix equation
(1). This is true to a certain extent. In fact, Lemma 1 and (12) make clear that
iterations (10) and (11) can play the same role in finding the minimal positive solution
of (1). However, the difference of the two iterations lies in the computational cost.
The simple iteration needs about 4n2 flops (see [3] for the definition of the flops)
for each iteration. By comparison, the GJ iteration needs about 6n2 flops for each
iteration, n2 flops more for the outer product of the two vectors and another n2 flops
more for the Hadamard product of the two matrices. So there are significant savings
here. If we formed the matrix X(k) for each k ≥ 0, then the sequence {X(k)} would be
precisely the one obtained by the GJ method and there would be no saving over the
GJ method. Thus it is clear that the simple iteration (10) is basically a more efficient
implementation of the GJ method (11). Moreover, we have the error relationship:

X∗ −X(k) ≤ T ◦ (u∗(v∗ − v(k))T + (u∗ − u(k))(v∗)T ).(13)

Remark 2. According to the discussions in [5] and [4], the convergence of the GJ
method (and thus the simple iteration) is sublinear when (α, c) = (0, 1) and is linear
when (α, c) �= (0, 1).

3. Solution bounds. In this section we derive some bounds of the minimal
positive solution of (1) by using the simple iteration (10).

For notational convenience, we write w = (uT , vT )T ∈ R2n with wi = ui, wn+i =
vi (i = 1, 2, . . . , n) and define g(w) = (g1(w), g2(w), . . . , g2n(w))T with

gi(w) =

{∑n
l=1 pi,lwn+l when 1 ≤ i ≤ n,∑n
l=1 p̃i−n,lwl when n < i ≤ 2n.

(14)
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Then (8) and (10) can be rewritten as

w = w ◦ g(w) + e,(15)

w(k+1) = w(k) ◦ g(w(k)) + e, w(0) = 0, k = 0, 1, . . . .(16)

Let w∗ be the positive solution of (15) computed from (16), let γ1 = min{gi(e)} and
let γ2 = max{gi(e)}; then it is obvious that

w∗ > e, 0 < γ1e ≤ g(e) < min(w∗
i )g(e) ≤ g(w∗) < e.(17)

We have the following.
Lemma 3.

γ1 <
1

2
, γ2 < 1.(18)

Proof. From (14) and
∑n

i=1 ci = 1, we have, when 1 ≤ i ≤ n,

gi(e) =

n∑
l=1

pi,l =

n∑
l=1

ql
δi + dl

=
c

2

n∑
l=1

clωi(1 − α2)

ωi(1 + α) + ωl(1 − α)
<

c(1 − α)

2
;

when n < i ≤ 2n,

gi(e) =

n∑
l=1

p̃i−n,l =

n∑
l=1

ql
δl + di−n

=
c

2

n∑
l=1

clωi−n(1 − α2)

ωi−n(1 − α) + ωl(1 + α)
<

c(1 + α)

2
.

Since 0 < c ≤ 1 and 0 ≤ α < 1, (18) follows.
Now we give lower and upper bounds for w∗.
Lemma 4. Let γ1 and w∗ be defined above. Then

w∗ ≥ 1 − γ1

1 − 2γ1
e.(19)

Proof. Let {w(k)} be the sequence produced by the simple iteration (16). Then
it is easy to verify that w(1) = e and w(2) = e + g(e) ≥ e + γ1e. Therefore,

w∗ > w(2) ≥ (1 + γ1)e.(20)

Now we prove

w∗ >

⎡⎣1 + γ1

k∑
j=0

(2γ1)
j

⎤⎦ e, k = 0, 1, 2, . . . ,(21)

by induction on k. Formula (20) shows that (21) is true for k = 0. Assume that (21)
is true for k; then since g(w∗) ≥ min(w∗

i )g(e), we have

w∗ = w∗ ◦ g(w∗) + e ≥

⎡⎣γ1

(
1 + γ1

k∑
i=0

(2γ1)
i

)2

+ 1

⎤⎦ e >

⎡⎣1 + γ1

k+1∑
j=0

(2γ1)
j

⎤⎦ e.
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We see that (21) is true for k + 1. Thus

w∗ ≥
(

1 + γ1
1

1 − 2γ1

)
e =

1 − γ1

1 − 2γ1
e.

Corollary 5. Let γ1, γ2, and w∗ be defined as above; then we have
(a) γ2 < 1 − γ1

1−γ1
;

(b) w∗
i < 1/γ1 for some i.

Proof. By Lemma 4, we have e ≤ 1−2γ1

1−γ1
w∗ and thus

gi(e) ≤
1 − 2γ1

1 − γ1
gi(w

∗).

It follows from (17) that γ2 = max{gi(e)} < 1−2γ1

1−γ1
. (a) is true.

On the other hand, since min{w∗
i } ∗ gi(e) ≤ gi(w

∗) < 1 and gi(e) ≥ γ1, it follows
that min{w∗

i } < 1/gi(e) ≤ 1/γ1. So (b) is true.

It follows from Corollary 5 that 1 − 2γ1 > (1 − γ1)γ1. Thus γ1 < 3−
√

5
2 . This

bound for γ1 is tighter than the one in Lemma 3.
As to upper bound of w∗, we can give only a rough estimation.
Lemma 6. If γ2 ≤ 1/4, then

w∗ ≤ 2e or max(w∗
i ) ≤ 2.(22)

Proof. Let {w(k)} be the sequence produced by the simple iteration (16). We
first prove by the induction that w(k) ≤ 2e. Note that w(1) = e < 2e. If w(k) ≤ 2e,

then it follows by the definition of gi (see (14)) that gi(w
(k)) ≤ (max(w

(k)
i )) ∗ gi(e) ≤

2γ2 ≤ 1/2. Thus (16) and the condition of the lemma give

w(k+1) = w(k) ◦ g(w(k)) + e ≤ (max(w
(k)
i ) ∗ max(gi(w

(k))) + 1)e ≤ 2e.

Then w∗ ≤ 2e since w∗ is the limit of {w(k)}.
Applying the results to bounds of the minimal positive solution of (1), we have

the following.
Theorem 7. The minimal positive solution X of (1) has lower bound

X ≥
(

1 − γ1

1 − 2γ1

)2

T,(23)

where T is as defined in (7). If γ2 ≤ 1/4, then X has upper bound X ≤ 4T .

4. The symmetric Riccati equation. If α = 0, then ∆ = D = diag( 1
cω1

, 1
cω2

,

. . . , 1
cωn

). Equation (1) becomes a symmetric Riccati equation:

DX + XD = (Xq + e)(qTX + eT ).(24)

Its solutions are symmetric and of the form

X = T ◦ (uuT ), or xi,j =
uiuj

di + dj
, i, j = 1, 2, . . . , n.(25)

Now T = (ti,j) = ( 1
di+dj

) is a symmetric Cauchy matrix. The following proposition

is immediate.
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Proposition 8. For all 0 < c ≤ 1, any solution X of (24) is a positive semidefi-
nite matrix.

Proof. Lemma 3.7.1 of [1] showed that if both A and B are positive semidefinite
matrices, then so is their Hadamard product A ◦B. Now we need to show only that
both T and uuT are positive semidefinite. Since 0 < d1 < d2 < · · · < dn, the Cauchy
matrix T = ( 1

di+dj
) is a positive definite matrix. It is clear that uuT is a positive

semidefinite matrix of rank one for any u �= 0.
Since α = 0, we have P = P̃ in (9). The iteration (10) or (16) is simplified to

u(k+1) = u(k) ◦ (Pu(k)) + e with u(0) = 0, k = 0, 1, . . . .(26)

For each iteration, (26) needs only half of the computational work of (10) or (16).
Now we have the following result.

Corollary 9. The minimal positive solution X = (xi,j) of (24) has the lower
bound

xi,j ≥
(1 − γ1)

2

(1 − 2γ1)2(di + dj)
,(27)

and there are some diagonal elements xi,i (1 ≤ i ≤ n) satisfying

xi,i < 1/(2γ2
1di).(28)

If γ2 ≤ 1/4, then X has the upper bound xi,j ≤ 4
di+dj

. Now γ1 = min(Pe)i, γ2 =

max(Pe)i, where P = (pi,j) = (
qj

di+dj
).

5. Numerical experiments. In the following examples, we let

rk = ||R(X(k))||∞ = ||∆X(k) + X(k)D − (X(k)q + e)(qTX(k) + eT )||∞,

the residual of (4) or (1). GJ, SI will denote the iteration method decided by (11),
(10), respectively.

Example 1. This example is used to test the time that the iteration methods GJ
and SI need when the iterations converge.

We consider (1) for n = 64 and n = 128. As in Example 5.2 in [5], the constants
ci and ωi are given by a numerical quadrature formula on the interval [0, 1], which
is obtained by dividing [0, 1] into n/4 subinterval of equal length and applying a
Gauss–Legendre quadrature with 4 nodes to each subinterval.

We have tested three values of (α, c)—(0.5, 0.5), (0.85, 0.1), and (10−8, 1−10−6)—
and recorded the iteration counts and times that iterations need to have rk/r0 < ε (ε
is taken ranging from 10−2 to 10−12) for GJ and SI. From the numerical experiment,
we found that GJ and SI need nearly the same iteration counts, but the cpu time for
SI is about 2/3 of that for GJ when n is large enough, e.g., no less than 32, and if the
work needed to check the stopping criterion is negligible.

Example 2. Two examples are used to compare maximum and minimum ele-
ments of computed solution of (15) with the estimated bounds (19) and (22) given in
section 3.

We first consider (1) for n = 8, and the constants ci and ωi are given by a
numerical quadrature formula on the interval [0, 1], which is obtained by applying a
Gauss–Legendre quadrature with 8 nodes. The results are recorded in Table 1.

Second, we consider (1) for n = 128, with ci and ωi as given in Example 1. The
results are given in Table 2. From Tables 1 and 2, we can see that the estimated
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Table 1

Comparison: Computed solutions vs. estimated bounds, n = 8.

(α, c) (.01, .99) (.05, .95) (.1, .9) (.2, .9) (.6, .4) (.7, .3)
min(w∗

i ) 1.0174 1.0162 1.0148 1.0141 1.0038 1.0022
est. low. 1.0158 1.0150 1.0139 1.0133 1.0037 1.0022

Table 2

Comparison: Computed solutions vs. estimated bounds, n = 128.

(α, c) (0, 1) (0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5)
min(w∗

i ) 1.0491 1.0342 1.0258 1.0192 1.0139 1.0095
est. low. 1.0328 1.0272 1.0219 1.0171 1.0127 1.0090
max(w∗

i ) 2.8517 1.8689 1.6132 1.4485 1.3267 1.2316
est. upp. no no no no 2 2
γ2 0.3445 0.3212 0.2909 0.2548 0.2143 0.1710

lower bounds are very close to the least elements of the computed solutions. This
shows that our estimation for the lower bound of the minimal positive solution is
appropriate. But it can also be seen from Table 2 that our estimation for the upper
bound is too rough. In particular, we have not covered the case of 1/4 < γ2 < 1− γ1

1−γ1

(see Corollary 5(a)).

6. Conclusions. By analyzing the special form of solutions of (1), we showed
that any solution of the nonsymmetric algebraic Riccati equation is only related to
two vectors and given an equation that the two vectors need to satisfy. The vector
equation can be utilized to study and compute the minimal positive solution of (1).
A simple iterative method was presented for the vector equation that is more efficient
than the GJ method presented by Juang in [6] for the Riccati equation. The symmetric
case of the Riccati equation was also considered. By using the simple iteration, we
also gave some bounds of the minimal positive solution. Numerical experiments were
given to verify the results. However, there are still some problems for future work.
For example, since the convergence of the simple iteration is only sublinear, it is of
interest to study the use of some methods of higher order convergence, e.g., Newton’s
method, to solve (15).
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sentation of the paper.
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Abstract. The elimination tree of a symmetric matrix plays an important role in sparse matrix
factorization. By using paths instead of edges to define the tree, we generalize this structure to
unsymmetric matrices while retaining many of its properties. If we use a tree traversal to reorder a
matrix into a bordered block triangular form, the structure has further desirable properties relevant
to a sparse LU factorization of the reordered matrix. When pivoting is required for stability, the
tree changes only locally if the choice of pivot is suitably restricted.
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1. Introduction. Schreiber [20] defined the elimination tree of a sparse symmet-
ric matrix. This structure has many important roles in sparse matrix factorization,
including storage schemes, matrix reordering, symbolic and numerical factorization,
and parallel elimination [18].

Gilbert and Liu [11] extended the elimination tree to study the sparse LU factor-
ization of an unsymmetric matrix. Their generalization consists of a pair of elimina-
tion dags (directed acyclic graphs), which are the transitive reductions of the graphs
of the lower and upper triangular factors.

In this paper we present a new generalization that uses paths instead of edges to
define a single tree structure with many of the same properties as the elimination tree
of a symmetric matrix. The approach is closely related to the use of path-symmetric
reductions to speed up symbolic LU factorization [7].

The outline of the paper is as follows. In section 2 we introduce some graph
notation and present the relevant background for sparse LU factorization.

In section 3 we generalize the notion of elimination tree from symmetric matrices
to unsymmetric matrices by using paths instead of edges and characterize the ancestor-
descendant relation for vertices in the resulting tree structure. We also relate subtrees
of the elimination tree to strongly connected subgraphs of the original directed graph.

In section 4 we use the elimination tree to characterize the row and column
structures of the factor matrices. In particular, we show that the structure of each
row of L and each column of U is a pruned forest of the elimination tree.

In section 5 we explore the use of topological orderings and postorderings of
the elimination tree to reorder a sparse unsymmetric matrix. The resulting BBT
postordering gives a reordered matrix with a lower or upper bordered block triangular
form.
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Fig. 1. A sparse unsymmetric matrix and its directed graph.

In section 6 we establish some important properties of matrices that have been
reordered by upper BBT postorderings, showing that each row structure of L is a
pruned subtree (instead of a pruned forest); that the elimination dag of L is the
same as the elimination tree; that the tree is a depth-first tree of a certain depth-first
traversal of the filled graph; and that it captures the data dependencies among the
rows of the filled matrix. Similar results hold for lower BBT postorderings and U .

In section 7 we consider how pivoting for stability can affect the elimination tree.
While a single row exchange can change the entire tree, we show that both delayed
elimination and the restricted form of off-diagonal pivoting used in the unsymmetric
multifrontal method have only a local effect on the tree structure.

In section 8 we give some concluding remarks and discuss potential applications
of the elimination tree structure to other aspects of sparse LU factorization.

2. Background.

2.1. Graph notation. Let M be a sparse unsymmetric n × n matrix. The
directed graph G(M) of M is defined as follows: the vertex set is X(M) = {1, 2, . . . , n},
and there is an edge from vertex r to vertex c (for r �= c) if and only if the entry
mrc �= 0. We shall use the notation r M�−→ c to indicate a directed edge from r to c.
If the matrix M is clear from context, we shall sometimes use the abbreviated form
r �→ c.

Furthermore, we shall use the notation r M=⇒ c to indicate a directed path1 from
vertex r to vertex c in G(M), and the notation r M=⇒min c (respectively, r M=⇒max c)
to indicate a directed path from r to c whose intermediate vertices (if any) lie in the
subset {1, . . . ,m − 1}, where m = min{r, c} (respectively, m = max{r, c}). If the
matrix M is clear from context, we shall sometimes use the abbreviated forms r ⇒ c,
r ⇒min c, and r ⇒max c.

A set of vertices S ⊆ X(M) induces a subgraph of G(M) consisting of the vertices
in S and all edges x �→ y in G(M) with x, y ∈ S. To simplify the presentation
we shall not distinguish between a set of vertices and the subgraph of G(M) that it
induces; that is, we shall use S as a subset of X(M) and as a subgraph of G(M)
interchangeably. It should be clear from context which use is intended. We shall use
the notation Gm(M) to denote the subgraph {1, . . . ,m} of G(M) for 1 ≤ m ≤ n.

Figure 1 contains a 10×10 unsymmetric matrix that will be used throughout the
paper to illustrate various notions and properties. Note that 9 ⇒ 1, but not 9 ⇒max 1,
and that 6 ⇒max 1, but not 6 ⇒min 1.

1Paths and cycles need not be simple; that is, they may visit a vertex more than once.
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Fig. 2. The filled matrix for the matrix in Figure 1.

2.2. The filled graph and the elimination dags. Let A be a nonsingular
sparse unsymmetric n× n matrix with a nonzero diagonal and the factorization A =
LU , where L is unit lower triangular and U is upper triangular. The filled matrix of
A is A+ = L + U − I. The filled graph of A is the directed graph G(A+) of its filled
matrix.

It is well known that fill-in can occur during the LU factorization of a sparse ma-
trix; that is, there can be entries that are zero in the original matrix A but nonzero
in the filled matrix A+. The following “path-theorem” of Rose and Tarjan [19] char-
acterizes the locations of the nonzero entries in A+.

Theorem 2.1 (see [19, Theorem 1]). There exists an edge r A+

�−→ c in G(A+) if
and only if there exists a path r A=⇒min c in G(A).

Figure 2 gives the filled matrix A+ for the matrix A in Figure 1 with the 20 fills
depicted by ◦. In the directed graph G(A) there are paths

10 A�−→ 5 A�−→ 6 A�−→ 2 A�−→ 8 and 8 A�−→ 1 A�−→ 3 A�−→ 4 A�−→ 10

through vertices less than 8. By Theorem 2.1 there are edges 10 A+

�−→ 8 and 8 A+

�−→ 10
or, equivalently, 10 L�−→ 8 and 8 U�−→ 10.

Theorem 2.1 characterizes the edges in the filled graph G(A+) in terms of fill
paths r A=⇒min c in the original graph G(A). Alternatively, we can characterize the
nonzero structures of the lower and upper triangular factors in terms of the edges in
G(A) and the set of paths in G(U) and G(L), respectively: the structure of the rth
row of L is given by

{j | j < r and r A�−→ k U=⇒ j for some k < r},

and the structure of the c th column of U is given by

{i | i < c and i L=⇒ k A�−→ c for some k < c}

(see [8, Theorem 3.2]).
The directed graphs G(L) and G(U) are dags (directed acyclic graphs) since they

cannot have cycles. The elimination dags G(Lo) and G(Uo) of A are the transitive
reductions2 of G(L) and G(U), respectively, [11]. Since transitive reduction preserves
the set of paths in a graph, the row structures of L can also be characterized in terms
of the set of paths in G(Uo) instead of the set of paths in G(U). A similar observation
applies to the column structures of U .

2A transitive reduction of a directed graph G(M) is a subgraph G(Mo) of G(M) such that there
is a path from vertex x to vertex y in G(M) if and only if there is a path from x to y in G(Mo), and
no subgraph with this property has fewer edges. The transitive reduction of a dag is unique [1].
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Fig. 3. The matrix structures of the elimination dags for the matrix in Figure 1.
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Fig. 4. A matrix view of the cycle i L=⇒ k U=⇒ i.

Figure 3 shows the matrix structures Lo and Uo of the elimination dags for the
filled matrix in Figure 2. Entries removed from L and U are depicted by ·.

3. The elimination tree of an unsymmetric matrix. The pair of elimination
dags can be viewed as a generalization of the elimination tree to unsymmetric matrices
since they characterize the nonzero structures of the factor matrices in the same way
that the elimination tree does in the symmetric case [11]. In this section we provide
a new generalization that gives rise to a single tree/forest structure.

3.1. The definition. If the matrix A is symmetric, so is the filled matrix A+.
The elimination tree/forest of A is defined in terms of the function3

fnz(k) = min{i | �ik �= 0},

where vertex p = fnz(k) is the parent of vertex k if fnz(k) < ∞. Since A+ is
also symmetric, we may choose U = LT (structurally if not numerically). Then the

condition �ik �= 0 (or i L�−→ k) is equivalent to i L�−→ k U�−→ i (or i L�−→ k LT

�−→ i).
When A is unsymmetric, we generalize this notion using paths instead of edges.

The elimination tree/forest T (A) of the unsymmetric matrix A is defined in terms of
the function

fpnz(k) = min{i | i L=⇒ k U=⇒ i},

where vertex p = fpnz(k) is the parent of vertex k if fpnz(k) < ∞. Figure 4 gives a
matrix view of the cycle i L=⇒ k U=⇒ i used in the definition of fpnz(k).

Figure 5 gives the elimination tree T (A) for the matrix A in Figure 1. Since
vertices 6, 8, and 10 are the only ones with cycles of the form x L=⇒ 2 U=⇒ x, namely,

6 L�−→ 2 U�−→ 5 U�−→ 6, 8 L�−→ 2 U�−→ 8, and 10 L�−→ 6 L�−→ 2 U�−→ 10,

3If the set {i | �ik �= 0} is empty, then the minimum is taken to be ∞.
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Fig. 5. The filled matrix and elimination tree for the matrix in Figure 1.

we have fpnz(2) = 6.
It should be clear that this definition of elimination tree for unsymmetric matrices

generalizes that for symmetric matrices. Indeed, if the matrix A is symmetric, then
fnz(∗) = fpnz(∗) and both functions give the same tree.

By definition we have fpnz(n) = ∞. In general there may be other vertices with
fpnz(k) = ∞, in which case the elimination structure defined by fpnz(k) is a forest.
(Corollary 3.7 characterizes when this can occur.) However, we shall still refer to this
structure as an elimination tree.

3.2. A characterization of the ancestor-descendant relation. To explore
the properties of the elimination tree T (A), we characterize its ancestor-descendant
relation in terms of certain cycles. We first extend the “path-theorem” Theorem 2.1
to characterize paths in the filled graph G(A+) in terms of paths in the original graph
G(A) or in the factor graphs G(L) and G(U).

Theorem 3.1. The following conditions are equivalent:

(a) There is a path r A+

=⇒max c in G(A+).
(b) There is a path r A=⇒max c in G(A).
(c) Either there is a path r L=⇒ c (if r ≥ c) or there is a path r U=⇒ c (if r ≤ c).

Proof. (a) implies (b). Assume that r A+

=⇒max c. By Theorem 2.1, if x A+

�−→ y is an
edge on that path, then there exists a path x A=⇒min y in G(A). If we replace each
edge by its corresponding path, we get a path r A=⇒max c.

(b) implies (c). Assume that r A=⇒max c with r ≥ c. Let x be the vertex on this
path other than r with the largest label. Then x < r and we can decompose the path
into subpaths r A=⇒min x and x A=⇒max c, where the latter will be empty if x = c. By
Theorem 2.1 the edge r L�−→ x exists, and by a simple induction argument there exists
a path x L=⇒ c. Pasting these together, we get a path r L=⇒ c. The case r ≤ c is
similar.

(c) implies (a). Assume that r L=⇒ c. This path can be written as r L=⇒max c,

since L is lower triangular, and as r A+

=⇒max c, since G(L) is a subgraph of G(A+).
The case r U=⇒ c is similar.

Using the equivalence above, we can give an alternative definition of fpnz(∗):

fpnz(k) = min{i | i > k and i A=⇒max k A=⇒max i}.(1)

We now use these results to characterize the ancestor-descendant relation.
Theorem 3.2. The following conditions are equivalent:
(a) Vertex q is an ancestor of vertex k in the elimination tree T (A).
(b) There is a cycle q L=⇒ k U=⇒ q.
(c) q > k, and there is a cycle q A=⇒max k A=⇒max q in G(A).



ELIMINATION TREES FOR SPARSE UNSYMMETRIC MATRICES 691

Proof. (a) implies (b). Assume that q is an ancestor of k in T (A). If vertex p
is the parent of k, then there exists a cycle p L=⇒ k U=⇒ p. If p = q, we are done.
Otherwise q must be an ancestor of p, and by a simple induction argument there
exists a cycle q L=⇒ p U=⇒ q. Pasting pieces of these cycles together, we get the cycle

q L=⇒ p L=⇒ k U=⇒ p U=⇒ q.

(b) implies (c). Assume that there exists a cycle q L=⇒ k U=⇒ q. Since L is
lower triangular, we have q > k. By Theorem 3.1 there exist paths q A=⇒max k and
k A=⇒max q. Pasting these together gives the result.

(c) implies (a). Let k be the vertex with the largest label for which q > k and
there exists a cycle q A=⇒max k A=⇒max q, but q is not an ancestor of k in T (A). By
(1) we must have fpnz(k) < q. Thus k has a parent p < q in T (A), and there exists
a cycle p A=⇒max k A=⇒max p. Pasting pieces of these cycles together, we get the cycle

q A=⇒max k A=⇒max p A=⇒max k A=⇒max q,

which can also be written as q A=⇒max p A=⇒max q. But q cannot be an ancestor of p
either, which contradicts the definition of k.

Theorem 3.2 characterizes the ancestor-descendant relation in T (A) in terms of
paths in G(L), G(U), and G(A). For example, in the elimination tree in Figure 5,
vertex 8 is an ancestor of vertex 5 and we have the cycles

8 L�−→ 5 U�−→ 8 and 8 A�−→ 2 A�−→ 5 A�−→ 8,

and vertex 10 is an ancestor of vertex 1 and we have the cycles

10 L�−→ 8 L�−→ 1 U�−→ 3 U�−→ 4 U�−→ 10 and 10 A�−→ 5 A�−→ 8 A�−→ 1 A�−→ 3 A�−→ 4 A�−→ 10.

3.3. Strongly connected properties of subtrees. A directed graph is said
to be strongly connected if there exists a path between any pair of vertices; that is,
there is a cycle connecting them. In this section we establish the main property of the
elimination tree: that each subtree is a strongly connected component of a larger sub-
graph.4 We begin with a characterization of the ancestor-descendant relation in terms
of strongly connected components. Recall that Gm(A) is the subgraph {1, . . . ,m} of
G(A).

Theorem 3.3. Vertex q is an ancestor of vertex k in the elimination tree T (A)
if and only if q > k and q and k belong to the same strongly connected component of
the subgraph Gq(A) of G(A).

Proof. Assume that q is an ancestor of k. Then by Theorem 3.2 we have q > k
and there exists a cycle q A=⇒max k A=⇒max q in G(A). Since this cycle lies in Gq(A),
the vertices q and k must belong to the same strongly connected component of that
subgraph.

Conversely, assume that q > k and q and k belong to the same strongly connected
component of Gq(A). Then there exists a cycle q ⇒ k ⇒ q in that subgraph, which

can be written as q A=⇒max k A=⇒max q. By Theorem 3.2 vertex q is an ancestor of
vertex k.

4In the symmetric case each subtree of the elimination tree corresponds to a connected subgraph
of the original undirected graph.
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This result can be used to characterize5 the parent-child relation in the elimination
tree.

Corollary 3.4. Vertex p is the parent of vertex k in the elimination tree T (A)
if and only if p is the first vertex after k such that k and p belong to the same strongly
connected component of the subgraph Gp(A) of G(A).

For any vertex k, let T [k] denote both the subtree of T (A) rooted at k and the
set of vertices in this subtree, and let Ā[k] denote the set of vertices in the graph
G(A) that are not proper ancestors of k in T (A). We shall also let T [k] and Ā[k]
refer to the subgraphs of G(A) that they induce. For example, the subtree T [8] of the
elimination tree in Figure 5 contains the vertices 2, 5, 6, and 8 and corresponds to a
subgraph of the graph in Figure 1, and Ā[6] = {1, 2, 3, 4, 5, 6, 7, 9} = X(A) \ {8, 10}
corresponds to another subgraph.

Theorem 3.5. The subgraph T [k] of G(A) is a strongly connected component of
the subgraph Ā[k] of G(A).

Proof. By Theorem 3.3 every vertex x �= k in T [k] is in the same strongly
connected component of Gk(A) as k. But we have {1, . . . , k} ⊆ Ā[k], so k and x must
belong to the same strongly connected component of Ā[k].

It remains to prove that no other vertex belongs to this component. Assume
otherwise and let y be the vertex with the largest label that is in the component but
not in T [k]. Then there exists a cycle y ⇒ k ⇒ y in the subgraph Ā[k]. By the
choice of y the intermediate vertices in this cycle must be either in T [k] (and thus
less than k) or less than y. Thus it can be written as the cycle y ⇒max k ⇒max y
in the subgraph Ā[k], and as y A=⇒max k A=⇒max y, since Ā[k] is a subgraph of G(A).
By Theorem 3.2, if y > k, then y is an ancestor of k in the elimination tree, which
contradicts the assumption that y �∈ Ā[k]. Similarly, if y < k, then k is an ancestor
of y in the elimination tree, which contradicts the assumption that y ∈ T [k].

Since T [k] is a strongly connected component of Ā[k], it is also a strongly con-
nected component of any subgraph Y with T [k] ⊆ Y ⊆ Ā[k]. Since the subgraph
Gk(A) containing {1, . . . , k} satisfies this condition, the following result is immediate.

Corollary 3.6. The subgraph T [k] of G(A) is a strongly connected component
of the subgraph Gk(A) of G(A).

For example, in the directed graph in Figure 1 the subgraph induced by the vertex
set {1, 2, 3, 4, 5, 6} has two strongly connected components, {1, 3, 4} and {2, 5, 6}, each
corresponding to a subtree of the elimination tree in Figure 5.

The same observation holds for the filled graph G(A+). In other words, the
subtree T [k] is a strongly connected component of the subgraph Gk(A

+) of G(A+).
As discussed at the end of section 3.1, the elimination structure T (A) can be a

forest. But by Corollary 3.6 each tree in the forest corresponds to a strongly connected
component of G(A). Thus the following result is immediate.

Corollary 3.7. The directed graph G(A) is strongly connected if and only if
the elimination structure T (A) is a tree.

4. The elimination tree and the LU factors. We shall say that a subgraph
S of the elimination tree T (A) is a pruned forest if for every vertex x ∈ S, either the
parent of x is in S or no ancestor of x is in S. In this section we characterize the
row structures of L and the column structures of U in terms of pruned forests of the
elimination tree.

5This characterization is the basis for some efficient algorithms to find the elimination tree [9].
Their complexity is O(nm), where m is the number of nonzeros in A, but in practice they run at
least as fast as a symbolic factorization.
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Fig. 6. The pruned forests associated with L4∗ and U∗,10 for the matrix in Figure 1.
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Fig. 7. The pruned forests associated with L8∗ and U∗9 for the matrix in Figure 1.

Theorem 4.1. The structure of each row of L and column of U is a pruned
forest of T (A).

Proof. We shall prove the result for the rth row Lr∗ of L; the proof for the c th
column U∗c of U is similar. Note that �rx = 0 for x > r. Thus it suffices to show
that �rp �= 0 if �rx �= 0 and p = fpnz(x) ≤ r. By Theorem 2.1, if �rx �= 0, there

exists a path r A=⇒min x. By the alternate definition of fpnz(∗) in (1), there exists
a cycle p A=⇒max x A=⇒max p. Combining the path with the second part of the cycle
and noting that x < p ≤ r, we obtain a path r A=⇒min p. By Theorem 2.1 we have
�rp �= 0.

Figure 6 contains the pruned forests of row L4∗ and column U∗,10 for the matrix
in Figure 1. Both are subtrees, rooted at vertices 4 and 10, respectively.

In the symmetric case, where U = LT , the row structure of Lk∗ (or, equivalently,
the column structure of U∗k) is always a pruned subtree of the elimination tree rooted
at vertex k, and the leaves of the subtree correspond to nonzeros in A (see [18]).
However, this result does not hold in the unsymmetric case. For example, Figure 7
contains the pruned forests of row L8∗ and column U∗9 for the matrix in Figure 5. The
structure of L8∗ is {1, 2, 3, 4, 5, 6, 8}, which corresponds to two pruned subtrees of the
elimination tree, one rooted at vertex 8, and the structure of U∗9 is {4, 5, 6, 7, 8, 9},
which corresponds to four pruned subtrees, one rooted at vertex 9.

An important use of the elimination tree in the symmetric case is to capture data
dependencies such as among the columns in the Cholesky factor and the frontal ma-
trices in the multifrontal method. These relationships do not hold in the unsymmetric
case.

However, the following result specifies a dependency among the diagonal entries
a+
kk of the factor matrix A+. Since the result is of minor importance, we state it

without proof. We shall revisit the issue of data dependency in section 6.4.
Theorem 4.2. The value of a+

qq depends on the value of a+
kk if and only if vertex

q is an ancestor of vertex k in the elimination tree T (A).
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A+ = A =

⎛⎝ 1 •
2 •

• • 3

⎞⎠ T (A) :

1� 2�

3�

�� �� (PAPT )+ =

⎛⎝ 2 •
• 1 ◦
• • 3

⎞⎠
Fig. 8. A topological ordering need not preserve the filled graph structure.

5. Matrix reordering based on the elimination tree.

5.1. Topological orderings. Two reorderings of a matrix A are equivalent if
their associated filled graphs are isomorphic6 [17]. With the amount of fill-in fixed,
we can then choose an equivalent reordering that has additional desirable features.

A topological ordering of a rooted tree numbers the children of each vertex before
the vertex itself. It is well known that for symmetric matrices, any topological or-
dering of the elimination tree is equivalent to the original ordering and preserves the
elimination tree [18].

However, for unsymmetric matrices topological orderings need not preserve the
filled graph structure. For example, Figure 8 contains a 3 × 3 unsymmetric matrix
and its elimination tree. The permutation matrix P numbers vertex 2 before vertex 1
and is therefore a topological ordering of the elimination tree. But A suffers no fill,
whereas the reordered matrix PAPT suffers one fill.

Nonetheless, topological orderings do preserve the structure of the elimination
tree.

Theorem 5.1. Let π be a topological ordering of the elimination tree T (A), and
let P be the corresponding permutation matrix. The elimination tree T (PAPT ) is
T (A) with the vertex relabeling x → π(x).

Proof. The result follows directly from Theorem 3.5 and Corollary 3.4.
They also preserve the pivots! For any matrix M , let DU (M) be the diagonal

matrix whose diagonal elements are the same as those of the U in the LU factorization
of M .

Theorem 5.2. Let π be a topological ordering of the elimination tree T (A), and
let P be the corresponding permutation matrix. Then PDU (A)PT = DU (PAPT ).

Proof. For any set S of vertices in G(A), let A(S) denote the principal submatrix
of A consisting of the rows and columns in S, and for any vertex k, let A(k) denote
A({1, . . . , k}).

Since A = LU and L is unit lower triangular, we have

ukk = detA(k) /detA(k − 1).

By Corollary 3.6 the subtree T [k] is a strongly connected component of the subgraph
Gk(A) of G(A). Thus there exists a permutation Q such that QA(k)QT is block upper
triangular and A(T [k]) is one of the diagonal blocks.

Since the determinant is invariant under a symmetric permutation of the rows
and columns, we can express detA(k) as the product of the determinants of these
diagonal blocks. Similarly, we can express detA(k − 1) as the same product with
detA(T [k]) replaced by detA(T [k] \ {k}). Thus

ukk = detA(T [k]) /detA(T [k] \ {k}).

The result now follows from Theorem 5.1 and the invariance of the determinant
under symmetric permutations.

6Two graphs are isomorphic if either can be obtained from the other by relabeling the vertices.
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(PAPT )+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 • • • •
5 • • •

• ◦ 6 ◦ ◦ ◦ ◦
• ◦ ◦ 8 • ◦ ◦

9 •
7 •

1 •
• 3 •

• • 4 •
• ◦ ◦ • ◦ ◦ ◦ 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 9. The filled matrix for a postordering of the elimination tree of the matrix in Figure 1.

5.2. Postorderings. Consider the subtree T [k] of the elimination tree rooted
at vertex k, and let s1, s2, . . . , st be the children of k. In a postordering [2] the ver-
tices within each subtree T [si] are numbered consecutively, and vertex k is numbered
immediately after the vertices in its subtrees T [s1], T [s2], . . . , T [st].

Postorderings form an important subclass of the possible topological orderings of
a given elimination tree. For symmetric matrices they are useful in such contexts as
the formation of an assembly tree for the multifrontal method [6].

Figure 9 shows the reordered matrix using the postordering

2, 5, 6, 8, 9, 7, 1, 3, 4, 10

obtained from the elimination tree in Figure 5. Grouping together vertices belonging
to the same strongly connected component of the subgraph T [10]\{10} has introduced
some block structure. More specifically, the vertices 2, 5, 6, and 8 in the subtree T [8]
are numbered consecutively and form a block, as do the vertices 1, 3, and 4 in the
subtree T [4]. The number of fills is reduced from 20 to 14.

5.3. BBT postorderings. Postordering does not specify the order in which
the subtrees are numbered. For example, in the postordering of Figure 9 the subtrees
under vertex 10 are processed in the order T [8], T [9], T [7], T [4]. Using a different
order, such as T [4], T [7], T [9], T [8], gives rise to a different postordering and a
different reordered matrix.

Consider the subtree T [k] of the elimination tree rooted at vertex k, and let s1,
s2, . . . , st be the children of k. The subgraph T [k] \ {k} of G(A) has the vertex set

T [k] \ {k} = T [s1] ∪ T [s2] ∪ · · · ∪ T [st].

Form a quotient graph of T [k] \ {k} by coalescing into a single vertex the vertices in
each set T [si] and coalescing into a single edge the edges (if any) from a vertex in T [si]
to a vertex in T [sj ]. By Theorem 3.5 each T [si] is a strongly connected component
of the subgraph T [k] \ {k}, so the resulting quotient graph is a dag. For example,
Figure 10 shows the quotient graph with k = 10 for the matrix in Figure 1.

It is well known that the vertices of a dag can be arranged on a horizontal line so
that all edges are directed from left to right (or from right to left). Such an ordering
is called a topological sort [5]. For example, in the topological sort

{7}, {2, 5, 6, 8}, {1, 3, 4}, {9}

for the quotient graph in Figure 10, the three edges all point from left to right.
A left-to-right topological sort defines an order to process the subtrees T [s1],

T [s2], . . . , T [st] in the postordering, and the resulting submatrix is in block upper
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1, 3, 4
��

��

2, 5,
6, 8

��

��

7�

9�

	
	

	


�

Fig. 10. The quotient graph of T [10] \ {10} for the matrix in Figure 1.

(PAPT )+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 •

2 • •
5 • •

•
•

◦
◦

6 ◦
◦ 8

•
•

◦ ◦
• ◦

•

◦
◦

1 •
• 3 •

• 4 • •

9 •
• • ◦ ◦ ◦ ◦ ◦ ◦ 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 11. The filled matrix for an upper BBT postordering of the matrix in Figure 1.

triangular form. When we include the subtree root k, we get a submatrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 . . . A1t A1k

0 A22 . . . A2t A2k

...
...

. . .
...

...

0 0 . . . Att Atk

Ak1 Ak2 . . . Akt Akk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the diagonal block Aii corresponds to the subtree T [si] for 1 ≤ i ≤ t. We shall
refer to this as upper bordered block triangular (BBT) form. Note that if we use a
topological sort that orders the vertices of the quotient graph from right to left, we
obtain a lower BBT form that is lower bordered block triangular.

Using a topological sort to order the subtrees can be done recursively at every
vertex. We shall refer to such a postordering as a BBT postordering and say that a
matrix ordered by a BBT postordering of its elimination tree is BBT ordered.

Figure 11 shows the matrix in Figure 1 ordered by a BBT postordering of the
elimination tree of Figure 5. The topological sort used for the subtrees under the
vertex 10 is T [7], T [8], T [4], T [9], and that for the subtrees under vertex 6 is T [2],
T [5]. These blocks are boxed in the figure. Note that the recursive use of BBT
postordering on the block {2, 5, 6, 8} also gives a bordered block upper triangular
form. In this example there are 15 fills, reduced from 20 in Figure 5.

Figure 12 shows a lower BBT postordering of the same matrix. In this case there
are 13 fills. However, BBT postorderings do not always reduce the number of fills, as
shown by the example in Figure 13. Nonetheless, by Theorem 5.2 they do generate
the same set of pivot values as the original ordering and thus are arguably just as
stable numerically.
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(PAPT )+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 •

•

1 •
• 3 •

• 4 •

•
• ◦ ◦

• ◦ ◦

5 • •
• 2 ◦ •

•
•

6 ◦
◦ 8

◦
•
◦
◦

• 7 ◦
• ◦ ◦ • 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 12. The filled matrix for a lower BBT postordering of the matrix in Figure 1.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 • •
2 •

3 • • •
• • • 4 ◦ ◦ ◦

• 5 • •
• • 6 •
• • • 7

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1� 2� 3� 4�

5�

6�

7�

�
���� �� �

��

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 • • •
1 • •

2 •
3 • • •

• ◦ ◦ ◦ 5 • •
• ◦ ◦ ◦ • 6 •
• ◦ ◦ ◦ • • 7

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 • • •
• 2 ◦ ◦ ◦
• • 1 ◦ ◦ ◦
• • • 4 ◦ ◦ ◦

• 5 • •
• • 6 •
• • • 7

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Original Matrix Elimination Tree Upper BBT Lower BBT

Fig. 13. Upper and lower BBT reorderings need not lead to less fill.

6. Properties of BBT ordered matrices.

6.1. The factor row and column structures. Theorem 4.1 characterizes the
structure of the rows of L and the columns of U in terms of pruned forests of the
elimination tree. The situation is simpler when the matrix is already BBT ordered.

Theorem 6.1. Let A be upper BBT ordered. The row structure of Lr∗ is a
pruned subtree of T (A) rooted at vertex r. Furthermore, the pruned subtree includes
every child of r in the elimination tree.

Proof. By Theorem 4.1 the row structure of Lr∗ is a pruned forest of the elim-
ination tree. Assume it is not a pruned subtree rooted at r. Then there exists a
vertex j < r such that �rj �= 0 but j is not in the subtree T [r]. Thus j and r belong
to different blocks with j appearing in an earlier block. This is impossible since the
matrix A is upper BBT ordered.

It remains to show that �rs �= 0 for every child s of r. By the definition of fpnz(s)
there exists a cycle r L=⇒max s U=⇒max r. Assume that the path segment r L=⇒max s is
not an edge, that is, that �rs = 0. Then we can write that segment as r L=⇒ i L�−→ s
for some vertex i with r > i > s and �is �= 0. Since i is between s and r, it must
belong to a different subtree of r than s, and it must belong to a later block than s.
This contradicts the fact that the matrix A is already upper BBT ordered.

Corollary 6.2. Let A be lower BBT ordered. The column structure of U∗c is a
pruned subtree of T (A) rooted at vertex c. Furthermore, the pruned subtree includes
every child of c in the elimination tree.

Theorem 6.1 states that when A is upper BBT ordered, each nonzero in L is
related to a pair of vertices, one of which is an ancestor of the other in the elimination
tree. Since each row structure is a pruned subtree, not every ancestor-descendant pair
of vertices is associated with a nonzero in L. However, Theorem 6.1 guarantees that
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Lo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
2

5
• ◦ 6
· · ◦ 8

1
• 3

• 4
9

• · · ◦ · · ◦ ◦ 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Uo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 •
2 • · · ·

5 • · ·
6 ◦ · · ·

8 • · ·
1 •

3 •
4 • ·

9 •
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 14. The matrix structures of the elimination dags for the matrix in Figure 11.

such a nonzero in L can always be found for each parent-child pair in the elimination
tree. By contrast the column structures of U need not be pruned subtrees. For
example, four of the 10 column structures of the U in Figure 11 are pruned forests
and not pruned subtrees.

6.2. The elimination dags of the filled graph. In section 2 we introduced
the elimination dag G(Lo) associated with the lower triangular factor L. The next
result shows its connection to the elimination tree for a BBT ordered unsymmetric
matrix.

Theorem 6.3. Let A be upper BBT ordered. The elimination dag G(Lo) is the
same as the elimination tree T (A) when the edges in T(A) are directed from parent
to child.

Proof. By Theorem 6.1 every tree edge in T (A) is in G(L). The elimination dag
G(Lo) must contain all of these edges since none can be replaced by a path in G(Lo).

Now consider a nonzero �rc; that is, r > c and r L�−→ c is an edge in G(L). By
Theorem 6.1 vertex c belongs to the row subtree of Lr∗ so that vertex r is an ancestor
of c. If r is not the parent of c, there is a path from r to c via edges in the elimination
tree. Since all tree edges are in the elimination dag G(Lo), this is also a path in G(Lo),
and this nontree edge in G(L) will be removed by transitive reduction. Therefore the
dag must be the same as the elimination tree.

Corollary 6.4. Let A be lower BBT ordered. The elimination dag G(Uo) is
the same as the elimination tree T (A) when the edges in T(A) are directed from child
to parent.

Although the elimination dag G(Lo) is the same as the elimination tree when A
is upper BBT ordered, the elimination dag G(Uo) need not be, as the example in
Figure 14 demonstrates.

6.3. An interpretation as a depth-first tree. Depth-first search in a graph
G(M) starts at an initial vertex x and marks x as visited. It then searches each
unvisited neighbor y of x (with edge x M�−→ y) in turn, using depth-first search recur-
sively [5].

The edges that lead to new (unmarked) vertices during a depth-first search of
a strongly connected graph form a rooted tree, called a depth-first tree: if the edge
x M�−→ y leads the search from the marked vertex x to the unmarked vertex y, then x
is the parent of y in the depth-first tree.

The elimination tree for a symmetric matrix is a depth-first tree of its filled
matrix [18]. In this subsection we extend this result to unsymmetric matrices.

Theorem 6.5. Let A be upper BBT ordered. The elimination tree T (A) is a
depth-first tree of the filled graph G(A+).
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Proof. Consider a depth-first search of the filled graph G(A+) subject to the
following tie-breaking rule: when there is a choice of more than one vertex to explore,
always select the one ordered latest in the BBT postordering. Then the search will
start with the last vertex in the BBT postordering. It is easily seen that this traversal
will visit the vertices of the graph in exactly the reverse order, so that the depth-first
tree is the same as the elimination tree.

For example, for the BBT ordered matrix in Figure 11 it is easy to see that7

Reordered: 10 9 8 7 6 5 4 3 2 1
Original: 10 9 4 3 1 8 6 5 2 7

is the sequence of vertex visits during a depth-first search subject to the tie-breaking
strategy used in the proof of Theorem 6.5. This traversal gives rise to a depth-first
tree that is the same as the elimination tree in Figure 5.

When the matrix is lower BBT ordered, the same result holds except that we must
reverse the direction of the edges in G(A+) to account for the direction of traversal.
More specifically, if A is lower BBT ordered, its transpose AT is upper BBT ordered.
But the elimination tree T (A) is the same as the elimination tree T (AT ), which is a
depth-first tree of the filled graph of AT .

Depth-first search can be used to classify edges in the underlying directed graph
into four types [5, p. 482]:

• tree edges: edges in the depth-first tree;
• forward edges: nontree edges that connect a vertex to one of its descendants

in the depth-first tree;
• back edges: edges that connect a vertex to one of its ancestors in the tree;
• cross edges: all remaining edges.

We now relate these edges with edges in the filled graph. For definiteness we assume
that A is upper BBT ordered.

By Theorem 6.5 the elimination tree is a depth-first tree. By Theorem 6.1 every
nonzero in the lower triangular factor L relates a vertex to one of its descendants in
that tree. Therefore, in terms of the depth-first traversal, the edges in G(L) are either
tree edges or forward edges. Moreover, the forward edges are exactly those that are
removed in forming G(Lo) from G(L).

On the other hand, the edges in G(U) must always lead to a visited vertex since
the traversal visits vertices in reverse order. Therefore these edges are either backward
edges or cross edges. Note that they all point from left to right.

6.4. Data dependency in LU factorization. In the sparse Cholesky factor-
ization of a symmetric positive definite matrix the elimination tree captures the data
dependencies among the columns (or rows) of the Cholesky factor [18]. In the context
of parallel factorization these dependencies can be used to find desirable orderings
and choose parallel pivots.

For unsymmetric matrices the elimination tree captures data dependencies among
the diagonal entries of the filled matrix (see Theorem 4.2). However, for BBT ordered
unsymmetric matrices the results of Theorems 6.1 and 6.2 lead to a stronger result.

Let A be an upper BBT ordered unsymmetric sparse matrix. The rth rows of the
triangular factors L and U can be obtained by applying updates from previous rows
U1∗, . . . , Ur−1,∗. The rows used in the update are given precisely by the structure of
Lr∗.

7Here we provide two sequences, one using the reordered labels, the other using the originals.
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(PA)+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• 2 • • •
1 ◦ • ◦ ◦ ◦
• ◦ 3 • ◦ ◦ ◦

• 4 ◦ ◦ • •
• 5 • • ◦ ◦

• ◦ ◦ ◦ 6 ◦ ◦ ◦
• ◦ ◦ 7 ◦ ◦ ◦

• • ◦ ◦ ◦ ◦ 8 ◦ ◦
9 •

• ◦ • ◦ ◦ 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1�

2�

3�

4�

5�

6�

7� 8� 9�

10�

�� ��

Fig. 15. The elimination tree for the matrix in Figure 1 after rows 1 and 2 are exchanged.

Thus the graph G(L) captures the data dependencies among the rows of the filled
matrix. Since we are only interested in the row dependency relation, we can take
the transitive reduction of G(L), which gives the elimination dag G(Lo). By Theo-
rem 6.3, since A is upper BBT ordered, the elimination dag G(Lo) is the same as the
elimination tree T (A). In other words, the elimination tree captures the dependencies
among the rows of the filled matrix.

The same argument can be used to show that if A is lower BBT ordered, the
elimination tree provides the dependencies among the columns of the filled matrix.

7. The impact of pivoting. Thus far we have assumed that the elimination
sequence is fixed. But what if a pivot is not acceptable numerically? Unrestricted row
and/or column pivoting could change the entire elimination tree (see Figure 15). In
this section we consider two practical forms of pivoting that have only a local impact
on the tree structure.

7.1. Delayed elimination. The simplest strategy (which cannot handle all
cases) is to delay the elimination of an unacceptable pivot until its value has been
updated8 and becomes acceptable [17]. For example, if vertex k is delayed until after
vertex m, the sequence of rows and columns is changed from

1, 2, . . . , k − 1, k, k + 1, . . . ,m,m + 1, . . . , n

to

1, 2, . . . , k − 1, k + 1, . . . ,m, k,m + 1, . . . , n,

which corresponds to a symmetric reordering of the matrix. In this section we consider
the effect of such a reordering.

Let � ≡ k+1 and assume that akk and a�� are nonzero. Let P be the permutation
matrix that exchanges rows k and �, i.e., that corresponds to the ordering

1, 2, . . . , k − 1, �, k, k + 2, . . . , n.

Let Ā ≡ PAP t, the matrix with vertex k delayed until after vertex �. Then Ā also
has an LU factorization, at least structurally.

The graphs G(A) and G(Ā) are isomorphic. Indeed, letting x̄ denote the xth
vertex in G(Ā), we have that k and �̄ are the same vertex, � and k̄ are the same

8The first update will occur when its parent is eliminated.
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vertex, and x and x̄ are the same vertex for any x �= k, �. More importantly, the
exchange has only a local effect on the elimination tree.

Lemma 7.1. Assume that akk and a�� are nonzero. Let x and y be vertices other
than k and � with x < y. There exists a cycle y A=⇒max x A=⇒max y if and only if there

exists a cycle ȳ Ā=⇒max x̄ Ā=⇒max ȳ.
Proof. Assume that there is a cycle y A=⇒max x A=⇒max y. If it does not contain

either k or �, then it visits only vertices that have the same index in both graphs and

thus can be written as ȳ Ā=⇒max x̄ Ā=⇒max ȳ. Otherwise we must have y > �, so that
the cycle still has that form.

Since A = PĀP t, the converse also holds.
Theorem 7.2. Let vertex p be the parent of k in T (A). If p �= �, then T (Ā) is

the same as T (A) up to the relabeling of vertices. If p = �, then T (Ā) is the same
except that the parent of k is now the parent q of p in T (A); the parent of p is now k;
and the parent of each child s �= k of k or p in T (A) can now be either k or p.

Proof. If p �= �, then � is not an ancestor of k since � = k+1. Thus the relabeling
is a topological ordering of T (A), and the result follows from Theorem 5.1.

Assume that p = �.
By the alternate definition of parent in (1), there is a cycle � A=⇒max k A=⇒max �,

which can also be written as k̄ Ā=⇒max �̄ Ā=⇒max k̄. Rearranging the two segments, we

get the cycle �̄ Ā=⇒max k̄ Ā=⇒max �̄, so that �̄ (i.e., k) is the parent of k̄ (i.e., p) in T (Ā).
Since � = p is a child of q in T (A), by (1) there is a cycle q A=⇒max � A=⇒max q.

Inserting the cycle � A=⇒max k A=⇒max �, we get the cycle

q A=⇒max � A=⇒max k A=⇒max � A=⇒max q,

which, since q > �, can be written as

q̄ Ā=⇒max k̄ Ā=⇒max �̄ Ā=⇒max k̄ Ā=⇒max q̄

and as q̄ Ā=⇒max �̄ Ā=⇒max q̄.
By Theorem 3.2 we have that q̄ is an ancestor of �̄ in T (Ā). If q̄ were not the

parent of �̄, there would be a cycle x̄ Ā=⇒max �̄ Ā=⇒max x̄ for some � < x < q. Inserting

the cycle �̄ Ā=⇒max k̄ Ā=⇒max �̄, we get the cycle

x̄ Ā=⇒max �̄ Ā=⇒max k̄ Ā=⇒max �̄ Ā=⇒max x̄,

which can also be written as

x A=⇒max k A=⇒max � A=⇒max k A=⇒max x

since x > �. Thus we have x A=⇒max � A=⇒max x, which contradicts the fact that � is a
child of q in T (A). Therefore q̄ (i.e., q) must be the parent of �̄ (i.e., k) in T (Ā).

Consider a child s of k in T (A). By (1) there is a cycle k A=⇒max s A=⇒max k, which

can be written as �̄ Ā=⇒max s̄ Ā=⇒max �̄ since k > s. By Theorem 3.2 we have that �̄ is
an ancestor of s̄ in T (Ā). If the parent of s̄ in T (Ā) were less than k̄, then by (1) and
Lemma 7.1 the parent of s in T (A) would also be less than k, a contradiction. Thus
the parent of s̄ (i.e., s) must be either �̄ (i.e., k) or k̄ (i.e., p).

Consider a child vertex t �= k of � (i.e., p) in T (A). By (1) there is a cycle
� A=⇒max t A=⇒max �. Extending it with the segments of � A=⇒max k A=⇒max �, we get
the cycle

k A=⇒max � A=⇒max t A=⇒max � A=⇒max k,
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A =
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Ā =
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Fig. 16. A matrix and its elimination tree before (left) and after (right) vertex 6 is delayed
until after vertex 7. In the second tree each vertex x is labeled with the value of āxx rather than x.

which, since k > t, can be rewritten as

�̄ Ā=⇒max k̄ Ā=⇒max t̄ Ā=⇒max k̄ Ā=⇒max �̄

and as �̄ Ā=⇒ t̄ Ā=⇒max �̄. Thus as before �̄ must be an ancestor of t̄ in T (A), and the
parent of t̄ (i.e., t) must be either �̄ (i.e., k) or k̄ (i.e., p).

Finally, consider a vertex j that is neither k nor � nor their child. By (1),
Lemma 7.1, and what we have already proved, the parent of x in T (A) must also
be the parent of x̄ in T (Ā).

Figure 16 illustrates the local effect of exchanging two vertices when the conditions
in Theorem 7.2 are satisfied. Some children of k and � (i.e., the vertices labeled 6 and
7) have the same parents; others do not.

For any vertex x, let T1[x] be the pruned subtree of T [x] that includes all vertices
at levels less than or equal to 1, that is, the vertex x and its children. And for any
subset Y of vertices, define

T1[Y ] =
⋃
y∈Y

T1[y].

By applying Theorem 7.2 repeatedly, we get the following result.
Corollary 7.3. Assume that the elimination of vertex k is delayed until after

the elimination of vertex m. Let S be the set consisting of k and its ancestors in the
elimination tree T (A) that are ordered between its old and new positions; that is,

S = {k} ∪ {x | k < x ≤ m and x is an ancestor of k}.

Then the parents of vertices in X(A)\T1[S] are the same in the new elimination tree.
The set S in Corollary 7.3 is a chain of vertices in T (A) starting at k. The vertices

whose parents might be changed as a result of the delayed elimination are those in S
and their children. Thus the structural change in the elimination tree is localized.

We use the matrix in Figure 1 to illustrate. If we delay the elimination of vertex
5 until after vertex 9, then only the parents of vertices in T1[{5, 6, 8}] = {2, 5, 6, 8}
may change (see Figure 17).

7.2. Off-diagonal pivoting. Delaying the elimination of vertex k until imme-
diately after its parent p makes k the new parent of p. Thus diagonal pivoting will
fail if p is also unacceptable as a pivot. On the other hand, unrestricted row and/or
column pivoting can have a nonlocal effect on the elimination tree. In this section we
consider a restricted form.
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Ā+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 •
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• 3 •

• 4 • •
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9 •
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Fig. 17. The elimination tree for the matrix in Figure 1 when vertex 5 is delayed until after
vertex 9. Each vertex x is labeled with the value of āxx rather than x.

Let � ≡ k + 1, and assume that akk, a�k, ak�, and a�� are nonzero.9 Let P be
the permutation matrix that exchanges rows k and �. Then PA also has an LU
factorization, at least structurally.

The difference between G(A) and G(PA) is local.10 The row exchange replaces
each edge k A�−→ v with v �= � by the edge � PA�−→ v and each edge � A�−→ v with v �= k by
the edge k PA�−→ v. All other edges are in both graphs. More importantly, the exchange
also has a local effect on the elimination tree.

Lemma 7.4. Assume that akk, ak�, a�k, and a�� are nonzero. Let x and y be
vertices with x < y and y �= k, �. There is a cycle y A=⇒max x A=⇒max y if and only if
there is a cycle y PA=⇒max x PA=⇒max y.

Proof. Assume that there is a cycle y A=⇒max x A=⇒max y. If it does not con-
tain either k or �, then every edge belongs to both graphs so it can be written as
y PA=⇒max x PA=⇒max y. Otherwise we must have y > �, and we can create such a cycle
by starting with the original and replacing each edge k A�−→ v with v �= � by the path
k PA�−→ � PA�−→ v and each edge � A�−→ v with v �= k by the path � PA�−→ k PA�−→ v. (The
remaining edges belong to both graphs.)

Since A = P (PA), the converse also holds.
Theorem 7.5. Assume that akk, ak�, a�k, and a�� are nonzero. Then T (PA) is

the same as T (A) except that the parent of each child s �= k of k or � in T (A) can
now be either k or �.

Proof. Since � �→ k �→ � in each graph, the parent of k is � in both trees.
Consider a child s of k in T (A). By the alternate definition of parent in (1) there

is a cycle k A=⇒max s A=⇒max k. Let k A�−→ v be the first edge in that cycle. Then v < k
and the remaining edges belong to both graphs. Thus we can replace that first edge
by the edge � PA�−→ v and append the edge k PA�−→ � to create a cycle � PA=⇒max s PA=⇒max �.

By Theorem 3.2 vertex � must be an ancestor of s in T (PA). If the parent of s in
T (PA) were less than k, then by (1) and Lemma 7.4 the parent of s in T (A) would
also be less than k, a contradiction. Thus the parent of s in T (PA) must be either k
or �.

Let t �= k be a child of � in T (A). By (1) there is a cycle � A=⇒max t A=⇒max �.
If we replace each edge k A�−→ v in the cycle by the path k PA�−→ � PA�−→ v and each
edge � A�−→ v by the path � PA�−→ k PA�−→ v, we get a cycle � ⇒ t ⇒ � in the subgraph
{1, . . . , �} of G(PA). This cycle must contain a (not necessarily proper) subcycle
� PA=⇒max t PA=⇒max �. Thus, as before, k must be an ancestor of t in T (PA), and the

9It would suffice that these values are (or may be assumed to be) structurally nonzero at the
time that vertex k is eliminated.

10For simplicity we shall use the same symbols to represent corresponding vertices in these graphs.
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Fig. 18. A matrix and its elimination tree before (left) and after (right) the exchange of rows 6
and 7. Each vertex x is labeled with the value of āxx rather than x.

parent of t in T (PA) must be either k or �.
Finally, consider a vertex x that is not a child of either k or �. By (1), Lemma 7.4,

and what we have proved already, if p is the parent of x in T (A), then p must also be
the parent of x in T (PA).

Figure 18 illustrates the local effect of exchanging two rows when the conditions
in Theorem 7.5 are satisfied. Some children of k and � have the same parent; others
do not.

By applying Theorem 7.5 repeatedly, we get the following result.
Corollary 7.6. Let S = {k, k + 1, . . . ,m} and assume that aij �= 0 for i, j ∈ S.

Let Q denote the permutation matrix that exchanges rows k and m. Then T (QA) is
the same as T (A) except that the parent of each child s /∈ S in T (A) of a vertex in S
can now be any vertex in S.

While this result may seem restrictive, it is sufficient to handle the kind of off-
diagonal pivoting (within the fully summed rows and columns of the frontal matrix)
done in an unsymmetric multifrontal code [3, 4, 13].

8. Concluding remarks. In this paper we have laid the theoretical foundation
for a generalization of the elimination tree structure previously defined only for sym-
metric matrices. We have used this structure to find matrix reorderings that yield
a bordered block triangular form and have proved some interesting properties of the
reordered matrix. Finally we have shown that two restricted forms of pivoting have
only a local effect on the elimination tree (although the changes can propagate upward
if a pivot fails repeatedly).

We have ignored many important practical issues, such as efficient algorithms for
computing or updating this tree structure and for generating BBT reorderings. We
shall address them in a future paper [9], where they will be presented in the context
of a new scheme for symbolic factorization.

We now discuss some potential applications of the elimination tree structure and
the related BBT reorderings.

The elimination tree of a lower BBT ordered unsymmetric matrix captures the
data dependencies of the factor columns (see section 6.4). This suggests a new “tree-
parallel” approach to parallelizing the column-based GESP (Gaussian elimination
with static pivoting) algorithm [15] that complements the blocking strategy used
in SuperLU DIST [16]. And since restricted pivoting has only a local effect on the
elimination tree, it could be incorporated as well.

The WSMP sparse LU code [12] is an implementation of the unsymmetric multi-
frontal method [3, 4, 13, 14]. It uses a data-dag to identify independent computations
and to guide the assembly of data from each frontal matrix into later ones. For BBT
ordered matrices one of the elimination dags is the elimination tree (Theorem 6.3 and
Corollary 6.4), so the associated data-dag will be simpler. Moreover, an augmented
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elimination tree seems to offer a more refined model [10].
Finally, MUMPS [3] is another implementation of the unsymmetric multifron-

tal method that uses the elimination tree T (A + At) to guide the assembly process.
Again, an augmented elimination tree offers a more refined model [10].
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this paper we suggest further extending the range of the transformation approach by exploring it
for iterative methods; this technique allowed us to reduce the complexity of each iteration of the
preconditioned conjugate gradient method. The results of this paper were announced in [T. Kailath
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1. Introduction.

1.1. Preconditioned conjugate gradient method (PCGM) for Toeplitz
linear equations. We consider the solution of a large linear system of equations
Amx = b whose coefficient matrix Am is an m × m leading submatrix of a semi-
infinite real symmetric Toeplitz matrix of the form

A =
[
a|i−j|

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 · · ·

a1 a0 a1 a2
. . .

a2 a1 a0 a1
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(1.1)

usually associated with the corresponding generating function a(z) =
∑∞

k=−∞ a|k|z
k.

Gaussian elimination ignores any special structure, thus requiring O(m3) arithmetic
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operations to solve Amx = b. There are a number of fast Toeplitz solvers all taking
advantage of the structure (1.1) to significantly reduce the number of operations. For
example, the classical Schur and Levinson algorithms (see, e.g., [K87] and references
therein) each require only O(m2) operations per system. Moreover, there are even
superfast Toeplitz solvers with a smaller complexity of O(m log2 m) operations. The
numerical stability of such direct Toeplitz solvers is discussed in a number of recent
papers; see, e.g., [O03] and the references therein. They reveal that although fast
algorithms were believed to be unstable by their very nature, there are methods to
obtain a simultaneously fast and accurate solution.

Along with considerable current efforts to develop and to stabilize direct methods,
the PCGM for solving Toeplitz linear systems has garnered much attention. This is
a well-known iterative procedure which computes at each iteration step two inner
products of length m and one multiplication of the coefficient matrix by a vector,
thus requiring O(m logm) operations per iteration. The number of iterations depends
upon the clustering of the spectrum of the Am, and if the latter is clustered around 1
having a small number of outliers, then PCGM will converge rapidly; see, e.g., [GL89].

Classical results on the eigenvalue distribution of Toeplitz matrices (see, e.g.,
[GS84]) indicate that we cannot expect, in general, any clustering, and that the con-
vergence of the method will be slow. This disadvantage motivated Strang to propose
the use of a certain circulant matrix P to reduce the number of iterations. The idea
was to apply the algorithm to a preconditioned system

P−1Ax = P−1b,(1.2)

where the preconditioner P should satisfy the following three requirements.

Property 1. The complexity of the construction of P should be small, not exceed-
ing O(m logm) operations.

Property 2. A linear system with P should be solved in O(m logm) operations.

Property 3. The spectrum of P−1Am should be clustered around 1; more precisely,
the following holds:

• For any ε > 0 there exist integers N and s such that for any m > N , at most
s eigenvalues of P−1A lie outside the interval [1 − ε, 1 + ε].

Summarizing, if a preconditioner satisfying the above Properties 1–3 can be con-
structed, then the complexity of the PCGM will be reduced to only O(m logm) op-
erations, which will be even less than the complexity of superfast direct methods.

The first (now well-known) proposed preconditioners of Strang [S86] and of T. Chan
[C88] were circulant matrices, defined, respectively, by

S(Am) = circ (a0, a1, a2, . . . , a2, a1),

C(Am) = circ

(
a0,

m− 1

m
a1+

1

m
am−1,

m− 2

m
a2+

2

m
am−2, . . . ,

1

m
am−1+

m− 1

m
a1

)
.

Here circ (r) denotes a circulant matrix specified by its first row r. For these two
preconditioners the first property holds by their construction, and since circulant ma-
trices are diagonalized by the discrete Fourier transform (DFT) matrix F , the second
property is also immediately satisfied. Moreover, for the case when the generating
function a(z) =

∑∞
k=−∞ a|k|z

k is a function from the Wiener class, positive on the unit
circle, the third property for the Strang and T. Chan preconditioners was established
in [C89], [CS89], and in [CY92], respectively.
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A recent survey [CN96] gives a fairly comprehensive review of these and related
results, and describes many other preconditioners, including those of R. Chan, Tyr-
tyshnikov, Ku and Kuo, Huckle, and others. (A thorough theoretical and numerical
comparison of all different preconditioners is one of the directions of current research,
indicating that the question of “which preconditioner is better” may have different an-
swers depending upon the particular classes of Toeplitz systems and their generating
functions; see, e.g., [TS96], [T95], [CN96].)

Along with their many favorable properties, circulant preconditioners unfortu-
nately require complex arithmetic (for computing FFTs), even for real symmetric
Toeplitz matrices. To overcome this disadvantage, Bini and Di Benedetto [BB90]
proposed noncirculant analogues of the Strang and of T.Chan preconditioners, be-
longing to the so-called τ -class (introduced in [BC83] as the class of all matrices
diagonalized by the (real) discrete sine I transform (DST-I) matrix). Bini and Di
Benedetto established for their preconditioners Properties 1–3 under the Wiener class
assumption.

In this paper we continue the work started in [S86], [C88], and [BB90] and give
a systematic account of Strang-type and T.Chan-type preconditioners belonging to
the classes of matrices diagonalized by other real trigonometric transforms. We con-
sider four discrete cosine and four discrete sine transforms and refer to recent papers
[OOW03], [O04] for a systematic matrix presentation of the fast algorithms for all
eight transforms. For each of these eight cases we derive explicit formulas for the
Strang-type and the T.Chan-type preconditioners and establish for them the above
Properties 1–3 (under the standard Wiener class assumption).

This problem could perhaps be solved directly, but we have found that an inter-
pretation in terms of displacement structure [KKM79] and of partially reconstructible
matrices [KO95a] often allows us to simplify many arguments. We believe that the
displacement structure approach (systematically exposed in this contribution) will
be useful in addressing other problems related to preconditioning, and [CNP94] and
[H95] support this anticipation.

1.2. Displacement structure approach. We next use the results of [KO95a]
to briefly give an interpretation of the classical Strang and T.Chan circulant precon-
ditioners in terms of partially reconstructible matrices. This technique will be further
extended in the main text below. The displacement structure approach initiated by
[KKM79] is based on introducing in a linear space of all m ×m matrices a suitable
displacement operator ∇(·) : R

m×m → R
m×m of the form

∇(R) = R− FRFT or ∇(R) = FTR−RF.(1.3)

A matrix R is said to have ∇-displacement structure, if it is mapped to a low-rank
matrix ∇(R). Since a low-rank matrix can be described by a small number of param-
eters, a representation of a matrix by its image ∇(R) often leads to interesting results,
and is useful for the design of many fast algorithms. This approach has been found
to be useful for studying many different patterns of structure (for example, Toeplitz
T = [Ti−j ], Vandermonde V = [xj−1

i ], and Cauchy C = [ 1
xi−yj

]) by specifying for each

of them an appropriate displacement operator. For example, Toeplitz-like matrices
are defined as having displacement structure with respect to the choice

∇Z1
(R) = R− Z1RZT

1 ,(1.4)

where Z1 = circ (0, . . . , 0, 1). The motivation for the above definition can be inferred
from the easily verified fact that the constant-diagonal structure of a Toeplitz matrix A
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in (1.1) implies that the rank of the matrix

∇Z1(A) =

⎡⎢⎢⎢⎣
? ? · · · ?
? 0 · · · 0
...

...
. . .

...
? 0 · · · 0

⎤⎥⎥⎥⎦
does not exceed two. If the rank of ∇Z1(A) is bigger than two but still sufficiently
small, A is called Toeplitz-like. Although the latter definition of Toeplitz-like matrices
has already used by several authors, it is slightly different from the standard one,

∇Z0(R) = R− Z0RZT
0 ,

where Z0 is the lower shift matrix. The crucial difference is that ∇Z1 clearly has a
nontrivial kernel, so the image ∇Z1(R) no longer contains all the information on R.
Such matrices R have been called partially reconstructible in [KO95a] and systemat-
ically studied there. In the Toeplitz-like case Ker ∇Z1 coincides with the subspace
of all circulant matrices in R

m×m, so we can observe that the Strang and T.Chan
preconditioners are both chosen from Ker ∇Z1 .

1.3. A proposal: ∇HQ
-kernel preconditioner. The above displacement op-

erator ∇Z1 is not the only one associated with the class of Toeplitz matrices. We
propose to apply the above interpretation, and develop the analogues of Strang and
T.Chan preconditioners in the kernels of several other related displacement operators
of the form

∇HQ
(R) = HT

QR−RHQ.(1.5)

Moreover, we shall specify eight matrices HQ for which the kernel of the correspond-
ing displacement operator (1.5) coincides with the subspace of matrices diagonalized
by any one of the eight known versions of discrete cosine/sine transforms. For each of
these cases we write down the formulas for the corresponding Strang-type precondi-
tioner and T.Chan-type preconditioner. Under the standard Wiener class assumption
we establish for these new preconditioners Properties 1–3.

1.4. Fast real-arithmetic multiplication of a Toeplitz matrix by a vec-
tor. As was mentioned above, each iteration of the PCGM involves a multiplication
of the coefficient matrix A and a preconditioner P by vectors. All the computations
related to the new preconditioners can be done in real arithmetic. However, the stan-
dard technique for the multiplication of a Toeplitz matrix by a vector is based on
the FFT, thus requiring complex arithmetic. We show that in each of the considered
cases the new formulas for the Strang-type preconditioners allow us an embedding of
an m×m matrix A into a larger 2m× 2m matrix, which is diagonalized by the corre-
sponding (real) discrete cosine/sine transform matrix. This observation allows us to
suggest a variety of new O(m logm) real-arithmetic algorithms for the multiplication
of a Toeplitz matrix by a vector, using any of eight versions of discrete cosine or sine
transforms. For the DST-I case such an algorithm was suggested earlier in [BK95].

1.5. Transformations and further reduction of the cost of one iteration.
Toeplitz-like matrices display just one kind of displacement structure; see (1.4). A
different displacement operator

∇(R) = DxR−RDy (with diagonal Dx = diag(x1, . . . , xn) and Dy = diag(y1, . . . , yn))
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has been used to define the class of Cauchy-like matrices. Clearly, for a Cauchy matrix
C = [ 1

xi−yj
] the rank of ∇(C) = DxC −CDx = [1] is one. Hence, if the latter rank is

bigger than one but small, the matrix is called Cauchy-like.
It has been observed in many places (cf. [P90], [GO94a], [He95a], among many

others) that matrices with displacement structure can be transformed from one class
to another. In particular (cf. [GO94a]), the fact that Z1 = F∗DF , where F is
the normalized DFT matrix, allows us to transform a Toeplitz-like matrix R into
a Cauchy-like matrix FAF∗. Since Cauchy-like matrices allow introducing pivoting
into fast Gaussian elimination algorithms (cf. Alg. 7.1 (partial pivoting) and Alg. 6.1
(symmetric pivoting) of [GO94b]), this idea has been found to be useful to numerically
reliable direct methods for solving Toeplitz linear equations (see, e.g., [He95a]); for
the first accurate algorithms of this kind see [GKO95], [KO95a], as well as [KO95b],
[KO94], [BKO94], [SB95], [Gu98].

In this paper we suggest exploiting the transformation technique for iterative
methods and replacing a preconditioned system (P−1A)x = P−1b by a transformed
system

(FP−1F∗)(FAF∗)(Fx) = (FP−1)b.(1.6)

Two advantages of the latter equation are that (a) the transformed preconditioner
FP−1F∗ is a diagonal matrix, so the cost of computing a matrix vector product for
it is just linear and that (b) it can be shown that a Cauchy-like matrix FAF∗ can
be multiplied by a vector with exactly the same complexity as for the initial Toeplitz
matrix A. Hence (1.6) allows us to use only four FFTs at each iteration (cf. [H94]).

In this paper we propose the exact counterpart

(T P−1T T )(T AT T )(T x) = (T P−1)b(1.7)

of such a technique for all eight discrete cosine/sine transforms T . Again, in all
sixteen considered cases (a) each of the transformed preconditioners T P−1T ∗ is a
diagonal matrix and (b) a Cauchy-like matrix T AT T can be multiplied by a vector
with exactly the same complexity as for the initial Toeplitz matrix A, i.e., four cosine
or sine transforms. So, all preconditioners, while dramatically reducing the number
of iterations, do not increase the cost of a single iteration.

2. Partially reconstructible matrices. We shall address the problem of con-
structing discrete-transform based preconditioners in the second part of the paper,
and start here with necessary definitions and related facts on displacement structure
and partially reconstructible matrices. Let us consider a displacement operator

∇{F,A}(R) = F ·R−R ·A(2.1)

and recall the following standard definitions.
• A number α = rank∇{F,A}(R) is called the ∇{F,A}-displacement rank of R.

(A matrix R is said to have a ∇{F,A}-displacement structure if α is small
compared to the size of R.)

• A pair of rectangular n× α matrices {G,B} in any possible factorization

∇{F,A}(R) = F ·R−R ·A = G ·BT(2.2)

is called a ∇{F,A}-generator of R.
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If the matrices F and A have no common eigenvalues, ∇{F,A} is invertible, so its
generator contains a complete information on R. For our purposes in this paper it
will be necessary to consider another case where the displacement operator

∇F (R) = FT ·R−R · F(2.3)

clearly has a nontrivial kernel. Such R have been called partially reconstructible in
[KO95a], because now only part of the information on R is contained in {G,B}.
Following [KO95a] we shall refer to a triple {G, J,RK} as a ∇F -generator of R, where
the latter three matrices are defined as follows.

• Since ∇F (RT ) = −∇F (R), we can write

∇F (R) = FT ·R−R · F = G · J ·GT , with JT = −J ∈ R
α×α.(2.4)

• Further, let us decompose

R = RK + RK⊥ with respect to R
n×n = K ⊕K⊥,(2.5)

where K = Ker ∇F and the orthogonality in R
n×n is defined using the inner

product

〈A,B〉 = tr(B∗ ·A), A,B ∈ R
n×n,(2.6)

with tr(A) denoting the sum of all diagonal entries of A, or, equivalently,
the sum of eigenvalues of A. Note that the latter inner product induces the
Frobenius norm in R

n×n.
Clearly, now all the information on R is contained in the newly defined generator,
{G, J,RK}.

3. Polynomial Hankel-like matrices.

3.1. Polynomial Hankel-like matrices. In this paper we exploit a special
displacement operator

∇HQ
(R) = HT

Q ·R−R ·HQ = GJGT ,(3.1)

with the upper Hessenberg matrix

HQ =

⎡⎢⎢⎢⎢⎢⎣
a01 a02 · · · · · · a0,n

a11 a12 · · · · · · a1,n

0 a22 · · · · · · a2,n

...
...

. . .
. . .

...
0 · · · 0 an−1,n−1 an−1,n

⎤⎥⎥⎥⎥⎥⎦ .(3.2)

The latter has been called in [MB79] a confederate matrix of the associated system of
polynomials Q = {Q0(x), Q1(x), . . . , Qn(x)} defined by

x ·Qk−1(x) = ak,k ·Qk(x) + ak−1,k ·Qk−1(x) + · · · + a0,k ·Q0(x).(3.3)

We shall refer to matrices having low ∇HQ
-displacement rank as polynomial Hankel-

like matrices; an explanation for this nomenclature will be offered in section 3.4 after
presenting the following example.
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3.2. Example. Classical Hankel and Hankel-like matrices. For the sim-
plest polynomial system P = {1, x, x2, . . . , xn−1, Qn(x)}, its confederate matrix triv-
ially reduces to the companion matrix

HP =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 − q0
qn

1 0 · · · 0 − q1
qn

0 1
. . .

...
...

...
. . . 0

...
0 · · · 0 1 − qn−1

qn

⎤⎥⎥⎥⎥⎥⎥⎦
of Qn(x) = qnx

n + · · · + q1x + q0. Now, it is straightforward to check that the
shift-invariance-property of a Hankel matrix, R =

[
hi+j

]
0≤i,j≤n−1

, implies that

∇HP
(R) = HT

PR−RHP =
[
en g

] [ 0 −1
1 0

] [
en g

]T
,(3.4)

where en is the last coordinate vector and

g =

⎡⎢⎢⎢⎣
hn−2

...
h2n−2

0

⎤⎥⎥⎥⎦ +
1

qn
H

⎡⎢⎢⎢⎣
q0
...

qn−2

qn−1

⎤⎥⎥⎥⎦ .

Briefly, the ∇HP
-displacement rank of an arbitrary Hankel matrix does not exceed

two. Hence matrices with small ∇HP
-displacement rank (not just α ≤ 2) are referred

to as Hankel-like matrices.

3.3. Diagonalization of confederate matrices. To explain the name poly-
nomial Hankel-like matrices we shall need the following result, which will be widely
used in what follows. It can be easily checked by direct multiplication (cf. [MB79])
that the confederate matrix is diagonalized by the polynomial Vandermonde matrix
VQ,

HQ = V −1
Q DxVQ,(3.5)

where

(3.6)

VQ =

⎡⎢⎢⎢⎣
Q0(x1) Q1(x1) · · · Qn−1(x1)
Q0(x2) Q1(x2) · · · Qn−1(x2)

...
...

...
Q0(xn) Q1(xn) · · · Qn−1(xn)

⎤⎥⎥⎥⎦ , Dx = diag(x1, x2, . . . , xn).

Here {xk} are the zeros of Qn(x), which in our application here always will be n
distinct numbers, so we shall impose this restriction throughout the paper.

3.4. Change of basis. Since HP = V −1
P DxVP (see, e.g., (3.5)), we have

HQ = S−1
PQHPSPQ with SPQ = V −1

P VQ.(3.7)

Now, using (3.7) and (3.4) one sees that the ∇HQ
-displacement rank of ST

PQRSPQ

(with Hankel R) also does not exceed two. We refer to such ST
PQRSPQ as polynomial
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Hankel matrices (or Hankel matrices represented in the polynomial basis Q), because
the similarity matrix SPQ = [si,j ]1≤i,j≤n can be easily shown to be an upper triangular

matrix with the entries being the coefficients of Qk(x) =
∑k

i=0 si+1,k+1x
k. Therefore

the more general matrices having low ∇HQ
-displacement rank (not just α ≤ 2) are

called polynomial Hankel-like matrices.
Since (3.1) has a nontrivial kernel, such R are partially reconstructible. Our next

goal is to describe the kernel of ∇HQ
.

4. Transformation to Cauchy-like matrices and the kernel of ∇HQ . Re-
cently, transformation of structured matrices from one class to another has been found
to be useful to design for them many efficient algorithms. In this paper we exploit an
approach of [KO95a] for transformation of partially reconstructible matrices to trans-
form polynomial Hankel-like matrices into Cauchy-like matrices, defined as having
low displacement rank with respect to the simplest displacement operator

∇Dx(R) = DxR−RDx(4.1)

with a diagonal matrix Dx. In fact, (3.5) immediately implies the following statement.
Proposition 4.1. Let R be a polynomial Hankel-like matrix in (3.1), given by

its ∇HQ
-generator {G, J,RK}, and let WQ denote an arbitrary invertible diagonal

matrix. Then W−T
Q V −T

Q RV −1
Q W−1

Q is a Cauchy-like matrix with a ∇Dx-generator

{W−T
Q V −T

Q G, J, W−T
Q V −T

Q RKV
−1
Q W−1

Q }.(4.2)

Since the kernel of ∇Dx is easy to describe (it is the subspace of all diagonal
matrices), the above proposition implies the next statement.

Proposition 4.2. Let HQ, VQ and Dx be defined by (3.2) and (3.6), where we
assume that the diagonal entries of Dx are m different numbers. The kernel of ∇HQ

(·)
in (3.1) has the form

K = span{(HT
Q)k · (V T

Q W 2
QVQ), k = 0, 1, . . . , n− 1},(4.3)

where WQ is an arbitrary invertible diagonal matrix.
Finally, by replacing in (4.3) powers (HT

Q)k by Qk(H
T
Q), and using (4.2) we obtain

the following statement.
Corollary 4.3. A matrix R ∈ K = Ker ∇HQ

given by

R =

n−1∑
k=0

rk ·Qk(H
T
Q) · (V T

Q W 2
QVQ)

can be diagonalized as follows:

W−T
Q V −T

Q RV −1
Q W−1

Q =

⎡⎢⎣ r(x1)
. . .

r(xn)

⎤⎥⎦ ,

where the diagonal entries are computed via a polynomial Vandermonde transform⎡⎢⎣ r(x1)
...

r(xn)

⎤⎥⎦ = VQ

⎡⎢⎣ r0
...

rn−1

⎤⎥⎦ .
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Table 1

Discrete trigonometric transforms.

Discrete transform Inverse transform

DCT-I CI
N =

√
2

N−1

[
ηkηN−1−kηjηN−1−j cos kjπ

N−1

]N−1

k,j=0
[CI

N ]−1 = [CI
N ]T = CI

N

DCT-II CII
N =

√
2
N

[
ηk cos

k(2j+1)π
2N

]N−1

k,j=0
[CII

N ]−1 = [CII
N ]T = CIII

N

DCT-III CIII
N =

√
2
N

[
ηj cos

(2k+1)jπ
2N

]N−1

k,j=0
[CIII

N ]−1 = [CIII
N ]T = CII

N

DCT-IV CIV
N =

√
2
N

[
cos

(2k+1)(2j+1)π
4N

]N−1

k,j=0
[CIV

N ]−1 = [CIV
N ]T = CIV

N

DST-I SI
N =

√
2

N+1

[
sin kj

N+1
π

]N
k,j=1

[SI
N ]−1 = [SI

N ]T = SI
N

DST-II SII
N =

√
2
N

[
ηk sin

k(2j−1)
2N

π
]N
k,j=1

[SII
N ]−1 = [SII

N ]T = SIII
N

DST-III SIII
N =

√
2
N

[
ηj sin

(2k−1)j
2N

π
]N
k,j=1

[SIII
N ]−1 = [SIII

N ]T = SII
N

DST-IV SIV
N =

√
2
N

[
sin

(2k−1)(2j−1)
4N

π
]N
k,j=1

[SIV
N ]−1 = [SIV

N ]T = SIV
N

Here we may note that the idea of displacement is to replace operations on the n2

entries of an n × n structured matrix by manipulation on a smaller number O(n) of
parameters. The results of sections 3 and 4 are based on the displacement equation
(3.1), which describes R by the entries of HQ and {G, J,RK}. In the general situation
matrix HQ itself involves O(n2) parameters, so such a representation is no longer
efficient. In the next section we specify the results of sections 3 and 4, and list eight
cases for which the above approach is beneficial.

5. Orthonormal polynomials and discrete trigonometric transforms.

5.1. Orthonormal polynomials. Examination of the propositions in the pre-
vious section indicates that the kernel of ∇HQ

will have the simplest form in the case
when there is a diagonal matrix WQ such that the matrix TQ = WQVQ is orthonor-
mal; see, e.g., (4.3). It is easy to see that the latter condition is satisfied when the
polynomials in {Qk(x)} are orthonormal with respect to the discrete inner product

〈p(x), q(x)〉 =

n∑
k=1

p(xk)q(xk)w
2
k,

where the nodes {xk} are the zeros of Qn(x), and the weights wk are diagonal entries
of WQ. Moreover, in this case the polynomials {Qk(x)} satisfy three-term recur-
rence relations so their confederate matrix reduces to the corresponding Jacobi (i.e.,
symmetric tridiagonal) matrix.

5.2. Discrete cosine and sine transforms. Recall that our aim in this pa-
per is to construct preconditioners diagonalized by discrete cosine or sine transform
matrices, formally defined in Table 1, where

ηk =

{ 1√
2
, k = 0, N,

1 otherwise.
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Table 2

First n polynomials.

{Q0, Q1 . . . , Qn−2 Qn−1}

DCT-I { 1√
2
T0, T1, . . . , Tn−2,

1√
2
Tn−1}

DCT-II {U0, U1 − U0, . . . , Un−1 − Un−2}
DCT-III { 1√

2
T0, T1, . . . , Tn−1}

DCT-IV {U0, U1 − U0, . . . , Un−1 − Un−2}
DST-I {U0, U1, . . . , Un−1}
DST-II {U0, U1 + U0, . . . , Un−1 + Un−2}
DST-III {U0, U1, . . . , Un−2,

1√
2
Un−1}

DST-IV {U0, U1 + U0, . . . , Un−1 + Un−2}

Table 2 (cont.)
The last polynomial Qn(x).

Qn zeros of Qn

DCT-I xTn−1 − Tn−2 {cos( kπ
N−1

)}N−1
0

DCT-II Un − 2Un−1 + Un−2 {cos( kπ
N

)}N−1
0

DCT-III Tn {cos( (2k+1)π
2N

)}N−1
)

DCT-IV 2Tn {cos( (2k+1)π
2N

)}N−1
)

DST-I Un {cos( kπ
N+1

)}N1
DST-II Un + 2Un−1 + Un−2 {cos( kπ

N
)}N1

DST-III Tn {cos( (2k−1)π
2N

)}N1
DST-IV 2Tn cos(

(2k−1)π
2N

)}N1

Note that we use a slightly different definition for the discrete cosine I transform
(DCT-I), ensuring that now all the discrete transform matrices in Table 1 are orthogo-
nal. The modified DCT-I can be transformed into the regular one by just appropriate
scaling.

Now, using the fact that the Chebyshev polynomials of the first and second kind,

Tk(x) = cos(k arccosx), Uk(x) =
sin((k + 1) arccosx)

sin(arccosx)
,(5.1)

are essentially cosines and sines, we obtain that all the discrete transform matrices
TQ in Table 1 can be seen as the orthogonal matrices WQ · VQ defined by orthonor-
mal (Chebyshev-like) polynomials {Qk(x)}n−1

k=0} specified in Table 2, and the weight
matrices WQ specified in Table 3. We therefore adopt the designation

TQ = WQVQ

for all eight transform matrices in Table 1 by associating them with the corresponding
polynomial systems Q.

For each of the eight systems {Qk(x)}nk=0 the first part of Table 2 lists the first n
polynomials. To specify VQ we also have to define the nodes {xk}nk=1, or, equivalently,
the last polynomial Qn(x), which is done in the second part of Table 2.
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Table 3

The diagonal matrices WQ.

DCT-I CI
N = WQ · VQ with WQ =

√
2

N−1
diag( 1√

2
, 1, . . . , 1, 1√

2
)

DCT-II CII
N = WQ · VQ with WQ =

√
2
N

diag( 1√
2
, cos( π

2N
), . . . , cos(

(N−1)π
2N

))

DCT-III CIII
N = WQ · VQ with WQ =

√
2
N

· I

DCT-IV CIV
N = WQ · VQ with WQ =

√
2
N

diag(cos( π
4N

), cos(3 π
4N

) . . . , cos(
(2N−1)π

4N
))

DST-I SI
N = WQ · VQ with WQ =

√
2

N+1
diag(sin( π

N+1
), . . . , sin( Nπ

N+1
))

DST-II SII
N = WQ · VQ with WQ =

√
2
N

diag(sin( π
2N

), . . . , sin(
(N−1)π

2N
), 1√

2
sin(π

2
))

DST-III SIII
N = WQ · VQ with WQ =

√
2
N

diag(sin( π
2N

), sin( 3π
2N

), . . . , 1√
2

sin(
(2N−1)π

2N
))

DST-IV SIV
N = WQ · VQ with WQ =

√
2
N

diag(sin( π
4N

), sin( 3π
4N

), . . . , sin(
(2N−1)π

4N
))

Finally, we specify the corresponding confederate matrices HQ in Table 4.
All the proofs are straightforward and based on the well-known recurrence rela-

tions

T0(x) = 1, T1 = xT0(x), Tk(x) = 2xTk−1(x) − Tk−2(x),

U0(x) = 1, U1 = 2xU0(x), Uk(x) = 2xUk−1(x) − Uk−2(x).

In the second part of the paper we shall use the eight displacement operators of
the form

∇HQ
(R) = HQR−RHQ

with eight Jacobi matrices listed in Table 4 to design real-arithmetic discrete co-
sine/sine transform based preconditioners. The expressions for the preconditioners
will be obtained by using certain auxiliary formulas, which are presented in the next
section.

6. Strang-type preconditioners.

6.1. Definition of Strang-type preconditioners. Now we apply the tech-
nique developed in the first part of the paper to design a family of preconditioners for
Toeplitz matrices. Consider a generating function of the form

a(x) =

∞∑
k=−∞

akz
k, ak = a−k ∈ R,

which we assume (a) to be from the Wiener class, i.e.,

∞∑
k=−∞

|ak| ≤ ∞,

and (b) to have positive values on the unit circle

f(z) > 0, |z| = 1.
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Table 4

The confederate matrices HQ.

DCT-I HQ = tridiag

⎡⎣ 1√
2

1
2

· · · 1
2

1√
2

0 0 0 · · · 0 0 0
1√
2

1
2

· · · 1
2

1√
2

⎤⎦
DCT-II HQ = tridiag

[
1
2

1
2

· · · 1
2

1
2

1
2

0 0 · · · 0 0 1
2

1
2

1
2

· · · 1
2

1
2

]

DCT-III HQ = tridiag

⎡⎣ 1√
2

1
2

· · · 1
2

1
2

0 0 0 · · · 0 0 0
1√
2

1
2

· · · 1
2

1
2

⎤⎦
DCT-IV HQ = tridiag

[
1
2

1
2

· · · 1
2

1
2

1
2

0 0 · · · 0 0 − 1
2

1
2

1
2

· · · 1
2

1
2

]

DST-I HQ = tridiag

[
1
2

1
2

· · · 1
2

1
2

0 0 0 · · · 0 0 0
1
2

1
2

· · · 1
2

1
2

]

DST-II HQ = tridiag

[
1
2

1
2

· · · 1
2

1
2

− 1
2

0 0 · · · 0 0 − 1
2

1
2

1
2

· · · 1
2

1
2

]

DST-III HQ = tridiag

⎡⎣ 1
2

1
2

· · · 1
2

√
1
2

0 0 0 · · · 0 0 0
1
2

1
2

· · · 1
2

√
1
2

⎤⎦
DST-IV HQ = tridiag

[
1
2

1
2

· · · 1
2

1
2

− 1
2

0 0 · · · 0 0 1
2

1
2

1
2

· · · 1
2

1
2

]

As is well known, these two conditions guarantee that all leading submatrices Am

(m = 1, 2, . . .) of the associated infinite real symmetric Toeplitz matrix

A =
[
a|i−j|

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 · · ·

a1 a0 a1 a2
. . .

a2 a1 a0 a1
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
are positive definite: Am > 0. Our next goal is to construct for Am a good precondi-
tioner SQ(Am) from the class KQ = Ker ∇HQ

, where HQ is one of the eight matrices
in Table 4. The preconditioners are defined by

SQ(A) =

m−1∑
j=0

rj ·Qj(HQ),(6.1)

where the coefficients {rk} are listed in Table 5.
Note that the DST-I-based preconditioner was designed earlier in [BB90] and was

also discussed in [BK95], [H95].
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Table 5

Definition of the Strang-type preconditioners. The coefficients of the decomposition (6.1) of
SQ(A).

r0 r1 r2 · · · rm−3 rm−2 rm−1

DCT-I
√

2 · a0 2a1 2a2 · · · 2am−3 2am−2 2
√

2 · am−1

DCT-II a0 + a1 a1 + a2 a2 + a3 · · · am−3 + am−2 am−2 + am−1 am−1

DCT-III
√

2 · a0 2a1 2a2 · · · 2am−3 2am−2 2am−1

DCT-IV a0 + a1 a1 + a2 a2 + a3 · · · am−3 + am−2 am−2 + am−1 am−1

DST-I a0 − a2 a1 − a3 a2 − a4 · · · am−3 − am−1 am−2 am−1

DST-II a0 − a1 a1 − a2 a2 − a3 · · · am−3 − am−2 am−2 − am−1 am−1

DST-III a0 − a2 a1 − a3 a2 − a4 · · · am−3 − am−1 am−2

√
2am−1

DST-IV a0 − a1 a1 − a2 a2 − a3 · · · am−3 − am−2 am−2 − am−1 am−1

6.2. Properties of the Strang-type preconditioners. The motivation be-
hind the definitions of Table 5 is that they imply several properties (shared with the
classical Strang preconditioner) that are listed next.

Property 4. For any ε > 0 there exist M > 0 so that for m > M the spectrum of
SQ(Am) lies in the interval [min|z|=1 a(z) − ε,max|z|=1 a(z) + ε].

Property 5. All Strang-type preconditioners SQ(A) defined in Table 5 are positive
definite matrices for sufficiently large m.

Property 6. For all Strang-type preconditioners in Table 5 we have that ‖SQ(A)‖2

and ‖SQ(A)−1‖2 are uniformly bounded independently of m.
Properties 5 and 6 are easily deduced from Property 4, so we need to establish only

the latter. In order to prove that the Strang-type preconditioners all have Property 4
we need to specify Corollary 4.3 for each of the eight cases and obtain the description
of the spectrum of SQ(Am). This is done in the next statement.

Corollary 6.1. Let HQ be one of the matrices in Table 4, KQ = Ker ∇HQ
,

and let

R =

n−1∑
k=0

rkQk(HQ)(6.2)

be a decomposition of R ∈ KQ with respect to a basis

{Qk(HQ), k = 0, 1, . . . , n− 1}(6.3)

in KQ. Then

TQRTT
Q = diag(λ1, . . . , λn),(6.4)

where TQ is the corresponding discrete transform from Table 1, and⎡⎢⎣ λ1

...
λn

⎤⎥⎦ = W−1
Q TQ

⎡⎢⎣ r0
...

rn−1

⎤⎥⎦ ,(6.5)

where WQ is the corresponding weight matrix from Table 3.
Specifying the latter corollary to each of the eight cases, we obtain that the

eigenvalues of SQ(Am) will have the form shown in Table 6. (In Table 6 we list
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Table 6

Eigenvalues {λ1, . . . , λm} of SQ(A).

DCT-I λk = a0 + 2
∑m−1

j=1
aj · cos (k−1)jπ

m−1
= am(zk) where zk = e

k−1
m−1

πi

DCT-II λk = a0 + 2
∑m−1

j=1
aj · cos (k−1)jπ

m
= am(zk) where zk = e

k−1
m

πi

DCT-III λk = a0 + 2
∑m−1

j=1
aj · cos (2k−1)jπ

2m
= am(zk) where zk = e

2k−1
2m

πi

DCT-IV λk = a0 + 2
∑m−1

j=1
aj · cos (2k−1)jπ

2m
= am(zk) where zk = e

2k−1
2m

πi

DST-I λk = a0 + 2
∑m−1

j=1
aj · cos kjπ

m+1
= am(zk) where zk = e

k
m+1

πi

DST-II λk = a0 + 2
∑m−1

j=1
aj · cos kjπ

m
= am(zk) where zk = e

k
m

πi

DST-III λk = a0 + 2
∑m−1

j=1
aj · cos (2k−1)jπ

2m
= am(zk) where zk = e

2k−1
2m

πi

DST-IV λk = a0 + 2
∑m−1

j=1
aj · cos (2k−1)jπ

2m
= am(zk) where zk = e

2k−1
2m

πi

expressions for all eight cases, because we shall use them in our arguments below.)
Thus, the eigenvalues {λk} of SQ(A) are the values of a truncated function

am(z) =

m+1∑
k=−(m+1)

akz
k

at certain points on the unit circle, specified in Table 6. Since a(x) is in the Wiener
class, am(x) is its approximation, so Property 4 holds true, and further, it implies
Properties 5 and 6.

6.3. Terminology: Strang-type preconditioners. Even though the formula
for the classical Strang preconditioner

(6.6)

S(Am) = a0I+a1Z1+a2Z
2
1 +· · ·+a2Z

n−2
1 +a1Z

n−1
1 , where Z1 = circ (0, . . . , 0, 1)

looks like (6.1) with HQ replaced by Z1 and with Oj(x) replaced by xj−1, it is not
immediately clear how strong the analogy is. Moreover, (6.6) has a wrap-around
property of {ak} that is missing in the definition given in Table 5.

However, the wrap-around is not a crucial property of the original Strang precon-
ditioner. It is needed only to cope with the nonsymmetry of Z1 and to make the matrix
S(Am) symmetric. The matrices HQ are already symmetric, and the wrap-around is
not needed in Table 5.

However, SQ(A) and S(A) share a number of crucial properties, e.g., the trick
with computing the spectrum via results as in the Corollary 6.1, deriving Properties
4, 5, and 6, and establishing the equivalence to the T.Chan-type preconditioners. We
think these analogies justify the name Strang-type for the new preconditioners.

Summarizing, in this section we presented explicit formulas for Strang-type pre-
conditioners, and proved for them Properties 4–6. Moreover, Properties 1–2 stated
in the introduction are also trivially satisfied. It remains only to establish Prop-
erty 3, crucial for the rapid convergence of the PCGM. This property will be
proved in section 8 below, using another description of the new preconditioners
given next.
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7. The new preconditioners are Toeplitz-plus-Hankel-like matrices.

7.1. The classical Strang (Toeplitz-plus-Toeplitz) preconditioner. We
called new preconditioners Strang-like preconditioners; a justification for this nomen-
clature is offered next. In [S86] Strang proposed a circulant preconditioner,

S(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · a2 a1

a1 a0 a1
. . . a2

a2 a1 a0
. . .

. . .
...

...
. . .

. . .
. . . a1 a2

a2
. . . a1 a0 a1

a1 a2 · · · a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

obtained by copying first [m/2] diagonals of A =
[
a|i−j|

]
. In fact, this precondi-

tioner can be seen as a Toeplitz-plus-Toeplitz matrix,

S(A) = A + T,

where A is the given Toeplitz matrix, and the first column of a second Toeplitz term
T is given by [

0 · · · 0 · · · a2 − am−2 a1 − am−1

]T
.

In fact, many favorable properties of S(A) can be explained by the fact that the
entries of the central diagonals of A now occupy corner positions in T . In the case
when the generating function a(z) =

∑∞
k=−∞ ak · zk is from the Wiener class, only

the first few coefficients are large, implying that T = Alr +Asn is a sum of a low-rank
matrix and a small-norm matrix, a property implying the usefulness of

S(A) = A + Alr + Asn(7.1)

as a preconditioner for A. It turns out that all eight Strang-type preconditioners
SQ(A) considered above are Toeplitz-plus-Hankel-like matrices (formally defined be-
low), a fact allowing us to use the above low-rank-small-norm-perturbation argument
to prove the favorable properties of SQ(A) as preconditioners for A.

7.2. Toeplitz-plus-Hankel-like matrices. Recall that matrices R with a low
∇HQ

-displacement rank have been called polynomial Hankel matrices. Since all eight
matrices HQ in Table 4 correspond to the Chebyshev-like polynomial systems listed
in Table 2, we could refer to such R as Chebyshev–Hankel matrices. It can be checked,
however, that if HQ is defined as, for example, in the line DST-I of Table 4, then for
any sum T + H of a Toeplitz T =

[
ti−j

]
matrix and a Hankel H =

[
hi+j−2

]
matrix we have

∇HQ
(T + H) =

1

2
·

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

0 −t2 · · · −tm−1 0
t2 tm−1

... 0
...

tm−1 t2
0 −tm−1 · · · −t2 0

⎤⎥⎥⎥⎦(7.2)

+

⎡⎢⎢⎢⎣
0 −h0 · · · −hm−3 h2m−2 − hm

h0 hm+1

... 0
...

hm−3 h2m−2

hm−2 − hm −hm+1 · · · −h2m−2 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ .
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In our terminology, the ∇HQ
-displacement rank of T +H does not exceed four. This

fact was observed and used in [HJR88] and [GK89] to develop fast algorithms for
inversion of Toeplitz-plus-Hankel matrices. In [GKO95] we introduced (and suggested,
for the first time, fast algorithms for) the more general class of Toeplitz-plus-Hankel-
like matrices, defined as having low (not just α ≤ 4) ∇HQ

-displacement rank. Clearly
(cf. [GKO95]), the other choices for HQ in Table 4 can be used to define the same
class of Toeplitz-plus-Hankel-like matrices (the actual displacement rank may vary,
depending upon a particular HQ, but it remains low). Summarizing, there are two
nomenclatures (i.e., Chebyshev–Hankel-like and Toeplitz-plus-Hankel-like matrices)
for the same class of structured matrices.

7.3. Toeplitz-plus-Hankel-like representations for SQ(A). Since all the
preconditioners SQ(A) in Table 5 belong to the kernel of the corresponding ∇HQ

(·),
they clearly belong to the above class of Toeplitz-plus-Hankel-like matrices. In fact,
each of them can even be represented as

SQ(A) = A + H + B,(7.3)

where A is the given Toeplitz matrix, H is a certain Hankel matrix, and B is a certain
“border” matrix, having nonzero entries only in its first and last rows and columns.1

The proof of the fact that SQ(A) has the form (7.3), where A is the given Toeplitz
matrix, and H,B are specified in Table 7, is based on the following observations.

• The fact that A+H +B ∈ KQ = Ker ∇HQ
can be easily checked by inspec-

tion.
• Observe that

Qk(HQ) · e1 = Q0 · ek+1,(7.4)

(cf. [DFZ95]). As was mentioned in sections 4 and 6, matrices {Qk(HQ)}
form a basis in Ker ∇HQ

, and since the first column of the matrix A+H +B
coincides with the first column of SQ(A) given in Table 5, the representations
(7.3) follow.

Recall that we started this section saying that all eight SQ(A) are the (discrete-
trigonometric-transform) analogues of the Strang preconditioner S. Indeed, the re-
sults in Table 7 show that the form (7.3) for SQ(A) is similar to that in (7.1) for
S(A). Indeed, both the Strang circulant preconditioner S(A) and all of SQ(A) are
constructed by adding to the given Toeplitz matrix A a matrix, in which the entries
of the central diagonals of A now occupy the corner locations. This fact is used next
to prove the useful properties of SQ(A).

8. Clustering of the spectrum of SQ(A)−1A. Here we establish the crucial
Property 3 for all eight Strang-like preconditioners SQ(A) under the standard Wiener
class assumption. For the preconditioner SQ(A) corresponding to the DST-I, this
property was established in [BB90] and below we adapt their arguments for the other
seven SQ(A). Since SQ(A)−1A = I−SQ(A)−1(H+B) with H,B specified in Table 6,
it is sufficient to show that the spectrum of SQ(A)−1(H + B) is clustered around 0.
Letting ε > 0 be fixed, choose N such that

∑∞
k=N+1 |ak| < ε. Then we can split

H + B = Alr + Asn,(8.1)

1A reader should be warned that such a specific representation is not valid for arbitrary Toeplitz-
plus-Hankel-like matrices.
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Table 7

A Hankel part and a “border” part of SQ(A).

H B

DCT-I

⎡⎢⎢⎣
a0 a1 · · · am−2 2am−1

a1 a2
.
.
.

.
.
.

am−2

.

.

. .
.
.

.
.
.

.
.
. .

.

.

am−2
.
.
.

.
.
.

a2 a1
2am−1 am−2 · · · a1 a0

⎤⎥⎥⎦ (
√

2 − 2)

⎡⎢⎢⎢⎣
− a0√

2−2
a1 · · · am−2 −

am−1√
2−2

a1 am−1

.

.

. 0
.
.
.

am−2 a1

−
am−1√

2−2
am−2 · · · a1 − a0√

2−2

⎤⎥⎥⎥⎦

DCT-II

⎡⎢⎢⎣
a1 a2 · · · am−1 0

a2 a3
.
.
.

.
.
.

am−1

.

.

. .
.
.

.
.
.

.
.
. .

.

.

am−1
.
.
.

.
.
.

a3 a2
0 am−1 · · · a2 a1

⎤⎥⎥⎦ 0

DCT-III

⎡⎢⎢⎢⎣
a0 a1 · · · am−2 am−1

a1 a2 .
.
.

.
.
.

0

.

.

. .
.
.

.
.
.

.
.
.

−am−1

am−2
.
.
.

.
.
.

.
.
. .

.

.

am−1 0 −am−1 · · · −a2

⎤⎥⎥⎥⎦ (
√

2 − 2)

⎡⎢⎣
− a0√

2−2
a1 · · · am−2 am−1

a1

.

.

. 0
am−2
am−1

⎤⎥⎦

DCT-IV

⎡⎢⎢⎣
a1 a2 · · · am−1 0

a2 a3 .
.
.

.
.
.

−am−1

.

.

. .
.
.

.
.
.

.
.
. .

.

.

am−1
.
.
.

.
.
.

−a3 −a2
0 −am−1 · · · −a2 −a1

⎤⎥⎥⎦ 0

DST-I

⎡⎢⎢⎢⎣
−a2 · · · −am−1 0 0

.

.

. .
.
.

.
.
.

.
.
.

0

−am−1
.
.
.

.
.
.

.
.
.

−am−1

0 .
.
.

.
.
.

.
.
. .

.

.
0 0 −am−1 · · · −a2

⎤⎥⎥⎥⎦ 0

DST-II

⎡⎢⎢⎣
−a1 −a2 · · · −am−1 0

−a2 −a3 .
.
.

.
.
.

−am−1

.

.

. .
.
.

.
.
.

.
.
. .

.

.

−am−1
.
.
.

.
.
.

−a3 −a2
0 −am−1 · · · −a2 −a1

⎤⎥⎥⎦ 0

DST-III

⎡⎢⎢⎢⎣
−a2 · · · −am−1 0 am−1

.

.

. .
.
.

.
.
.

am−2

−am−1
.
.
.

.
.
.

.
.
. .

.

.

0 .
.
.

.
.
.

a2 a1
am−1 am−2 · · · a1 a0

⎤⎥⎥⎥⎦ −1

1+
√

2

⎡⎢⎢⎣
am−1

0 am−2

.

.

.
a1

am−1 am−2 · · · a1 (1 + 1√
2
)a0

⎤⎥⎥⎦

DST-IV

⎡⎢⎢⎣
−a1 −a2 · · · −am−1 0

−a2 −a3 .
.
.

.
.
.

am−1

.

.

. .
.
.

.
.
.

.
.
. .

.

.

−am−1
.
.
.

.
.
.

a3 a2
0 am−1 · · · a2 a1

⎤⎥⎥⎦ 0
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by taking out in Alr antidiagonals of H +B with the entries a0, a1, . . . , aN . Then the
2-norm of the second matrix in (8.1) can be bounded by 2ε (cf. [BB90]). Hence by
the Cauchy interlace theorem, the eigenvalues of (H + B) are clustered around zero,
except at most s = rank Alr outliers. Applying the Courant–Fischer theorem to the
matrix SQ(A)−1(H + B), we obtain

λk{(SQ(A)−1(H + B)} <
λk{H + B}
min|z|=1 f(z)

,

implying that Property 3 holds.

9. T.Chan-type preconditioners. Here we specify another family of precon-
ditioners CQ(A), defined by

‖CQ(A) −A‖F = min
R∈KQ

‖R−A‖F ,

i.e., the optimal Frobenius-norm approximants of A in KQ = Ker ∇HQ
(for the

circulant case, HQ = Z1, such a preconditioner was proposed by T. Chan [C88]).
Recall that we designed all Strang-type preconditioners SQ(A) using a represen-

tation of the form (6.1). It turns out that the same basis is convenient for writing
down the formulas also for the T.Chan-type preconditioners CQ(A), and especially for
the analysis of the clustering property in section 9. In order to obtain the coefficients
in

CQ(A) =

m∑
k=1

rkQk−1(HQ),(9.1)

we solve a linear system of equations

∂

∂rk
‖CQ(A) −A‖F = 0 (k = 1, 2, . . . ,m).(9.2)

To solve (9.2) we found the entries of matrices {Qk(HQ)} in all eight cases as
follows. The entries of the first column of each Qk(HQ) are given by (7.4). The entries
of the other columns can be recursively computed using the fact that Qk(HQ) ∈ KQ =
Ker ∇HQ

.
For example, for n = 5 we have: Q0(HQ) = Q0I (with Q0 = 1√

2
for DCT-I and

DCT-III, and Q0 = 1 in the other six cases), Q1(HQ) = HQ (shown in Table 4), and
Q2(HQ), Q3(HQ), . . . are given in Table 8.

The idea of using similar bases was also used for DST-I and discrete Hartley
transforms in [BB90], [BF93], [BK95].

Using a particular form of Qk(HQ) shown in Table 8, we obtain from (9.2) that
the desired coefficients in (9.1) are then obtained from the given Toeplitz matrix
A =

[
a|i−j|

]
by ⎡⎢⎣ r1

...
rm

⎤⎥⎦ = GQ ·

⎡⎢⎣ a0

...
am−1

⎤⎥⎦ ,(9.3)
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Table 8

First-column bases.

Q2(HQ) Q3(HQ) Q4(HQ)

DCT-I

⎡⎢⎣
0 0 1√

2
0 0

0 1
2

0 1
2

0
1√
2

0 0 0 1√
2

0 1
2

0 1
2

0

0 0 1√
2

0 0

⎤⎥⎦
⎡⎢⎢⎣

0 0 0 1√
2

0

0 0 1
2

0 1√
2

0 1
2

0 1
2

0
1√
2

0 1
2

0 0

0 1√
2

0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 0 0 1√
2

0 0 0 1√
2

0

0 0 1√
2

0 0

0 1√
2

0 0 0

1√
2

0 0 0 0

⎤⎥⎥⎦
DCT-II

[
0 0 1 0 0
0 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 0
0 0 1 0 0

] [
0 0 0 1 0
0 0 1 −1 1
0 1 −1 1 0
1 −1 1 0 0
0 1 0 0 0

] [
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

]

DCT-III

⎡⎢⎣
0 0 1√

2
0 0

0 1
2

0 1
2

0
1√
2

0 0 0 1
2

0 1
2

0 0 0

0 0 1
2

0 − 1
2

⎤⎥⎦
⎡⎢⎣

0 0 0 1√
2

0

0 0 1
2

0 1
2

0 1
2

0 0 0
1√
2

0 0 0 − 1
2

0 1
2

0 − 1
2

0

⎤⎥⎦
⎡⎢⎣

0 0 0 0 1√
2

0 0 0 1
2

0

0 0 1
2

0 − 1
2

0 1
2

0 − 1
2

0
1√
2

0 − 1
2

0 0

⎤⎥⎦
DCT-IV

[
0 0 1 0 0
0 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 −2
0 0 1 −2 2

] [
0 0 0 1 0
0 0 1 −1 1
0 1 −1 1 −2
1 −1 1 −2 2
0 1 −2 2 −2

] [
0 0 0 0 1
0 0 0 1 −2
0 0 1 −2 2
0 1 −2 2 −2
1 −2 2 −2 2

]

DST-I

[
0 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0

] [
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 0 0

] [
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

]

DST-II

[
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

] [
0 0 0 1 0
0 0 1 1 1
0 1 1 1 0
1 1 1 0 0
0 1 0 0 0

] [
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

]

DST-III

⎡⎣ 0 0 1 0 0
0 1 0 1 0

1 0 1 0
√

2
0 1 0 2 0

0 0
√

2 0 1

⎤⎦ [
0 0 0 1 0

0 0 1 0
√

2
0 1 0 2 0

1 0 2 0
√

2

0
√

2 0
√

2 0

] ⎡⎣ 0 0 0 0 1

0 0 0
√

2 0

0 0
√

2 0 1

0
√

2 0
√

2 0

1 0 1 0 1√
2

⎤⎦
DST-IV

[
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 2
0 0 1 2 2

] [
0 0 0 1 0
0 0 1 1 1
0 1 1 1 2
1 1 1 2 2
0 1 2 2 2

] [
0 0 0 0 1
0 0 0 1 2
0 0 1 2 2
0 1 2 2 2
1 2 2 2 2

]
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where the matrix GQ has the simple structure shown in Table 9.

Table 9

Definition of the T.Chan-type preconditioner CQ(Am). Matrix GQ for (9.3).

DCT-I G = 1
(m−1)2

· diag {
√

2, 2, 2, . . . 2,
√

2}(D + E + L + U),

with the terms specified by (9.4), (9.5), (9.6), (9.7)

DCT-II 1
m2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m2 (m − 1)(m − 2) −2(m − 2) · · · −4 −2

0 m2 − (m − 2) (m − 2)(m − 2)

.
.
. −4 −2

0 2 m2 − 2(m − 2)

.
.
. −4 −2

0 2 4

.
.
. 2(m − 2) −2

0 2 4

.
.
. m2 − (m − 2)(m − 2) (m − 2)

0 2 4 · · · 2(m − 2) m2 − (m − 1)(m − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

DCT-III 1
m

⎡⎢⎢⎣
√

2m

2(m +
√

2 − 2) 0

2(m +
√

2 − 3)

.
.
.

0 2(
√

2 + 1)

2
√

2

⎤⎥⎥⎦

DCT-IV 1
m

⎡⎢⎢⎢⎣
m m − 1

m − 1 m − 2 0

m − 2

.
.
.

.
.
. 2

0 2 1
1

⎤⎥⎥⎥⎦

(9.4)

D = diag
(
(m− 1)2, 2

√
2(m− 1) + (m− 3)(m− 3) , 2

√
2(m− 1) + (m− 3)(m− 4) , . . .

. . . , 2
√

2(m− 1) + 2(m− 3) , 2
√

2(m− 1) + (m− 3) , 2
√

2(m− 1) , (2m− 3)
)

(a recursion for the 2, 3, . . . ,m− 2,m− 1 entries is apparent).

(9.5)

E = −2
√

2 toeplitz
([

1, 0, 1, 0, 1, 0, . . .
])
· diag

([
0, 1, 1, . . . , 1, 0

])
.

Here we follow the MATLAB notations, where toeplitz (c, r) denotes the Toeplitz
matrix with the first column c and the first row r. toeplitz (c) denotes the symmetric
Toeplitz matrix with the first column c.

(9.6)

L = toeplitz
([

0, 0, 1, 0, 1, 0, 1, 0, . . .
]
,
[

0, 0, 0, . . .
])

× diag
([

0, 2 · 2, 2 · 3, . . . , 2 · (m− 2), 0, 0
])

,

(9.7)

U = toeplitz
([

0, 0, 0, . . .
]
,
[

0, 0, 1, 0, 1, 0, 1, 0, . . .
])

× diag
([

0, 0, −2(m− 4), −2(m− 3), . . . , −4, −2, 0, −1
])

.
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Table 9 (cont.)
Definition of the T.Chan-type preconditioner CQ(Am). Matrix GQ for (9.3).

DST-I 1
m+1

⎡⎢⎢⎢⎢⎢⎣
m + 1 0 −(m − 2)

m + 1 0 −(m − 3)

m

.
.
.

.
.
.

.
.
. 0 −2

0 5 0 −1
4 0

3

⎤⎥⎥⎥⎥⎥⎦

DST-II 1
m2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m2 −(m − 1)(m − 2) −2(m − 2) · · · (−1)m−24 (−1)m−1

0 m2 − (m − 2) −(m − 2)(m − 2)

.
.
.

.

.

.

.

.

.

0 −2 m2 − 2(m − 2)

.
.
. −4 2

0 2 −4

.
.
. −2(m − 2) −2

0

.

.

.

.

.

.

.
.
. m2 − (m − 2)(m − 2) −(m − 2)

0 (−1)m2 (−1)m−14 · · · −2(m − 2) m2 − (m − 1)(m − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

DST-III 1
m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m 0 −(−3 +
√

2)

m − 2 +
√

2 0

.
.
.

m − 3 +
√

2

.
.
. −(2 +

√
2)

.
.
. 0 −(1 +

√
2)

0 2 +
√

2 0 −
√

2

1 +
√

2 0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

DST-IV 1
m

⎡⎢⎢⎢⎣
m −(m − 1)

m − 1 −(m − 2) 0

m − 2

.
.
.

.
.
. −2

0 2 −1
1

⎤⎥⎥⎥⎦

In [CNW96] a method is proposed to find the optimal sine transform based pre-
conditioner when we have the corresponding basis.

Formula (9.3) along with the data in Table 9 shows that all T.Chan-type precon-
ditioners trivially satisfy Properties 1 and 2. In the next section we establish Property
3 for these preconditioners.

10. Clustering of eigenvalues of CQ(A)−1A.

10.1. Clustering. Here we establish for all eight preconditioners CQ(A) Prop-
erty 3 under the Wiener class assumption, by showing that the spectra of SQ(A) and
CQ(A) are asymptotically the same (for the classical Strang and T.Chan circulant
preconditioners, this property was established in [C89]).

Proposition 10.1. Let Am be a finite section of a semi-infinite Toeplitz matrix,
let {Qk}m−1

k=0 be one of the eight polynomial systems in Table 2, and let SQ(A), CQ(A) ∈
R

n×n denote the corresponding Strang-type and the T.Chan-type preconditioners, re-
spectively. Then

lim
m→∞

‖CQ(A) − SQ(A)‖2 = 0,

where ‖ · ‖2 denotes the spectral norm in R
m×m.
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Proof. Since both CQ(A) and SQ(A) belong to KQ, they are both diagonalized
by the corresponding discrete-trigonometric-transform matrix TQ; see, e.g., Proposi-
tion 6.1. Since TQ is an orthogonal matrix (i.e, one of the eight orthogonal matrices
displayed in Table 1), essentially we have to establish the convergence to zero of the
eigenvalues of SQ(A) − CQ(A):

lim
m→∞

λk(SQ(A) − CQ(A)) = 0 (k = 1, 2, . . . ,m).

Again, by Proposition 6.1 the eigenvalues of SQ(A) and CQ(A) can be obtained from
the coefficients {rk} in the representation (6.2) for these matrices by using (6.5). As
shown in section 9, for the CQ(A) these coefficients are given by⎡⎢⎣ r1

...
rm

⎤⎥⎦ = GQ ·

⎡⎢⎣ a0

...
am−1

⎤⎥⎦ ,(10.1)

where the matrices GQ are listed in Table 9. For convenience we next rewrite the
results of Table 5 in a similar manner. Moreover, the coefficients in the representation
SQ(A) =

∑m−1
k=0 rkCQ(HT

Q) are obtained by⎡⎢⎣ r1
...
rm

⎤⎥⎦ = RQ ·

⎡⎢⎣ a0

...
am−1

⎤⎥⎦ ,(10.2)

where matrices RQ are specified in Table 10.
By comparing (6.5), (10.1), and (10.2) we have⎡⎢⎣ λ1(SQ(A) − CQ(A))

...
λm(SQ(A) − CQ(A))

⎤⎥⎦ = VQ · (RQ −GQ)

⎡⎢⎣ a0

...
am−1

⎤⎥⎦ ,(10.3)

where the matrices GQ and RQ are displayed in Tables 9 and 10, respectively. Recall
that not all of the eight matrices VQ have uniformly bounded entries; see, e.g., Table 2.
Therefore it is more convenient to rewrite (10.3) as

(10.4)⎡⎢⎣ λ1(SQ(A) − CQ(A))
...

λm(SQ(A) − CQ(A))

⎤⎥⎦ = (VQRQ) · (I −R−1
Q GQ)D−1 ·

⎛⎜⎝D

⎡⎢⎣ a0

...
am−1

⎤⎥⎦
⎞⎟⎠ ,

where D = diag ( 1
m , 2

m , . . . , m−1
m , 1). Now we can prove the statement of the propo-

sition, i.e., that the entries on the left-hand side of (10.4) tend to zero, by making the
following three observations for three factors on the right-hand side of (10.4).

1. Left factor. The entries of the matrix VQRQ are uniformly bounded indepen-
dently of m.

2. Middle factor. The column sums of the matrix (I − R−1
Q GQ)D−1 have uni-

formly bounded column sums.
3. Right factor. If f(z) =

∑∞
k=−∞ akz

k is from the Wiener class, then ∀ε > 0
∃N > 1 such that ∀M > N we have

M∑
k=0

k

M
|ak| < ε.
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Table 10

Definition of SQ(Am). The matrix RQ in (10.2).

DCT-I

⎡⎢⎢⎢⎢⎢⎣

√
2

2
2

. . .

2

2
√

2

⎤⎥⎥⎥⎥⎥⎦ DST-I

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1
1 0 −1

. . .
. . .

. . .

. . .
. . . −1
1 0 −1

1 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

DCT-II

⎡⎢⎢⎢⎣
1 1

1 1

. . .
. . .

1 1
1

⎤⎥⎥⎥⎦ DST-II

⎡⎢⎢⎢⎣
1 −1

1 −1

. . .
. . .

1 −1
1

⎤⎥⎥⎥⎦

DCT-III

⎡⎢⎢⎢⎢⎢⎣

√
2

2
2

. . .

2
2

⎤⎥⎥⎥⎥⎥⎦ DST-III

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1
1 0 −1

. . .
. . .

. . .

. . .
. . . −1
1 0 −1

1 0√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

DCT-IV

⎡⎢⎢⎢⎣
1 1

1 1

. . .
. . .

1 1
1

⎤⎥⎥⎥⎦ DST-IV

⎡⎢⎢⎢⎣
1 −1

1 −1

. . .
. . .

1 −1
1

⎤⎥⎥⎥⎦

The first observation can be deduced from the comparison of (10.2) and Table 6,
showing that VQ ·RQ is a “cosine” matrix.

The assertion in the second observation is deduced from the particular form of
matrices RQ and GQ displayed in Tables 9 and 10. The arguments are immediate
in the cases DCT-III, DCT-IV, DST-III, and DST-IV, and they are not much more
involved in the case of DST-I. In the cases of DCT-I, DCT-II, and DST-II one has to
split GQ into three parts: bidiagonal, and upper and lower triangular, and for each
of the corresponding parts of (I −R−1

Q GQ)D−1 the statement is easily deduced. The
third observation is immediate (cf. [C89]).

Thus, Proposition 10.1 is now proved, and it implies Property 3 using standard
arguments (cf. [C89]).

10.2. Transformation-to-Cauchy-like and the Tyrtyshnikov property.
In the previous section we proved Properties 1–3 for CQ(Am). Properties 4 and
6 (formulated in section 6) also follow from Proposition 10.1. Here we show that
Property 5 also holds, and, moreover, we prove that for any of eight T.Chan-type
preconditioners the following Tyrtyshnikov property holds independently of m:

λmin(Am) ≤ λmin(CQ(Am)) ≤ λmax(CQ(Am)) ≤ λmax(Am).(10.5)
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Table 11

Transformation-to-Cauchy-like.

Toeplitz → Cauchy-like

Matrix Am → TQ ·Am · TT
Q

GQ → TQ ·GQ

Generator J → J

CQ(Am) → TQ · CQ(Am) · TT
Q

For the circulant T.Chan preconditioner such a property was proved in [T92] and
[CJY91].

To prove (10.5) we shall use our definitions in section 2. Observe that since
the Frobenius norm in R

m×m generates the inner product (2.6), we have that the
∇HQ

-generator of Am is given by {GQ, J, CQ(Am)} in

HQAm −AmHQ = GQJG
T
Q.

The particular form of the m × 4 matrix GQ and 4 × 4 matrix J is not relevant
at the moment (for each HQ of Table 4 they can be easily written down as in, for
example, (7.2). It is important that the corresponding T.Chan-type preconditioner
describes the kernel component of Am, i.e., the third matrix in its ∇HQ

-generator.
Furthermore, specifying the “transformation-to-Cauchy-like” Proposition 4.1 to our
settings here we obtain the results displayed in Table 11.

The inequality (10.5) now follows from the following two observations. First, since
TQ is orthogonal, the spectra of Am and TQAmTT

Q and of CQ(Am) and TQCQ(Am)TT
Q

are, respectively, the same. Second, since the Frobenius norm is unitary-equivalent, we
have that the diagonal matrix TQ·CQ(Am)·TT

Q is the optimal Frobenius-norm diagonal

approximants of the Cauchy-like matrix TQAmTT
Q . In other words, TQ ·CQ(Am) · TT

Q

is simply a diagonal part of TQAmTT
Q , implying (10.5).

The above arguments indicate that there is a close connection between finding
an optimal Frobenius-norm approximant of a Toeplitz matrix and transformations of
Toeplitz matrices to Cauchy-like matrices. Such transformations were closely studied
in several recent papers. For example, in [O93b], [O95], and [He95b] direct (i.e.,
based on the computation on the matrix entries, without explicit use of displacement
operators) transformations were considered. Their results can be applied to obtain
T.Chan-type preconditioners for the transforms II and III.

In this paper explicit formulas are obtained not only for T.Chan-type, but also
for Strang-type preconditioners. Moreover, in obtaining T.Chan-type precondition-
ers we follow [GO94a], [GKO95], [KO95a], [KO94], [KO95b], and explore a different
approach to transformations to Cauchy-like matrices. The crucial point here is to
introduce an appropriate displacement operator, ∇HQ

, where HQ is diagonalized by
a unitary matrix. New transformation formulas (systematically obtained here for all
eight cases) require only one discrete trigonometric transform to compute the diagonal
part of a Cauchy-like matrix, as compared to two such transforms in [O93b], [O95],
[He95b]. Furthermore, the concept of partially reconstructible matrices suggested
using the definition of ∇HQ

-generator, given in [KO95a]. This allowed us to obtain
unified descriptions for both the Strang-type and T.Chan-type preconditioners, given
in Tables 9 and 10, respectively. These new formulas allowed us to establish in sec-



730 THOMAS KAILATH AND VADIM OLSHEVSKY

tion 9 the result on close asymptotic behavior of both classes of preconditioners, and
to prove the crucial clustering property for CQ(Am).

11. Real-arithmetic algorithms for multiplication of a Toeplitz matrix
by a vector. Embedding.

11.1. Real symmetric Toeplitz matrices. In the first part of the paper we
developed two families of Strang-type and T.Chan-type preconditioners for real sym-
metric Toeplitz matrices, and established Properties 1–3, guaranteeing a convergence
for the PCGM (under the Wiener class assumption). In this and the next sections we
address the question of how to efficiently organize the iteration process itself.

First observe that all the computations with new preconditioners (i.e., their con-
struction and then solving the associated linear systems) can be done in real arith-
metic. To fully exploit this advantageous property we have to specify an efficient
real-arithmetic algorithm for multiplication of a Toeplitz matrix by a vector (the
standard technique is based on the FFT, assuming complex arithmetic). In this sec-
tion we observe that the explicit formulas obtained for the Strang-type readily suggest
such algorithms for all eight cases. These algorithms can be derived by the following
two steps.

• First, we embed an m×m Toeplitz matrix Am into a larger 2m×2m Toeplitz
matrix A2m by padding its first column with m zeros.

• Second, we construct for A2m the Strang-type preconditioner SQ(A2m).

As was shown in section 7, this preconditioner admits a Toeplitz-plus-Hankel-plus-
border representation,

SQ(A2m) = A2m + H + B,

with the Hankel part H and the “border” part B displayed in Table 7. Now, taking
into account the banded structure of A2m, one sees that in all eight cases the Hankel
and the “border” part do not affect the central part of SQ(A2m). In other words, our
initial matrix Am is a submatrix of SQ(A2m). This observation allows us to use any
of eight DCTs or DSTs to multiply real symmetric Toeplitz matrices by a vector in
only two discrete trigonometric transforms of the order 2m (one more such transform
is needed to compute the diagonal form for SQ(A)). For the case DST-I such an
algorithm was proposed earlier by Boman and Koltracht in [BK95].

Although this is beyond our needs in the present paper, note that the formulas
for the Strang-type preconditioners allow us to multiply in the same way Toeplitz-
plus-Hankel matrices by a vector. These algorithms are analogues of the well-known
embedding-into-circulant (complex arithmetic) multiplication algorithm. There is an-
other well-known (complex arithmetic) method for multiplying a Toeplitz matrix Am

by a vector, based on the decomposition of Am into a sum of circulant and skew-
circulant matrices. Real-arithmetic discrete-trigonometric-transform based analogues
of this algorithm are offered in section 12. However, before presenting them it is worth
noting that the formulas for the Strang-type preconditioners also allow a multiplica-
tion of a nonsymmetric Toeplitz by a vector.

11.2. Nonsymmetric Toeplitz matrices. If A is a nonsymmetric Toeplitz
matrix, it can be embedded into a symmetric Toeplitz matrix [ B

A∗
A
B ] and the latter

can be used to multiply A by vectors.
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Table 12

Decompositions for II and IV transforms.

DCT-II TC2AmTT
C2 = DC2 + TC2T

T
S2DS2TS2T

T
C2

DST-II TS2AmTT
S2 = TS2T

T
C2DC2

TC2T
T
S2 + DS2

DCT-IV TC4AmTT
C4 = DC4 + TC4T

T
S4DS4TS4T

T
C4

DST-IV TS4AmTT
S4 = TS4T

T
C4DC4TC4T

T
S4 + DS4

12. Another way to compute the matrix-vector product. Decomposi-
tion. In this section we describe alternative algorithms to multiply a real symmetric
Toeplitz matrix by a vector. These new algorithms are based on the formulas, which
are counterparts of the well-know decomposition of a Toeplitz matrix into a sum of a
circulant and a skew-circulant matrix. For example, from the Toeplitz-plus-Hankel-
plus-border decompositions in Table 7 it immediately follows that

Am =
1

2
(SC2(Am) + SS2(Am)), Am =

1

2
(SC4(Am) + SS4(Am)),(12.1)

where we denote by C1, C2, C3, C4, S1, S2, S3, S4 the corresponding polynomial sys-
tems Q of Table 2. Since the preconditioners SQ(Am) are diagonalized by the corre-
sponding transform matrices TQ, each of these formulas clearly allows us to multiply
Am by a vector in just four discrete trigonometric transforms (with two more trans-
forms needed only once to diagonalize SQ(A)).

13. Transformation-to-Cauchy-like approach for the PCGM. As was de-
tailed in section 4, polynomial Hankel-like matrices (this class includes Toeplitz-like
matrices) can be transformed into Cauchy-like matrices. In several recent papers this
idea has been found to be useful for design of accurate direct methods for solving
Toeplitz linear systems.

In this section we suggest an application of this technique to PCGM for Toeplitz
matrices. More specifically, instead of applying PCGM to the preconditioned system

SQ(Am)−1Amx = b,(13.1)

we suggest applying it to the transformed system

(TQSQ(Am)−1TT
Q ) · (TQAmTT

Q )(TQx) = TQb,

where the preconditioner is transformed into the diagonal matrix (TQSQ(Am)−1TT
Q ),

and the Toeplitz matrix Am is transformed into a Cauchy-like matrix TQAmTT
Q . Since

a diagonal linear system can be solved in m operations, such a transformation saves
us two discrete transforms per iteration, if we can multiply the Cauchy-like matrix
TQAmTT

Q by a vector with exactly the same complexity as the initial matrix Am.
The formulas in Table 12 allow us to do so, requiring only four real discrete

trigonometric transforms per iteration (cf. [H94] for FFT).
Here

DQ = WQTQRQ ·

⎡⎢⎣ a0

...
am−1

⎤⎥⎦ ,(13.2)
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Table 13

Continuation. Decompositions for the transforms of the type I.

DCT-I TC1AmTT
C1 = DC1 + TC1(TT

S1DS1TS1 + BC1)TT
C1

DST-I TS1AmTT
S1 = TS1(TT

C1DC1TC1 + BC1)TT
S1 + DS1

where the matrices RQ are displayed in Table 10. These formulas reduce the com-
plexity of one iteration to four real discrete trigonometric transforms of the order m,
as compared to the six such transforms of the methods in the previous section.

13.1. Discrete transforms I. Thus for the II and IV transforms the formulas
(12.1) seem to be simple because in these cases the Hankel parts of the corresponding
cosine and sine Strang-type preconditioners differ only by the sign (see, e.g., Table 7).
For the I and III transforms this is not so, and the reason seem to be that the
definitions of the corresponding discrete transforms are not chosen to imply for them
the representations of the form (12.1). However, instead of changing the standard
definitions (for example, taking care of different N+1 and N−1 and of the size for the
DCT-I, DST-I, DCT-III, and DST-III), we show that even with standard definitions
in the remaining two cases one can derive not much more involved formulas, also
leading to the same efficiency of four discrete transforms per iteration.

Indeed, in the case of DCT-I and DST-I we have the following. Let the numbers
{ck}, {sk} be defined by

(I + (ZT )2)

⎡⎢⎣ f0

...
fn−1

⎤⎥⎦ =

⎡⎢⎣ a0

...
an−1

⎤⎥⎦ ,

⎡⎢⎣ e0

...
en−1

⎤⎥⎦ = (ZT )2

⎡⎢⎣ f0

...
fn−1

⎤⎥⎦ ,

where Z denotes the lower shift matrix. Then clearly

A = SC1(Em) + SS1(Fm) −BC1,

where SC1(Em), SS1(Fm) are Strang-type preconditioners from Table 7 for Toeplitz
matrices Em and Fm defined by their first columns [ek] and [fk], respectively. The
matrix BC1 is the border matrix of Fm defined in the row DCT-I of the same table.
Therefore we have the formulas in Table 13.

Here all the diagonal matrices are obtained by (13.2) with the replacement of [ak]
by the [fk] and [ek], respectively. Since BC1 is the rank-four matrix, these formulas
allow us to compute the product of TQAm by a vector in four real trigonometric
transforms of the order m. Note that a different formula of this kind was obtained
for DST-I in [H95].

13.2. Discrete transforms III. In this case we have

Am =
1

2
(SC3(Am) −BC3 + ZSS3(Am)ZT ),

Am =
1

2
(ZTSC3(Am)Z + SS3(Am) −BS3),

leading to the formulas in Table 14.
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Table 14

Continuation. Decompositions for the transforms of type III.

DCT-III TC3AmTT
C3 = 1

2
(DC3 + TC3(ZTT

S3DS3TS3Z
T −BC3)TT

C3)

DST-III TS3AmTT
S3 = 1

2
(TS1(ZTTT

C3DC3TC3Z −BS3)TT
S3 + DS3)
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Abstract. In this paper we introduce metric-based means for the space of positive-definite
matrices. The mean associated with the Euclidean metric of the ambient space is the usual arithmetic
mean. The mean associated with the Riemannian metric corresponds to the geometric mean. We
discuss some invariance properties of the Riemannian mean and we use differential geometric tools
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1. Introduction. Almost 2500 years ago, the ancient Greeks defined a list of
10 (actually 11) distinct “means” [14, 23]. All these means are constructed using
geometric proportions. Among these are the well-known arithmetic, geometric, and
harmonic (originally called “subcontrary”) means. These three principal means, which
are used particularly in the works of Nicomachus of Gerasa and Pappus, are the only
ones out of the original 11 that are still commonly used.

The arithmetic, geometric, and harmonic means, originally defined for two pos-
itive numbers, generalize naturally to a finite set of positive numbers. In fact, for a
set of m positive numbers, {xk}1≤k≤m, the arithmetic mean is the positive number
x̄ = 1

m

∑m
k=1 xk. The arithmetic mean has a variational property; it minimizes the

sum of the squared distances to the given points xk,

x̄ = arg min
x>0

m∑
k=1

de(x, xk)
2,(1.1)

where de(x, y) = |x− y| represents the usual Euclidean distance in R. The geometric
mean of x1, . . . , xm, which is given by x̃ = m

√
x1x2 · · ·xk, also has a variational

property; it minimizes the sum of the squared hyperbolic distances to the given points
xk,

x̃ = arg min
x>0

m∑
k=1

dh(xk, x)2,(1.2)

where dh(x, y) = | log x − log y| is the hyperbolic distance1 between x and y. The
harmonic mean of the set of m positive numbers {xk}1≤k≤m is simply given by the

∗Received by the editors October 27, 2003; accepted for publication (in revised form) by U.
Helmke June 12, 2004; published electronically April 8, 2005. This work was partially supported by
the Swiss National Science Foundation.
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†Laboratory for Mathematical and Numerical Modeling in Engineering Science, National Engi-

neering School at Tunis, Tunis El-Manar University, ENIT-LAMSIN, B.P. 37, 1002 Tunis-Belvédère,
Tunisia (Maher.Moakher@enit.rnu.tn).

1We borrow this terminology from the hyperbolic geometry of the Poincaré upper half-plane.
In fact, the hyperbolic length of the geodesic segment joining the points P (a, y1) and Q(a, y2),
y1, y2 > 0, is | log y1

y2
| (see [24, 27]).
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inverse of the arithmetic mean of their inverses, i.e., x̂ = [ 1
m

∑m
k=1(xk)

−1]−1, and thus
the harmonic mean has a variational characterization as well.

The arithmetic mean has been widely used to average elements of linear Euclidean
spaces. Depending on the application, it is usually referred to as the average, the
barycenter, or the center of mass. The use of the geometric mean, on the other hand,
has been limited to positive numbers and positive integrable functions [13, 7]. In 1975,
Anderson and Trapp [2] and Pusz and Woronowicz [22] introduced the harmonic and
geometric means for a pair of positive operators on a Hilbert space. Thereafter, an
extensive theory on operator means originated. It has been shown that the geometric
mean of two positive-definite operators shares many of the properties of the geometric
mean of two positive numbers. A recent paper by Lawson and Lim [16] surveys eight
shared properties. The geometric mean of positive operators has been used mainly as
a binary operation.

In [26], there was a discussion about how to define the geometric mean of more
than two Hermitian semidefinite matrices. There have been attempts to use iterative
procedures, but none seemed to work when the matrices do not commute. In [1]
there is a definition for the geometric mean of a finite set of operators; however, the
given definition is not invariant under reordering of the matrices. The present author,
while working with means of a finite number of 3-dimensional rotation matrices [18],
discovered that there is a close connection between the Riemannian mean of two
rotations and the geometric mean of two Hermitian definite matrices. This observation
motivated the present work on the generalization of the geometric mean for more than
two matrices using metric-based means. In an abstract setting, if M is a Riemannian
manifold with metric d(·, ·), then by analogy to (1.1) and (1.2), a plausible definition
of a mean associated with d(·, ·) of m points in M is given by

M(x1, . . . , xm) := arg min
x∈M

m∑
k=1

d(xk, x)2.(1.3)

Note that this definition does not guarantee that the mean is unique.
As we have seen, for the set of positive real numbers, which is at the same time a

Lie group and an open convex cone,2 different notions of mean can be associated with
different metrics. In what follows, we will extend these metric-based means to the
cone of positive-definite transformations. The methods and ideas used in this paper
carry over to the complex counterpart of the space considered here, i.e., the convex
cone of Hermitian definite transformations. We here concentrate on the real space
just for simplicity of exposition but not for any fundamental reason.

The remainder of this paper is organized as follows. In section 2 we gather all the
necessary background from differential geometry and optimization on manifolds that
will be used throughout the text. Further information on this condensed material can
be found in [9, 5, 11, 25, 27]. In section 3 we give a Riemannian metric-based notion
of mean for positive-definite matrices. We discuss some invariance properties of this
mean and show that in the case where two matrices are to be averaged, this mean
coincides with the geometric mean.

2. Preliminaries. Let M(n) be the set of n×n real matrices and GL(n) be its
subset containing only nonsingular matrices. GL(n) is a Lie group, i.e., a group which
is also a differentiable manifold and for which the operations of group multiplication

2Here and throughout we use the term open convex cone, or simply cone, when we really mean
the interior of a convex cone.
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and inverse are smooth. The tangent space at the identity is called the corresponding
Lie algebra and denoted by gl(n). It is the space of all linear transformations in R

n,
i.e., M(n).

In M(n) we shall use the Euclidean inner product, known as the Frobenius inner
product and defined by 〈A,B〉F = tr(ATB), where tr(·) stands for the trace and the

superscript T denotes the transpose. The associated norm ‖A‖F = 〈A,A〉1/2F is used
to define the Euclidean distance on M(n),

dF (A,B) = ‖A − B‖F .(2.1)

2.1. Exponential and logarithms. The exponential of a matrix in gl(n) is
given, as usual, by the convergent series

exp A =

∞∑
k=0

1

k!
Ak.(2.2)

We remark that the product of the exponentials of two matrices A and B is equal to
exp(A + B) only when A and B commute.

Logarithms of A in GL(n) are solutions of the matrix equation expX = A.
When A does not have eigenvalues in the (closed) negative real line, there exists a
unique real logarithm, called the principal logarithm and denoted by Log A, whose
spectrum lies in the infinite strip {z ∈ C : −π < Im(z) < π} of the complex plane
[9]. Furthermore, if for any given matrix norm ‖ · ‖ we have ‖I − A‖ < 1, where I

denotes the identity transformation in R
n, then the series −

∑∞
k=1

(I−A)k

k converges
to Log A, and therefore one can write

Log A = −
∞∑
k=1

(I − A)k

k
.(2.3)

We note that, in general, Log(AB) �= Log A + Log B. We here recall the important
fact [9]

Log(A−1BA) = A−1(Log B)A.(2.4)

This fact is also true when Log in the above is replaced with an analytic matrix
function.

The following result is essential in the development of our analysis.
Proposition 2.1. Let X(t) be a real matrix-valued function of the real variable

t. We assume that, for all t in its domain, X(t) is an invertible matrix which does
not have eigenvalues on the closed negative real line. Then

d

dt
tr
[
Log2 X(t)

]
= 2 tr

[
Log X(t)X−1(t)

d

dt
X(t)

]
.

Proof. We recall the following facts:
(i) tr(AB) = tr(BA).

(ii) tr(
∫ b

a
M(s)ds) =

∫ b

a
tr(M(s))ds.

(iii) Log A commutes with [(A − I)s + I]
−1

.

(iv)
∫ 1

0
[(A − I)s + I]

−2
ds = (I − A)−1 [(A − I)s + I]

−1 |10 = A−1.

(v) d
dt Log X(t) =

∫ 1

0
[(X(t) − I)s + I]

−1 d
dtX(t) [(X(t) − I)s + I]

−1
ds.
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Facts (i), (ii), (iii), and (iv) are easily checked. See [10] for a proof of (v).
Using the above, we have

d

dt
tr
(
[Log X(t)]2

) (i)
= 2 tr

(
Log X(t)

d

dt
Log X(t)

)
(v)
= 2 tr

(
Log X(t)

∫ 1

0

[(X(t) − I)s + I]
−1 d

dt
X(t) [(X(t) − I)s + I]

−1
ds

)
= 2 tr

(∫ 1

0

Log X(t) [(X(t) − I)s + I]
−1 d

dt
X(t) [(X(t) − I)s + I]

−1
ds

)
(ii)
= 2

∫ 1

0

tr

(
Log X(t) [(X(t) − I)s + I]

−1 d

dt
X(t) [(X(t) − I)s + I]

−1

)
ds

(i)
= 2

∫ 1

0

tr

(
[(X(t) − I)s + I]

−1
Log X(t) [(X(t) − I)s + I]

−1 d

dt
X(t)

)
ds

(iii)
= 2

∫ 1

0

tr

(
Log X(t) [(X(t) − I)s + I]

−2 d

dt
X(t)

)
ds

= 2 tr

(
Log X(t)

∫ 1

0

[(X(t) − I)s + I]
−2

ds
d

dt
X(t)

)
(iv)
= 2 tr

(
Log X(t)X−1(t)

d

dt
X(t)

)
.

2.2. Gradient and geodesic convexity. For a real-valued function f(x) de-
fined on a Riemannian manifold M , the gradient ∇f is the unique tangent vector u
at x such that

〈u,∇f〉 =
d

dt
f(γ(t))

∣∣∣∣
t=0

,(2.5)

where γ(t) is a geodesic emanating from x in the direction of u, and 〈·, ·〉 denotes the
Riemannian inner product on the tangent space.

A subset A of a Riemannian manifold M is said to be convex if the shortest
geodesic curve between any two points x and y in A is unique in M and lies in A .
A real-valued function defined on a convex subset A of M is said to be convex if its
restriction to any geodesic path is convex, i.e., if t �→ f̂(t) ≡ f(expx(tu)) is convex
over its domain for all x ∈ M and u ∈ Tx(M ), where expx is the exponential map
at x.

2.3. The cone of the positive-definite symmetric matrices. We denote by

S(n) = {A ∈ M(n), AT = A}

the space of all n× n symmetric matrices and denote by

P(n) = {A ∈ S(n), A > 0}

the set of all n× n positive-definite symmetric matrices. Here A > 0 means that the
quadratic form xTAx > 0 for all x ∈ R

n\{0}. It is well known that P(n) is an open
convex cone; i.e., if P and Q are in P(n), so is P + tQ for any t > 0.

We recall that the exponential map from S(n) to P(n) is one-to-one and onto. In
other words, the exponential of any symmetric matrix is a positive-definite symmet-
ric matrix, and the inverse of the exponential (i.e., the principal logarithm) of any
positive-definite symmetric matrix is a symmetric matrix.
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As P(n) is an open subset of S(n), for each P ∈ P(n) we identify the set TP of
tangent vectors to P(n) at P with S(n). On the tangent space at P we define the
positive-definite inner product and corresponding norm,

〈A,B〉P = tr(P−1AP−1B), ‖A‖P = 〈A,A〉1/2P ,(2.6)

that depend on the point P . The positive definiteness is a consequence of the positive
definiteness of the Frobenius inner product for

〈A,A〉P = tr(P−1/2AP−1/2P−1/2AP−1/2) =
〈
P−1/2AP−1/2,P−1/2AP−1/2

〉
.

Let [a, b] be a closed interval in R, and let Γ : [a, b] → P(n) be a sufficiently
smooth curve in P(n). We define the length of Γ by

L(Γ) :=

∫ b

a

√〈
Γ̇(t), Γ̇(t)

〉
Γ(t)

dt =

∫ b

a

√
tr(Γ(t)−1Γ̇(t))2 dt.(2.7)

We note that the length L(Γ) is invariant under congruent transformations, i.e., Γ �→
CΓCT , where C is any fixed element of ∈ GL(n). As d

dtΓ
−1 = −Γ−1Γ̇Γ−1, one can

readily see that this length is also invariant under inversion.
The distance between two matrices A and B in P(n) considered as a differentiable

manifold is the infimum of lengths of curves connecting them:

dP(n)(A,B) := inf {L(Γ) | Γ : [a, b] → P(n) with Γ(a) = A, Γ(b) = B} .(2.8)

This metric makes P(n) a Riemannian manifold which is of dimension 1
2n(n + 1).

The geodesic emanating from I in the direction of S, a (symmetric) matrix in the
tangent space, is given explicitly by etS [17]. Using invariance under congruent trans-
formations, the geodesic P (t) such that P (0) = P and Ṗ (0) = S is therefore given
by

P (t) = P 1/2etP
−1/2SP −1/2

P 1/2.

It follows that the Riemannian distance of P 1 and P 2 in P(n) is

dP(n)(P 1,P 2) = ‖Log(P−1
1 P 2)‖F =

[
n∑

i=1

ln2 λi

]1/2

,(2.9)

where λi, i = 1, . . . , n, are the eigenvalues of P−1
1 P 2. Even though in general P−1

1 P 2

is not symmetric, its eigenvalues are real and positive. This can be seen by noting

that P−1
1 P 2 is similar to the positive-definite symmetric matrix P

1/2
2 P−1

1 P
1/2
2 . It

is important to note here that the real-valued function defined on P(n) by P �→
dP(n)(P ,S), where S ∈ P(n) is fixed, is (geodesically) convex [21].

We note in passing that P(n) is a homogeneous space of the Lie group GL(n)
(by identifying P(n) with the quotient GL(n)/O(n)). It is also a symmetric space of
noncompact type [25].

We shall also consider the symmetric space of special positive matrices

SP(n) = {A ∈ P(n), det A = 1}.
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This submanifold can also be identified with the quotient SL(n)/SO(n). Here SL(n)
denotes the special linear group of all determinant-one matrices in GL(n). We note
that SP(n) is a totally geodesic submanifold of P(n) [17]. Now since

P(n) = SP(n) × R
+,

P(n) can be seen as a foliated manifold whose codimension-one leaves are isomorphic
to the hyperbolic space H

p, where p = 1
2n(n + 1) − 1.

3. Means of positive-definite symmetric matrices. Using definition (1.3)
with the two distance functions (2.1) and (2.9), we introduce the two different notions
of mean in P(n).

Definition 3.1. The mean in the Euclidean sense, i.e., associated with the met-
ric (2.1), of m given positive-definite symmetric matrices P 1,P 2, . . . ,Pm is defined
as

A(P 1,P 2, . . . ,Pm) := arg min
P∈P(n)

m∑
k=1

‖P k − P ‖2
F .(3.1)

Definition 3.2. The mean in the Riemannian sense, i.e., associated with the
metric (2.9), of m given positive-definite symmetric matrices P 1,P 2, . . . ,Pm is de-
fined as

G(P 1,P 2, . . . ,Pm) := arg min
P∈P(n)

m∑
k=1

‖Log(P−1
k P )‖2

F .(3.2)

Before we proceed further, we note that both means satisfy the following desirable
properties:

P1. Invariance under reordering: For any permutation σ of the numbers 1, . . . ,m,
we have

M(P 1,P 2, . . . ,Pm) = M(P σ(1),P σ(2), . . . ,P σ(m)).

P2. Invariance under congruent transformations: If P is the positive-definite sym-
metric mean of {P k}1≤k≤m, then CPCT is the positive-definite symmetric
mean of {CP kC

T }1≤k≤m for every C in GL(n). From the special case when
C is in the full orthogonal group O(n), we deduce the invariance under or-
thogonal transformations.

We remark that P2 is the counterpart of the homogeneity property of means of positive
numbers (but here left and right multiplication are both needed so that the resultant
matrix lies in P(n)). The mean in the Riemannian sense does satisfy the following
additional property:

P3. Invariance under inversion: If P is the mean of {P k}1≤k≤m, then P−1 is the
mean of {P−1

k }1≤k≤m.
The mean in the Euclidean sense does in fact satisfy properties other than P1

and P2; however, they are not relevant for the cone of positive-definite symmetric
matrices. Furthermore, the solution of the minimization problem (3.1) is simply
given by P = 1

m

∑m
k=1 P k, which is the usual arithmetic mean. Therefore, the mean

in the Euclidean sense will not be considered any further.
Remark 3.3. The Riemannian mean of P 1, . . . ,Pm may also be called the Rie-

mannian barycenter of P 1, . . . ,Pm, which is a notion introduced by Grove, Karcher,
and Ruh [12]. In [15] it was proven that for manifolds with nonpositive sectional
curvature, the Riemannian barycenter is unique.
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3.1. Characterization of the Riemannian mean. In the following proposi-
tion we will give a characterization of the Riemannian mean.

Proposition 3.4. The Riemannian mean of given m symmetric positive-definite
matrices P 1, . . . ,Pm is the unique symmetric positive-definite solution to the nonlin-
ear matrix equation

m∑
k=1

Log(P−1
k P ) = 0.(3.3)

Proof. First, we compute the derivative of the real-valued function H(S(t)) =
1
2‖Log(W−1S(t))‖2

F with respect to t, where S(t) = P 1/2 exp(tA)P 1/2 is the geodesic

emanating from P in the direction of ∆ = Ṡ(0) = P 1/2AP 1/2, and W is a constant
matrix in P(n).

Using (2.4) and some properties of the trace, it follows that

H(S(t)) =
1

2
‖Log(W−1/2S(t)W−1/2)‖2

F .

Because Log(W−1/2S(t)W−1/2) is symmetric, we have

d

dt
H(S(t))

∣∣∣∣
t=0

=
1

2

d

dt
tr
(
[Log(W−1/2S(t)W−1/2)]2

)∣∣∣∣
t=0

.

Therefore, the general result of Proposition 2.1 applied to the above yields

d

dt
H(S(t))

∣∣∣∣
t=0

= tr[Log(W−1P )P−1∆] = tr[∆Log(W−1P )P−1],

and hence the gradient of H is given by

∇H = Log(W−1P )P−1 = P−1 Log(PW−1),(3.4)

which is indeed in the tangent space, i.e., in S(n).

Now, let G denote the objective function of the minimization problem (3.2), i.e.,

G(P ) =
m∑

k=1

‖Log(P−1
k P )‖2

F .(3.5)

Using the above, the gradient of G is found to be

∇G = P

m∑
k=1

Log(P−1
k P ).(3.6)

As (3.5) is the sum of convex functions, the necessary condition and sufficient
condition for P to be the minimum of (3.5) is the vanishing of the gradient (3.6), or,
equivalently,

m∑
k=1

Log(P−1
k P ) = 0.
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It is worth noting that the characterization for the Riemannian mean given in
(3.3) is similar to the characterization

m∑
k=1

ln(x−1
k x) = 0(3.7)

of the geometric mean (1.2) of positive numbers. However, unlike the case of positive
numbers, where (3.7) yields to an explicit expression of the geometric mean, in general,
due to the noncommutative nature of P(n), (3.3) cannot be solved in closed form. In
the next section we will show that when m = 2, (3.3) yields explicit expressions of
the Riemannian mean.

3.1.1. Riemannian mean of two positive-definite symmetric matrices.
The following proposition shows that for the case m = 2, (3.3) can be solved analyti-
cally.

Proposition 3.5. The mean in the Riemannian sense of two positive-definite
symmetric matrices P 1 and P 2 is given explicitly by the following six equivalent ex-
pressions:

G(P 1,P 2) = P 1(P
−1
1 P 2)

1/2 = P 2(P
−1
2 P 1)

1/2(3.8)

= (P 2P
−1
1 )1/2P 1 = (P 1P

−1
2 )1/2P 2

= P
1/2
1 (P

−1/2
1 P 2P

−1/2
1 )1/2P

1/2
1(3.9)

= P
1/2
2 (P

−1/2
2 P 1P

−1/2
2 )1/2P

1/2
2 .

Proof. First, we rewrite (3.3) as Log(P−1
1 P ) = −Log(P−1

2 P ). Then we take the
exponential of both sides to obtain

P−1
1 P = P−1P 2.(3.10)

After left multiplying both sides with P−1
1 P we get (P−1

1 P )2 = P−1
1 P 2. Such a

matrix equation has P 1(P
−1
1 P 2)

1/2 as the unique solution in P(n). Therefore, the
mean in the Riemannian sense of P 1 and P 2 is given explicitly by

G(P 1,P 2) = P 1(P
−1
1 P 2)

1/2.

The second equality in (3.9) can be easily verified by premultiplying P 1(P
−1
1 P 2)

1/2

by P 2P
−1
2 = I. This makes it clear that G is symmetric with respect to P 1 and P 2,

i.e., G(P 1,P 2) = G(P 2,P 1). The third equality in (3.9) can be obtained by right
multiplying both sides of (3.10) by P−1P 2 and solving the resultant equation for P .
The fourth equality in (3.9) can be established from the third by right multiplying
(P 2P

−1
1 )1/2P 1 by P−1

2 P 2. Alternatively, these equalities can be verified using (2.4).
Furthermore, by use of (2.4) and after some algebra, one can show that the two
expressions in (3.10) are but two other alternative forms of the geometric mean of P 1

and P 2 that highlight not only its symmetry with respect to P 1 and P 2 but also its
symmetry as a matrix.

The explicit equivalent expressions given in (3.9) and (3.10) for the Riemannian
mean of a pair of positive-definite matrices that we obtained by solving the mini-
mization problem (3.5) coincide with the different definitions of the geometric mean
of a pair of positive Hermitian operators first introduced by Pusz and Woronowicz
[22]. This mean arises in electrical network theory as described in the survey paper
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by Trapp [26]. For this reason and the following proposition, the Riemannian mean
will be termed the geometric mean.

Proposition 3.6. If all matrices P k, k = 1, . . . ,m, belong to a single geodesic
curve of P(n), i.e.,

P k = C exp(tkS)CT , k = 1, . . . ,m,

where S ∈ S(n), C ∈ GL(n), and tk ∈ R, k = 1, . . . ,m, then their Riemannian mean
is

P = C exp

(
1

m

m∑
k=1

tkS

)
CT .

In particular, when C is orthogonal, i.e., such that CTC = I, we have

P = (P 1 · · ·Pm)1/m = P
1/m
1 · · ·P 1/m

m .

Proof. Straightforward computations show that the given expression for P does
satisfy (3.3) characterizing the Riemannian mean.

For more than two matrices, in general, it is not possible to obtain an explicit
expression for their geometric mean. In the commutative case of the cone of positive
numbers, the problem of finding the geometric mean of three positive numbers can
be done by first finding the geometric mean of two numbers and then finding the
weighted geometric mean of the latter (with weight 2/3) and the other number (with
weight 1/3). This procedure does not depend on the ordering of the numbers. For
the space of positive-definite matrices this procedure gives different positive-definite
matrices, depending on the way we order the elements. Furthermore, in general, none
of these matrices satisfy the characterization (3.3) of the geometric mean. This is due
to the fact that the geodesic triangle, whose sides join the three given matrices, is not
flat. (See the discussion at the end of section 3.3.)

Thus, it is only in some special cases that one expects to have an explicit formula
for the geometric mean. In the following proposition we give an example in which we
obtain a closed-form expression of the geometric mean.

Proposition 3.7. Let P 1, P 2, and P 3 be matrices in P(n) such that P 1 = rP 2

for some r > 0. Then their geometric mean is given explicitly by

G(P 1,P 2,P 3) = r1/3P 3(P
−1
3 P 2)

2/3 = r−1/3P 3(P
−1
3 P 1)

2/3

= r1/3P 2(P
−1
2 P 3)

1/3 = r−1/3P 1(P
−1
1 P 3)

1/3.

This proposition can easily be checked by straightforward calculations.

3.2. Reduction to the space of special positive-definite symmetric ma-
trices. In this section we will show that the problem of finding the geometric mean
of positive-definite matrices can be reduced to that of finding the geometric mean of
special positive-definite matrices.

Lemma 3.8. If P is the geometric mean of m positive-definite symmetric matri-
ces P 1, . . . ,Pm, then for any m-tuple (a1, . . . , am) in the positive orthant of R

m, the
positive-definite symmetric matrix m

√
a1 · · · amP is the geometric mean of

a1P 1, . . . , amPm.
Proof. We have

Log
[
(akP k)

−1 m
√
a1 · · · amP

]
= Log(P−1

k P ) +

[
ln a1 + · · · + ln am

m
− ln ak

]
I.
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Therefore,

m∑
k=1

Log
[
(akP k)

−1 m
√
a1 · · · amP

]
=

m∑
k=1

Log(P−1
k P ) = 0,

and hence m
√
a1 · · · amP is the geometric mean of a1P 1, . . . , amPm.

Lemma 3.9. If P and Q are in SP(n), i.e., are positive-definite symmetric ma-
trices of determinant one, then for any α > 0 we have dP(n)(P ,Q) ≤ dP(n)(P , αQ),
and equality holds if and only if α = 1.

Proof. This lemma follows immediately from the fact that SP(n) is a totally
geodesic submanifold of P(n). Here is an alternative proof. Let 0 < λi, i = 1, . . . , n,
be the eigenvalues of P−1Q. Then

d2
P(n)(P , αQ) =

n∑
i=1

ln2(αλi) =

n∑
i=1

ln2 λi + 2 lnα

n∑
i=1

lnλi + n ln2 α.

But as P and Q have determinant one, it follows that
∑n

i=1 lnλi = 0, and hence

d2
P(n)(P , αQ) = d2

P(n)(P ,Q) + n ln2 α.

Therefore dP(n)(P ,Q) ≤ dP(n)(P , αQ), where the equality holds only when
α = 1.

Proposition 3.10. Given m positive-definite symmetric matrices {P k}1≤k≤m,

set αk = n
√

det P k and P̃ k = P k/αk. Then the geometric mean of {P k}1≤k≤m is the

geometric mean of {αk}1≤k≤m multiplied by the geometric mean of {P̃ k}1≤k≤m, i.e.,

G(P 1, . . . ,Pm) = m
√
α1 · · ·αmG(P̃ 1, . . . , P̃m).

The proof of this proposition is given by the combination of the results of the two
previous lemmas.

3.3. Geometric mean of 2 × 2 positive-definite matrices. We start with
the following geometric characterization of the geometric mean of two positive-definite
matrices of determinant one.

Proposition 3.11. The geometric mean of two positive-definite symmetric ma-
trices P 1 and P 2 in SP(2) is given by

G(P 1,P 2) =
P 1 + P 2√

det(P 1 + P 2)
.

Proof. Let X = (P−1
1 P 2)

1/2. Note that detX = 1 and that the two eigenvalues
λ and 1/λ of X are positive. By the Cayley–Hamilton theorem we have

X2 − tr(X)X + I = 0,

which after premultiplication by P 1 and rearrangement is written as

tr(X)P 1(P
−1
1 P 2)

1/2 = P 1 + P 2.

But trX = λ + 1/λ and det(P 1 + P 2) = detP1 det(I + X2) = (1 + λ2)(1 + 1/λ2) =
(λ + 1/λ)2. Therefore,

P 1(P
−1
1 P 2)

1/2 =
P 1 + P 2√

det(P 1 + P 2)
.
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This proposition gives a nice geometric characterization of the geometric mean of
two positive-definite matrices in SP(2). It is given by the intersection of SP(2) with
the ray joining the arithmetic average 1

2 (P 1 + P 2) and the apex of the cone, i.e., the
zero matrix.

By Lemma 3.8 and the above proposition, we have the following result giving an
alternative expression for the geometric mean of two matrices in P(2) that does not
require the evaluation of a matrix square root.

Corollary 3.12. The geometric mean of two positive-definite symmetric ma-
trices P 1 and P 2 in P(2) is given by

G(P 1,P 2) =
√
α1α2

√
α2P 1 +

√
α1P 2√

det(
√
α2P 1 +

√
α1P 2)

,

where α1 and α2 are the determinants of P 1 and P 2, respectively.
Unfortunately, this elegant characterization of the geometric mean for two ma-

trices in SP(2) cannot be generalized for more than two matrices in SP(2) nor for
two matrices in SP(n) with n > 2. Indeed, this characterization, in general, does not
hold for the mentioned cases.

Let us now consider in some detail the geometry of the space of 2 × 2 positive-
definite matrices

P(2) =

{[
a c
c b

]
: a > 0, b > 0, and ab > c2

}
.

Set 0 < u = a+b
2 , v = a−b

2 . Then the condition ab > c2 can be rewritten as√
v2 + c2 < u,

and therefore P(2) parameterized by u, v, and c can be seen as an open convex second-
order cone (ice cream cone or future-light cone). Furthermore, the determinant-one
condition ab− c2 = 1 can be formulated as u2 − (v2 + c2) = 1, and hence by using the
identity cosh2 α− sinh2 α = 1, a matrix P = [ a c

c b ] in SP(2) can be parameterized by
(α, θ) ∈ R × [0, π) as

P = coshαI + cos θ sinhαJ1 + sin θ sinhαJ2,

where

J1 =

[
1 0
0 −1

]
, J2 =

[
0 1
1 0

]
, coshα =

a + b

2
, tan θ =

2c

a− b
.

Note that (I, J1, J2) is a basis for the space S(2) of 2×2 symmetric matrices. Thus,
we see that SP(2) is isomorphic to the hyperboloid H

2. In particular, geodesics on
SP(2) correspond to geodesics on H

2.
For more than two matrices in SP(2), in general, it is not possible to obtain their

geometric mean in closed form. Nevertheless, using the isomorphism between SP(2)
and H

2, we can identify the geometric mean with the hyperbolic centroid of point
masses in the hyperboloid. In particular, the geometric mean of three matrices in
SP(2) corresponds to the (hyperbolic) center of the hyperbolic triangles associated
with the given three matrices. This center is the point of intersection of the three
medians; see Figure 1. However, unlike Euclidean geometry, the ratio of the geodesic
length between a vertex and the center to the length between this vertex and the
midpoint on the opposite side is not 2/3 in general [6].
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Fig. 1. Two views for the representation, in the space parameterized by u, v, and c, of the
cone P(2) and the hyperboloid SP(2). For the geodesic triangle shown, the point of concurrence of
the three medians corresponds to the geometric mean of the positive-definite symmetric matrices in
P(2) associated with the vertices of this triangle.

4. Conclusion. Using the Riemannian metric on the space of positive-definite
matrices, we defined the geometric mean. This mean satisfies some invariance prop-
erties. Some of these properties are related to the geodesic reversing isometry in the
symmetric space considered here. Therefore, the notion of geometric mean, studied
here and which is based on the Riemannian metric, can be used to define the geomet-
ric mean on other symmetric spaces which enjoy similar invariance properties. Here
we used the space of positive-definite matrices as a prototype of a symmetric spaces of
noncompact type. The case of the geometric mean of matrices in the group of special
orthogonal matrices, which was studied in [18], is a prototype of symmetric spaces of
compact type.

Equation (3.3) characterizing this mean is similar to (3.7) characterizing the geo-
metric mean of positive numbers. Unfortunately, due to the noncommutative nature
of the matrix multiplication, in general, it is not possible to obtain the geometric
mean in closed form for more than two matrices.

Applications of the geometric mean to the problem of averaging data of anisotropic
symmetric positive-definite tensors, such as in elasticity theory [8] and in diffusion
tensor magnetic resonance imaging [3], are discussed in [19, 20, 4]. In [19], further
invariance properties of the geometric mean are discussed and a fixed-point algorithm
for solving the nonlinear matrix equation for the geometric mean of more than two
matrices is presented.
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[13] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press,
Cambridge, UK, 1934.

[14] T. Heath, A History of Greek Mathematics, Vol. 1: From Thales to Euclid, Dover, New York,
1981.

[15] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math.,
30 (1977), pp. 509–541.

[16] J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math.
Monthly, 108 (2001), pp. 797–812.

[17] H. Maaß, Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Math. 216, Springer-
Verlag, Heidelberg, 1971.

[18] M. Moakher, Means and averaging in the group of rotations, SIAM J. Matrix Anal. Appl., 24
(2002), pp. 1–16.

[19] M. Moakher, On averaging symmetric positive-definite tensors, J. Elasticity, submitted.
[20] M. Moakher and P. G. Batchelor, The symmetric space of positive-definite tensors: From

geometry to applications and visualization, in Visualization and Image Processing of Tensor
Fields, J. Weickert and H. Hagen, eds., Springer, Berlin, 2005, to appear.

[21] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Ann. Math. Stud. 78, Princeton
University Press, Princeton, NJ, 1973.

[22] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purifica-
tion map, Rep. Math. Phys., 8 (1975), pp. 159–170.
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CHARACTERIZATION AND PROPERTIES OF (R, S)-SYMMETRIC,
(R, S)-SKEW SYMMETRIC, AND (R, S)-CONJUGATE MATRICES∗

WILLIAM F. TRENCH†

Abstract. Let R ∈ Cm×m and S ∈ Cn×n be nontrivial involutions; i.e., R = R−1 �= ±Im and
S = S−1 �= ±In. We say that A ∈ Cm×n is (R,S)-symmetric ((R,S)-skew symmetric) if RAS = A
(RAS = −A).

We give an explicit representation of an arbitrary (R,S)-symmetric matrix A in terms of matrices
P and Q associated with R and U and V associated with S. If R = R∗, then the least squares problem
for A can be solved by solving the independent least squares problems for APU = P ∗AU ∈ Cr×k

and AQV = Q∗AV ∈ Cs×�, where r + s = m and k + � = n. If, in addition, either rank(A) = n

or S∗ = S, then A† can be expressed in terms of A†
PU and A†

QV . If R = R∗ and S = S∗, then
a singular value decomposition of A can obtained from singular value decompositions of APU and
AQV . Similar results hold for (R,S)-skew symmetric matrices.

We say that A ∈ Cm×n is R-conjugate if RAS = R, where R ∈ Rm×m and S ∈ Rn×n,
R = R−1 �= ±Im, and S = S−1 �= ±In. In this case �(A) is (R,S)-symmetric and �(A) is
(R,S)-skew symmetric, so our results provide explicit representations for (R,S)-conjugate matrices.
If RT = R, then the least squares problem for the complex matrix A reduces to two least squares
problems for a real matrix K. If, in addition, either rank(A) = n or ST = S, then A† can be obtained
from K†. If both RT = R and ST = S, a singular value decomposition of A can be obtained from a
singular value decomposition of K.

Key words. least squares, Moore–Penrose inverse, optimal solution, (R,S)-conjugate, (R,S)-
skew symmetric, (R,S)-symmetric

AMS subject classifications. 15A18, 15A57

DOI. 10.1137/S089547980343134X

1. Introduction. In this paper we expand on a problem initiated by Chen [1],
who considered matrices A ∈ C

m×n such that

RAS = A or RAS = −A,(1.1)

where R ∈ C
m×m and S ∈ C

n×n are involutory Hermitian matrices; i.e., R = R∗,
R2 = Im, S = S∗, and S2 = In. Chen cited applications involving such matrices,
developed some of their theoretical properties, and indicated with numerical examples
that the least squares problem for a matrix of rank n with either property reduces
to two independent least squares problems for matrices of smaller dimensions. He
also considered properties of the Moore–Penrose inverses of such matrices but did not
obtain explicit expressions for them in terms of Moore–Penrose inverses of lower order
matrices.

Here we characterize the matrices A ∈ C
m×n satisfying (1.1) without assuming

that R and S are Hermitian. We obtain general results on the least squares prob-
lem for the case where R is Hermitian, without assuming that S is Hermitian or
that rank(A) = n. Under the additional assumption that either S is Hermitian or
rank(A) = n, we obtain explicit expressions for A† in terms of the Moore–Penrose in-
verses of two related matrices with smaller dimensions. Finally, under the assumption
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that R = R∗ and S = S∗, we obtain a singular value decomposition of A in terms of
singular value decompositions of these related matrices.

Under the assumption that R ∈ R
m×m and S ∈ R

n×n, we consider the analogous
questions for matrices A ∈ C

m×n such that RAS = A, so that R�(A)S = �(A) and
R�(A)S = −�(A). We say that such matrices are (R,S)-conjugate.

We gave related results for square matrices with R = S in [5] and studied other
approximation problems for (R,S)-symmetric and (R,S)-skew symmetric matrices in
[6].

2. Preliminary considerations. Let R ∈ C
m×m and S ∈ C

n×n be nontrivial
involutions; thus R = R−1 �= ±Im and S = S−1 �= ±In. Then the minimal and
characteristic polynomials of R are

mR(x) = (x− 1)(x + 1) and cR(x) = (x− 1)r(x + 1)s,

where 1 ≤ r, s ≤ m and r + s = m. Therefore there are matrices P ∈ C
m×r and

Q ∈ C
m×s such that

P ∗P = Ir, Q∗Q = Is,(2.1)

RP = P, and RQ = −Q.(2.2)

Thus, the columns of P (Q) form an orthonormal basis for the eigenspace of R associ-
ated with the eigenvalue λ = 1 (λ = −1). Although P and Q are not unique, suitable
P and Q can be obtained by applying the Gram–Schmidt procedure to the columns
of I + R and I − R, respectively. If R is a signed permutation matrix, this requires
little computation. For example, if J is the flip matrix with ones on the secondary
diagonal and zeros elsewhere and R = J2k, we can take

P =
1√
2

[
Ik
Jk

]
and Q =

1√
2

[
Ik

−Jk

]
,

while if R = J2k+1, we can take

P =
1√
2

⎡⎣ Ik 0k×1

01×k

√
2

Jk 0k×1

⎤⎦ and Q =
1√
2

⎡⎣ Ik
01×k

−Jk

⎤⎦ .

If we define

P̂ =
P ∗(I + R)

2
and Q̂ =

Q∗(I −R)

2
,(2.3)

then

P̂P = Ir, P̂Q = 0 Q̂P = 0, and Q̂Q = Is,

so

[P Q]−1 =

[
P̂

Q̂

]
.(2.4)
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Similarly, there are integers k and � such that k + � = n and matrices U ∈ C
n×k

and V ∈ C
n×� such that

U∗U = Ik, V ∗V = I�,

SU = U, and SV = −V.(2.5)

Moreover, if we define

Û =
U∗(I + S)

2
and V̂ =

V ∗(I − S)

2
,(2.6)

then

ÛU = Ik, ÛV = 0, V̂ U = 0, and V̂ V = I�,(2.7)

so

[U V ]−1 =

[
Û

V̂

]
.(2.8)

It is straightforward to verify that if R = R∗, then [P Q] and [P iQ] are both
unitary. Similarly, if S = S∗, then [U V ] and [U iV ] are both unitary. We will use
this observation in several places without restating it.

From (2.4) and (2.8), any A ∈ C
m×n can be written conformably in block form

as

A = [P Q]

[
APU APV

AQU AQV

][
Û

V̂

]
.(2.9)

We say that A ∈ C
m×n is (R,S)-symmetric if RAS = A, or (R,S)-skew symmetric if

RAS = −A. From (2.2), (2.5), and (2.6),

RAS = [P Q]

[
APU −APV

−AQU AQV

][
Û

V̂

]
.(2.10)

Henceforth, z ∈ C
n, x ∈ C

k, y ∈ C
�, w ∈ C

m, φ ∈ C
r, and ψ ∈ C

s. We say that
w is R-symmetric (R-skew symmetric) if Rw = w (Rw = −w). An arbitrary w can

be written uniquely as w = Pφ + Qψ with φ = P̂w and ψ = Q̂w. From (2.2), Pφ is
R-symmetric and Qψ is R-skew symmetric. Similarly, we say that z is S-symmetric
(S-skew symmetric) if Sz = z (Sz = −z). An arbitrary z can be written uniquely as

z = Ux + V y with x = Ûz and y = V̂ z. From (2.5), Ux is S-symmetric and V y is
S-skew symmetric.

3. Two useful lemmas. Suppose that B ∈ C
m×n and consider the least squares

problem for B: If w ∈ C
m, find z ∈ C

n such that

‖Bz − w‖ = min
ζ∈Cn

‖Bζ − w‖,(3.1)

where ‖ ·‖ is the 2-norm. This problem has a unique solution if and only if rank(B) =
n. In this case, z = (B∗B)−1B∗w. In any case, the optimal solution of (3.1) is the
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unique n-vector z0 of minimum norm that satisfies (3.1); thus, z0 = B†w where B† is
the Moore–Penrose inverse of B. The general solution of (3.1) is z = z0 + q with q in
the null space of B, and

‖Bz − w‖ = ‖(BB† − I)w‖

for all such z.
The proof of the next lemma is motivated in part by a theorem of Meyer and

Painter [3].
Lemma 3.1. Suppose that

B = CKF,(3.2)

where C ∈ C
m×m is unitary and F ∈ C

n×n is invertible. Then the general solution of
(3.1) is

z = F−1K†C∗w + (I − F−1K†KF )h, h ∈ C
n,(3.3)

and

‖Bz − w‖ = ‖(KK† − I)C∗w‖(3.4)

for all such z. If either rank(B) = n or F is unitary, then

B† = F−1K†C∗,

so the optimal solution of (3.1) is

z0 = F−1K†C∗w.(3.5)

Moreover, z0 is the unique solution of (3.1) if rank(B) = n.
Proof. Recall [4] that Z = W † and W = Z† if and only if Z and W satisfy the

Penrose conditions

WZW = W, ZWZ = Z, (ZW )∗ = ZW, and (WZ)∗ = WZ.(3.6)

Let

BL = F−1K†C∗.(3.7)

By letting W = K and Z = K† in (3.6), it is straightforward to verify that

BLBBL = BL, BBLB = B, (BBL)∗ = BBL, and BLB = F−1K†KF.(3.8)

Any ζ ∈ C
n×n can be written as ζ = BLw + q, so

Bζ − w = (BBL − I)w + Bq.

From the second and third equalities in (3.8),

[(BBL − I)w]∗Bq = 0,

so

‖Bζ − w‖2 = ‖(BBL − I)w‖2 + ‖Bq‖2,
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which is a minimum if and only if Bq = 0.
The second equality in (3.8) implies that rank(BLB) = rank(B), so rank(I−BLB)

equals the dimension of the null space of B. Now the second equality in (3.8) implies
that Bq = 0 if and only if q = (I −BLB)h, h ∈ C

n×n. Hence, the general solution of
(3.1) is

z = BLw + (I −BLB)h, h ∈ C
n×n.

Substituting (3.2) and (3.7) into this yields (3.3). From (3.2) and (3.3),

Bz − w = C(KK† − I)C∗w,

since C is unitary. This implies (3.4).
If rank(B) = n, then rank(K) = n, so K†K = I and the fourth equality in

(3.8) reduces to BLB = I. If F is unitary, the fourth equality in (3.8) implies that
(BLB)∗ = BLB. In either case, (3.8) implies that BL = B†, so (3.5) is the optimal
solution of (3.1). If rank(B) = n, then (3.3) reduces to (3.5).

The following lemma is obvious.
Lemma 3.2. Suppose that B ∈ C

m×n and B = CKF, where C ∈ C
m×m and

F ∈ C
n×n are unitary and K = ZDW ∗ is a singular value decomposition of K. Then

B = (CZ)D(FW )∗ is a singular value decomposition of B.

4. Characterization and properties of (R, S)-symmetric matrices. The
following theorem characterizes (R,S)-symmetric matrices.

Theorem 4.1. A is (R,S)-symmetric if and only if

A = [P Q]

[
APU 0

0 AQV

][
Û

V̂

]
,(4.1)

where

APU = P ∗AU and AQV = Q∗AV.(4.2)

Proof. From (2.9) and (2.10), RAS = A if and only if (4.1) holds. If (4.1) holds,
then (2.8) implies that

A[U V ] = [P Q]

[
APU 0

0 AQV

]
,

so AU = PAPU and AV = QAQV . Therefore (2.1) implies (4.2).
The verification of the converse is straightforward.
The following theorem reduces the least squares problem

‖Az − w‖ = min
ζ∈Cn

‖Aζ − w‖(4.3)

to the independent r × k and s× � least squares problems

‖APUx− φ‖ = min
ξ∈Ck

‖APUξ − φ‖

and

‖AQV y − ψ‖ = min
η∈C�

‖AQV η − ψ‖.
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Theorem 4.2. Suppose that A is (R,S)-symmetric, R = R∗, and w = Pφ+Qψ.
Then the general solution of (4.3) is

z = U [A†
PUφ + (Ik −A†

PUAPU )ξ] + V [A†
QV ψ + (I� −A†

QV AQV )η], ξ ∈ C
k, η ∈ C

�,

and

‖Az − w‖2 = ‖(APUA
†
PU − Ir)φ‖2 + ‖(AQV A

†
QV − Is)ψ‖2

for all such z. If either rank(A) = n or S = S∗, then

A† = [U V ]

[
A†

PU 0

0 A†
QV

] [
P ∗

Q∗

]

and z0 = UA†
PUφ+V A†

QV ψ is the optimal solution of (4.3). Moreover, z0 is the unique
solution of (4.3) if rank(A) = n.

Proof. Starting from Theorem 4.1, we apply Lemma 3.1 with

C = [P Q], K =

[
APU 0

0 AQV

]
, F =

[
Û

V̂

]
,

z = Ux + V y, w = Pφ + Qψ, and h = Uξ + V η.

It is straightforward to verify that

K† =

[
A†

PU 0

0 A†
QV

]
,

and the other details follow easily if we recall that since R = R∗, P̂ = P ∗ and
Q̂ = Q∗.

Theorem 4.1 and Lemma 3.2 imply the following theorem. (Recall that Û = U∗

and V̂ = V ∗ if S = S∗.)

Theorem 4.3. Suppose that R = R∗, S = S∗, and A is (R,S)-symmetric. Let

APU = ΦDPUX
∗ and AQV = ΨDQV Y

∗

be singular value decompositions of APU and AQV . Then

A = [PΦ QΨ]

[
DPU 0

0 DQV

]
[UX V Y ]∗

is a singular value decomposition of A. Thus, the singular values of APU are singular
values of A with associated R-symmetric left singular vectors and S-symmetric right
singular vectors, and the singular values of AQV are singular values of A with asso-
ciated R-skew symmetric left singular vectors and S-skew symmetric right singular
vectors.
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5. Characterization and properties of (R, S)-skew symmetric matrices.
The following theorem characterizes (R,S)-skew symmetric matrices.

Theorem 5.1. A is (R,S)-skew symmetric if and only if

A = [P Q]

[
0 APV

AQU 0

][
Û

V̂

]
,(5.1)

where

APV = P ∗AV and AQU = Q∗AU.(5.2)

Proof. From (2.9) and (2.10), RAS = −A if and only if (5.1) holds. If (5.1) holds,
then (2.8) implies that

A[U V ] = [P Q]

[
0 APV

AQU 0

]
,

so AU = QAQU and AV = PAPV . Therefore (2.1) implies (5.2).
The verification of the converse is straightforward.
Theorem 5.1 and Lemma 3.1 imply the following theorem, which reduces (4.3) to

the independent s× k and r × � least squares problems

‖AQUx− ψ‖ = min
ξ∈Ck

‖AQUξ − ψ‖

and

‖APV y − φ‖ = min
η∈C�

‖APV η − φ‖.

The proof is similar to the proof of Theorem 4.2, noting that in this case

K =

[
0 APV

AQU 0

]
and K† =

[
0 A†

QU

A†
PV 0

]
.

Theorem 5.2. Suppose that A is (R,S)-skew symmetric, R∗ = R, and w =
Pφ + Qψ. Then the general solution of (4.3) is

z = U [A†
QUψ + (Ik −A†

QUAQU )ξ] + V [A†
PV φ + (I� −A†

PV APV )η], ξ ∈ C
k, η ∈ C

�,

and

‖Az − w‖2 = ‖(AQUA
†
QU − Is)ψ‖2 + ‖(APV A

†
PV − Ir)φ‖2

for all such z. If either rank(A) = n or S = S∗, then

A† = [U V ]

[
0 A†

QU

A†
PV 0

] [
P ∗

Q∗

]

and z0 = UA†
QUψ+V A†

PV φ is the optimal solution of (4.3). Moreover, z0 is the unique
solution of (4.3) if rank(A) = n.

Theorem 5.1 and Lemma 3.2 imply the following theorem.
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Theorem 5.3. Suppose that R = R∗, S = S∗, and A is (R,S)-skew symmetric.
Let

APV = ΦDPV Y
∗ and AQU = ΨDQUX

∗

be singular value decompositions of APV and AQU . Then

A = [PΦ QΨ]

[
DPV 0

0 DQU

]
[V Y UX]∗

is a singular value decomposition of A. Thus, the singular values of APV are singular
values of A with R-symmetric left singular vectors and S-skew symmetric right sin-
gular vectors, and the singular values of AQU are singular values of A with R-skew
symmetric left singular vectors and S-symmetric right singular vectors.

6. Characterization and properties of (R, S)-conjugate matrices. In this
section we impose the following standing assumption.

Assumption A. R ∈ R
m×m, S ∈ R

n×n R−1 = R �= ±Im, S−1 = S �= ±In,
P ∈ R

m×r, Q ∈ R
m×s, U ∈ R

n×k, and V ∈ R
n×�. Also, A = B + iC with B,

C ∈ R
m×n.

Under this assumption, (2.3) reduces to

P̂ =
PT (I + R)

2
and Q̂ =

QT (I −R)

2
,

and (2.6) reduces to

Û =
UT (I + S)

2
, and V̂ =

V T (I − S)

2
.

Moreover, if R = RT , then P̂ = PT , Q̂ = QT , and [P iQ] is unitary. Similarly, if

S = ST , then Û = UT , V̂ = V T , and [U iV ] is unitary.
We say that A is (R,S)-conjugate if RAS = A. The following theorem charac-

terizes the class of (R,S)-conjugate matrices.
Theorem 6.1. A = B + iC is (R,S)-conjugate if and only if

A = [P iQ]

[
BPU −CPV

CQU BQV

][
Û

−iV̂

]
,(6.1)

where

BPU = PTBU, BQV = QTBV, CPV = PTCV, CQU = QTCU.(6.2)

Proof. If RAS = A, then RBS = B and RCS = −C. Therefore Theorem 4.1
implies that

B = [P Q]

[
BPU 0

0 BQV

][
Û

V̂

]

with BPU and BQV as in (6.2) and Theorem 5.1 implies that

C = [P Q]

[
0 CPV

CQU 0

][
Û

V̂

]



756 WILLIAM F. TRENCH

with CPV and CQU as in (6.2). Therefore

A = B + iC = [P Q]

[
BPU iCPV

iCQU BQV

][
Û

V̂

]
,

which is equivalent to (6.1).
For the converse, if A satisfies (6.1) where the center matrix is in R

m×n, then
RAS = A. Moreover, A = B + iC with

B = PBPU Û + QBQV V̂ and C = QCQU Û + PCPV V̂ .

Now we invoke (2.1) (with ∗ =T ) and (2.7) to verify (6.2).
Theorem 6.1 with m = n and R = S is related to a result of Ikramov [2]. See also

[5, Theorem 19].
Henceforth

K =

[
BPU −CPV

CQU BQV

]
∈ R

m×n.

An arbitrary z can be written uniquely as z = Ux+ iV y with x = Ûz and y = −iV̂ z.
An arbitrary w can be written uniquely as w = Pφ+iQψ with φ = P̂w and ψ = −iQ̂w.
For our present purposes it is useful to write x, y, φ, and ψ in terms of their real and
imaginary parts; thus,

x = x1 + ix2, x1, x2 ∈ R
k, y = y1 + iy2, y1, y2 ∈ R

�,

φ = φ1 + iφ2, φ1, φ2 ∈ R
r, ψ = ψ1 + iψ2, ψ1, ψ2 ∈ R

s.

Theorem 6.1 and Lemma 3.1 imply the following theorem, which reduces (4.3) to
two independent least squares problems for the real matrix K:∣∣∣∣∣∣∣∣K [

xj

yj

]
−
[

φj

ψj

]∣∣∣∣∣∣∣∣ = min
ξj∈Rk,ηj∈R�

∣∣∣∣∣∣∣∣K [
ξj
ηj

]
−
[

φj

ψj

]∣∣∣∣∣∣∣∣ , j = 1, 2.

Theorem 6.2. Suppose that A is (R,S)-conjugate, RT = R, and w = Pφ+Qψ.
Then the general solution of (4.3) is

z = [U iV ]

(
K†

[
ψ
φ

]
+ (I −K†K)

[
ξ
η

])
, ξ ∈ C

k, η ∈ C
�,

and

‖Az − w‖2 =

∣∣∣∣∣∣∣∣(KK† − I)

[
ψ1

φ1

]∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣(KK† − I)

[
ψ2

φ2

]∣∣∣∣∣∣∣∣2
for all such z. If either rank(A) = n or S = ST , then

A† = [U iV ]K†
[

PT

−iQT

]
and

z0 = [U iV ]K†
[

ψ
φ

]
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is the optimal solution of (4.3). Moreover, z0 is the unique solution of (4.3) if rank(A) =
n.

Finally, Lemma 3.2 and Theorem 6.1 imply the following theorem.
Theorem 6.3. Suppose RT = R, ST = S, and A is (R,S)-conjugate. Let K =

WDZT be a singular value decomposition of K. Then

A = [P iQ]WD([U iV ]Z)∗

is a singular value decomposition of A. Therefore the left singular vectors of A can be
written as wj = Pφj + iQψj, with φj ∈ R

r and ψj ∈ R
s, 1 ≤ j ≤ m, and the right

singular vectors of A can be written as zj = Uxj + iV yj with xj ∈ R
k and yj ∈ R

�,
1 ≤ j ≤ n.
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Abstract. It is proved that the roots of combinations of matrix polynomials with real roots can
be recast as eigenvalues of combinations of real symmetric matrices, under certain hypotheses. The
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1. Main result. A polynomial is called hyperbolic if all its roots are real. The
class of hyperbolic polynomials is a classical well-studied class (see, e.g., [16]). There
are at least two useful ways to extend this notion to polynomials with complex n× n
matrix coefficients, in short, matrix polynomials. One way is to require that the
determinant has only real roots; the other way involves using the quadratic form
given by the matrix polynomial. Thus, a monic (i.e., with leading coefficient In, the
n × n identity matrix) matrix polynomial L(z) of degree � is said to be hyperbolic if
for every nonzero x ∈ C

n (the n-dimensional vector space of columns with complex
components) the polynomial equation

〈L(z)x, x〉 = 0(1.1)

has � real roots (counted with multiplicities). We denote here by 〈·, ·〉 the standard
inner product in C

n. An n × n monic matrix polynomial L(z) of degree � will be
called weakly hyperbolic if detL(z) = 0 has n� real roots (multiplicities counted).
Note that our terminology differs slightly from the terminology in some sources (for
example, [14]). Clearly, every hyperbolic matrix polynomial is weakly hyperbolic, and
the coefficients of every hyperbolic matrix polynomial are Hermitian matrices. See,
e.g., [15, 1, 14, 10] for the theory and applications of hyperbolic matrix and operator
polynomials.

In this note we prove the following theorem. It states that the roots of combina-
tions of hyperbolic matrix polynomials can be recast as eigenvalues of combinations
of real symmetric matrices, under certain hypotheses. We denote by R the field of
real numbers.

Theorem 1.1. Let

L(z) =
�∑

j=0

Ljz
j , M(z) =

�∑
j=0

Mjz
j , M� = L� = I,
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be two monic n× n matrix polynomials such that

αL(z) + (1 − α)M(z) is weakly hyperbolic for every α ∈ R.(1.2)

Then there exist n�×n� real symmetric matrices A and B such that for every α ∈ R,
the roots of det (αL(z) + (1 − α)M(z)), counted according to their multiplicities, co-
incide with the eigenvalues of αA + (1 − α)B, also counted according to their multi-
plicities.

Conversely, if the roots of det (αL(z)+(1−α)M(z)) coincide with the eigenvalues
of αA + (1 − α)B (counted with multiplicities) for every α ∈ R, where A and B are
fixed real symmetric n�× n� matrices, then (1.2) holds.

Proof. Let

CL =

⎛⎜⎜⎜⎜⎜⎝
0 In 0 . . . 0
0 0 In . . . 0
...

...
...

. . .
...

0 0 0 . . . In
−L0 −L1 −L2 . . . −L�−1

⎞⎟⎟⎟⎟⎟⎠
and

CM =

⎛⎜⎜⎜⎜⎜⎝
0 In 0 . . . 0
0 0 In . . . 0
...

...
...

. . .
...

0 0 0 . . . In
−M0 −M1 −M2 . . . −M�−1

⎞⎟⎟⎟⎟⎟⎠
be the companion matrices of L(z) and of M(z), respectively. Then αCL + (1 −
α)CM is the companion matrix of αL(z) + (1 − α)M(z), and therefore the roots of
det (αL(z)+ (1−α)M(z)) (counted with multiplicities) coincide with the eigenvalues
of αCL + (1 − α)CM (also counted with multiplicities), for every α ∈ R. (This is
a standard fact in the theory of matrix polynomials; see, for example, [5].) Thus,
αCL +(1−α)CM has n� real eigenvalues for every α ∈ R. Consider the homogeneous
polynomial of three real variables α, β, γ:

P (α, β, γ) := det (αCL + βCM − γIn�).

If α + β �= 0, the polynomial P (α, β, γ) (as a polynomial of γ) has n� real roots
(counted with multiplicities). If α + β = 0, then

P (α, β, γ) = ±γn(�−1) · det (αL�−1 + βM�−1 − γIn)

also has n� real roots. To see this, we will show that the n× n matrix L�−1 −M�−1

has n real eigenvalues (counted with multiplicities). Indeed, for a fixed positive ε
consider the monic matrix polynomial (ε)−1((1 + ε)L(z) −M(z)) and its companion
matrix C(ε)−1((1+ε)L−M). By (1.2), the eigenvalues of C(ε)−1((1+ε)L−M) are all real,
and therefore the eigenvalues of the matrix

X := lim
ε→0

(
εC(ε)−1((1+ε)L−M)

)
are also all real. However, the top n(� − 1) rows of X are zeros, and the bottom
right n× n corner of X coincides with M�−1 −L�−1. So the matrix L�−1 −M�−1 has
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all eigenvalues real. Thus, P (α, β, γ) is hyperbolic in the direction of (0, 0, 1), in the
sense of the Lax conjecture; see [11, 13]. By the main result of [13] (the proof in [13]
is based on [7, 17]), we have

P (α, β, γ) = det (αA + βB − γI)

for some real symmetric matrices A and B. The direct statement of the theorem
follows.

To prove the converse statement, simply reverse the argument, taking into account
that real symmetric matrices have all eigenvalues real.

For further development of the theory of hyperbolic polynomials of several vari-
ables and many applications, in particular, mixed determinants, see [6].

2. Corollaries and applications. We start by recalling Obreschkoff’s theorem
(see [16, 3]), which will be needed in the proof of the next corollary: Two real scalar
polynomials f(z) and g(z) of degrees � and �− 1, respectively, have the property that
f(z) + tg(z) has � real roots (counted with multiplicities) for every real t if and only
if f(z) and g(z) have � and �− 1 real roots, respectively, and the roots of f(z) and of
g(z) interlace (the cases when f(z) or g(z) has multiple roots and/or when f(z) and
g(z) have common roots are not excluded here).

A proof of Obreschkoff’s theorem can be given using the approach of Theorem
1.1, as follows. Below, we formulate Obreschkoff’s theorem in a slightly different but
equivalent form; for simplicity, it will be assumed that f(z) and h(z) are relatively
prime (the general case is easily reduced to this one by dividing f(z) and h(z) by
their greatest common divisor).

Proposition 2.1. The following statements are equivalent for scalar monic rel-
atively prime polynomials f(z) and h(z) of degree �:

(1) The polynomials αf(z) + βh(z), α, β ∈ R, α2 + β2 �= 0, have all their roots
real;

(2) The polynomials αf(z) + (1 − α)h(z), α ∈ R, have all their roots real;
(3) f(z) has all its roots real, and the quotient h(z)/f(z) has the form

h(z)

f(z)
= 1 +

p∑
j=1

cj
z − λj

,(2.1)

where λj ∈ R, and the real numbers cj are all of the same sign;
(4) Both f(z) and h(z) have � distinct real roots, and the roots of f(z) and of

h(z) interlace.
Proof. (1) clearly implies (2). The statements (3) and (4) are equivalent: Indeed,

if (3) or (4) holds true, then f(z) has necessarily simple roots, and denoting the roots
of f(z) by λ1 < · · · < λp, we see that in the representation (2.1),

sign (cj) = sign
h(z)

f(z)
as z → λj , z > λj ,

whereas

−sign (cj+1) = sign
h(z)

f(z)
as z → λj+1, z < λj+1.

These equalities imply that that the roots of f(z) and h(z) interlace if and only if all
the cj ’s are of the same sign.
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We next prove that (2) implies (3). Arguing as in the proof of Theorem 1.1, we
obtain that the characteristic polynomial of αCf + βCh coincides with the charac-
teristic polynomial of αA + βB, for all α, β ∈ R, where A and B are fixed (indepen-
dent of α and β) distinct real symmetric matrices. Taking α − β = 0 we see that
rank (A−B) ≤ 1. Since polynomials f and h are distinct it follow that A = B± xxT

for some nonzero vector x. Now

f(z) = det (zI − Cf ) = det (zI −A),

h(z) = det (zI − Ch) = det (zI −B),

and

h(z)

f(z)
= det

(
(zI −B)(zI −A)−1

)
= det

(
I ± xxT (zI −A)−1

)
= 1 ± xT (zI −A)−1x.

This reduces, upon applying a diagonalizing real orthogonal transformation A �→
UTAU and replacing x with UTx, to (2.1) with the real numbers cj of the same sign,
as required.

Finally, we prove the implication (3) =⇒ (1). We have to show that if (3) holds

true, then for any real γ the equation h(z)
f(z) + γ = 0 does not have roots with nonzero

imaginary part. Consider a complex number z = a+ bi, with the real part Re (z) = a,
and the imaginary part Im (z) = b. If (3) holds, then

Im

(
h(z)

f(z)

)
= Im

⎛⎝ p∑
j=1

cj
z − λj

⎞⎠ ,

where the λj ’s are real and the real numbers cj ’s are all of the same sign. As

Im((z − λj)
−1) =

−b

(a− λj)2 + b2
,

it follows that

Im

(
h(z)

f(z)

)
= −b

p∑
j=1

cj
(a− λj)2 + b2

.

Therefore, Im(h(z)
f(z) ) �= 0 if Im(z) �= 0. This means that the equation h(z)

f(z) +γ = 0 does

not have roots with nonzero imaginary part for any real γ.
We observe that checking condition (3) can be conveniently done using semidefi-

nite programming. Indeed, let h(z) and f(z) be monic scalar polynomials with f(z)
having all roots real, and consider a minimal realization

h(z)

f(z)
= 1 + C̃(zI − Ã)−1B̃,

where C̃, Ã, and B̃ are real matrices. It is easy to see, using the uniqueness of a
minimal realization up to a state isomorphism (similarity), that (3) holds, with the
cj ’s positive, if and only if there exists a positive definite matrix P such that

ÃP = PÃT , P C̃T = B̃.
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The latter problem is a semidefinite programming problem.
Another equivalent semidefinite programming problem is based on the follow-

ing nice reformulation of Proposition 2.1: The conditions of Proposition 2.1 are
equivalent to the existence of nonsingular real matrix D such that both DCfD

−1 and
DChD

−1 are real symmetric. (A proof of this statement is essentially the same rank
one perturbation argument as in the proof of Proposition 2.1.) This amounts to the
following semidefinite programming problem: Is there a real positive definite matrix
P such that the equalities

PCf = CT
f P and PCh = CT

h P

hold?
Our next corollary involves hyperbolic matrix polynomials.
Corollary 2.2. Let L(z) be a hyperbolic matrix polynomial. Then there exist

n� × n� real symmetric matrices A and B such that the roots of det (L(z) + tL′(z))
coincide with the eigenvalues of A+ tB (multiplicities counted) for every real number
t. Here, L′(z) is the derivative of L(z) with respect to z.

Proof. By Obreschkoff’s theorem, the matrix polynomial L(z) + tL′(z) is hyper-
bolic for every real t. Now apply Theorem 1.1 with M(z) = L(z) + L′(z).

Note that the condition (1.2) implies (but is not equivalent to) the condition that
every convex combination of L(z) and M(z) is weakly hyperbolic. It turns out that
the latter condition can be conveniently expressed for hyperbolic matrix polynomials,
which we will do next.

Let L(λ) be a hyperbolic n × n matrix polynomial. For every x ∈ C
n, ‖x‖ = 1,

let

λ1(x) ≤ λ2(x) ≤ · · · ≤ λ�(x)

be the roots of equation (1.1) arranged in nondecreasing order. The sets

∆j(L) := {λj(x) |x ∈ C
n, ‖x‖ = 1},

called the spectral zones of L(λ), are obviously closed intervals on the real line:

∆j(L) = [δ−j (L), δ+
j (L)], j = 1, 2, . . . , �.

A basic result in the theory of hyperbolic matrix and operator polynomials ([14,
Theorem 31.5], for example), states that two spectral zones either are disjoint or have
only one point in common.

Sufficient conditions for combinations of hyperbolic matrix polynomials being
again hyperbolic can be given in terms of the spectral zones, as follows.

Proposition 2.3. Let L(λ) and M(λ) be two hyperbolic matrix polynomials of
degree �.

(a) Assume that the spectral zones of L and M satisfy the inequalities

max{δ+
j (L), δ+

j (M)} ≤ min{δ−j+1(L), δ−j+1(M)}, j = 1, . . . , �− 1.

Then every convex combination αL(z) + (1 − α)M(z), 0 ≤ α ≤ 1, is hyperbolic.
(b) Assume that the spectral zones of L and M interlace, i.e., satisfy the inequal-

ities

δ+
j (L) ≤ δ−j (M), j = 1, . . . , �, and δ+

j (M) ≤ δ−j+1(L), j = 1, . . . , �− 1,(2.2)
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or the inequalities (2.2) with the roles of L and M reversed. Then every combination
αL(z) + (1 − α)M(z), α ∈ R, is hyperbolic.

Proof. For the proof of (a) apply [3, Theorem 2.1]; this theorem gives necessary
and sufficient conditions for all convex combinations of two given scalar polynomials
to be hyperbolic. The proof of (b) follows from Obreschkoff’s theorem and from the
property that the spectral zones have at most one point in common.

Using Theorem 1.1 and inequalities for eigenvalues of real symmetric matrices
(see, for example, [12]), one can derive inequalities for eigenvalues of weakly hyperbolic
matrix polynomials. We illustrate this for the case of the Horn inequalities. For a
Hermitian m × m matrix X, we write its eigenvalues (repeated according to their
multiplicities) in nondecreasing order:

λ1(X) ≤ λ2(X) ≤ · · · ≤ λm(X).

An ordered triple (U, S, T ) of nonempty subsets of {1, 2, . . . ,m} is said to be a Horn
triple (with respect to m) if the cardinalities of U , S, and T are the same, and the
Horn inequalities ∑

i∈U

λi(X + Y ) ≤
∑
j∈S

λj(X) +
∑
k∈T

λk(Y )

hold true for every pair of Hermitian m×m matrices X and Y . A description of all
Horn triples is known [8, 9]; see also the surveys [4, 2]. For a weakly hyperbolic n×n
matrix polynomial L(z) of degree �, we arrange the roots of det (L(z)) in nondecreasing
order:

d1(L) ≤ d2(L) ≤ · · · ≤ dn�(L).

Let T = {i1 < i2 < · · · < im} ⊆ {1, 2, . . . , n�}; then we define

T = {n� + 1 − im < n� + 1 − im−1 < · · · < n� + 1 − i1}.
Theorem 2.4. Let L(z) and M(z) be monic n×n matrix polynomials satisfying

the hypotheses of Theorem 1.1. Then for every Horn triple (U, S, T ) with respect to
n�, and for every α ∈ R, the inequality

∑
i∈U

di (αL + (1 − α)M) ≤ α

⎛⎝∑
j∈Sα

dj(L)

⎞⎠ + (1 − α)

⎛⎝ ∑
k∈T1−α

dk(M)

⎞⎠
holds true. Here Sα = S, Tα = T if α ≥ 0, and Sα = S, Tα = T if α < 0.

Proof. Let A and B be as in Theorem 1.1. Then we have, using Theorem 1.1 and
the Horn inequalities,∑

i∈U

di (αL + (1 − α)M) =
∑
i∈U

λi (αA + (1 − α)B)

≤
∑
j∈S

λj (αA) +
∑
k∈T

λk ((1 − α)B)

= α

⎛⎝∑
j∈Sα

λj(A)

⎞⎠ + (1 − α)

⎛⎝ ∑
k∈T1−α

λk(B)

⎞⎠
= α

⎛⎝∑
j∈Sα

dj(L)

⎞⎠ + (1 − α)

⎛⎝ ∑
k∈T1−α

dk(M)

⎞⎠,

and the proof is complete.
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Abstract. Applying a few steps of the Arnoldi process to a large nonsymmetric matrix A
with initial vector v is shown to induce several quadrature rules. Properties of these rules are
discussed, and their application to the computation of inexpensive estimates of the quadratic form
〈f, g〉 := v∗(f(A))∗g(A)v and related quadratic and bilinear forms is considered. Under suitable
conditions on the functions f and g, the matrix A, and the vector v, the computed estimates provide
upper and lower bounds of the quadratic and bilinear forms.
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1. Introduction. Let A ∈ C
N×N be a large, possibly sparse, nonsymmetric

matrix and let the vector v ∈ C
N be nonvanishing. Application of n � N steps of the

Arnoldi process to the matrix A with initial vector v yields the Arnoldi decomposition

AVn = VnHn + v̂n+1e
∗
n,(1.1)

where Vn = [v1, v2, . . . , vn] ∈ C
N×n and v̂n+1 ∈ C

N satisfy V ∗
n Vn = In, V ∗

n v̂n+1 =
0, v1 = v/‖v‖, and Hn = [hij ]

n
i,j=1 ∈ C

n×n is an upper Hessenberg matrix with
nonvanishing subdiagonal entries hi+1,i, 1 ≤ i < n. Here and throughout this paper
In denotes the n × n identity matrix, ej denotes the jth axis vector of appropriate
dimension, ‖ · ‖ denotes the Euclidean vector norm, and the superscript ∗ denotes
transposition and, if applicable, complex conjugation. We tacitly assume that the
number of steps n of the Arnoldi process is small enough so that the decomposition
(1.1) with the stated properties exists; see, e.g., Golub and Van Loan [11, Chapter
9] or Saad [16, Chapter 6] for discussions on the Arnoldi process. Here we note
only that the evaluation of the Arnoldi decomposition (1.1) requires the computation
of n matrix-vector products with the matrix A. The fact that A does not have to
be factored makes it possible to compute Arnoldi decompositions (1.1) for small to
moderate values of n also when the order N of the matrix A is very large.

We are particularly interested in the generic case when v̂n+1 is nonvanishing;
when v̂n+1 = 0 our discussion simplifies. Thus, unless explicitly stated otherwise, we
assume that v̂n+1 �= 0 and define

hn+1,n := ‖v̂n+1‖, vn+1 := v̂n+1/hn+1,n.(1.2)

Introduce the quadratic form

〈f, g〉 := v∗(f(A))∗g(A)v(1.3)

∗Received by the editors March 2, 2003; accepted for publication (in revised form) by D. Boley
August 2, 2004; published electronically April 8, 2005.

http://www.siam.org/journals/simax/26-3/42382.html
†Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106 (daniela.

calvetti@case.edu). This research was supported in part by NSF grant DMS-0107841.
‡Department of Mathematical Sciences, Kent State University, Kent, OH 44242 (sukim@

math.kent.edu, reichel@math.kent.edu). This research was supported in part by NSF grant DMS-
0107858.

765



766 DANIELA CALVETTI, SUN-MI KIM, AND LOTHAR REICHEL

for functions f and g that are analytic in a neighborhood of the eigenvalues of A.
The analyticity requirements on f and g are satisfied in many applications and allow
us to use the Jordan normal form of A to define f(A) and g(A); see, e.g., Gant-
macher [8, Chapter 5] for details. We remark that the quadratic form (1.3) is positive
semidefinite.

The quadratic form (1.3) can also be represented as the double integral

〈f, g〉 =
1

4π2

∫
Γ

∫
Γ

f(z1)g(z2)v
∗(z1I −A∗)−1(z2I −A)−1vdz1dz2,(1.4)

where the contour of integration Γ contains the spectrum of A in its interior and the
bar denotes complex conjugation; see, e.g., [12] for discussions of related representa-
tions.

The present paper is concerned with the approximation of the quadratic form
(1.3) and related quadratic and bilinear forms by expressions that are based on the
Arnoldi decomposition (1.1) and are easy to evaluate when n � N . For instance, we
consider the approximation of (1.3) by the positive semidefinite quadratic form

〈f, g〉n := ‖v‖2e∗1(f(Hn))∗g(Hn)e1,(1.5)

where the functions f and g also are required to be analytic in a neighborhood of
the eigenvalues of Hn. The expression (1.5) can be considered a quadrature rule for
approximating the integral (1.4), and we refer to (1.5) as an Arnoldi quadrature rule.
The error 〈f, g〉 − 〈f, g〉n has been investigated by Freund and Hochbruck [7]. We
review their results in section 2.

A new quadrature rule,

[f, g]n+1 := ‖v‖2e∗1(f(H̃n+1))
∗g(H̃n+1)e1,(1.6)

for the approximation of (1.3) is introduced in section 3. The matrix H̃n+1 in (1.6)
is defined as follows. Let Hn+1 be the upper Hessenberg matrix in (1.1) with n
replaced by n + 1. Since the entry hn+1,n is assumed to be nonvanishing, cf. (1.2),

the matrix Hn+1 exists. The matrix H̃n+1 ∈ C
(n+1)×(n+1) in (1.6) now is determined

by modifying some of the entries in Hn+1, so that

〈f, g〉 − 〈f, g〉n = −(〈f, g〉 − [f, g]n+1) ∀{f, g} ∈ Wn,(1.7)

where

Wn := (Pn ⊕ Pn+1) ∪ (Pn+1 ⊕ Pn)(1.8)

and Pj denotes the set of all polynomials of degree at most j. Because of the property
(1.7), we refer to (1.6) as an anti-Arnoldi quadrature rule. This rule generalizes the
anti-Gauss rules introduced by Laurie [14]. Application of the latter rules to the
estimation of functionals of the form (1.3) with a Hermitian matrix A is discussed in
[5, 6].

Section 4 considers expansions of f and g in terms of certain orthogonal polyno-
mials determined by the Arnoldi process. We show that if these expansions converge
sufficiently rapidly, then the real and imaginary parts of 〈f, g〉n and [f, g]n+1 furnish
upper and lower bounds, or lower and upper bounds, respectively, of the real and
imaginary parts of 〈f, g〉. This is illustrated by computed examples in section 5.
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When f(t) := 1, the quadratic form (1.3) simplifies to the functional

I(g) := v∗g(A)v.(1.9)

The approximation of functionals of the form (1.9), when the matrix A is Hermitian,
has received considerable attention; see, e.g., [1, 2, 3, 4, 10, 15]. These references ex-
ploit the connection between the Hermitian Lanczos process, orthogonal polynomials,
and Gauss quadrature rules. A nice survey of these techniques is provided by Golub
and Meurant [9]. In the present paper, we are concerned with the approximation of
functionals of the form (1.9) with a non-Hermitian matrix A. Application of the non-
Hermitian Lanczos process to this problem, using the connection with biorthogonal
polynomials, is described in [6, 17, 18]. Knizhnerman [13] considers application of the
Arnoldi process to the approximation of f(A)v and discusses the rate of convergence.

We conclude this section with a few applications, where the computation of inex-
pensive estimates of quantities of the form (1.3) or (1.9) is desirable. The problem of
computing approximations of expressions of the form u∗A−1v, where A is a large ma-
trix and u and v are given vectors, arises in electromagnetic scattering; see Saylor and
Smolarski [17, 18] for a discussion. The technique of the present paper is attractive to
use when an Arnoldi decomposition (1.1) has been determined and u = f(A)v for an
explicitly known function f , which is analytic in a neighborhood of the spectrum of
A. We apply the quadrature rules (1.5) and (1.6) with f and g(t) := 1/t to determine
the desired estimates. Estimates also can be computed without using the function f
if u can be expressed as a linear combination of the first few columns of the matrix
Vn in (1.1). This is discussed in section 4.

Estimates of v∗jA
−1vj , 1 ≤ j ≤ k, where vj denotes the jth column of the matrix

Vn, can be used for constructing preconditioners for linear systems of equations Ax =
v. Let dj be computed estimates of v∗jA

−1vj . Then

M = Vkdiag[d1, d2, . . . , dk]V
∗
k + (I − VkV

∗
k )

= I + Vkdiag[d1 − 1, d2 − 1, . . . , dk − 1]V ∗
k

can be used as a preconditioner. Estimates dj can be computed inexpensively, e.g.,
by using (1.5), (1.6), or the average of the two, with f(t) := 1 and g(t) := 1/t, if the
linear system of equations is solved by the restarted GMRES method and therefore
the Arnoldi decomposition (1.1) is available. Knowledge of estimates of upper and
lower bounds of the quantities v∗jA

−1vj makes it possible to assess the accuracy of
the dj .

Finally, consider the linear continuous-time system

x′(t) = Ax(t) + vs(t),

y(t) = u∗x(t),

where u, v ∈ R
N , ′ denotes differentiation with respect to time t, x(0) := 0, and s

is a real-valued function. The impulse response of this system (with s(t) the Dirac
δ-function) is given by

h(t) := u∗ exp(At)v, t ≥ 0,

see, e.g., [19, section 2.7]. The techniques developed in this paper can be used to
compute estimates of upper and lower bounds of h under the conditions on u stated
above.
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2. Arnoldi quadrature rules. Identification of the columns in the right-hand
side and left-hand side of (1.1) and using (1.2) show that

vj = p̂j−1(A)v, 1 ≤ j ≤ n + 1,(2.1)

for certain uniquely determined polynomials p̂j−1. Here p̂j−1 is of degree j − 1 and
has a positive leading coefficient. Combining (2.1) and (1.3) yields

v∗j vk = 〈p̂j−1, p̂k−1〉, 1 ≤ j, k ≤ n + 1,

and it follows from the orthonormality of the vectors vj generated by the Arnoldi
process that the polynomials p̂j−1 are orthonormal with respect to the quadratic
form (1.3). Substituting (2.1) into (1.1) and (1.2) shows that the polynomials p̂j−1,
1 ≤ j ≤ n + 1, satisfy a recursion relation, whose coefficients are determined by the
entries of the matrix Hn and by hn+1,n.

It is convenient to work with the monic orthogonal polynomials pj−1 associated
with the polynomials p̂j−1. Let n(A) denote the grade of A with respect to v; i.e.,
n(A) is the smallest positive integer with the property that there is a nonvanishing
polynomial p ∈ Pn(A) such that p(A)v = 0. Note that the quadratic form (1.3) is an
inner product on the space Pn(A)−1 ⊕ Pn(A)−1 because it is positive definite there.

Proposition 2.1. There is a family {pj}n(A)
j=0 of monic polynomials that are

orthogonal with respect to the quadratic form (1.3). The polynomials satisfy the re-
currence relation⎧⎪⎨⎪⎩

p0(t) = 1,

pj(t) = (t− cjj)pj−1(t) −
j−1∑
k=1

ckjpk−1(t), 1 ≤ j ≤ n(A),
(2.2)

where

ckj :=
〈pk−1, tpj−1〉
〈pk−1, pk−1〉

, 1 ≤ k ≤ j ≤ n(A).(2.3)

Moreover, for 1 ≤ n ≤ n(A), the nontrivial entries of the upper Hessenberg matrices
Hn, and the scalar hn+1,n defined by (1.2), can be expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩

hj+1,j =
〈pj , pj〉1/2

〈pj−1, pj−1〉1/2
, 1 ≤ j ≤ n,

hkj =
〈pk−1, tpj−1〉

〈pk−1, pk−1〉1/2〈pj−1, pj−1〉1/2
, 1 ≤ k ≤ j ≤ n.

(2.4)

In particular,

hj+1,j > 0, 1 ≤ j < n(A),(2.5)

and

hn(A)+1,n(A) = 0.(2.6)

Proof. Let the polynomials pj be defined by (2.2) for some recursion coefficients
ckj . Then pj is of degree j, and it follows from the definition of n(A) that

〈pj , pj〉 > 0, 0 ≤ j < n(A).(2.7)
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Hence, the expressions (2.3) and (2.4) for the coefficients ckj , hkj , and hj+1,j are well

defined for 1 ≤ k ≤ j ≤ n(A). In particular, the family of polynomials {pj}n(A)
j=0

determined by the recursion coefficients (2.3) is well defined.
The fact that the polynomial pj can be obtained by scaling the polynomials p̂j ,

defined by (2.1), and the relation (2.4) between the pj and the entries hkj of Hn and
the scalar hn+1,n defined by (1.2) follows from the Arnoldi decomposition (1.1) and
straightforward computations.

The equations (2.4) and inequalities (2.7) show (2.5). We turn to the proof of
(2.6). Let the polynomial p of degree n(A) > 0 satisfy p(A)v = 0 and express p in the
form

p(t) =

n(A)∑
j=0

αjpj(t).

Then

0 = 〈p, pk〉 =

n(A)∑
j=0

ᾱj〈pj , pk〉 = ᾱk〈pk, pk〉, 0 ≤ k ≤ n(A).(2.8)

The inequalities (2.7) imply that αk = 0 for 0 ≤ k < n(A), and therefore p(t) =
αn(A)pn(A)(t). Since p is of exactly degree n(A), the coefficient αn(A) is nonvanishing
and it follows from (2.8) that 〈pn(A), pn(A)〉 = 0. This shows (2.6).

The following result has been shown by Freund and Hochbruck [7]. A proof is
included for completeness.

Theorem 2.2. Let n ≤ n(A). Then

〈f, g〉n = 〈f, g〉 ∀{f, g} ∈ Wn−1,(2.9)

where the set Wn−1 is defined by (1.8).
Proof. Since 〈f, g〉 = 〈g, f〉 and 〈f, g〉n = 〈g, f〉n, where the bar denotes complex

conjugation, it suffices to show that

〈f, g〉n = 〈f, g〉 ∀f ∈ Pn, ∀g ∈ Pn−1.(2.10)

Clearly, this equality only has to be established for monomials f(t) = tk and g(t) = tj .
Thus, (2.10) is equivalent to

(Hk
ne1)

∗(Hj
ne1) = (Akv1)

∗(Ajv1), 0 ≤ k ≤ n, 0 ≤ j ≤ n− 1.(2.11)

The Arnoldi decomposition (1.1) and induction over j yield{
Ajv1 =VnH

j
ne1, j = 0, 1, 2, . . . , n− 1,

Anv1 =VnH
n
ne1 + v̂n+1e

∗
nH

n−1
n e1.

(2.12)

The relation (2.11) now follows from (2.12), V ∗
n Vn = In and V ∗

n v̂n+1 = 0.
We next show that if the vector v̂n+1 in the Arnoldi decomposition (1.1) vanishes,

then the Arnoldi quadrature rule (1.5) is exact for all polynomials.
Corollary 2.3. Assume that n = n(A). Then

〈f, g〉n = 〈f, g〉

for all polynomials f and g.
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Proof. It follows from (2.6) that the vector v̂n+1 in (1.1) vanishes. Therefore,

Ajv1 = VnH
j
ne1

for all nonnegative integers j. This implies the desired result.
It is convenient to introduce the bilinear forms

〈f, g〉(r,s) := ‖v‖2v∗r (f(A))∗g(A)vs, 1 ≤ r, s ≤ n,

and

〈f, g〉(r,s)n := ‖v‖2e∗r(f(Hn))∗g(Hn)es, 1 ≤ r, s ≤ n,(2.13)

where v is the initial vector for the Arnoldi process and vj is the jth column of the
matrix Vn, i.e., vj = Vnej for 1 ≤ j ≤ n; cf. (1.1). We note that 〈f, g〉 = 〈f, g〉(1,1)

and 〈f, g〉n = 〈f, g〉(1,1)n .
Theorem 2.4. Let n ≤ n(A). Then

〈f, g〉(r,s) = 〈f, g〉(r,s)n

for all integers r, s such that 1 ≤ r, s ≤ n, and all polynomials f, g such that either
f ∈ Pn−r+1 and g ∈ Pn−s or f ∈ Pn−r and g ∈ Pn−s+1.

Proof. Let f̂ ∈ Pn and ĝ ∈ Pn−1 be of the form

f̂ = ‖v‖fp̂r−1, ĝ = ‖v‖gp̂s−1,

where the polynomials p̂r−1 and p̂s−1 are defined by (2.1). It follows from (2.1) that

f̂(A)v = ‖v‖f(A)vr, ĝ(A)v = ‖v‖g(A)vs,

and therefore

〈f̂ , ĝ〉 = 〈f, g〉(r,s).(2.14)

The proof of Theorem 2.2, specifically (2.12), shows that

V ∗
n p(A)v1 = p(Hn)e1 ∀p ∈ Pn.(2.15)

Substituting the polynomials p̂j−1 defined by (2.1) into (2.15) yields

ej = ‖v‖p̂j−1(Hn)e1, 1 ≤ j ≤ n,(2.16)

and it follows that

〈f̂ , ĝ〉n = 〈f, g〉(r,s)n .(2.17)

Combining (2.9), (2.14), and (2.17) shows that

〈f, g〉(r,s) = 〈f, g〉(r,s)n .(2.18)

Similarly, when f̂ ∈ Pn−1 and ĝ ∈ Pn, (2.18) follows for f ∈ Pn−r and g ∈ Pn−s+1.
This establishes the theorem.

Corollary 2.5. Assume that n = n(A). Then

〈f, g〉(r,s) = 〈f, g〉(r,s)n

for all integers r and s such that 1 ≤ r, s ≤ n and for all polynomials f and g.
Proof. It follows from (2.6) that the vector v̂n+1 in (1.1) vanishes. Therefore,

Akvr = VnH
k
ner

for all nonnegative integers k and 1 ≤ r ≤ n. The desired result follows.
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3. Anti-Arnoldi quadrature rules. This section discusses the construction
of the matrix H̃n+1 in the anti-Arnoldi rule (1.6), which is characterized by (1.7).
Our derivation of H̃n+1 is analogous to the derivation of the symmetric tridiagonal
matrices associated with anti-Gauss quadrature rules introduced by Laurie [14].

Equation (1.7) is equivalent to

[f, g]n+1 = 2〈f, g〉 − 〈f, g〉n ∀{f, g} ∈ Wn.(3.1)

Hence, the quadratic form [f, g]n+1 defined by (1.6) can be considered an Arnoldi
quadrature rule associated with the quadratic form

[f, g] := 2〈f, g〉 − 〈f, g〉n(3.2)

defined for all functions f and g that are analytic in a neighborhood of all eigenvalues
of A and Hn. A comparison of (3.1) and (3.2) shows that the quadratic form defined
by (1.6) satisfies

[f, g]n+1 = [f, g] ∀{f, g} ∈ Wn.(3.3)

We are particularly interested in the case when n < n(A), because n = n(A)
implies that the vector v̂n+1 in (1.1) vanishes, and then, by Corollary 2.3, [f, g] = 〈f, g〉
for all polynomials f and g.

Proposition 3.1. Let n ≤ n(A). Then there is a family {p̃j}nj=0 of monic poly-
nomials that are orthogonal with respect to the quadratic form (3.2). The polynomials
satisfy ⎧⎪⎨⎪⎩

p̃0(t) = 1,

p̃j(t) = (t− c̃jj)p̃j−1(t) −
j−1∑
k=1

c̃kj p̃k−1(t), 1 ≤ j ≤ n,
(3.4)

where

c̃kj :=
[p̃k−1, tp̃j−1]

[p̃k−1, p̃k−1]
, 1 ≤ k ≤ j ≤ n.(3.5)

Proof. Formulas (3.4) and (3.5) are analogous to (2.2) and (2.3), respectively.
The latter formulas express orthogonality with respect to the quadratic form (1.3),
and similarly the formulas (3.4) and (3.5) express orthogonality with respect to the
quadratic form (3.2), provided that the denominators in (3.5) do not vanish for 1 ≤
k ≤ n. We now establish the latter. It follows from (3.2), Theorem 2.2, and n ≤ n(A)
that

[f, f ] = 〈f, f〉 > 0 ∀f ∈ Pn−1.

This shows the proposition.
We are now in a position to define the upper Hessenberg matrix

H̃n+1 = [h̃jk]
n+1
j,k=1 ∈ C

(n+1)×(n+1)

in (1.6) using formulas analogous to (2.4). Thus, let

h̃j+1,j :=
[p̃j , p̃j ]

1/2

[p̃j−1, p̃j−1]1/2
, 1 ≤ j ≤ n,(3.6)

h̃kj :=
[p̃k−1, tp̃j−1]

[p̃k−1, p̃k−1]1/2[p̃j−1, p̃j−1]1/2
, 1 ≤ k ≤ j ≤ n + 1,(3.7)

h̃kj := 0, 2 ≤ j + 1 < k ≤ n + 1.
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Let Hn+1 = [hkj ]
n+1
k,j=1 be the upper Hessenberg matrix of order n+1 determined

by n + 1 steps of the Arnoldi process applied to A with initial vector v. The matrix
Hn is the leading principal submatrix of Hn+1 of order n. The following theorem
shows that

H̃n+1 =

⎡⎢⎢⎢⎢⎢⎣

√
2h1,n+1

Hn

√
2h2,n+1

...√
2hn,n+1

0 · · · 0
√

2hn+1,n hn+1,n+1

⎤⎥⎥⎥⎥⎥⎦ ∈ C
(n+1)×(n+1).

Theorem 3.2. Assume that n < n(A) and let hkj , 1 ≤ k, j ≤ n + 1, be the
entries of the upper Hessenberg matrix Hn+1 in the Arnoldi decomposition (1.1) with
n replaced by n + 1. Then

h̃kj = hkj , 1 ≤ k, j ≤ n,(3.8)

h̃j+1,j = hj+1,j , 1 ≤ j < n,(3.9)

h̃k,n+1 =
√

2hk,n+1, 1 ≤ k ≤ n,

h̃n+1,n =
√

2hn+1,n,

h̃n+1,n+1 = hn+1,n+1.

Proof. It follows from Proposition 2.1 that the entries hkj of the matrix Hn+1 are
well defined. Theorem 2.2 and (3.2) yield

[f, g] = 〈f, g〉 ∀{f, g} ∈ Wn−1,(3.10)

and therefore it follows from the recurrence relations (2.2)–(2.3) and (3.4)–(3.5) that

c̃kj = ckj , 1 ≤ k ≤ j ≤ n,

and

p̃j = pj , 0 ≤ j ≤ n.(3.11)

Formulas (3.8) and (3.9) follow from relations (2.4), (3.6), and (3.7), and equalities
(3.10) and (3.11).

The polynomial pn is the characteristic polynomial of Hn. This can be seen as
follows. Equation (2.15) shows that

pn(Hn)e1 = 0.(3.12)

This equation and the fact that Hn has positive subdiagonal entries determine the
coefficients in the representation

pn(t) = tn +

n−1∑
j=0

αjt
j

uniquely. By the Cayley–Hamilton theorem, the characteristic polynomial of Hn

satisfies (3.12). Hence, pn is the characteristic polynomial and it follows that

〈p, qpn〉n = 0
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for any polynomials p and q. Therefore, from (2.4), (3.2), (3.6), (3.7), (3.10), and
(3.11), we obtain

h̃k,n+1 =
2〈pk−1, tpn〉√

2〈pk−1, pk−1〉1/2〈pn, pn〉1/2
=

√
2hk,n+1, 1 ≤ k ≤ n,

h̃n+1,n =

√
2〈pn, pn〉1/2

〈pn−1, pn−1〉1/2
=

√
2hn+1,n,

h̃n+1,n+1 =
2〈pn, tpn〉
2〈pn, pn〉

= hn+1,n+1.

This shows the theorem.
Introduce the bilinear forms

[f, g](r,s) := 2〈f, g〉(r,s) − 〈f, g〉(r,s)n , 1 ≤ r, s ≤ n,(3.13)

and

[f, g]
(r,s)
n+1 := ‖v‖2e∗r(f(H̃n+1))

∗g(H̃n+1)es, 1 ≤ r, s ≤ n,(3.14)

where we note that [f, g](1,1) = [f, g] and [f, g]
(1,1)
n+1 = [f, g]n+1. The following result

is analogous to Theorem 2.4.
Theorem 3.3. Assume that n < n(A). Then

[f, g]
(r,s)
n+1 = [f, g](r,s)

for all integers r, s such that 1 ≤ r, s ≤ n, and for all polynomials f, g such that
either f ∈ Pn−r+2 and g ∈ Pn−s+1 or f ∈ Pn−r+1 and g ∈ Pn−s+2.

Proof. Let f̂ ∈ Pn+1 and ĝ ∈ Pn be of the form

f̂ = ‖v‖fp̂r−1, ĝ = ‖v‖gp̂s−1,

where the p̂r−1 and p̂s−1 are defined by (2.1). Similar to the proof of Theorem 2.4,

we obtain that 〈f̂ , ĝ〉 = 〈f, g〉(r,s) and 〈f, g〉n = 〈f, g〉(r,s)n for 1 ≤ r, s ≤ n. Therefore,
by (3.2) and (3.13),

[f̂ , ĝ] = 2〈f̂ , ĝ〉 − 〈f̂ , ĝ〉n = 2〈f, g〉(r,s) − 〈f, g〉(r,s)n = [f, g](r,s).(3.15)

Application of n + 1 steps of the Arnoldi process to the matrix A with initial
vector v yields an Arnoldi decomposition analogous to (1.1) with n replaced by n+1.
Let Hn+1 ∈ C

(n+1)×(n+1) denote the upper Hessenberg matrix in this decomposition.
Then, analogously to (2.16), we have

ej = ‖v‖p̂j−1(Hn+1)e1, 1 ≤ j ≤ n.

Straightforward computation yields

H̃k
n+1e1 = Hk

n+1e1, 0 ≤ k ≤ n− 1,

and therefore

p̂j−1(H̃n+1)e1 = p̂j−1(Hn+1)e1, 1 ≤ j ≤ n.
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Hence, ‖v‖p̂j−1(H̃n+1)e1 = ej , 1 ≤ j ≤ n, and it follows that for 1 ≤ r, s ≤ n,

[f̂ , ĝ]n+1 = ‖v‖2e∗1(f̂(H̃n+1))
∗ĝ(H̃n+1)e1

= ‖v‖2e∗r(f(H̃n+1))
∗g(H̃n+1)es = [f, g]

(r,s)
n+1 .

(3.16)

Combining (3.3), (3.15), and (3.16) shows that

[f, g]
(r,s)
n+1 = [f, g](r,s), 1 ≤ r, s ≤ n.(3.17)

When instead f̂ ∈ Pn and ĝ ∈ Pn+1, (3.17) can be shown in a similar fashion for
f ∈ Pn−r+1 and g ∈ Pn−s+2. This completes the proof of the theorem.

4. Applications of Arnoldi and anti-Arnoldi quadrature rules. Let f and
g be functions such that f(A)v and g(A)v have the expansions

f(A)v =

m1∑
i=0

ηip̂i(A)v, g(A)v =

m2∑
j=0

ξj p̂j(A)v,(4.1)

where m1 and m2 are nonnegative integers such that max{m1,m2} ≤ n(A). For
notational simplicity, we assume that n, the number of steps of the Arnoldi process,
is at most min{m1,m2} − 1. Then

〈f, g〉 =

m1∑
i=0

m2∑
j=0

η̄iξj〈p̂i, p̂j〉,(4.2)

and the orthonormality of the polynomials p̂i yields

〈f, g〉 =

n−1∑
i=0

η̄iξi + η̄nξn +

min{m1,m2}∑
i=n+1

η̄iξi.(4.3)

Replacing the quadratic form 〈·, ·〉 by 〈·, ·〉n in (4.2), and using the facts that
〈p̂i, p̂j〉n = 〈p̂i, p̂j〉 for 0 ≤ i, j < n, and 〈p̂n, q〉n = 0 for any polynomial q, shows that

〈f, g〉n =

n−1∑
i=0

η̄iξi +

n−1∑
i=0

(η̄iξn+1〈p̂i, p̂n+1〉n + η̄n+1ξi〈p̂n+1, p̂i〉n)

+

m2∑
j=n+1

η̄n+1ξj〈p̂n+1, p̂j〉n +

n−1∑
i=0

m2∑
j=n+2

η̄iξj〈p̂i, p̂j〉n(4.4)

+

m1∑
i=n+2

m2∑
j=0
j �=n

η̄iξj〈p̂i, p̂j〉n.

Similarly, replacing the quadratic form 〈·, ·〉 by [·, ·]n+1 in (4.2), and using the
facts that [p̂i, p̂j ]n+1 = 〈p̂i, p̂j〉 for 0 ≤ i, j < n, [p̂n, p̂j ]n+1 = 0 for 0 ≤ j < n as well
as for j = n + 1, [p̂n, p̂n]n+1 = 2, and [p̂n+1, p̂j ]n+1 = −〈p̂n+1, p̂j〉n for 0 ≤ j ≤ n,
yields

[f, g]n+1 =

n−1∑
i=0

η̄iξi + 2η̄nξn −
n−1∑
i=0

(η̄iξn+1〈p̂i, p̂n+1〉n + η̄n+1ξi〈p̂n+1, p̂i〉n)
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+

m2∑
j=n+1

η̄n+1ξj [p̂n+1, p̂j ]n+1 +

n∑
i=0

m2∑
j=n+2

η̄iξj [p̂i, p̂j ]n+1(4.5)

+

m1∑
i=n+2

m2∑
j=0

η̄iξj [p̂i, p̂j ]n+1 .

Let

ψn :=

n−1∑
i=0

(η̄iξn+1〈p̂i, p̂n+1〉n + η̄n+1ξi〈p̂n+1, p̂i〉n) − η̄nξn.

Combining (4.3) with (4.4), and (4.3) with (4.5), yields

〈f, g〉n = 〈f, g〉 + ψn + δn,

[f, g]n+1 = 〈f, g〉 − ψn + δ̃n,

respectively, where δn, δ̃n ∈ C converge to zero when the coefficients ηj and ξj , j ≥
n + 1, do.

Assume that the coefficients ηj and ξj for j ≥ n + 1 are of sufficiently small
magnitude, so that

max{|Re(δn)|, |Re(δ̃n)|} ≤ |Re(ψn)|,
max{|Im(δn)|, |Im(δ̃n)|} ≤ |Im(ψn)|,(4.6)

where Re(z) and Im(z) denote the real and imaginary parts of z ∈ C, respectively.
Then, if Re(ψn) ≤ 0, we have

Re(〈f, g〉n) ≤ Re(〈f, g〉) ≤ Re([f, g]n+1).

Similarly, if Im(ψn) ≤ 0, then

Im(〈f, g〉n) ≤ Im(〈f, g〉) ≤ Im([f, g]n+1).

Conversely, the inequality Re(ψn) ≥ 0 implies that Re(〈f, g〉n) and Re([f, g]n+1)
furnish upper and lower bounds, respectively, of Re(〈f, g〉), and Im(ψn) ≥ 0 im-
plies that Im(〈f, g〉n) and Im([f, g]n+1) are upper and lower bounds, respectively, of
Im(〈f, g〉).

We remark that it is generally not straightforward to verify whether the condi-
tions (4.6) hold. Nevertheless, it is interesting that there are sufficient conditions for
the Arnoldi and anti-Arnoldi rules to give upper and lower bounds. Moreover, for
many quadratic forms (1.3) and (1.9) these quadrature rules provide upper and lower
bounds. This is illustrated in section 5.

Expansions for 〈f, g〉(r,s), 〈f, g〉(r,s)n , and [f, g]
(r,s)
n+1 can be derived in a way similar

to the expansions (4.3), (4.4), and (4.5). Let, analogously to (4.1),

‖v‖f(A)vr = ‖v‖f(A)p̂r−1(A)v =

m3∑
i=0

η
(r)
i p̂i(A)v,

‖v‖g(A)vs = ‖v‖g(A)p̂s−1(A)v =

m4∑
j=0

ξ
(s)
j p̂j(A)v.
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Then, similarly to (4.2),

〈f, g〉(r,s) =

m3∑
i=0

m4∑
j=0

η̄
(r)
i ξ

(s)
j 〈p̂i, p̂j〉,

and formulas analogous to (4.3), (4.4), and (4.5) can easily be derived. They show

that under suitable conditions on the coefficients η
(r)
i and ξ

(s)
j , the real and imaginary

parts of the quadrature rules 〈f, g〉(r,s)n and [f, g]
(r,s)
n+1 bracket the real and imaginary

parts, respectively, of 〈f, g〉(r,s).
We now are in a position to discuss the computation of inexpensive estimates of

bilinear forms u∗g(A)v, where u =
∑�

r=1 βrvr and r < n, considered at the end of
section 1. Assume that the coefficients βr are real. Then

u∗g(A)v =

�∑
r=1

βrv
∗
rg(A)v =

1

‖v‖

�∑
r=1

βr〈1, g〉(r,1).(4.7)

We use

1

‖v‖

�∑
r=1

max
{
βr〈1, g〉(r,1)n , βr[1, g]

(r,1)
n+1

}
(4.8)

as an estimate of an upper bound of u∗g(A)v, and

1

‖v‖

�∑
r=1

min
{
βr〈1, g〉(r,1)n , βr[1, g]

(r,1)
n+1

}
(4.9)

as an estimate of a lower bound.
As another application, note that from (1.7) the error 〈f, g〉 − 〈f, g〉n for {f, g} ∈

Wn can be computed by evaluating the right-hand side of

〈f, g〉 − 〈f, g〉n =
1

2
([f, g]n+1 − 〈f, g〉n).

This suggests that the quadratic form 〈·, ·〉 can be approximated by the averaged
quadrature rule

(f, g)n+1/2 :=
1

2
([f, g]n+1 + 〈f, g〉n),(4.10)

and from (1.7),

(f, g)n+1/2 = 〈f, g〉 ∀{f, g} ∈ Wn.

Moreover, since 〈p̂n, p̂n〉 = 1, 〈p̂n, p̂n〉n = 0, and [p̂n, p̂n] = 2, the averaged quadrature
rule (·, ·)n+1/2 takes on the same values as 〈·, ·〉 for a larger class of functions than the

quadrature rules (1.5) and (1.6). The expansion for the averaged quadrature rule,

(f, g)n+1/2 =

n∑
i=0

η̄iξi +

m2∑
j=n+1

η̄n+1ξj(p̂n+1, p̂j)n+1/2

+

n∑
i=0

m2∑
j=n+2

η̄iξj(p̂i, p̂j)n+1/2 +

m1∑
i=n+2

m2∑
j=0

η̄iξj(p̂i, p̂j)n+1/2,
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does not contain many of the low-order terms present in the expansions (4.4) and
(4.5) but not in the expansion (4.3), and for many functions the averaged quadrature
rule (4.10) gives higher accuracy than either quadrature rule (1.5) or (1.6). This is
illustrated in section 5.

Similarly to (4.10), we also introduce the averaged quadrature rules associated
with the quadrature rules (2.13) and (3.14),

(f, g)
(r,s)
n+1/2 :=

1

2
([f, g]

(r,s)
n+1 + 〈f, g〉(r,s)n ), 1 ≤ r, s ≤ n,(4.11)

as well as an averaged rule for the inexpensive approximation of (4.7),

u∗g(A)v ≈ 1

‖v‖

�∑
r=1

βr (1, g)
(r,1)
n+1/2 ,(4.12)

where the coefficients βj are the same as in (4.7).

5. Numerical examples. This section presents computed examples which il-
lustrate the accuracy of the computed estimates. The computations were carried out
using MATLAB 6.1 on a personal computer, i.e., with approximately 15 significant
digits.

In examples below, we approximate functionals of the form

I(r,s)(g) := ‖v‖2v∗rg(A)vs, 1 ≤ r, s ≤ n,(5.1)

for several functions g and matrices A by Arnoldi, anti-Arnoldi, and averaged quadra-
ture rules given by, in order,

G(r,s)
n (g) := ‖v‖2e∗rg(Hn)es,

G̃(r,s)
n+1 (g) := ‖v‖2e∗rg(H̃n+1)es,

L(r,s)
2n+1(g) :=

1

2
(G(r,s)

n (g) + G̃(r,s)
n+1 (g)).

These quadrature rules are related to the bilinear forms (2.13), (3.14), and (4.11),
respectively.

Example 5.1. Let the nonsymmetric matrix A ∈ R
200×200 have uniformly dis-

tributed entries in the interval [0, 0.01]; we generated A with the MATLAB command
A = rand(200)/100. The initial vector v = v1 has random entries and is normal-
ized to be of unit length. We compute approximations of the functionals (5.1) for
g(t) = exp(t) and 1 ≤ r, s ≤ 3. Table 5.1 displays, for n = 3, the values I(r,s)(g)
computed by using the MATLAB command expm(A) as well as approximations of
these values determined by the Arnoldi, anti-Arnoldi, and averaged quadrature rules.
The n = 3 steps of the Arnoldi process generate a 3 × 3 matrix H3. Table 5.1 is
a 3 × 3 block matrix with each block-row corresponding to one value of the index
r and each block-column to one value of the index s. The first entry of each block
shows the value I(r,s)(g), and the second and third entries show the approximations

determined by the Arnoldi quadrature rule G(r,s)
n (g) and the anti-Arnoldi quadrature

rule G̃(r,s)
n+1 (g), respectively. The last entry of each block displays the approximation

obtained with the averaged rule L(r,s)
2n+1(g). The values I(r,s)(g) can be seen to lie

between the approximations determined by the Arnoldi and anti-Arnoldi quadrature
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Table 5.1

Example 5.1: g(t) = exp(t), A ∈ R200×200 nonsymmetric random matrix, n = 3.

s = 1 s = 2 s = 3

I(1,s)(g) 2.2393416561 0.7638513101 0.0362450361

G(1,s)
n (g) 2.2393414349 0.7638494620 0.0361306238

G̃(1,s)
n+1 (g) 2.2393418837 0.7638532236 0.0363646813

L(1,s)
2n+1(g) 2.2393416593 0.7638513428 0.0362476525

I(2,s)(g) 0.7647795061 1.4693731134 0.0190982332

G(2,s)
n (g) 0.7647793198 1.4693715815 0.0190056961

G̃(2,s)
n+1 (g) 0.7647796957 1.4693746791 0.0191935089

L(2,s)
2n+1(g) 0.7647795077 1.4693731303 0.0190996025

I(3,s)(g) 0.0157954394 0.0590195933 0.9964079321

G(3,s)
n (g) 0.0157953250 0.0590186907 0.9963570541

G̃(3,s)
n+1 (g) 0.0157955541 0.0590204980 0.9964589719

L(3,s)
2n+1(g) 0.0157954395 0.0590195944 0.9964080130

Table 5.2

Example 5.2: g(t) = exp(t), A ∈ R200×200 nonsymmetric Toeplitz matrix, n = 5.

s = 1 s = 2 s = 3 s = 4 s = 5

I(1,s)(g) 201.43 −90.70 −52.26 −18.16 −7.81

G(1,s)
n (g) 201.47 −90.54 −51.78 −16.93 −5.30

G̃(1,s)
n+1 (g) 201.40 −90.81 −52.55 −18.82 −8.80

L(1,s)
2n+1(g) 201.44 −90.67 −52.17 −17.88 −7.05

I(2,s)(g) 95.58 10.39 −28.53 −26.92 −12.79

G(2,s)
n (g) 95.63 10.59 −27.96 −25.42 − 9.64

G̃(2,s)
n+1 (g) 95.55 10.25 −28.94 −27.88 −14.51

L(2,s)
2n+1(g) 95.59 10.42 −28.45 −26.65 −12.07

rules. The averaged rule is seen to determine approximations of higher accuracy than
the Arnoldi and anti-Arnoldi quadrature rules.

Example 5.2. Let A ∈ R
200×200 be a nonsymmetric Toeplitz matrix with first

row [1, 2−2, 3−2, . . . , 200−2] and first column [1, 2−1, 3−1, . . . , 200−1]T , and let v =
[1, 1, . . . , 1]T /

√
200. We compute approximations of the functionals (5.1) for g(t) =

exp(t), 1 ≤ r ≤ 2 and 1 ≤ s ≤ 5. Table 5.2 is analogous to Table 5.1 and displays
the values I(r,s)(g) computed by using the MATLAB command expm(A) as well as
approximations of these values determined by the Arnoldi, anti-Arnoldi, and averaged
quadrature rules with n = 5. The values I(r,s)(g) can be seen to lie between the ap-
proximations determined by the Arnoldi and anti-Arnoldi quadrature rules. Therefore
the averaged rules determine approximations of higher accuracy than the Arnoldi and
anti-Arnoldi quadrature rules.

Example 5.3. Let the nonsymmetric matrix A ∈ R
500×500 and initial vector

v = v1 be generated similarly as in Example 5.1. We compute approximations of
the functionals (5.1) for g(t) = (1 + t2)−1. Table 5.3 shows, for n = 4, the values
I(r,s)(g) computed by using the MATLAB command inv(I + A2) and approxima-
tions determined by the Arnoldi, anti-Arnoldi, and averaged quadrature rules. As in
the examples above, the approximations determined by the Arnoldi and anti-Arnoldi
quadrature rules bracket the exact values of I(r,s)(g). The averaged quadrature rules
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Table 5.3

Example 5.3: g(t) = (1 + t2)−1, A ∈ R500×500 nonsymmetric, n = 4.

s = 1 s = 2 s = 3 s = 4

I(1,s)(g) 0.6309356066 −0.2190558983 −0.0043520021 −0.0005276674

G(1,s)
n (g) 0.6309356000 −0.2190558782 −0.0043517905 −0.0005591523

G̃(1,s)
n+1 (g) 0.6309356129 −0.2190559178 −0.0043521878 −0.0004972393

L(1,s)
2n+1(g) 0.6309356065 −0.2190558980 −0.0043519891 −0.0005281958

I(2,s)(g) −0.2188599160 0.8701328956 −0.0025997873 −0.0003641850

G(2,s)
n (g) −0.2188599109 0.8701328732 −0.0025997154 −0.0003307974

G̃(2,s)
n+1 (g) −0.2188599206 0.8701329188 −0.0025999568 −0.0003982020

L(2,s)
2n+1(g) −0.2188599157 0.8701328960 −0.0025998361 −0.0003644997

I(3,s)(g) −0.0064198253 −0.0037919324 0.9999829690 −0.0000783738

G(3,s)
n (g) −0.0064198163 −0.0037919671 0.9999829347 −0.0000258878

G̃(3,s)
n+1 (g) −0.0064198342 −0.0037918976 0.9999829918 −0.0001309499

L(3,s)
2n+1(g) −0.0064198253 −0.0037919324 0.9999829632 −0.0000784188

I(4,s)(g) 0.0001669050 −0.0006640880 0.0000195458 1.0000332437

G(4,s)
n (g) 0.0001669043 −0.0006640839 0.0000195017 1.0000272973

G̃(4,s)
n+1 (g) 0.0001669058 −0.0006640921 0.0000195737 1.0000391773

L(4,s)
2n+1(g) 0.0001669051 −0.0006640880 0.0000195377 1.0000332373

Table 5.4

Example 5.4: g(t) = exp(t), A ∈ C200×200 non-Hermitian, n = 3, i =
√
−1.

s = 1 s = 2 s = 3

I(1,s)(g) 2.262829 + 0.039314i 0.742972 + 0.023252i 0.119483 − 0.000962i

G(1,s)
n (g) 2.262825 + 0.039325i 0.742945 + 0.023334i 0.119019 + 0.000486i

G̃(1,s)
n+1 (g) 2.262831 + 0.039304i 0.742992 + 0.023169i 0.119814 − 0.002445i

L(1,s)
2n+1(g) 2.262828 + 0.039314i 0.742969 + 0.023252i 0.119417 − 0.000979i

I(2,s)(g) 0.788222 + 0.011862i 1.441307 + 0.021074i 0.061573 + 0.003638i

G(2,s)
n (g) 0.788225 + 0.011867i 1.441324 + 0.021118i 0.061851 + 0.004413i

G̃(2,s)
n+1 (g) 0.788220 + 0.011856i 1.441291 + 0.021029i 0.061327 + 0.002829i

L(2,s)
2n+1(g) 0.788222 + 0.011862i 1.441307 + 0.021073i 0.061589 + 0.003621i

I(3,s)(g) 0.056832 + 0.000658i 0.203864 + 0.001905i 1.009163 + 0.004721i

G(3,s)
n (g) 0.056835 + 0.000654i 0.203882 + 0.001871i 1.009443 + 0.004173i

G̃(3,s)
n+1 (g) 0.056830 + 0.000663i 0.203847 + 0.001939i 1.008883 + 0.005261i

L(3,s)
2n+1(g) 0.056832 + 0.000658i 0.203864 + 0.001905i 1.009163 + 0.004717i

give approximations of higher accuracy than the Arnoldi and anti-Arnoldi quadrature
rules.

Example 5.4. Let the matrices A1, A2 ∈ R
200×200 be generated similarly to the

matrix A in Example 5.1 and let A := A1 + iA2 ∈ C
200×200, where i =

√
−1. The

initial vector v = v1 has random complex entries and is of unit length. We compute
approximations of the functionals (5.1) for g(t) = exp(t) and n = 3. Table 5.4 displays
the values I(r,s)(g) computed by using the MATLAB command expm(A) as well as
approximations determined by the Arnoldi, anti-Arnoldi, and averaged quadrature
rules. The real and imaginary parts of I(r,s)(g) can be seen to be bracketed by
the real and imaginary parts, respectively, of the approximations determined by the
Arnoldi and anti-Arnoldi quadrature rules. The averaged quadrature rule yields higher
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Table 5.5

Example 5.5: f(t) = t20, g(t) = exp(t), A ∈ R200×200 nonsymmetric, n = 3.

s = 1 s = 2 s = 3

〈f, g〉(1,s) 1.9426441044 1.1529977481 0.0534278853

〈f, g〉(1,s)n 1.9427711374 1.1530783050 0.0534990864

[f, g]
(1,s)
n+1 1.9425056337 1.1529104434 0.0533534039

(f, g)
(1,s)

n+1/2
1.9426383856 1.1529943742 0.0534262451

〈f, g〉(1,s)n+1 1.9426383731 1.1529943662 0.0534262419

〈f, g〉(2,s) 1.1460720705 0.6802164707 0.0315200334

〈f, g〉(2,s)n 1.1461641820 0.6802741850 0.0315625116

[f, g]
(2,s)
n+1 1.1459715957 0.6801538166 0.0314755768

(f, g)
(2,s)

n+1/2
1.1460678888 0.6802140008 0.0315190442

〈f, g〉(2,s)n+1 1.1460678789 0.6802139945 0.0315190416

〈f, g〉(3,s) 0.0532727803 0.0316184501 0.0014651433

〈f, g〉(3,s)n 0.0536498306 0.0318423794 0.0014773829

[f, g]
(3,s)
n+1 0.0528602607 0.0313734723 0.0014518747

(f, g)
(3,s)

n+1/2
0.0532550457 0.0316079258 0.0014646288

〈f, g〉(3,s)n+1 0.0532549891 0.0316078912 0.0014646132

accuracy than the Arnoldi and anti-Arnoldi quadrature rules.
Example 5.5. Let the nonsymmetric matrix A ∈ R

200×200 and the initial vector
v = v1 be generated as in Example 5.1. We compute approximations of 〈f, g〉(r,s) for
f(t) = t20, g(t) = exp(t), and 1 ≤ r, s ≤ n. Table 5.5 shows, for n = 3, the values
〈f, g〉(r,s) and approximations (2.13), (3.14), and (4.11) determined by Arnoldi, anti-
Arnoldi, and averaged quadrature rules, respectively. The table also displays the
approximations

〈f, g〉(r,s)n+1 := ‖v‖2e∗r(f(Hn+1))
∗g(Hn+1)es, 1 ≤ r, s ≤ n.

Similar to the previous examples, the approximations 〈f, g〉(r,s)n and [f, g]
(r,s)
n+1 de-

termined by the Arnoldi and anti-Arnoldi quadrature rules, respectively, bracket the

exact value 〈f, g〉(r,s) for each pair (r, s). The values (f, g)
(r,s)
n+1/2 determined by the av-

eraged quadrature rule can be seen to be of higher accuracy than the approximations

〈f, g〉(r,s)n and [f, g]
(r,s)
n+1 .

The evaluations of 〈f, g〉(r,s)n+1 and (f, g)
(r,s)
n+1/2 both require the computation of

n + 1 steps of the Arnoldi process. In Table 5.5 the value (f, g)
(r,s)
n+1/2 furnishes an

approximation of 〈f, g〉(r,s) with a smaller error than 〈f, g〉(r,s)n+1 for each pair (r, s).

However, we remark that it is easy to find examples such that 〈f, g〉(r,s)n+1 is a more

accurate approximation than (f, g)
(r,s)
n+1/2 for some pair (r, s).

Example 5.6. Let the matrix A ∈ R
200×200 and the vector v ∈ R

200 be the same
as in Example 5.2 and define u = v + Av. We would like to determine estimates of
u∗ exp(A)v using (4.8) and (4.9) with g(t) = exp(t). It follows from (1.1) with v1 = v
that u = v1 + Av1 = (1 + h11)v1 + h21v2. Thus, β1 = 1 + h11 and β2 = h21 in (4.8)
and (4.9). With n = 4, the formulas (4.8) and (4.9) yield the values 1.4035 · 103 and
1.3998 · 103, respectively. Using the average quadrature rule (4.12) gives 1.4016 · 103.
The exact value is, after rounding, 1.4014 · 103. The value obtained by the averaged
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quadrature rule is slightly more accurate than the value delivered by the Arnoldi
quadrature rule with n = 5. The computational effort required by these rules is
about the same.

The above examples show how the Arnoldi and anti-Arnoldi quadrature rules can
be applied to determine estimates of upper and lower bounds for certain quadratic
and bilinear forms. Moreover, the examples illustrate that for many quadratic and
bilinear forms, the computed estimates are upper and lower bounds.
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Abstract. It is well known that the performance of eigenvalue algorithms such as the Lanczos
and the Arnoldi methods depends on the distribution of eigenvalues. Under fairly general assumptions
we characterize the region of good convergence for the isometric Arnoldi process. We also determine
bounds for the rate of convergence and we prove sharpness of these bounds. The distribution of
isometric Ritz values is obtained as the minimizer of an extremal problem. We use techniques from
logarithmic potential theory in proving these results.
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1. Introduction. Unitary eigenvalue problems arise in a number of different
fields, for example, signal processing and trigonometric approximation problems (for
references, see [10]). There exist numerical methods specifically designed to solve such
eigenvalue problems. In this article we examine the convergence of one such method:
the isometric Arnoldi process (IAP), which was introduced by Gragg [15]. Recently,
Stewart proved numerical stability of a variant in [25]. Other useful references include
[9, 16].

The Arnoldi iteration method is a very popular method for computing some
eigenvalues of a matrix. For a unitary matrix U ∈ C

N×N , the method can be adapted
to exploit the structure. Here we give an outline of the method. An orthonormal
basis q1, q2, . . . , qN is created for C

N based on a Gram–Schmidt orthogonalization of
the vectors b, Ub, U2b, . . . , UN−1b for some starting vector b ∈ C

N . If Q is the unitary
matrix with the qj as its columns, we get UQ = QH for some unitary Hessenberg
matrix H, which necessarily has the same eigenvalues as U . The Arnoldi idea is
to look at the n × n leading principal submatrix Hn of H (for some n � N) and
to compute the eigenvalues of Hn. It is hoped that some of these eigenvalues are
good approximants to some of the eigenvalues of U . If the required eigenvalues are
indeed approximated and if n � N , then operating on Hn instead of H can save a
considerable amount of computing time.

The matrix Hn is not unitary anymore, except in cases of “lucky breakdown.”
Ignoring such cases, we have that all eigenvalues are strictly inside the unit circle.
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The numbers we want to calculate are on the unit circle, so it is natural to take
the approximants also on the unit circle. To this end we modify the matrix Hn. To
make it a unitary matrix, it suffices to rescale the last column. Then we take the
eigenvalues of the modified submatrices as approximants. This is the basic idea of the
IAP. In actual implementations of the IAP, the computations are done implicitly and
involve only the Schur parameters (γn)n that are associated with a unitary Hessenberg
matrix.

For the convergence of the IAP, it is important to know in what sense the ap-
proximation of eigenvalues takes place and which eigenvalues are well approximated.
We will consider this question from the point of view of logarithmic potential theory.
Polynomial minimization problems provide the connection between Krylov subspace
methods in numerical linear algebra and potential theory, which is clearly explained
by Driscoll, Toh, and Trefethen [12]. See also [26, p. 279], where one finds the rule
of thumb that the Lanczos iteration tends to converge to eigenvalues in regions of
“too little charge” for an equilibrium distribution. This rule of thumb for the Lanczos
method was made more precise in [5, 18]. It is the aim of this paper to apply similar
ideas to the IAP.

Note that potential theory was also used in recent papers [4, 6, 7, 8, 24] for the
convergence analysis of other iterative methods in numerical linear algebra.

The rest of the paper is organized as follows. In the next section we state our
main results. Then we collect the properties of unitary Hessenberg matrices and para-
orthogonal polynomials that we need for our purposes. In particular we mention a
polynomial minimization problem, which is crucial for the link to potential theory. We
have not seen this minimization problem in the literature before, but it may be known
to specialists in the field. Section 4 contains the proofs of the main results. In the
last section we will discuss some numerical experiments that illustrate our theoretical
results.

2. Statement of results. The results we obtain will be of an asymptotic nature.
We do not investigate the eigenvalues of a single unitary matrix U , but instead we look
at a sequence of unitary matrices (UN )N , with UN ∈ C

N×N . This setting reflects,
for example, the discretization of a continuous problem with decreasing mesh size.
The eigenvalues and orthonormal eigenvectors of UN are denoted by {λk,N}Nk=1 and
{vk,N}Nk=1, respectively. We also take a unit starting vector bN ∈ C

N for every N .
For our results, we have to impose a number of mild conditions on the sequence of
matrices.

In the conditions, and also in the rest of the paper, the logarithmic potential Uµ

of a measure µ appears. This is the function

Uµ(z) =

∫
log

1

|z − z′| dµ(z′),

which is a harmonic function outside the support of µ. The logarithmic potential
Uµ may take the value −∞. Further, δλ denotes the Dirac point mass in λ and ‖·‖
denotes the Euclidian two-norm of a vector. The unit circle in the complex plane is
denoted by T.

Conditions 2.1.

(1) There exists a probability measure σ on T whose logarithmic potential Uσ is
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real valued and continuous, such that

lim
N→∞

1

N

N∑
j=1

δλj,N
= σ.(2.1)

(2) For every ε > 0 there exists a δ ∈ (0, 1) so that for all sufficiently large N and
for all k � N

N∏
j=1

0<|λj,N−λk,N |<δ

|λj,N − λk,N | > e−Nε.(2.2)

(3) For every N , we have that ‖bN‖ = 1 and

lim
N→∞

(
min

1�k�N
|〈bN , vk,N 〉|

)1/N

= 1.(2.3)

The limit in (2.1) is in the sense of weak*-convergence of measures. In this paper
convergence of measures will always be in the weak*-sense, i.e., if ν and νn are Borel
probability measures on T, then νn → ν if and only if∫

f dνn →
∫

f dν

for every continuous function f on T. Thus the first condition states that the eigen-
values have a limiting distribution σ. The condition that Uσ is continuous and real
valued (and so does not take the value −∞) is a regularity condition on σ. It is
satisfied, for example, if σ has a bounded density with respect to the Lebesgue mea-
sure on T. The second condition is a technical one that prevents the eigenvalues
from being too close to each other. Beckermann [5, Lemma 2.4(a)] proved that under
Condition 2.1(1), Condition 2.1(2) is equivalent with the following.

(2b) For all sequences (kN )N with kN ∈ {1, . . . , N} such that limN→∞ λkN ,N = λ
for some λ, we have

lim
N→∞

1

N

N∑
j=1
j �=kN

log|λkN ,N − λj,N | =

∫
log|λ− z|dσ(z).(2.2b)

A discussion about this condition can be found in [19]. The third condition imposes
that the starting vectors are sufficiently random, i.e., their eigenvector components
are not exponentially small. Since the numbers |〈bN , vj,N 〉| will be used frequently,
we introduce a shorter notation:

wj,N := |〈bN , vj,N 〉|.(2.4)

For every N we consider the IAP on UN with starting vector bN . Iteratively, an
orthonormal basis is created for the Krylov subspaces

Kn,N = span{bN , UNbN , U2
NbN , . . . , Un−1

N bN}.

If we compute a basis for whole C
N in this way, UN is represented by a Hessenberg

matrix in this basis. The n× n principal left upper block Hn,N of this matrix is the
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representation of the orthogonal projection of UN onto Kn,N . By modifying the last

column of Hn,N we can obtain a unitary Hessenberg matrix H̃n,N . The modification
depends on a unimodular constant ρn,N ; see also section 3. The precise value of ρn,N
is not important to our results, and we will not indicate the dependence on ρn,N in
our notation. Let

ψn,N (z) = det(zIn − H̃n,N ),(2.5)

where In denotes the n × n identity matrix and let θ1,n,N , θ2,n,N , . . . , θn,n,N be the
zeros of ψn,N . We call these numbers the Ritz values for the IAP or the isometric

Ritz values. Since they are the eigenvalues of H̃n,N , which is a unitary matrix, the
isometric Ritz values are on the unit circle. We take the eigenvalues of the matrices
UN and the isometric Ritz values to be numbered counterclockwise, but we do not
specify a starting point. We also take λ0,N := λN,N and θ0,n,N := θn,n,N .

In section 3 (see Proposition 3.4 below) we will prove that the isometric Ritz
values are separated by the eigenvalues, by which we mean that on the open arc
between two consecutive isometric Ritz values there is at least one eigenvalue, or put
differently, on the closed arc between any two consecutive eigenvalues there is at most
one isometric Ritz value.

We consider the convergence of isometric Ritz values along ray sequences, i.e., we
let N approach infinity, and with it also n, in such a fashion that n/N → t for some
t ∈ (0, 1). If we consider the points (N,n) in a triangular array, then the convergence
is taken along a sequence of (N,n) values that are asymptotic to a line with slope t
in the N -n plane. We denote a limit in this sense by limn,N→∞,n/N→t.

Theorem 2.2. Let (UN ) and (bN ) be such that Conditions 2.1 hold. Then for
every t ∈ (0, 1), there exists a Borel probability measure µt, depending only on t and
σ, such that

lim
n,N→∞
n/N→t

1

n

n∑
j=1

δθj,n,N
= µt(2.6)

and a real constant Ft such that

lim
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n = exp(−Ft).(2.7)

The measure µt satisfies

0 � tµt � σ,

∫
dµt = 1(2.8)

and minimizes the logarithmic energy

I(µ) =

∫∫
log

1

|z − z′| dµ(z)dµ(z′)(2.9)

among all measures µ satisfying 0 � tµ � σ and
∫

dµ = 1. The logarithmic potential
Uµt of µt is a continuous function on C, and the constant Ft is such that{

Uµt(z) = Ft for z ∈ supp(σ − tµt),

Uµt(z) � Ft for z ∈ C.
(2.10)
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Furthermore, the relations (2.8) and (2.10) characterize the pair (µt, Ft).
This theorem tells us that the isometric Ritz values have a limiting distribution

µt if we let n,N → ∞ in such a way that n/N → t. The measure µt is the minimizer
of the logarithmic energy (2.9) under the constraints (2.8). Conditions (2.10) are the
Euler–Lagrange variational conditions for this minimization problem and together
with (2.8) they also characterize µt.

The next theorem shows that in a certain region the isometric Ritz values converge
exponentially fast to eigenvalues.

Theorem 2.3. Let (UN ) and (bN ) be such that Conditions 2.1 hold and let Ft be
as in Theorem 2.2. Then we have, for every t ∈ (0, 1),

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
Uµt(λ) − Ft

)
(2.11)

for every sequence of indices (kN ) with 1 � kN � N , such that (λkN ,N )N converges
to λ ∈ T.

We define the set

Λ(t, σ) := {λ ∈ T | Uµt(λ) < Ft}.

This is the region of good convergence of the IAP in the regime we are considering.
Inside this set, the right-hand side of (2.11) is strictly less than 1, which indicates that
for large N , an eigenvalue λkN ,N of UN in Λ(t, σ) is approximated by an isometric
Ritz value at a geometric rate. Outside Λ(t, σ), the right-hand side is just one and
then no convergence can be guaranteed.

In the next theorem, we will show that the convergence rate is actually twice
as big, except for perhaps one eigenvalue. It is also proven that this convergence
bound is sharp. In the theorem there will appear “exceptional indices”: the sharper
convergence rate will hold for all indices except for these “exceptional indices.”

Theorem 2.4. Let (UN ) and (bN ) be such that Conditions 2.1 hold, let Ft be as
in Theorem 2.2, and let λ ∈ Λ(t, σ). Then for every N , there exists at most one index
k∗N (λ) ∈ {1, 2, . . . , N} such that the following holds. If (kN ) is a sequence of indices
with 1 � kN � N and kN �= k∗N (λ) for every N large enough, such that (λkN ,N )N
converges to λ, then we have

lim
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n = exp
(
2
(
Uµt(λ) − Ft

))
.(2.12)

Remark 2.5. The fact that the convergence rate can be doubled was first realized
by Beckermann [5] in the context of the convergence of the Lanczos method. He also
introduced the exceptional indices. The proof of Theorem 2.4 is based on the proof
of [5, Theorem 2.1], but we have streamlined some of the arguments; see section 4.4
below.

Remark 2.6. It is possible to prove the inequality

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
2
(
Uµt(λ) − Ft

))

under weaker conditions; see [5].
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There are two types of possible exceptional behavior for the index k∗N (λ) in The-
orem 2.4, namely,

min
j

|λk∗
N

(λ),N − θj,n,N |1/n 	 exp
(
2
(
Uµt(λ) − Ft

))
,(2.13a)

min
j

|λk∗
N

(λ),N − θj,n,N |1/n � exp
(
2
(
Uµt(λ) − Ft

))
.(2.13b)

According to Theorem 2.4 at most one of them can occur for a fixed N . So we
have three possible situations: no exception, exception (2.13a), or exception (2.13b).
Which situation occurs will depend on the choice of parameter ρn,N . To show what
happens, we will make a classification of the relative positioning of the isometric Ritz
values and the eigenvalues in a closed arc I ⊂ Λ(t, σ).

It will be shown in Proposition 3.4 that the isometric Ritz values are separated by
the eigenvalues, and (2.11) tells us that each eigenvalue in Λ(t, σ) is approximated at
an exponential rate. Since the gaps between eigenvalues are not exponentially small
(see Lemma 4.2), each Ritz value can be close to a single eigenvalue only, if N is large
enough. From this information we can make a complete classification of the relative
positions of eigenvalues and isometric Ritz values on the arc I ⊂ Λ(t, σ).

Case 1: Each eigenvalue in I is close to exactly one isometric Ritz value and the
isometric Ritz value follows closely after the eigenvalue (when looking in
the counterclockwise direction).

Case 2: One eigenvalue in I is close to two isometric Ritz values, one on each side
of it.

Case 3: One isometric Ritz value in I is not close to an eigenvalue.
Case 4: Each eigenvalue in I is close to exactly one isometric Ritz value and the

isometric Ritz value precedes the eigenvalue (when looking in the coun-
terclockwise direction).

Case 5: One isometric Ritz value in I coincides with an eigenvalue.
Case 6: One arc between two consecutive eigenvalues in I contains no isometric

Ritz values.
The six different cases are illustrated in Figure 2.1, are mutually exclusive, and cover
all possibilities. In [2] and [3, Theorem 2.12] one can find a similar description of the
zeros of discrete orthogonal polynomials on the real line.

Recall that the IAP depends on the choice of a unimodular constant ρn,N . If
we move ρn,N around the unit circle in the counterclockwise direction, the isometric
Ritz values also move in the counterclockwise direction, as shown in Figure 2.1. If
we start in Case 1, no isometric Ritz value can leave “its” eigenvalue until an extra
isometric Ritz value enters the arc I from the right, then we are in Case 2. Next, one
isometric Ritz value is free to move away from its eigenvalue, and we pass via Case 3
to Case 2 again. This process is shown in parts (a)–(d) of Figure 2.1. Continuing this
way, we see that the eigenvalue that is well approximated by two isometric Ritz values
“moves” through I, until it drops off and we reach Case 4 (part (h) of Figure 2.1). We
stay in Case 4 until the left-most isometric Ritz value reaches “its” eigenvalue. Then
one isometric Ritz value exactly coincides with an eigenvalue and we are in Case 5.
The left-most isometric Ritz value then passes the eigenvalue and we are in Case 6,
where there are two consecutive eigenvalues without an isometric Ritz value on the
arc between them. We refer to this arc as a gap. The gap moves to the right as shown
in parts (j)–(n) of Figure 2.1, until we reach Case 1 again; see part (p).

Now we turn to the exceptional cases. In Cases 1, 3, and 4, there are no exceptions.
The exception (2.13a) may occur in Case 2. In Case 2 there are two isometric Ritz
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(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 2

...

(e) Case 2

(f) Case 3

(g) Case 2

(h) Case 4

(i) Case 5

(j) Case 6

(k) Case 5

(l) Case 6

...

(m) Case 5

(n) Case 6

(o) Case 5

(p) Case 1

Fig. 2.1. The evolution of the isometric Ritz values in a closed arc I ⊂ Λ(t, σ) when ρn,N

moves counterclockwise around T. The full dots are the eigenvalues and the open circles are the
isometric Ritz values. The possibilities of their location are the following.

Case 1: An isometric Ritz value follows after each eigenvalue at close distance.
Case 2: Two isometric Ritz values are close to the same eigenvalue.
Case 3: One isometric Ritz value is not close to any eigenvalue.
Case 4: An isometric Ritz value precedes each eigenvalue at close distance.
Case 5: One isometric Ritz value coincides with an eigenvalue.
Case 6: One arc between two eigenvalues contains no isometric Ritz values.

values close to the same eigenvalue. In this case the doubling of the exponent in (2.12)
need not take place.

In Cases 5 and 6 the exception (2.13b) appears. This is clear if an eigenvalue and
an isometric Ritz value coincide, which corresponds to Case 5. In Case 6 there is a gap
and this case arises out of Case 5 after a small perturbation of the parameter. For a
sufficiently small perturbation, the isometric Ritz value is still closer to the eigenvalue
than predicted by (2.12). So in Case 6 there may be one eigenvalue around the gap
with an isometric Ritz value that is too close to it. This eigenvalue corresponds to the
exceptional index. It may be somewhat surprising that only one of the eigenvalues
around the gap may be an exception while the other one is not.

Remark 2.7. Theorems 2.3 and 2.4 are clearly of an asymptotic nature. They
express that eigenvalues in the set Λ(t, σ) are well approximated by isometric Ritz
values, provided n and N are large enough. In certain situations one might be dealing
with a single unitary matrix and in such a case it is not clear whether the matrix is
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large enough or not. Actually, our methods do not provide a framework for looking
at a single matrix. Indeed, a basic assumption is that the eigenvalues of the matrix
are distributed according to a measure σ (see Condition 2.1(1)), and this notion does
not make sense for a fixed single matrix. In such a case, our results can only give an
indication of the convergence behavior of the IAP.

On the other hand, it might happen that the unitary matrix is naturally embedded
in a sequence of unitary matrices if it arises from a discretization of a physical system.
This is, for example, the case in the signal processing context discussed in [9]. Then
it is reasonable to assume that the sequence of matrices has a limiting eigenvalue
distribution as in Condition 2.1(1), and our results apply to the full sequence. Again,
our results do not apply to an individual matrix. However, our experience shows that
if the matrix comes from a sequence with a limiting eigenvalue distribution, then the
convergence behavior predicted by the theory can already be observed for matrices
of moderate size (say 500 × 500). Therefore we believe our results can be of help to
understand the convergence behavior of IAP, also when applied to matrices of a fixed
finite size.

3. Unitary Hessenberg matrices and para-orthogonal polynomials. In
this section we collect a number of results that can be found in various sources and we
put them in a form that is convenient for our purposes. The size N is fixed throughout
this section and will not be indicated in the notation.

We consider a unitary matrix U of size N ×N with simple eigenvalues λ1, . . . , λN

and corresponding normalized eigenvectors v1, . . . , vN . We also consider a unit start-
ing vector b ∈ C

N with a nonzero component in the direction of every eigenvector.
We define a measure

ν =

N∑
j=1

w2
j δλj

=

N∑
j=1

|〈b, vj〉|2δλj
.

Since b is a unit vector and the vj form an orthonormal basis of C
N , we have that∫

dν =

N∑
j=1

|〈b, vj〉|2 = ‖b‖2 = 1,

so that ν is a discrete probability measure supported on the eigenvalues λj .
Lemma 3.1. For every function f : T → C, we have

‖f(U)b‖2 =

∫
|f |2 dν.

Proof. Let V be the unitary matrix with the vj as columns and let Λ be the diago-
nal matrix with the λj on the diagonal, so U = V ΛV ∗ is the eigenvalue decomposition
of U . Then f(U) = V f(Λ)V ∗ and, since V is unitary,

‖f(U)b‖ = ‖V f(Λ)V ∗b‖ = ‖f(Λ)V ∗b‖.

Now f(Λ) is a diagonal matrix with f(λj) on the diagonal and V ∗b is a vector whose
jth component is v∗j b = 〈b, vj〉. Hence

‖f(U)b‖2 =

N∑
j=1

|f(λj)〈b, vj〉|2 =

∫
|f |2 dν,
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which proves the lemma.
If carried out to the end, the IAP transforms the unitary matrix U to the N ×N

unitary upper Hessenberg matrix H,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1N

h21 h22

h32
. . .

...
. . .

hN,N−1 hNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

with real and positive subdiagonal elements hj+1,j > 0. The eigenvalues of H and U
are the same. The principal leading submatrix of size n × n will be denoted by Hn.
The matrices Hn, n < N , are not unitary, since the norm of the last column of Hn is
strictly less than one. We define the characteristic polynomials

φn(z) = det(zIn −Hn).

Lemma 3.2. The polynomial φn is the monic polynomial of degree n that is
orthogonal with respect to ν.

Proof. We define polynomials ϕn, n = 0, . . . , N , recursively by ϕ0(z) ≡ 1 and

zϕk(z) =

k+1∑
j=0

hj+1,k+1ϕj(z) for k = 0, . . . , N − 1,(3.1)

where we have put (somewhat arbitrarily) hN+1,N = 1. Then we have, for n � N ,

(3.2)
[
ϕ0(z) ϕ1(z) · · · ϕn−1(z)

]
Hn

= z
[
ϕ0(z) · · · ϕn−1(z)

]
−
[
0 · · · 0 hn+1,nϕn(z)

]
.

It follows from (3.2) that every zero of ϕn is an eigenvalue of Hn. This shows that
ϕn is a multiple of φn provided that the zeros of ϕn are simple. If z0 is a zero of ϕn

of multiplicity m, then taking j derivatives of (3.2) and putting z = z0, we get, for
every j = 1, . . . ,m− 1,

(3.3)
[
ϕ

(j)
0 (z0) ϕ

(j)
1 (z0) · · · ϕ

(j)
n−1(z0)

]
Hn

= z0

[
ϕ

(j)
0 (z0) · · · ϕ

(j)
n−1(z0)

]
+ j

[
ϕ

(j−1)
0 (z0) · · · ϕ

(j−1)
n−1 (z0)

]
.

Thus the vectors

1

j!

[
ϕ

(j)
0 (z0) ϕ

(j)
1 (z0) · · · ϕ

(j)
n−1(z0)

]
, j = 0, 1, . . . ,m− 1,

are a left Jordan chain for Hn of length m, which means that z0 is a zero of φn(z) =
det(zI − Hn) of multiplicity at least m. Since this holds for every zero of ϕn, we
get that ϕn is a multiple of φn also in the case of multiple eigenvalues. The leading
coefficient of ϕn can be computed with (3.1) and we see that

ϕn(z) =

(
n∏

j=1

h−1
j+1,j

)
det(zIn −Hn) =

(
n∏

j=1

h−1
j+1,j

)
φn(z);(3.4)
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see also [13].
From (3.2) with n = N , it follows that

[
ϕ0(λj) ϕ1(λj) · · · ϕN−1(λj)

]
is a

left eigenvector of H for the eigenvalue λj . Let

w̃j = ‖
[
ϕ0(λj) ϕ1(λj) · · · ϕN−1(λj)

]
‖−1

so that
[
w̃jϕ0(λj) w̃jϕ1(λj) · · · w̃jϕN−1(λj)

]
is a normalized eigenvector of H.

Since the matrix H is unitary (hence normal) with simple spectrum, its normalized
eigenvectors form an orthonormal basis of C

n. Thus

S =

⎡⎢⎣ w̃1ϕ0(λ1) · · · w̃1ϕN−1(λ1)
...

. . .
...

w̃Nϕ0(λN ) · · · w̃NϕN−1(λN )

⎤⎥⎦
is unitary. Then S∗S = I and if we look at the individual matrix entries of this last
expression, we find

N∑
j=1

w̃2
jϕk(λj)ϕl(λj) = δk,l for k, l = 0, 1, . . . , N − 1.

So the polynomials ϕn are orthonormal polynomials with respect to the measure∑N
j=1 w̃

2
j δλj

, and because of (3.4) we have that the polynomials φn are the monic
orthogonal polynomials with respect to this measure.

Now we show w̃j = |〈b, vj〉| for j = 1, . . . , N to complete the proof of the lemma.
We know that UQ = QH where Q is a unitary matrix whose first column is b.
From the eigenvalue decomposition U = V ΛV ∗ we get that V ∗QH = ΛV ∗Q, which
means that v∗jQ is a normalized left eigenvector of H for the eigenvalue λj . Also[
w̃jϕ0(λj) · · · w̃jϕN−1(λj)

]
is a normalized left eigenvector with λj . Then the

first components have the same absolute values. The first column of Q is equal
to b so that the first component of v∗jQ is equal to v∗j b = 〈b, vj〉. Thus we have
w̃j = |w̃jφ0(λj)| = |〈b, vj〉|.

The previous lemma connects the Arnoldi process to the theory of orthogonal
polynomials and in particular to the Arnoldi minimization problem; see, for example,
[26].

Arnoldi minimization problem. Minimize ‖pn(U)b‖ among all monic poly-
nomials pn of degree n.

It is a general fact that the monic polynomial φn of degree n which is orthogonal
with respect to µ minimizes the L2(µ) norm (

∫
|pn|2 dµ)1/2 among all monic polyno-

mials pn of degree n. Because of Lemma 3.1 it is then clear that φn is the minimizer
in the Arnoldi minimization problem.

We want to establish a similar minimization problem for the isometric Arnoldi
process. To that end we first recall that H can be decomposed as a product of Givens
reflectors [15] (see also [1]):

H = G1(γ1)G2(γ2) · · ·GN−1(γN−1)G̃N (γN ),

for some complex parameters γj satisfying |γj | < 1 for j = 1, . . . , N − 1 and |γN | = 1.
The matrices Gj(α) are given by

Gj(α) =

⎡⎢⎢⎣
Ij−1

−α
√

1 − |α|2√
1 − |α|2 ᾱ

IN−j−1

⎤⎥⎥⎦ ,
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and G̃N (γN ) is given by

G̃N (α) =

[
IN−1

−α

]
.

The numbers γj are called the Schur parameters for the unitary Hessenberg matrix

H. We use the notation H = H(γ1, . . . , γN ). If we define σj :=
√

1 − |γj |2 and write
out the above product, we get an explicit expression for H in terms of the Schur
parameters:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ1 −σ1γ2 −σ1σ2γ3 · · · −σ1 · · ·σN−2γN−1 −σ1 · · ·σN−1γN
σ1 −γ̄1γ2 −γ̄1σ2γ3

σ2 −γ̄2γ3

σ3
. . .

...
...

. . .

−γ̄N−2σN−1γN
σN−1 −γ̄N−1γN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From this expression for the matrix, it is easy to see that Hn = H(γ1, . . . , γn). Since
the matrices Gj(α) have determinant −1, and G̃n(α) has determinant −α, it easily
follows that [14]

φn(0) = det(−Hn) = γn for n = 1, . . . , N.(3.5)

As mentioned before, the IAP modifies the matrix Hn in order to make it unitary.
The only thing that needs to change is the length of the last column. To rescale that
last column, we construct

H̃n := H(γ1, . . . , γn−1, ρn)

with ρn a unimodular number. This transformation amounts to multiplying the last
column of Hn by the number ρn

γn
(provided γn �= 0). Note that the parameter ρn can

be anywhere on the unit circle. The matrices H̃n do depend on the precise choice
of ρn, but its location will not be of any importance to us, as can be seen from the
theorems. As a consequence, we do not include the dependence on ρn in the notation.

We will need the concept of para-orthogonal polynomials. To that end, we recall
their definition; see, for example, [17]. For a polynomial p of degree n, let

p∗(z) = znp
(
1/z̄

)
be the reciprocal polynomial. The (monic) para-orthogonal polynomials ψn are then
defined by

ψn(z) :=
φn(z) + ωnφ

∗
n(z)

1 + ωnγ̄n
,(3.6)

where φn is the monic orthogonal polynomial with respect to the measure ν and
ωn ∈ T. Note that in the literature the para-orthogonal polynomials are usually
defined as φn + ωnφ

∗
n so that they are not monic.

We have to be careful here, since we have already defined a set of polynomials
ψn,N in (2.5). In fact, the two definitions are the same. More precisely, for every
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ρn ∈ T there exists an ωn ∈ T, and conversely for every ωn ∈ T there exists a ρn ∈ T,
such that

ψn(z) = det(zIn − H̃n),

where ψn is defined as in (3.6). The 1-1 correspondence between ρn and ωn is given
by

ρn = ωn

(
1 + ω̄nγn
1 + ωnγ̄n

)
, ωn = ρn

(
1 − ρ̄nγn
1 − ρnγ̄n

)
.(3.7)

This is a consequence of a remark in [1] and is easily verified using the recurrence
relations for the orthogonal polynomials and their reciprocals which are stated in
[15].

These polynomials are called para-orthogonal since they are orthogonal with re-
spect to ν to all polynomials of degree less than n without constant term [17], that
is, ∫

T

ψn(z)z̄k dν(z) = 0, k = 1, 2, . . . , n− 1.(3.8)

It is known that the zeros of ψn are simple and lie on the unit circle [15, 17]. We
denote them by θ1, . . . , θn. We recall that these zeros are the basis of the Gauss
quadrature formula on the unit circle [17]

n∑
j=1

βjp(θj) =

∫
pdν, βj > 0,(3.9)

which is valid for Laurent polynomials p of degree � n−1 (i.e., for linear combinations
of zk with k = −n + 1,−n + 2, . . . , n− 2, n− 1).

Our next result, which is the main result of this section, states that the para-
orthogonal polynomials solve a minimization problem, similar to the Arnoldi mini-
mization problem. We call it the isometric Arnoldi minimization problem. While this
result may be known already, we have not seen it in the literature.

Isometric Arnoldi minimization problem. Minimize ‖pn(U)b‖ among all
monic polynomials pn of degree n satisfying pn(0) = ρn, where ρn ∈ T is given.

Theorem 3.3. The minimizer of the isometric Arnoldi minimization problem is
unique and is given by the monic para-orthogonal polynomial ψn, where ωn is related
to ρn as in (3.7).

Proof. Let ψn be the monic para-orthogonal polynomial of degree n with param-
eter ωn = ρn

(
1−ρ̄nγn

1−ρnγ̄n

)
. Using the same reasoning as the one leading to (3.5), we find

ψn(0) = ρn.
If pn is an arbitrary monic polynomial of degree n with pn(0) = ρn, then pn −ψn

is a linear combination of z, z2, . . . , zn−1, so that by the para-orthogonality property
(3.8) we have ∫

ψn(z)(pn(z) − ψn(z)) dν(z) = 0.

Thus ∫
ψnp̄n dν =

∫
|ψn|2 dν.
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This leads to ∫
|pn − ψn|2 dν =

∫
|pn|2 dν −

∫
|ψn|2 dν,

from which we deduce that ∫
|pn|2 dν �

∫
|ψn|2 dν,

with equality if and only if
∫
|pn−ψn|2 dν = 0. Since pn−ψn is a polynomial of degree

n − 1 and the measure ν is carried on N points, equality can hold only if pn = ψn.
Thus by Lemma 3.1

‖pn(U)b‖ � ‖ψn(U)b‖

with equality if and only if pn = ψn. This proves the theorem.
Using Theorem 3.3 we will now prove that the zeros of the para-orthogonal poly-

nomial ψn (which are on the unit circle) are separated by the eigenvalues of U .
Proposition 3.4. Let n < N . Then the zeros of ψn are separated by the

eigenvalues of U .
Proof. Let θ1 and θ2 be two distinct zeros of ψn. We have to show that there

is an eigenvalue on the open arc between θ1 and θ2. Without loss of generality, we
may restrict ourselves to the case that θ1 = e−is0 , θ2 = eis0 , where s0 ∈ (0, π). The
eigenvalues are of the form λj = eisj with −π � sj � π. Then

ψn(z) = (z − e−is0)(z − eis0)qn−2(z),(3.10)

where qn−2 is a polynomial of degree n − 2. We know from Theorem 3.3 that ψn

minimizes

‖pn(U)b‖2 =

N∑
j=1

w2
j |pn(λj)|2,

among all monic polynomials of degree n with pn(0) = ρn (see also Lemma 3.1). For
each s, we have that (z − e−is)(z − eis)qn−2(z) is a monic polynomial with value ρn
at z = 0. Thus

I(s) :=

N∑
j=1

w2
j (|λj − e−is||λj − eis|)2|qn−2(λj)|2

is minimal for s = s0. Observe that

|λj − e−is||λj − eis| = |eisj − e−is||eisj − eis|

= 4

∣∣∣∣sin sj − s

2
sin

sj + s

2

∣∣∣∣ = 2|cos s− cos sj |,

so that

I(s) = 4

N∑
j=1

w2
j (cos s− cos sj)

2|qn−2(λj)|2
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and therefore

I ′(s0) = −8 sin s0

N∑
j=1

w2
j (cos s0 − cos sj)|qn−2(λj)|2.(3.11)

Now let us assume that there are no eigenvalues on the open arc between θ1 and
θ2. Then 0 < s0 � |sj | � π and so cos s0 − cos sj � 0 for every j = 1, 2, . . . , N . There
are at least N − 2 values of j with 0 < s0 < |sj | � π so that cos s0 − cos sj > 0 for at
least one j. (We suppose N > 2 since otherwise n � N − 1 � 1 and there is nothing
to prove.) It follows that all terms in the sum on the right-hand side of (3.11) are
nonnegative and at least one is positive. Hence I ′(s0) �= 0 (note sin s0 �= 0, since
s0 ∈ (0, π)), which contradicts the fact that I(s) has a minimum for s = s0. The
proposition is proved.

Remark 3.5. Let θ1 and θ2 be as in the proof of Proposition 3.4. Let us denote
the circular arc from θ1 to θ2 by [θ1, θ2] and the complementary arc from θ2 to θ1

by [θ2, θ1]. Note that λj ∈ [θ1, θ2] implies that cos s0 − cos sj � 0, so the fact that
I ′(s0) = 0, where I ′(s0) is given by (3.11), means that∑
λj∈[θ1,θ2]

w2
j |λj − θ1||λj − θ2||qn−2(λj)|2 =

∑
λj∈[θ2,θ1]

w2
j |λj − θ1||λj − θ2||qn−2(λj)|2.

We rewrite this in terms of the para-orthogonal polynomial ψn as∑
λj∈[θ1,θ2]

w2
j

|ψn(λj)|2
|λj − θ1||λj − θ2|

=
∑

λj∈[θ2,θ1]

w2
j

|ψn(λj)|2
|λj − θ1||λj − θ2|

.(3.12)

There is an exact balance between the contributions from both arcs.
Remark 3.6. By now it is clear that the structure of unitary Hessenberg matrices

with positive subdiagonal elements (connected to the IAP) is very similar to the struc-
ture of Jacobi matrices (connected to the Lanczos process). We have para-orthogonal
polynomials instead of orthogonal polynomials, but both kinds of polynomials are
characterized by a minimization problem and for both there is a separation property
for their zeros. Since these properties of orthogonal polynomials were among the main
tools in the study of the convergence of the Lanczos process in [18], we can use similar
ideas for the convergence of the IAP, as will be clear from the proofs of the theorems
that we give in the next section.

4. Proofs of Theorems 2.2, 2.3, and 2.4. Here we give the proofs of our
main Theorems 2.2, 2.3, and 2.4. We will also make essential use of properties of
logarithmic potentials Uµ. We refer the reader to [22, 23] for background information
on logarithmic potential theory.

In what follows we use χp to denote the normalized zero counting measure of a
polynomial p. So if p has degree n, then

χp =
1

n

∑
p(λ)=0

δλ,

where the sum is over all zeros of p and the zeros are counted according to their
multiplicity.

Note that in section 3 we dropped the index N . Here it will reappear and we will
use the properties and results of section 3 with no further comment.
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4.1. Proof of Theorem 2.2. Theorem 2.2 was established for orthogonal poly-
nomials whose zeros are on the real line by Rakhmanov [21]. Dragnev and Saff [11]
used similar ideas to prove a more general theorem (including external fields), and
weakened one of the conditions of Rakhmanov. Although these papers do not mention
matrix iterations, we can nicely fit our setting in their results. The proof follows along
arguments given in [11, 21]. We will indicate how we can modify them to the case of
para-orthogonal polynomials, who have their zeros on the unit circle.

Proof of Theorem 2.2. Rakhmanov [21] showed that there exists a unique Borel
probability measure µt that minimizes the logarithmic energy (2.9) among all Borel
probability measures µ satisfying 0 � tµ � σ. He also showed that there exists a
constant Ft such that (2.10) is satisfied and that (2.8) and (2.10) characterize the
pair (µt, Ft). So we still need to prove (2.6) and (2.7).

The first step is to show that

lim sup
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � e−Ft .(4.1)

The proof of (4.1) follows the proof of Lemma 5.3 in [11]. For a given ε > 0, a monic
polynomial qN of degree n with all its zeros on the unit circle is constructed for every
large enough N so that

lim sup
n,N→∞
n/N→t

‖qN (UN )bN‖1/n � e−Ft+ε.(4.2)

There is a set A ⊂ T so that every eigenvalue of UN outside A is a zero of qN , and
the rest of the zeros of qN are taken in such a way that χqN → µt. We need to modify
this construction slightly in order to guarantee that

qN (0) = ψn,N (0) = ρn,N .(4.3)

Since all the zeros of qN are on the unit circle, qN (0) has unit modulus, and so we can
achieve (4.3) by moving one of the zeros in A to a different position on the unit circle.
This will not affect the estimate (4.2). Having (4.2) and (4.3) we use Theorem 3.3 to
conclude that

lim sup
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � e−Ft+ε.

Since ε can be chosen arbitrarily small, (4.1) follows.
In the second step we establish the following. Suppose we are given a sequence

(qN )N of monic polynomials such that qN has degree n, the zeros of qN are separated
by the eigenvalues of UN and the normalized zero counting measures χqN have a
weak*-limit µ. Then

lim inf
n,N→∞
n/N→t

‖qN (UN )bN‖1/n � e−Fµ

,(4.4)

where

Fµ = min
z∈supp(σ−tµ)

Uµ(z).(4.5)
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Dragnev and Saff [11, Lemma 5.5] showed this for the case of the real line. The same
proof works here.

In the third step we show that

Fµ � Ft(4.6)

for every Borel probability measure µ with 0 � tµ � σ, and equality in (4.6) holds if
and only if µ = µt. Thus let µ be a Borel probability measure such that 0 � tµ � σ.
Let z ∈ supp(σ − tµ). We know from (2.10) that Uµt(z) � Ft and from (4.5) that
Fµ � Uµ(z). Hence

Uσ−tµ(z) − Uσ−tµt(z) = t(Uµt(z) − Uµ(z)) � t(Ft − Fµ).(4.7)

On C \ supp(σ − tµ) we have that Uσ−tµ is harmonic and Uσ−tµt superharmonic,
so that Uσ−tµ − Uσ−tµt is a subharmonic function there. Since Uσ−tµ − Uσ−tµt is
bounded at infinity (it has limit 0 at infinity), we can apply the maximum principle
for subharmonic functions [22, Theorem 2.3.1], [23, Theorem 0.5.2], and it follows
that (4.7) holds for every z ∈ C. At infinity the left-hand side is 0, so that Fµ � Ft.

If Fµ = Ft, then we get Uµt − Uµ � 0 everywhere. Since at infinity these two
functions are equal and their difference is a harmonic function on C \ T, we can
conclude that it is zero outside the unit disc. By continuity, it is also zero on the unit
circle. Inside the unit disc it is harmonic, and applying the maximum principle again,
we find that it is zero inside the unit disc. So Uµt = Uµ everywhere, which means
that µt = µ [22, Corollary 3.7.5], [23, Corollary II.2.2].

Now, collecting all the pieces finishes the proof. By Proposition 3.4, we know that
the zeros of ψn,N are separated by the eigenvalues of UN . Let µ be a weak*-limit of
a subsequence of the sequence of normalized zero counting measures (χψn,N

). Then
we find by (4.1) and (4.4) that

e−Fµ � lim inf
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � lim sup
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � e−Ft ;(4.8)

hence Fµ � Ft. From the separation property of the zeros of ψn,N it also follows that
0 � tµ � σ. By (4.6) we must have Fµ = Ft so that µ = µt. Hence the inequalities
in (4.8) are all equalities, which proves (2.7). We also see that µt is the only possible
limit of a weak*-convergent subsequence of (χψn,N

). Since the unit circle is compact,
the set of Borel probability measures on T is compact in the weak*-topology. Hence
the full sequence (χψn,N

) converges to µt, which gives (2.6).
This concludes the proof of Theorem 2.2.

4.2. Three lemmas. For the proof of Theorems 2.3 and 2.4 we need a number of
lemmas. We will use the approach of Beckermann [5], who established these theorems
for the Lanczos process. We will assume that the Conditions 2.1 hold.

The first lemma is borrowed from [6].
Lemma 4.1 (see [6]). Let σ be a Borel probability measure on the unit circle and

suppose (ΛN )N is a sequence of sets, all contained in T, such that

lim
N→∞

1

N

∑
λ∈ΛN

f(λ) =

∫
f(λ) dσ(λ)

for every continuous function f on T.
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Let t ∈ (0, 1) and let µ be a Borel probability measure such that tµ � σ. Let
n = nN � �ΛN such that n/N → t. Then there exists a sequence of sets (ZN )N such
that

(a) �ZN = n,
(b) ZN ⊂ ΛN , and
(c) for all continuous functions f ,

lim
n,N→∞
n/N→t

1

n

∑
λ∈ZN

f(λ) =

∫
f(λ) dµ(λ).

Furthermore, if K is a closed set such that σ(∂K) = 0 and σ(K) = tµ(K), then the
sets ZN can be chosen such that in addition to (a), (b), and (c), we also have for N
large enough,

(d) ΛN ∩K ⊂ ZN .
Proof. In [6, Lemma A.1] this lemma is proven for the case where the sets ΛN

are contained in the real line. The same proof works here.
The following lemma tells us that the eigenvalues inside Λ(t, σ) are not exponen-

tially close.
Lemma 4.2 (see [5]). We have

lim
N→∞

min{|λk±1,N − λk,N |1/N : k = 1, 2, . . . , N} = 1,

where we take λ0,N = λN,N and λN+1,n = λ1,N .
Proof. In [5, Lemma 2.4(b)] this lemma is proven for the case of points on the

real line. The same proof works here.
The next lemma gives an estimate for |λk,N − θκ−1,n,N ||λk,N − θκ,n,N |, where

λk,N is on the closed arc between θκ−1,n,N and θκ,n,N . Recall that the isometric Ritz
values are numbered counterclockwise and that θ0,n,N := θn,n,N . We introduce the
function

rκ,n,N (z) = (z−1 − θ̄κ−1,n,N )(z − θκ,n,N )
√
θκ−1,n,N/θκ,n,N , κ = 1, . . . , n,(4.9)

where we choose the branch of the square root belonging to the lower half plane.
Thus, if θκ−1,n,N = eiτ1 and θκ,n,N = eiτ2 with 0 < τ2 − τ1 < 2π, then

√
θκ−1,n,N/θκ,n,N = e−i

τ2−τ1
2 .(4.10)

Observe that |λk,N − θκ−1,n,N ||λk,N − θκ,n,N | = |rκ,n,N (λk,N )|.
Lemma 4.3. Let rκ,n,N (z) be defined as in (4.9)–(4.10). Then the following hold.
(a) The function rκ,n,N (z) is real and negative for z on the open arc from θκ−1,n,N

to θκ,n,N and real and positive on the complementary open arc.
(b) Let λk,N be on the closed arc from θκ−1,n,N to θκ,n,N . Then for every poly-

nomial q of degree at most n− 2,

w2
k,N |q(λk,N )|2|rκ,n,N (λk,N )| �

∑
j �=k

w2
j,N |q(λj,N )|2rκ,n,N (λj,N ).(4.11)

(c) Equality holds in (4.11) for the polynomial

q(z) =
ψn,N (z)

(z − θκ−1,n,N )(z − θκ,n,N )
,(4.12)
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0

θ
θ

κ,n,N

κ-1,n,N

(a) The unit
circle

0

(b) z �→ e−i
τ1+τ2

2 z

0

(c) z �→ Re(z)

0

(d) z �→ −2z + 2 cos τ2−τ1
2

Fig. 4.1. The image of the unit circle under the mapping z �→ rκ,n,N (z) step by step. Note
that the arc between θκ−1,n,N and θκ,n,N is mapped to (part of) the negative real axis and the
complementary arc to (part of) the positive real axis.

where ψn,N is the monic para-orthogonal polynomial.
Proof. Let z ∈ T and choose τ1 = arg θκ−1,n,N , τ2 = arg θκ,n,N such that 0 <

τ2 − τ1 < 2π. Then we have for z ∈ T,

rκ,n,N (z) = (z − eiτ2)(z̄ − e−iτ1)e−i
τ2−τ1

2

= (e−i
τ1+τ2

2 z − ei
τ2−τ1

2 )(ei
τ1+τ2

2 z̄ − ei
τ2−τ1

2 )e−i
τ2−τ1

2

= e−i
τ2−τ1

2 − e−i
τ1+τ2

2 z − ei
τ1+τ2

2 z̄ + ei
τ2−τ1

2

= −2 Re(e−i
τ1+τ2

2 z) + 2 cos
τ2 − τ1

2
.

This shows that rκ,n,N (z) is real for z ∈ T. Moreover, rκ,n,N is the composition of the

mappings z �→ e−i
τ1+τ2

2 z, z �→ Re z, and z �→ −2z + 2 cos τ2−τ1
2 . The effect of these

mappings on the unit circle is plotted step by step in Figure 4.1. Following these
mappings, we obtain the statements of part (a).

To prove part (b), we use the Gaussian quadrature formula (3.9). We know that
there exist positive real numbers β1,N , . . . , βn,N such that

N∑
j=1

w2
j,Np(λj,N ) =

n∑
j=1

βj,Np(θj,n,N )(4.13)

for every Laurent polynomial p of degree n− 1. Now let q be a polynomial of degree
at most n− 2 and write

p(z) = rκ,n,N (z)q(z)q̄(z−1),(4.14)

where q̄ is the polynomial whose coefficients are the complex conjugates of the coef-
ficients of q. This p is a Laurent polynomial of degree n − 1, so we can apply (4.13)
to p. Because of part (a), we know that rκ,n,N (θj,n,N ) � 0 for all j. Since also
q(z)q̄(z−1) = |q(z)|2 � 0 for all z ∈ T, we see that p(θj,n,N ) � 0 for all j. So the
right-hand side of (4.13) is nonnegative, which implies that

−w2
k,Np(λk,N ) �

∑
j �=k

w2
j,Np(λj,N ),(4.15)
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which gives

−w2
k,Nrκ,n,N (λk,N )|q(λk,N )|2 �

∑
j �=k

w2
j,Nrκ,n,N (λj,N )|q(λj,N )|2.(4.16)

Now rκ,n,N (λk,N ) < 0 according to part (a) again, since λk,N is on the arc from
θκ−1,n,N to θκ,n,N . Using this in (4.16) we obtain (4.11). This proves part (b).

Finally, if we use the polynomial q from (4.12) in the construction (4.14), then
the right-hand side of (4.13) equals zero, since all terms vanish. This leads to equality
in (4.11), so that part (c) follows.

For every polynomial q of degree at most n − 2 with q(λk,N ) �= 0, (4.11) can be
rewritten as

(4.17) |λk,N − θκ−1,n,N ||λk,N − θκ,n,N |

�
∑

j �=k w
2
j,N (λ̄j,N − θ̄κ−1,n,N )(λj,N − θκ,n,N )

√
θκ−1,n,N/θκ,n,N |q(λj,N )|2

w2
k,N |q(λk,N )|2 .

From this we deduce

(4.18) min
j

|λk,N − θj,n,N | �
(
|λk,N − θκ−1,n,N ||λk,N − θκ,n,N |

)1/2
�

(∑
j �=k w

2
j,N |λ̄j,N − θ̄κ−1,n,N ||λj,N − θκ,n,N ||q(λj,N )|2

w2
k,N |q(λk,N )|2

)1/2

�
(

maxj �=k|q(λj,N )|
|q(λk,N )|

)(
4

∑
j �=k w

2
j,N

w2
k,N

)1/2

.

4.3. Proof of Theorem 2.3. To prove Theorem 2.3, we use the estimate (4.18).
We are going to find estimates for the numerator and denominator of the first factor
in the right-hand side. To this end we will construct a suitable polynomial q.

Proof of Theorem 2.3. Let (kN )N be a sequence of indices so that limN→∞ λkN
=

λ. Since all eigenvalues and all isometric Ritz values are contained in the unit circle,
there is nothing to prove if Uµt(λ) = Ft.

So suppose Uµt(λ) < Ft and let ε ∈ (0,−Uµt(λ) + Ft). Define

K := {z ∈ T | −Uµt(z) + Ft � ε}.

Since Uσ is continuous, so is Uµt (see, e.g., [11, Lemma 5.2]), so that K is closed and
contains an η-neighborhood of λ (we take η < 1). Now K ∩ supp(σ − tµt) = ∅, so
σ(K) = tµt(K). Without loss of generality we may suppose that σ(∂K) = 0 (see also
Remark 4.4 below). We can now obtain a sequence of sets (ZN )N by Lemma 4.1 with
µ = µt and n replaced by n− 1.

By Condition 2.1(2) we can choose δ < η such that (2.2) holds for N sufficiently
large and for all k � N . Note that by properties (b) and (d) of Lemma 4.1 and the
definition of K, all eigenvalues λj,N with |λj,N − λkN ,N | < δ are in ZN , when N is
large enough. We define

qN (z) :=
∏

λj,N∈Z′
N

(z − λj,N ),
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where Z ′
N := ZN \{λkN ,N} (so qN is a polynomial of degree n−2). Note that property

(c) of Lemma 4.1 still holds when we replace the sets ZN by Z ′
N , i.e., the sequence of

normalized zero counting measures of (qN )N converges in weak*-sense to µt.
We factor qN in two parts, one containing the zeros close to λkN ,N and one

containing the other zeros:

q
(1)
N (z) :=

∏
0<|λj,N−λkN ,N |<δ

(z − λj,N ), q
(2)
N (z) :=

qN (z)

q
(1)
N (z)

.

We also define the measures

µ
(1)
N :=

1

n− 2

∑
q
(1)

N
(λ)=0

δλ, µ
(2)
N :=

1

n− 2

∑
q
(2)

N
(λ)=0

δλ.

Then χqN = µ
(1)
N + µ

(2)
N , so that

UχqN (λkN ,N ) = Uµ
(1)

N (λkN ,N ) + Uµ
(2)

N (λkN ,N ).(4.19)

Because of Condition 2.1(2),

Uµ
(1)

N (λkN ,N ) < ε(4.20)

for N large enough. Since limn,N→∞,n/N→tµ
(2)
N = µt|T\B(λ,δ), we get

lim
n,N→∞
n/N→t

Uµ
(2)

N (λkN ,N ) = Uµt|T\B(λ,δ)(λ) = Uµt(λ) − Uµt|B(λ,δ)(λ) � Uµt(λ),(4.21)

where the last inequality holds since δ < 1. Combining the two estimates (4.20) and
(4.21) with (4.19), we get

lim sup
n,N→∞
n/N→t

UχqN (λkN ,N ) � Uµt(λ) + ε,(4.22)

so that

lim inf
n,N→∞
n/N→t

log|qN (λkN ,N )|1/n = lim inf
n,N→∞
n/N→t

−UχqN (λkN ,N ) � −Uµt(λ) − ε.(4.23)

Now we are going to estimate the absolute value of qN on the rest of the spectrum
of UN . By construction, qN (λj,N ) = 0 for λj,N ∈ K \ {λkN ,N}, so we have

max
j �=kN

|qN (λj,N )| = max
λj,N �∈K

|qN (λj,N )| � sup
z∈T\K

|qN (z)|.

Since the zero distributions of qN converge to µt, we can apply the principle of descent
[23, Theorem I.6.8]. Then we get

(4.24) lim sup
n,N→∞
n/N→t

max
j �=kN

log|qN (λj,N )|1/n � lim sup
n,N→∞
n/N→t

sup
z∈T\K

1

n
log|qN (z)|

� sup
z∈T\K

(
−Uµt(z)

)
� −Ft + ε,
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where the last inequality follows from the definition of K.
If we now choose q = qN and k = kN in (4.18), we get

(4.25) lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n

� lim sup
n,N→∞
n/N→t

[(
maxj �=kN

|qN (λj,N )|
|qN (λkN ,N )|

)1/n(
4

∑
j �=kN

w2
j,N

w2
kN ,N

)1/2n
]
,

The second factor in the lim sup on the right-hand side of (4.25) converges to 1,
because of Condition 2.1(3), while the first factor is handled by (4.23) and (4.24).
The result is that

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
Uµt(λ) − Ft + 2ε

)
.

Since this holds for all ε > 0, (2.11) is proven.
Remark 4.4. If the set K is Cantor-like and the measure σ singular, we might

have that σ(∂K) > 0. However, since

∂K ⊆ {z ∈ T | −Uµt(z) + Ft = ε}

we have that σ(∂K) > 0 can only happen for a countable number of ε’s. So if
σ(∂K) > 0, we can choose a smaller ε so that σ(∂K) = 0 and continue with the proof
of Theorem 2.3.

4.4. Proof of Theorem 2.4. We finally give the proof of Theorem 2.4. As noted
before, the proof is based on the proof of [5, Theorem 2.1], but we have streamlined
some of the arguments.

Proof of Theorem 2.4. Since λ ∈ Λ(t, σ) we have Ft−Uµt(λ) > 0. By continuity
there is a δ-neighborhood ∆δ of λ and an ε > 0 such that Ft − Uµt(z) > ε for
z ∈ ∆δ. Because of Theorem 2.3 we then know that each eigenvalue λk,N ∈ ∆δ has
an isometric Ritz value close to it if N is large. More precisely, we can ensure that

min
j

|λk,N − θj,n,N | � e−nε

for all λk,N ∈ ∆δ if N is large enough.
Now we study the relative positions of eigenvalues and isometric Ritz values.

Using (i) the separation property (see Proposition 3.4), (ii) the fact that eigenvalues
are exponentially well approximated (see Theorem 2.3), and (iii) the fact that the
distance between eigenvalues is not exponentially small (see Lemma 4.2), we can
make a complete classification of these relative positions for N large enough. The
different cases were plotted in Figure 2.1. The exceptions are covered below and
illustrated in Figure 4.2.

From the separation property we conclude that close to an eigenvalue there can be
at most two isometric Ritz values (one on either side of it on the unit circle). However,
it is easily seen that at most one eigenvalue λ�1,N in ∆δ can be approximated by two
isometric Ritz values, again because the isometric Ritz values are separated by the
eigenvalues and because each eigenvalue is well approximated by at least one isometric
Ritz value. In this case we define the exceptional index as k∗N (λ) := �1.
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λl1,N

(a) Case 2: The excep-
tional eigenvalue is ap-
proximated by two iso-
metric Ritz values.

λl2,N

(b) Case 5: The excep-
tional eigenvalue coin-
cides with an isometric
Ritz value.

λl l3,N λ
3 ,N-1

(c) Case 6: The excep-
tional eigenvalue is one
of the two eigenvalues
indicated; see (4.26).

Fig. 4.2. The definition of the exceptional indices in the different cases (see Figure 2.1). In
Cases 1, 3, and 4 no exceptions need to be made.

Another possibility is that an eigenvalue λ�2,N and an isometric Ritz value co-
incide. In similar fashion one can see that this happens at most once, and that this
case is not compatible with the previous one. Then we define the exceptional index
as k∗N (λ) := �2.

It is also possible that there are two consecutive eigenvalues, λ�3−1,N and λ�3,N ,
in ∆δ that do not have an isometric Ritz value on the arc between them. Again, it is
easily seen that this can happen only once in ∆δ and that this excludes the previous
two possibilities. In this case the exceptional index is either �3 − 1 or �3, depending
on the proximity of the nearest isometric Ritz value. More precisely, let θκ,n,N be the
first isometric Ritz value after λ�3,N . We define the exceptional index as

k∗N (λ) :=

{
�3 if |θκ,n,N − λ�3,N | � |θκ−1,n,N − λ�3−1,N |,
�3 − 1 otherwise.

(4.26)

Now if λkN ,N → λ, then for N large enough λkN ,N ∈ ∆δ. Furthermore, if
kN �= k∗N (λ), there is exactly one isometric Ritz value θj,n,N close to λkN ,N (Case 2
is the only exception to this). All other isometric Ritz values are at a distance whose
nth root limit is 1 (see Lemma 4.2). It then follows that (4.18) can be sharpened to

min
j

|λkN ,N − θj,n,N | � cn,N

(
maxj �=k|q(λj,N )|

|q(λk,N )|

)2

,

with constants cn,N such that limn,N→∞,n/N→tc
1/n
n,N = 1. Examining the proof of

Theorem 2.3, we see that this leads to

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
2
(
Uµt(λ) − Ft

))
.(4.27)

Next we prove the lower bound for minj |λkN ,N − θj,n,N |1/n when kN �= k∗N (λ).
Choose κ such that λkN ,N is on the arc from θκ−1,n,N to θκ,n,N . From Remark 3.5 it
follows that

∑
λj,N∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

=
∑

λj,N �∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N | ,
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where [θκ−1,n,N , θκ,n,N ] denotes the circular arc going from θκ−1,n,N to θκ,n,N . Thus

∑
λj,N∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

=
1

2

N∑
j=1

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

� 1

8

N∑
j=1

w2
j,N |ψn,N (λj,N )|2 =

1

8
‖ψn,N (UN )bN‖2.

Because of the limit (2.7) in Theorem 2.2, it then follows that

lim inf
n,N→∞
n/N→t

( ∑
λj,N∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

)1/n

� exp(−2Ft).

(4.28)

The sum on the left-hand side has at most two terms, one of them for λkN ,N .

If there is only one term in the sum on the left-hand side of (4.28) (Cases 1, 2, 3,
and 4) or if one of the terms is 0 (Case 5), then (4.28) says

lim inf
n,N→∞
n/N→t

(
w2

kN ,N

|ψn,N (λkN ,N )|2
|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

)1/n

� exp(−2Ft).(4.29)

Note that
ψn,N (z)

(z−θκ−1,n,N )(z−θκ,n,N ) is a monic polynomial of degree n − 2 with roots

θj,n,N , j �= κ− 1, κ. From (2.6) it follows that µt is the weak*-limit of the normalized
zero counting measures of these polynomials, and from this it follows that, by the
principle of descent [23, Theorem I.6.8]),

lim sup
n,N→∞
n/N→t

(
|ψn,N (λkN ,N )|

|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

)1/n

� exp(−Uµt(λ)).(4.30)

Using limn,N→∞
n/N→t

w
1/n
kN ,N = 1, we obtain from (4.29) that

lim inf
n,N→∞
n/N→t

(|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |)1/n

� exp(−2Ft) lim inf
n,N→∞
n/N→t

(
|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

|ψn,N (λkN ,N )|

)2/n

,

and together with (4.30) this gives us

lim inf
n,N→∞
n/N→t

(|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |)1/n � exp
(
2
(
Uµt(λ) − Ft

))
.(4.31)
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Now we can conclude

(4.32) lim inf
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n

� lim inf
n,N→∞
n/N→t

(
|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

2

)1/n

� exp
(
2
(
Uµt(λ) − Ft

))
.

The other possibility is that there are two terms in the sum on the left-hand side
of (4.28). Then we are in Case 6. Let k′N be the index j giving the largest term in
the sum. Then

lim inf
n,N→∞
n/N→t

(
w2

k′
N
,N

|ψn,N (λk′
N
,N )|2

|λk′
N
,N − θκ−1,n,N ||λk′

N
,N − θκ,n,N |

)1/n

� exp(−2Ft)

and from this it follows as before that

lim inf
n,N→∞
n/N→t

min
j

|λk′
N
,N − θj,n,N |1/n � exp

(
2
(
Uµt(λ) − Ft

))
.(4.33)

Since minj |λkN ,N − θj,n,N | � minj |λk′
N
,N − θj,n,N | (by the definition of k∗N in (4.26)),

we also obtain (4.32) in this case.
Therefore we have (4.32) in both cases. Together with (4.27) this proves equation

(2.12).

5. Numerical experiments. For the numerical experiments, we take a large
unitary matrix U of size N ×N and we execute the IAP for every n � N (so we let
t = n/N vary from 0 to 1).

Our theoretical results are independent of the choice of the parameters ρn,N , but
for the experiments we have to make a choice. We choose ρn,N = γn,N/|γn,N |, as
this choice assures the modified submatrix stays as close as possible to the original
submatrix [16, Lemma 2.1].

The experiments were done on matrices U whose eigenvalues are distributed ac-
cording to a combination of von Mises distributions. A von Mises distribution is a
continuous distribution on T with density

P (eiθ) =
1

2πI0(α)
eα cos(θ−θ0),

where I0 is the modified Bessel function of the first kind and order 0. We have that θ0

is the mean direction and α is the concentration parameter. Von Mises distributions
appear in directional statistics [20].

For the experiments we used Matlab. Codes for unitary Hessenberg QR (UHQR)
were kindly provided to us by William B. Gragg and Michael Stewart. Random
numbers from the von Mises distributions were generated using the R environment.1

We sorted a very large sample of size mN and selected every mth point from it. A
typical value of m we used was m = 4000. The points were then used as the eigenvalues

1The R project for statistical computing, http://www.r-project.org.
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of an N ×N unitary matrix to which we applied the IAP. We followed this procedure
in order to obtain eigenvalues that follow the limiting distribution adequately. For
the matrix sizes we used (namely, N = 300), a fully random sample does not follow
the limiting distribution very well and our asymptotical results do not apply.

5.1. Distribution of isometric Ritz values. To improve the understanding
of the experiments, we recall the minimizing property of µt; see Theorem 2.2. If we
minimize I(µ) among all Borel probability measures supported on T then the solution
is the normalized Lebesgue measure on T [23, p. 25], which we denote here by λ. Now
if t is so small that tλ < σ, then µt is equal to λ, because of their respective minimizing
properties. So then everywhere tµt < σ, so that no convergence can be expected (see
the discussion after Theorem 2.3). If t grows, tλ will also increase, until for a certain
critical tcr it hits σ at the point (or points) where the density of σ is minimal. For
slightly larger t > tcr, eigenvalues will be found in a neighborhood of that point (or
those points), since eigenvalues are found where tµt = σ. If we let t increase further,
the region of good convergence also increases.

Continuing this line of thought, one might think that convergence will be slowest
in the region where the eigenvalue density has its maximum. However, this is not
necessarily true (although in many cases it is), since µt might be very different from
the normalized Lebesgue measure when t is not small.

In Figure 5.1 we present an example. The eigenvalues of the 300 × 300 matrix
U are distributed according to a combination of three von Mises distributions, with
respective parameter pairs

(θ0, α) = (−π/2, 6), (0, 5) and (π/2, 4).

The density is shown in part (a) of Figure 5.1. The distribution has three local
maxima near the values −i, 0, and i, that is, the points with angles −π/2, 0, and π/2.
Part (b) shows the convergence plot for the IAP. A + is plotted for every isometric
Ritz value whose distance to its nearest eigenvalue is less than 10−5.

It can be seen that the shape of the convergence plot resembles the eigenvalue
density. For the regions of low eigenvalue density, this follows from the preceding
discussion. If we look at higher values of t (i.e., more iterations), then we see a
difference between the two plots. The eigenvalue density has a maximum near −π

2 ,
but the eigenvalues near that maximum are approximated earlier than eigenvalues
near 0, where the peak is lower. To explain this phenomenon, we plotted a simulation
of tµt for t = 0.4 in Figure 5.2. In the region where the constraint σ is active, µt

does not look like λ at all, which is rather obvious (it is prohibited to do so by the
constraint σ). Figure 5.2 shows that eigenvalues in the peaks around −π/2 and π/2
are indeed found earlier than eigenvalues in the peak around 0.

5.2. Convergence speed. Now we will check the assertions of Theorem 2.4.
If we assume the right-hand side of (2.12) is constant as a function of t, we expect
linear convergence. In fact, that right-hand side is slightly decreasing, so we should
be able to observe a superlinear convergence (this superlinearity is of the same nature
as the one discussed in [6, 8]). In Figure 5.3(a) the convergence graphs are plotted
and indeed the (super)linearity appears.

We also tried to generate Case 2 from the classification made in Figure 2.1 also
shown in Figure 4.2(a); in this case two isometric Ritz values are close to the same
eigenvalue. Remember that this was an exception to the doubled convergence rate in
Theorem 2.4. We created a real orthogonal matrix, with 1 as an eigenvalue. In the
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(a) The distribution of eigenvalues
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Fig. 5.1. Convergence result for the IAP applied on a 300 × 300 matrix U with eigenvalues
distributed as in (a). In (b) the iteration step (dimension of the modified Hessenberg submatrix) is
plotted on the Y -axis and the phase angle of the eigenvalues on the X-axis. If an isometric Ritz
value is closer to an eigenvalue than 10−5, a “+” is plotted.
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Fig. 5.2. A simulation of tµt when σ is as in Figure 5.1(a) for t = 0.4.
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(a) Convergence graph of five eigen-
values of the example of Figure 5.1.
The eigenvalues that are approxi-
mated first clearly show the super-
linear behavior.
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(b) Convergence graph for an ex-
ample with the exception (2.13a) of
Theorem 2.4. The distance to the
eigenvalue 1 is either very small (if
an isometric Ritz value is 1 up to ma-
chine precision) or relatively large (if
a pair of complex conjugate isomet-
ric Ritz values approximates 1).

Fig. 5.3. Convergence graphs of individual eigenvalues.
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isometric Arnoldi process we took ρn,N = 1 so that the Hessenberg matrices are real
and nonreal isometric Ritz values come in conjugate pairs. So in each step there are
two possibilities. Either there is an isometric Ritz value at 1, or there is a pair of
complex conjugate isometric Ritz values closest to 1. In the latter case we have the
exception (2.13a). The convergence is then slower as in the typical case.

In Figure 5.3(b) we see that both kinds of behavior do happen, depending on the
value of n. If there is an isometric Ritz value at 1, then the distance is of course small
(zero up to machine precision), while the distance is much bigger if there is a pair of
complex conjugate Ritz values closest to 1. The graph only shows the results for an
even number of iterations, because in this example one isometric Ritz value turned
out to be 1 in every odd step starting at about n = 25.
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tool in many areas of engineering, such as system theory and digital filtering, where
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for physical reasons the transfer functions describing linear time-invariant systems
often have to be bounded on the real line. Furthermore, approximation problems
with rational functions are in the core of, e.g., the partial realization problem [23],
model reduction problems [6, 7, 13], and robust system identification [7, 27].

Recently a strong interest has been brought to a variety of rational interpola-
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208, 33100 Udine, Italy (fasino@dimi.uniud.it). The research of this author was partially supported
by G.N.C.S. and MIUR, grant 2004015437.
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structured matrices. Exploiting the close connections between the functional prob-
lem and its matrix counterparts generally allows us to take advantage of the special
structure of these matrices to speed up the approximation scheme. For example, in
[28] efficient algorithms are designed for rational function evaluation and interpolation
from their connection with displacement structured matrices.

The purpose of this paper is to devise a procedure to construct a set of proper
rational functions with prescribed poles that are orthogonal with respect to a dis-
crete inner product. Orthogonal rational functions are useful in solving multipoint
generalizations of classical moment problems and associated interpolation problems;
see [9] for further references on this topic. We also mention the recent appearance
in the numerical analysis literature of quadrature formulas that are exact for sets of
rational functions having prescribed poles; see, e.g., [10, 21]. Such formulas provide a
greater accuracy than standard quadrature formulas when the poles are chosen in such
a way to mimic the poles present in the integrand. The construction of Gauss-type
quadrature formulas is known to be a task closely related to that of orthogonalizing
a set of prescribed basis functions. In the polynomial case this fact was explored by
Reichel [29, 30] and Gragg and Harrod [24]. Indeed, in these papers the construction
of polynomial sequences that are orthogonal with respect to a discrete inner product
by means of their three-term recurrence relation is tied with the solution of an in-
verse eigenvalue problem for symmetric tridiagonal matrices that is equivalent to the
construction of Gauss quadrature formulas [22].

In this paper we adapt the technique laid down in [30] for polynomial sequences
to a specific set of proper rational functions. The goal is the computation of an or-
thonormal basis of the linear space Rn of proper rational functions φ(z) = n(z)/d(z)
w.r.t. a discrete inner product 〈·, ·〉. Here deg(n(z)) ≤ deg(d(z)) ≤ n and d(z) has
a prescribed set {y1, . . . , yn}, yi ∈ C, of possible zeros; moreover, we set 〈φ, ψ〉 :=∑n

i=0 |wi|2φ(zi)ψ(zi) for φ(z), ψ(z) ∈ Rn. Such computation arises in the solution of
least squares approximation problems with rational functions with prescribed poles.
Moreover, it is also closely related with the computation of an orthogonal factorization
of Cauchy-like matrices whose nodes are the points zi and yi [16, 17].

We prove that an orthonormal basis of (Rn, 〈·, ·〉) can be generated by means of
a suitable recurrence relation. Fast O(n2) Stieltjes-like procedures for computing the
coefficients of such a recurrence relation when the points zi as well as the points yi are
all real were first devised in [16, 17]. However, like the polynomial (Vandermonde)
case [29], these fast algorithms turn out to be quite sensitive to roundoff errors so
that the computed functions are far from orthogonal. Therefore, in this paper we
propose a different approach based on the reduction of the considered problem to the
following inverse eigenvalue problem (DS-IEP): Find a matrix S of order n+ 1 whose
lower triangular part is the lower triangular part of a rank 1 matrix, and a unitary
matrix Q of order n + 1 such that QH �w = ‖�w‖�e1 and QHDzQ = S + Dy. Here and
below �w = [w0, . . . , wn]T , Dz = diag[z0, . . . , zn], and Dy = diag[y0, . . . , yn], where y0

can be chosen arbitrarily. Moreover, we denote by Sk the class of k × k matrices S
whose lower triangular part is the lower triangular part of a rank 1 matrix. If both
S and SH belong to Sk, then S is called a semiseparable matrix [32]. Symmetric
semiseparable matrices have also been called matrices à la couple by Gantmacher and
Krein [20] and are special instances of Green matrices, which were defined by Asplund
[3] with the aim of describing the inverses of band matrices.

A quite similar reduction to an inverse eigenvalue problem for a tridiagonal sym-
metric matrix (T-IEP) or for a unitary Hessenberg matrix (H-IEP) was also exploited
in the theory on the construction of orthonormal polynomials w.r.t. a discrete inner
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product (see [2, 5, 15, 19, 24, 29, 31, 33] for a survey of the theory and applications on
T-IEP and H-IEP). This theory can be generalized to orthonormal vector polynomials;
we refer the interested reader to [1, 11, 34, 35, 36, 37]. Since invertible semisepara-
ble matrices are the inverses of tridiagonal ones [3, 20], we find that DS-IEP gives
a generalization of T-IEP and, in particular, it reduces to T-IEP in the case where
yi, zi ∈ R and all prescribed poles yi are equal.

We devise a method for solving DS-IEP which fully exploits its recursive proper-
ties. This method proceeds by applying a sequence of carefully chosen Givens rotations
to update the solution at the kth step by adding new data (wk+1, zk+1, yk+1). The
unitary matrix Q can thus be determined in its factored form as a product of O(n2)
Givens rotations at the cost of O(n2) arithmetic operations (ops). The complexity of
forming the matrix S depends on the structural properties of its upper triangular part
and, in general, it requires O(n3) ops. In the case where all the points zi lie on the real
axis, we show that S is a semiseparable matrix so that the computation of S can be
carried out using O(n2) ops only. In addition to that, the class Sn+1 results to be close
under linear fractional (Moebius) transformations of the form z → (αz +β)/(γz + δ).
Hence, by combining these two facts together, we are also able to prove that the
process of forming S can be performed at the cost of O(n2) ops whenever all points
zi belong to a generalized circle (ordinary circles and straight lines) in the complex
plane.

This paper is organized in the following way. In section 2 we reduce the computa-
tion of a sequence of orthonormal rational basis functions to the solution of an inverse
eigenvalue problem for matrices of the form diag[y0, . . . , yn] + S, with S ∈ Sn+1. By
exploiting this reduction, we also determine relations for the recursive construction
of such functions. Section 3 provides our method for solving DS-IEP in the general
case whereas the more specific situations corresponding to points lying on the real
axis on the unit circle or on a generic circle in the complex plane are considered in
section 4. Finally, in section 5 we discuss numerical and computational issues related
to the practical application of our method for solving DS-IEP by computations in
fixed precision floating-point arithmetic.

2. The computation of orthonormal rational functions and its matrix
framework. In this section we will study the properties of a sequence of proper ra-
tional functions with prescribed poles that are orthonormal with respect to a certain
discrete inner product. We will also design an algorithm to compute such a sequence
via a suitable recurrence relation. The derivation of this algorithm follows from re-
ducing the functional problem into a matrix setting to the solution of an inverse
eigenvalue problem involving structured matrices.

2.1. The functional problem. Given the complex numbers y1, y2, . . . , yn all
different from each other, let us consider the vector space Rn of all proper rational
functions having possible poles in y1, y2, . . . , yn:

Rn := span

{
1,

1

z − y1
,

1

z − y2
, . . . ,

1

z − yn

}
.

The vector space Rn can be equipped with the inner product 〈·, ·〉 defined below.
Definition 2.1 (bilinear form). Given the complex numbers z0, z1, . . . , zn, which

together with the numbers yi are all different from each other, and the “weights”
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0 �= wi, i = 0, 1, . . . , n, we define a bilinear form 〈·, ·〉 : Rn ×Rn → C by

〈φ, ψ〉 :=

n∑
i=0

|wi|2φ(zi)ψ(zi).

Since there is no proper rational function φ(z) = n(z)/d(z) with deg(n(z)) ≤
deg(d(z)) ≤ n different from the zero function such that φ(zi) = 0 for i = 0, . . . , n,
this bilinear form defines a positive definite inner product in the space Rn.

The aim of this paper is to develop an efficient algorithm for the solution of the
following functional problem.

Problem 1 (computing a sequence of orthonormal rational basis functions).
Construct an orthonormal basis

�αn(z) := [α0(z), α1(z), . . . , αn(z)]

of (Rn, 〈·, ·〉) satisfying the properties

αj(z) ∈ Rj \ Rj−1 (R−1 := ∅),
〈αi, αj〉 = δi,j (Kronecker delta)

for i, j = 0, 1, 2, . . . , n.
Later, we will show that the computation of such an orthonormal basis �αn(z) is

equivalent to the solution of an inverse eigenvalue problem for matrices of the form
diag[y0, . . . , yn] + S, where S ∈ Sn+1.

2.2. The inverse eigenvalue problem. Let Dy = diag[y0, . . . , yn] be the di-
agonal matrix whose diagonal elements are y0, y1, . . . , yn, where y0 can be chosen
arbitrarily; analogously, set Dz = diag[z0, . . . , zn]. Recall that Sk is the class of k× k
matrices S whose lower triangular part is the lower triangular part of a rank 1 matrix.
Furthermore, denote by ‖�w‖ the Euclidean norm of the vector �w = [w0, w1, . . . , wn]T .

Our approach to solving Problem 1 mainly relies upon the equivalence between
that problem and the following inverse eigenvalue problem for diagonal-plus-semi sep-
arable matrices (DS-IEP).

Problem 2 (solving an inverse eigenvalue problem). Given the numbers wi, zi, yi,
find a matrix S ∈ Sn+1 and a unitary matrix Q such that

QH �w = ‖�w‖�e1,(2.1)

QHDzQ = S + Dy.(2.2)

Remark 1. Observe that if (Q,S) is a solution of Problem 2, then S cannot have
zero rows and columns. By contradiction, if we suppose that S�ej = �0, where �ej is
the jth column of the identity matrix In+1 of order n + 1, then DzQ�ej = QDy�ej =
yj−1Q�ej , from which it would follow yj−1 = zi for a certain i.

Results concerning the existence and uniqueness of the solution of Problem 2 were
first proven in the papers [16, 17, 18] for the specific case where yi, zi ∈ R and S is a
semiseparable matrix. In particular, under such auxiliary assumptions, it was shown
that the matrix Q is simply the orthogonal factor of a QR decomposition of a Cauchy-
like matrix built from the nodes yi and zi, i.e., a matrix whose (i, j)th element has
the form ui−1vj−1/(zi−1 − yj−1) where ui−1 and vj−1 are components of two vectors
�u = [u0, . . . , un]T and �v = [v0, . . . , vn]T , respectively. Next, we give a generalization
of the results of [16, 17, 18] to deal with the more general situation considered here.
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Theorem 2.2. Problem 2 has at least one solution. If (Q1, S1) and (Q2, S2)
are two solutions of Problem 2, then there exists a unitary diagonal matrix F =
diag[1, eiθ1 , . . . , eiθn ] such that

Q2 = Q1F, S2 = FHS1F.

Proof. It is certainly possible to find two vectors �u = [u0, . . . , un]T and �v =
[v0, . . . , vn]T with vi, ui �= 0 and uiv0/(zi − y0) = wi, for 0 ≤ i ≤ n. Indeed, it is
sufficient to set, for example, vi = 1 and ui = wi(zi − y0). Hence, let us consider the
nonsingular Cauchy-like matrix C ≡ (ui−1vj−1/(zi−1 − yj−1)) and let C = QR be a
QR factorization of C. From DzC − CDy = �u�vT one easily finds that

QHDzQ = RDyR
−1 + Q�u�vTR−1 = Dy + S,

where

S = RDyR
−1 −Dy + Q�u�vTR−1 ∈ Sn+1.

Moreover, Q�e1 = CR−1�e1 = �w/‖�w‖ by construction. Hence, the matrices Q and
S = QHDzQ−Dy solve Problem 2.

Concerning uniqueness, assume that (Q,S) is a solution of Problem 2 with S ≡
(si,j) and si,j = ũi−1ṽj−1 for 1 ≤ j ≤ i ≤ n + 1. As S�e1 �= �0, it follows that ṽ0 �= 0
and, therefore, we may assume ṽ0 = 1. Moreover, from (2.2) it is easily found that

DzQ�e1 = Q�̃u + y0Q�e1,

where �̃u = [ũ0, . . . , ũn]T . From (2.1) we have

�̃u = QH(Dz − y0In+1)
�w

‖�w‖ .(2.3)

Relation (2.2) can be rewritten as

QHDzQ = �̃u�̃v
T

+ U = �̃u�̃v
T

+ RDyR
−1,

where U is an upper triangular matrix with diagonal entries yi and U = RDyR
−1

gives its Jordan decomposition, defined up to a suitable scaling of the columns of the
upper triangular eigenvector matrix R. Hence, we find that

DzQR−QRDy = Q�̃u�̃v
T
R = �u�vT

and, therefore, QR = C ≡ (ui−1vj−1/(zi−1 − yj−1)) is a Cauchy-like matrix with

�u = Q�̃u uniquely determined by (2.3). This means that all the eligible Cauchy-
like matrices C are obtained one from the other by a post-multiplication side by a
suitable diagonal matrix. In this way, from the essential uniqueness of the orthogonal
factorization of a given matrix, we may conclude that Q is uniquely determined up to
post-multiplication side by a unitary diagonal matrix F having fixed its first diagonal
entry equal to 1. Finally, the result for S immediately follows from using again relation
(2.2).

The above theorem says that the solution of Problem 2 is essentially unique up
to a diagonal scaling. Furthermore, once the weight vector �w and the points zi are
fixed, the determinant of S is a rational function in the variables y0, . . . , yn whose
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numerator is not identically zero. Hence, we can show that for almost any choice
of y0, . . . , yn, the resulting matrix S is nonsingular. The paper [16] dealt with this
regular case in the framework of the orthogonal factorization of real Cauchy matrices.
In particular, it is shown there that the matrix S is nonsingular when all the nodes
yi, zi are real and there exists an interval, either finite or infinite, containing all nodes
yi and none of the nodes zi.

In what follows we assume that S−1 = H exists. It is known that the inverse of
a matrix whose lower triangular part is the lower triangular part of a rank 1 matrix
is an irreducible Hessenberg matrix [20]. Hence, we will use the following notation:
The matrix H = S−1 is upper Hessenberg with subdiagonal elements b0, b1, . . . , bn−1;
for j = 0, . . . , n− 1, the jth column Hj of H has the form

HT
j =: [�hT

j , bj ,�0], bj �= 0.

The outline of the remainder of this section is as follows. First we assume that we
know a unitary matrix Q and the corresponding matrix S solving Problem 2. Then
we provide a recurrence relation between the columns Qj of Q and, in addition to
that, we give a connection between the columns Qj and the values at the points zi
attained by certain rational functions satisfying a similar recurrence relation. Finally,
we show that these rational functions form a basis we are looking for.

2.3. Recurrence relation for the columns of Q. Let the columns of Q denote
as follows:

Q =: [Q0, Q1, . . . , Qn] .

Theorem 2.3 (recurrence relation). For j = 0, 1, . . . , n, the columns Qj satisfy
the recurrence relation

bj(Dz − yj+1In+1)Qj+1 = Qj + ([Q0, Q1, . . . , Qj ]Dy,j −Dz [Q0, Q1, . . . , Qj ])�hj ,

with Q0 = �w/‖�w‖, Qn+1 = 0, and Dy,j = diag[y0, . . . , yj ].
Proof. Since QH �w = �e1‖�w‖, it follows that Q0 = �w/‖�w‖. Multiplying relation

(2.2) to the left by Q, we have

DzQ = Q(S + Dy).

Post-multiplying this by H = S−1 gives us

DzQH = Q(In+1 + DyH).(2.4)

Considering the jth column of the left- and right-hand sides of the equation above
we have the claim.

2.4. Recurrence relation for the orthonormal rational functions. In this
section we define an orthonormal basis �αn(z) = [α0(z), α1(z), . . . , αn(z)] for Rn using
a recurrence relation built by means of the information contained in the matrix H.

Definition 2.4 (recurrence for the orthonormal rational functions).Let us define
α0(z) = 1/‖�w‖ and

αj+1(z) =
αj(z) + ([α0(z), . . . , αj(z)]Dy,j − z [α0(z), . . . , αj(z)])�hj

bj(z − yj+1)

for 0 ≤ j ≤ n− 1.
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In the next theorem, we prove that the rational functions αj(z) evaluated at the
points zi are connected to the elements of the unitary matrix Q. This will allow us
to prove in Theorem 2.6 that the rational functions αj(z) are indeed the orthonormal
rational functions we are looking for. In what follows, we use the notation Dw =
diag[w0, . . . , wn].

Theorem 2.5 (connection between αj(zi) and the elements of Q). Let

�αj = [αj(z0), . . . , αj(zn)]
T ∈ C

n+1, 0 ≤ j ≤ n.

For j = 0, 1, . . . , n, we have Qj = Dw�αj.
Proof. Replacing z by zi in the recurrence relation for αj+1(z), we get

bj(Dz − yj+1In+1)�αj+1 = �αj + ([�α0, . . . , �αj ]Dy,j −Dz [�α0, . . . , �αj ])�hj .

Since Q0 = �w/‖�w‖ = Dw�α0, the theorem is proved by finite induction on j, comparing
the preceding recurrence with the one in Theorem 2.3.

Now it is easy to prove the orthonormality of the rational functions αj(z).
Theorem 2.6 (orthonormality of �αn(z)). The functions α0(z), . . . , αn(z) form

an orthonormal basis for Rn with respect to the inner product 〈·, ·〉. Moreover, we
have αj(z) ∈ Rj \ Rj−1.

Proof. First we prove that 〈αi, αj〉= δi,j . This follows immediately from the
fact that Q=Dw[�α0, . . . , �αn] and Q is unitary. Now we have to prove that αj(z) ∈
Rj \Rj−1. This is clearly true for j = 0 (recall that R−1 = ∅). Suppose it is true for
j = 0, 1, 2, . . . , k < n. From the recurrence relation, we derive that αk+1(z) has the
form

αk+1(z) =
rational function with possible poles in y0, y1, . . . , yk

(z − yj+1)
.

Also limz→∞ αk+1(z) ∈ C and, therefore, αk+1(z) ∈ Rk+1. Note that simplification
by (z − yk+1) does not occur in the previous formula for αk+1(z) because Qk+1 =
Dw�αk+1 is linearly independent of the previous columns of Q. Hence, αk+1(z) ∈
Rk+1 \ Rk.

In the next theorem, we give an alternative relation among the rational functions
αj(z).

Theorem 2.7 (alternative relation). We have

z�αn(z) = �αn(z)(S + Dy) + αn+1(z)�sn,(2.5)

where �sn is the last row of the matrix S and the function αn+1(z) is given by

αn+1(z) = c

n∏
j=0

(z − zj)/

n∏
j=1

(z − yj)

for some constant c.
Proof. Let Hn be the last column of H = S−1 and define

αn+1(z) = �αn(z)(zIn+1 −Dy)Hn − αn(z).(2.6)

Thus, the recurrence relation given in Definition 2.4 can also be written as

�αn(z)(zIn+1 −Dy)H = �αn(z) + αn+1(z)�e
T
n+1.
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Post-multiplying by S =H−1, we obtain the formula (2.5). To determine the form of
αn+1(z) we look at the definition (2.6). It follows that αn+1(z) is a rational function
having degree of numerator at most one more than the degree of the denominator
and having possible poles in y1, y2, . . . , yn. Recalling from Theorem 2.5 the notation
�αj = [αj(z0), . . . , αj(zn)]T and the equation Q = Dw[�α0, . . . , �αn], we can evaluate the
previous equation at the points zi and obtain

Dz [�α0, . . . , �αn]H − [�α0, . . . , �αn]DyH = [�α0, . . . , �αn] + �αn+1�e
T
n .

Since DwDz = DzDw, pre-multiplying by Dw we obtain

DzQH −QDyH = Q + Dw�αn+1�e
T
n+1.

From (2.4) we obtain that Dw�αn+1�e
T
n+1 is a zero matrix; hence, it follows that

αn+1(zi) = 0, for i = 0, 1, . . . , n, and this proves the theorem.
Note that αn+1(z) is orthogonal to all αi(z), i = 0, 1, . . . , n, since αn+1(z) �∈ Rn

and its norm is

‖αn+1‖2 =

n∑
i=0

|wiαn+1(zi)|2 = 0.

3. Solving the inverse eigenvalue problem. In this section we devise an
efficient recursive procedure for the construction of the matrices Q and S solving
Problem 2 (DS-IEP). The case n = 0 is trivial; it is sufficient to set Q = w0/|w0| and
S = z0 − y0. Let us assume we have already constructed a unitary matrix Qk and
a matrix Sk for the first k + 1 points z0, z1, . . . , zk with the corresponding weights
w0, w1, . . . , wk. That is, (Qk, Sk) satisfies

QH
k �wk = ‖�wk‖�e1,

QH
k Dz,kQk = Sk + Dy,k,

where �wk = [w0, . . . , wk]
T , Sk ∈ Sk+1, Dz,k = diag[z0, . . . , zk], and, similarly, Dy,k =

diag[y0, . . . , yk]. The idea is now to add a new point zk+1 with corresponding weight
wk+1 and construct the corresponding matrices Qk+1 and Sk+1.

Hence, we start with the following relations:[
1 0
0 QH

k

] [
wk+1

�wk

]
=

[
wk+1

‖�wk‖�e1

]
,[

1 0
0 QH

k

] [
zk+1 0

0 Dz,k

] [
1 0
0 Qk

]
=

[
zk+1 0

0 Sk + Dy,k

]
.

Then, we find complex Givens rotations Gi = Ii−1 ⊕Gi,i+1 ⊕ Ik−i+1,

Gi,i+1 =:

[
c s
−s c

]
, GH

i,i+1Gi,i+1 = I2,(3.1)

such that

GH
k , . . . , GH

1

[
1 0
0 QH

k

] [
wk+1

�wk

]
=

[
‖�wk+1‖

0

]
and, moreover,

GH
k , . . . , GH

1

[
1 0
0 QH

k

] [
zk+1 0

0 Dz,k

] [
1 0
0 Qk

]
G1, . . . , Gk ∈ Sk+2.
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Finally, we set

Qk+1 =

[
1 0
0 Qk

]
G1, . . . , Gk

and

Sk+1 = GH
k , . . . , GH

1

[
zk+1 0

0 Sk + Dy,k

]
G1, . . . , Gk.(3.2)

With the notation

SS

(
[u0, u1, . . . , uk]
[v0, v1, . . . , vk]

)
we denote the lower triangular matrix whose nonzero part equals the lower triangular
part of the rank 1 matrix [ui−1vj−1]

j=0,...,k
i=0,...,k . Moreover, with the notation

RR

(
[η0, η1, . . . , ηk−1]
[�r0, �r1, . . . , �rk−2]

)
we denote the strictly upper triangular matrix whose (i + 1)st row, 0 ≤ i ≤ k − 2, is
equal to [�0, ηi, �r

T
i ].

Let us now describe in what way Givens rotations are selected in order to perform
the updating of Qk and Sk. In the first step we construct a Givens rotation working
on the new weight. Let G1,2 be a Givens rotation as in (3.1), such that

GH
1,2

[
wk+1

‖�wk‖

]
=

[
‖�wk+1‖

0

]
.(3.3)

The matrix Sk is updated as follows. We know that

Sk = SS

(
[u0, u1, . . . , uk]
[v0, v1, . . . , vk]

)
+ RR

(
[η0, η1, . . . , ηk−1]
[�r0, �r1, . . . , �rk−2]

)
.

Let

Sk+1,1 + Dy,k+1,1 :=

[
GH

1,2 0
0 Ik

] [
zk+1 0

0 Sk + Dy,k

] [
G1,2 0

0 Ik

]
,

where Sk+1,1 and Dy,k+1,1 are defined as follows:

Sk+1,1 = SS

(
[û0, ũ1, u1, u2, . . . , uk]
[v̂0, ṽ1, v1, v2, . . . , vk]

)
+ RR

(
[η̂0, η̃1, η1, . . . , ηk−1][
�̂r0,�̃r1, �r1 . . . , �rk−2

] )
and

Dy,k+1,1 = diag(y0, ỹ1, y1, y2, . . . , yk),

with [
α δ
γ β

]
:= GH

1,2

[
zk+1 0

0 y0 + u0v0

]
G1,2
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and

v̂0 = −sv0, û0 = (α− y0)/v̂0, η̂0 = δ,
ṽ1 = cv0, ỹ1 = β − ũ1ṽ1, ũ1 = γ/v̂0,

η̃1 = cη0, �̂r0 =
[
−sη0,−s�rT0

]T
, �̃r1 = c�r0.

Observe that v0 �= 0 from Remark 1 and, moreover, s �= 0 since ‖�wk‖ �= 0 in (3.3),
whence v̂0 �= 0 and, therefore, all these quantities are well defined.

In the next steps, we are transforming Dy,k+1,1 into Dy,k+1. The first of these
steps is as follows. If v1ũ1 − η̃1 �= 0, we choose t such that

t =
y1 − ỹ1

v1ũ1 − η̃1

and define the Givens rotation working on the 2nd and 3rd rows and columns as

G2,3 =

[
1 t
−t 1

]
/
√

1 + |t|2.

Otherwise, if v1ũ1 − η̃1 = 0, we set

G2,3 =

[
0 1
−1 0

]
.

The matrices Sk+1,1 and Dy,k+1,1 undergo the similarity transformation associated to
G2,3. The transformed matrices Sk+1,2 and Dy,k+1,2 are given by

Sk+1,2 = SS

(
[û0, û1, ũ2, u2, . . . , uk]
[v̂0, v̂1, ṽ2, v2, . . . , vk]

)
+ RR

(
[η̂0, η̂1, η̃2, η2, . . . , ηk−1][
�̂r0,�̂r1,�̃r2, �r2 . . . , �rk−2

] ) ,

Dy,k+1,2 = diag(y0, y1, ỹ2, y2, y3, . . . , yk),

with

GH
2,3

[
ũ1

u1

]
=

[
û1

ũ2

]
, [ṽ1, v1]G2,3 = [v̂1, ṽ2] .

Moreover, ỹ2 = ỹ1, η̂1 is the (1, 2)-entry of

GH
2,3

[
ũ1ṽ1 + ỹ1 η̃1

u1ṽ1 u1v1 + y1

]
G2,3,

and

GH
2,3

[
�̃r1

[η1, �r1]

]
=

[
�̂r1[

η̃2,�̃r2

] ] .(3.4)

At the very end, after k steps, we obtain

Sk+1,k = SS

(
[û0, û1, . . . , ûk, ũk+1]
[v̂0, v̂1, . . . , v̂k, ṽk+1]

)
+ RR

(
[η̂0, η̂1, η̂2, . . . , η̂k][
�̂r0,�̂r1,�̂r2, . . . ,�̂rk−1

])
and

Dy,k+1,k = diag(y0, y1, . . . , yk, ỹk+1).
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Since Sk+1,k = Sk+1+diag[0, . . . , 0, ỹk+1−yk+1], then from (3.2) it follows that ũk+1 �=
0. Thus, the last step will transform ỹk+1 into yk+1 by applying the transformation

ûk+1 ← ũk+1,

v̂k+1 ← (ỹk+1 − yk+1 + ũk+1ṽk+1)/ũk+1.

The computational complexity of the algorithm is dominated by the cost of performing
the multiplications (3.4). In general, adding new data (wk+1, zk+1, yk+1) requires
O(k2) ops and, hence, computing Sn = S requires O(n3) ops. In the next section
we will show that these estimates reduce by an order of magnitude in the case where
some special distributions of the points zi are considered which lead to a matrix S
with a structured upper triangular part. We stress the fact that in light of Theorem
2.2, the above procedure to solve DS-IEP can also be seen as a method to compute
the orthogonal factor in a QR factorization of a suitable Cauchy-like matrix.

4. Special configurations of points zi. In this section we specialize our algo-
rithm for the solution of DS-IEP to cover with the important case where the points zi
are assumed to lie on the real axis or on the unit circle in the complex plane. Under
this assumption on the distribution of the points zi, it will be shown that the matrix
S also possesses a semiseparable structure. The exploitation of this property allows
us to overcome the multiplication (3.4) and to construct the matrix Sn = S by means
of a simpler parametrization, using O(n) ops per point, so that the overall cost of
forming S reduces to O(n2) ops.

4.1. Special case: All points zi are real. When all the points zi are real, we
have

S + Dy = QHDzQ = (QHDzQ)H = (S + Dy)
H .

Hence, the matrix S + Dy can be written as

S + Dy = tril(�u�vT , 0) + Dy + triu(�̄v�uH , 1),(4.1)

with �̄v the complex conjugate of the vector �v. Here we adopt the Matlab notation
triu(B, p) for the upper triangular portion of a square matrix B, where all entries
below the pth diagonal are set to zero (p = 0 is the main diagonal, p > 0 is above
the main diagonal, and p < 0 is below the main diagonal). Analogously, the matrix
tril(B, p) is formed by the lower triangular portion of B by setting to zero all its entries
above the pth diagonal. In particular, the matrix S is a Hermitian semiseparable
matrix and its computation requires only O(n) ops per point, since its upper triangular
part need not be computed via (3.4). Moreover, its inverse matrix H is tridiagonal;

hence the vectors �hj occurring in Definition 2.4 have only one nonzero entry.
Also, when all the poles yi (and the weights wi) are real, all computations can

be performed using real arithmetic instead of doing operations on complex numbers.
When all the poles are real or come in complex conjugate pairs, all computations can
also be done using only real arithmetic. However, the algorithm then works with a
block diagonal Dy instead of a diagonal matrix. The details of this algorithm are
rather elaborate so we will not go into the details here.

4.2. Special case: All points zi lie on the unit circle. The case of points zi
located on the unit circle T = {z ∈ C : |z| = 1} in the complex plane can be reduced
to the real case treated in the preceding subsection by using the concept of linear
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fractional (Moebius) transformation [25]. To be specific, a function M : C ∪ {∞} →
C ∪ {∞} is a Moebius transformation if

M(z) =
αz + β

γz + δ
, αδ − βγ �= 0, α, β, γ, δ ∈ C.

Interesting properties concerning Moebius transformations are collected in [25]. In
particular, a Moebius transformation defines a one-to-one mapping of the extended
complex plane into itself and, moreover, the inverse of a Moebius transformation is
still a Moebius transformation given by

M−1(z) =
δz − β

−γz + α
.(4.2)

The Moebius transformation M(S) of a matrix S is defined as

M(S) = (αS + βI)(γS + δI)−1

if the matrix γS + δI is nonsingular. The basic fact relating semiseparable matrices
with Moebius transformations is that in a certain sense the semiseparable structure
is maintained under a Moebius transformation of the matrix. More precisely, we have
the following theorem.

Theorem 4.1. Let S ∈ Sn+1 with S ≡ (si,j), si,j = ui−1vj−1 for 1 ≤ j ≤ i ≤
n + 1, and v0 �= 0. Moreover, let Dy = diag[y0, . . . , yn] and assume that M maps the
eigenvalues of both S + Dy and Dy into points of the ordinary complex plane, i.e.,
−δ/γ is different from all the points yi, zi. Then, we find that

M(S + Dy) −M(Dy) ∈ Sn+1.

Proof. Observe that S ∈Sn+1 implies that RSU ∈Sn+1 for R and U upper tri-
angular matrices. Hence, if we define R = I − �e1[0, v1/v0, . . . , vn/v0], the theorem is
proven by showing that

R−1(M(S + Dy) −M(Dy))R ∈ Sn+1,

which is equivalent to

R−1M(S + Dy)R−M(Dy) ∈ Sn+1.

One immediately finds that

R−1M(S + Dy)R = ((γ(S + Dy) + δI)R)−1(α(S + Dy) + βI)R,

from which it follows that

R−1M(S + Dy)R = (γv0�u�e
T
1 + R1)

−1(αv0�u�e
T
1 + R2),

where R1 and R2 are upper triangular matrices with diagonal entries γyi + δ and
αyi + β, respectively. In particular, R1 is invertible and, by applying the Sherman–
Morrison formula, we obtain

R−1M(S + Dy)R = (I − σR−1
1 �u�eT1 )(αv0R

−1
1 �u�eT1 + R−1

1 R2)
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for a suitable σ. The thesis is now established by observing that the diagonal entries
of R−1

1 R2 coincide with the ones of M(Dy) and, moreover, from the previous relation
one gets

R−1M(S + Dy)R−R−1
1 R2 ∈ Sn+1

and the proof is complete.
This theorem has several interesting consequences since it is well known that

we can determine Moebius transformations mapping the unit circle T except for one
point onto the real axis in the complex plane. To see this, let us first consider Moebius
transformations of the form

M1(z) =
z + ᾱ

z + α
, α ∈ C \ R.

It is immediately found that M1(z) is invertible and, moreover, M1(z) ∈ T whenever
z ∈ R. For the sake of generality, we also introduce Moebius transformations of the
form

M2(z) =
z − β

1 − β̄z
, |β| �= 1,

which are invertible and map the unit circle T into itself. Then, by composition of
M2(z) with M1(z) we find a fairly general transformation M(z) mapping the real
axis into the unit circle:

M(z) = M2(M1(z)) =
(1 − β)z + (ᾱ− βα)

(1 − β̄)z + (α− ᾱβ̄)
.(4.3)

Hence, the inverse transformation M−1(z) = M−1
1 (M−1

2 (z)), where

M−1
1 (z) =

αz − ᾱ

−z + 1
, M−1

2 (z) =
z + β

β̄z + 1

is the desired invertible transformation which maps the unit circle (except for one
point) into the real axis.

By combining these properties with Theorem 4.1, we obtain efficient procedures
for the solution of Problem 2 in the case where all the points zi belong to the unit
circle T.

Let Dy = diag[y0, . . . , yn] and Dz = diag[z0, . . . , zn] with |zi| = 1. Moreover,
let M(z) be as in (4.3), such that M−1(zi) and M−1(yi) are finite, i.e., zi, yi �=
(1 − β)/(1 − β̄) = M2(1), 0 ≤ i ≤ n. The solution (Q,S) of Problem 2 with input
data �w, {M−1(zi)}, and {M−1(yi)} is such that

QH diag[M−1(z0), . . . ,M−1(zn)]Q = S + diag[M−1(y0), . . . ,M−1(yn)],

from which it follows that

M(QH diag[M−1(z0), . . . ,M−1(zn)]Q) = M(S + diag[M−1(y0), . . . ,M−1(yn)]).

By invoking Theorem 4.1, this relation gives

M(QH diag[M−1(z0), . . . ,M−1(zn)]Q) = QHDzQ = Ŝ + Dy, Ŝ ∈ Sn+1,
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and, therefore, a solution of the original inverse eigenvalue problem with points zi ∈ T

is (Q̂, Ŝ), where Q̂ = Q and Ŝ is such that

Ŝ + Dy = M(S + diag[M−1(y0), . . . ,M−1(yn)]).(4.4)

Having shown in (4.1) that the matrix S satisfies

S = tril(�u�vT , 0) + triu(�̄v�uH , 1),

for suitable vectors �u and �v, we can use (4.4) to further investigate the structure of

Ŝ. From (4.4) we deduce that

ŜH + DH
y = M̃(SH + diag[M−1(y0), . . . ,M−1(yn)]H).

The Moebius transformation M̃ of a matrix S is defined as

M̃ = (γ̄S + δ̄I)−1(ᾱS + β̄I)

when M = (αz + β)/(γz + δ). By applying Theorem 4.1 again, assuming that all yi
are different from zero, this implies that

ŜH + D ∈ Sn+1

for a certain diagonal matrix D. Summing up, we obtain that

Ŝ = tril(�u�vT , 0) + triu(�p�qT , 1),(4.5)

for suitable vectors �u, �v, �p, and �q. In case one or more of the yi are equal to zero, it
can be shown that Ŝ is block lower triangular where each of the diagonal blocks has
the desired structure. The proof is rather technical. Therefore, we omit it here.

From a computational viewpoint, these results can be used to devise several dif-
ferent procedures for solving Problem 2 in the case of points zi lying on the unit circle
at the cost of O(n2) ops. By taking into account the semiseparable structure of Ŝ
(4.5) we can simply modify the algorithm stated in the previous section in such a
way to compute its upper triangular part without performing multiplications (3.4).
A different approach is outlined in the next subsection.

4.3. Special case: All points zi lie on a generic circle. Another approach
to deal with the preceding special case, which immediately generalizes to the case
where the nodes zi belong to a given circle in the complex plane-like {z ∈ C : |z −
p| = r}, exploits an invariance property of Cauchy-like matrices under a Moebius
transformation of the nodes. Such property is presented in the next lemma for the
case of classical Cauchy matrices; the Cauchy case can be dealt with by introducing
suitable diagonal scalings. With minor changes, all forthcoming arguments also apply
to the case where all abscissas lie on a generic line in the complex plane, since the
image of R under a Moebius transformation is either a circle or a line.

Lemma 4.2. Let zi, yj, for 1 ≤ i, j ≤ n, be pairwise distinct complex numbers, let

M(z) =
αz + β

γz + δ
, αδ − βγ �= 0,

be a Moebius transformation, and let CM ≡ (1/(M(zi) − M(yj))). Then CM is a
Cauchy-like matrix with nodes zi, yj.
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Proof. Using the notation above, we have

1

M(zi) −M(yj)
=

1

αδ − βγ

(γzi + δ)(γyj + δ)

zi − yj
.

Hence CM has the form CM ≡ (uivj/(zi − yj)).
In the next theorem, we show how to construct a Moebius transformation mapping

R onto a prescribed circle without one point, thus generalizing formula (4.3). Together
with the preceding lemma, it will allow us to translate Problem 2 with nodes on a
circle into a corresponding problem with real nodes. The latter can be solved with
the technique laid down in subsection 4.1.

Theorem 4.3. Let the center of the circle p ∈ C and its radius r > 0 be given.
Consider the following algorithm:

1. Choose arbitrary nonzero complex numbers γ = |γ|eiθγ and δ = |δ|eiθδ such
that e2i(θγ−θδ) �= 1; moreover, choose θ̃ ∈ [0, 2π].

2. Set α = pγ + r|γ|eiθ̃.

3. Set θ̂ = θ̃ + θγ − θδ.

4. Set β = pδ + r|δ|eiθ̂.
Then the function M(z) = (αz + β)/(γz + δ) is a Moebius transformation mapping
the real line onto the circle {z ∈ C : |z − p| = r} without the point ẑ = α/γ.

Proof. After simple manipulations,∣∣∣∣αz + β

γz + δ
− p

∣∣∣∣2 = r2

leads to

z2|α− pγ|2 + 2z�((α− pγ)(β − pδ)) + |β − pδ|2

= z2r2|γ|2 + 2zr2�(γδ̄) + r2|δ|2.
(4.6)

Here and in what follows, �(z) denotes the real part of z ∈ C. By construction, we
have |α− pγ| = r|γ| and |β − pδ| = r|δ|. Moreover,

�((α− pγ)(β − pδ)) = r2|γδ|�(ei(θ̃−θ̂))

= r2|γδ|�(ei(θδ−θγ))

= r2�(γδ̄).

Hence (4.6) is fulfilled for any real z. The missing point is given by

ẑ = lim
z→∞

αz + β

γz + δ
=

α

γ
.

It remains for us to prove that αδ − βγ �= 0. Indeed, we have

αδ − βγ = (pγ + r|γ|eiθ̃)δ − (pδ + r|δ|eiθ̂)γ

= r|γ|δeiθ̃ − rγ|δ|eiθ̂

= r|γδ|(ei(θ̃+θδ) − ei(θ̂+θγ))

= r|γδ|ei(θ̃+θδ)(1 − e2i(θγ−θδ)).

Since e2i(θγ+θδ) �= 1 we obtain αδ − βγ �= 0.
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Suppose we want to solve Problem 2 with data wi, zi, yi, where |zi − p| = r. As
seen from the proof of Theorem 2.2, if we let C ≡ (wi−1(zi−1 − y0)/(zi−1 − yj−1))
and C = QR, then a solution is (Q,S), with S = QHDzQ − Dy. Let M(z) =
(αz + β)/(γz + δ) be a Moebius transformation built from Theorem 4.3. Recalling
the inversion formula (4.2), let z̃i = M−1(zi), ỹi = M−1(yi), vi = γỹi + δ, and

w̃i = wi
zi − y0

z̃i − ỹ0

γz̃i + δ

αδ − βγ
, 0 ≤ i ≤ n.

Note that z̃i ∈ R, by construction. From Lemma 4.2, we also have

C ≡
(
w̃i−1(z̃i−1 − ỹ0)vj−1

z̃i−1 − ỹj−1

)
.

Again from Theorem 2.2, we see that the solution of Problem 2 with data w̃i, z̃i, ỹi is
(Q, S̃), where

S̃ = QHM−1(Dz)Q−M−1(Dy).

Let Ŝ = S̃ + M−1(Dy). Observe that Ŝ is a diagonal-plus-semiseparable matrix
[12, 14, 18]. After simple passages, we have

S = M(Ŝ) −Dy = [αŜ + βI][γŜ + δI]−1 −Dy.

Hence S can be recovered from S̃ by determining the entries in its first and last rows
and columns. This latter task can be carried out at a linear cost by means of several
different algorithms for the solution of diagonal-plus-semiseparable linear systems;
see, e.g., [12, 14, 26, 38].

5. Computational issues. In this section we discuss some numerical and com-
putational issues concerned with the application of the algorithm stated in section 3
for the solution of the inverse eigenvalue problem 2 (DS-IEP). We implemented the
O(n2) algorithm in Matlab and performed extensive numerical experiments in order
to compare the numerical behavior of our algorithm with other existing O(n2) solu-
tion methods based on the computation of the columns of the matrix Q by means of a
three-term recurrence relation [16, 17]. We have tried a number of different data sets
and the algorithm which we developed here always returned better results than the
algorithms of [16, 17]. For instance, consider the following data set: wi = 1, zi = i+n
and yi = i + n− 1

2 for i = 0, 1, 2, . . . , n. To show that our algorithm is indeed O(n2),
we plot in Figure 5.1 the execution time divided by n2 for the different sizes of the
problem. Here we set n = 10, 20, 30, . . . , 1000. The slight deviation of the graph from
a straight horizontal line can be attributed to the memory management overhead, due
to computations with larger matrices.

Figure 5.2 gives the maximum relative error on the eigenvalues of the com-
puted diagonal-plus-semiseparable matrix compared to the original points zi for n =
10, 20, 30, . . . , 500. In Figure 5.3, the same is done for the weights. Figures 5.2 and
5.3 show that the algorithm is accurate for this specific data set. Differently, the algo-
rithms of [16, 17] already provide inaccurate results for small values of n, say n > 30,
due to the loss of orthogonality of the columns of Q.

However, it is worth mentioning that in our experience we found examples for
which our algorithm does not perform so well as in the previous case. Experimentally,
it was noticed that much depends on the balancing of the vectors �uk and �vk which
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define the lower triangular part of the matrix Sk ∈Sk+1, recursively generated by
our algorithm to compute the final matrix S = Sn ∈Sn+1. The computation of an
unbalanced representation is an ill-conditioned task resulting in less accurate results.
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To see this, let us consider the matrix

S =

[
1 ∗
ε 1

]
,

where ∗ denotes some number and ε > 0 is small. The lower triangular part of this
matrix admits a representation by means of the two vectors �u = [1, ε] and �v = [1, 1/ε].
Suppose now we perturb the matrix S by adding a perturbation matrix ∆S, ‖∆S‖ =
O(ε), such that

S + ∆S =

[
1 ∗
η 1

]
,

where 0 < η < ε. Then, the lower triangular part of the perturbed matrix S+∆S can
be expressed by using the two vectors �u = [1, η] and �v = [1, 1/η]. This means that a
perturbation of order ε of the matrix S produces a vector �v whose second component
is affected by an absolute error equal to |1/ε− 1/η| = O(1/η).

Similar numerical problems were also encountered in the solution of the direct
eigenvalue problem for semiseparable matrices by means of QR iteration [4, 39]. To
circumvent these difficulties, in the cited papers novel numerically robust represen-
tations of semiseparable matrices have been introduced and analyzed. They look
like

S =

⎡⎢⎢⎢⎢⎣
u1v1 ∗ · · · ∗

u2t1v1 u2v2
. . .

...
...

...
. . . ∗

untn−1 . . . t1v1 untn−1 . . . t2v2 · · · unvn

⎤⎥⎥⎥⎥⎦ .
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If we make use of such a representation for the 2 × 2 matrix S ∈ S2 described above,
then it is easy to verify that the considered O(ε) perturbation only causes O(ε) changes
in the elements of the representation.

The adaptation of the algorithm presented in this paper to deal with such modified
representations is an ongoing work and, in our opinion, will lead to the design of
a stable algorithm for solving the inverse eigenvalue problems which exploits the
computational properties of semiseparable matrices.
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Abstract. A general framework is presented for analyzing the continuous evolution of eigende-
compositions of matrices. More specifically, for arbitrary operator norms, a general framework based
on pseudospectra of matrices is developed for computing upper bounds on ε from the Schur or block
Schur forms of a complex n-by-n matrix A that ensure stability of eigendecompositions of A when
A varies in the ball {A′ : ‖A − A′‖ ≤ ε}. For the 2-norm and the Frobenius norm, the new bounds
presented compare well with the bounds obtained by Demmel and Wilkinson.

Key words. eigendecomposition, ε-pseudospectrum, geometric separation

AMS subject classifications. 65F15, 15A18, 15A12, 65F35, 65F30

DOI. 10.1137/S0895479802418458

1. Introduction. Computation of eigendecompositions of matrices is an im-
portant task in numerical linear algebra. By an eigendecomposition of a matrix
A ∈ C

n×n, we mean a decomposition of A of the form

A = Xdiag(A1, . . . , Am)X−1, where σ(Ai) ∩ σ(Aj) = ∅ for i �= j.(1.1)

Here σ(Aj) is the spectrum of Aj . Following [4], we also specify an eigendecomposition
of A by a disjoint partition of the spectrum σ(A):

σ(A) = ∪m
j=1σj .(1.2)

Clearly, the sensitivity of an eigendecomposition of A is strongly influenced by the
partition of σ(A) induced by the eigendecomposition. For example, in an eigende-
composition of A if two close eigenvalues are made to appear in two disjoint parts of
σ(A), then the eigendecomposition tends to be highly sensitive to perturbation. We
mention that finding a well-conditioned eigendecomposition of A is a hard problem.
It is shown in [9] that the problem of finding a well-conditioned block diagonalizing
similarity transformation is in general NP-hard. More specifically, given a tolerance
τ, the problem of finding an eigendecomposition of A of the form (1.1) such that the
condition number of X is at most τ is NP-hard.

Fortunately, most often the task is to compute an eigendecomposition specified
by a specific application. There are robust algorithms to compute a specified eigen-
decomposition of a matrix which also attempt to control the condition number of
the block diagonalizing similarity transformation in terms of input tolerance (see, for
example, [2], [11]). Since finite precision affects the computation, it is important to
understand the effect of small perturbations on an eigendecomposition of A. The effect
of small perturbation on an eigendecomposition of A has been analyzed, for example,
in [4], [22], [23], [16], [20].

The main objective of this paper is to analyze evolution of eigendecompositions.
Given an eigendecomposition of A of the form (1.2), we analyze its evolution in a
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small neighborhood of A. More specifically, we analyze the continuous evolution of
(1.2) on the closed ball

A(ε) := {A′ ∈ C
n×n : ‖A−A′‖ ≤ ε}.

By continuous evolution of (1.2) on A(ε), we mean that for each j = 1, 2, . . . ,m, the
spectral projection Pj associated with A and σj varies continuously when A varies in
A(ε). For example, if (1.2) evolves continuously on A(ε), then for each ‖E‖ ≤ ε, A+E
admits an eigendecomposition σ(A + E) = ∪m

j=1σ
′
j such that each σ′

j results from the
continuous deformation of σj .

The ε-pseudospectra, well known for analyzing behavior of nonnormal matrices
[17], [18], arise naturally for analyzing stability of eigendecompositions. As shown in
[1], [3], the ε-pseudospectrum Λε(A) (defined in section 2) provides a natural frame-
work for analyzing the continuous evolution of eigendecompositions of A on A(ε). In
fact, for the 2-norm and, under appropriate assumption, the Frobenius norm, a neces-
sary and sufficient condition for continuous evolution of (1.2) on A(ε) can be read off
from Λε(A). Since computation of pseudospectra is expensive, for practical purposes,
it is desirable to have upper bounds of ε that ensure the continuous evolution of (1.2)
on A(ε). For example, when A is of the form

A :=

[
A1 C
0 A2

]
, where σ(A1) ∩ σ(A2) = ∅,(1.3)

it was shown by Demmel [4] that σ(A) = σ(A1) ∪ σ(A2) evolves continuously on
A(ε) if

ε <
sepλ(A1, A2)

‖P‖2 +
√
‖P‖2

2 − 1
.(1.4)

Here P is the spectral projection associated with A and σ(A1), and sepλ is the spectral
overlap [4], [19] of A1 and A2 (defined in section 4). A slightly weaker bound ε <
sepλ(A1, A2)/2‖P‖2 was obtained by Wilkinson [22], [23]. A more conservative bound
ε < sep(A1, A2)/4‖P‖2 is due to Stewart [16], where sep(A1, A2) is the separation of
A1 and A2 (defined in section 4).

For arbitrary operator norms, we describe a general framework for obtaining
various upper bounds of ε that ensure the continuous evolution of eigendecompositions
of A on A(ε). We show that various upper bounds of ε are easy consequences of
inclusion theorems for Λε(A). In fact, we show that if A is similar to diag(A1, A2),
where σ(A1) ∩ σ(A2) = ∅, and

Λε(A) ⊂ Λφ(ε)(A1) ∪ Λφ(ε)(A2)

for some strictly increasing function φ, then σ(A) = σ(A1) ∪ σ(A2) evolves continu-
ously on A(ε) if ε < φ−1(sepλ(A1, A2)). In particular, when A is given by (1.3), for
the spectral and the Frobenius norms we show that σ(A) = σ(A1) ∪ σ(A2) evolves
continuously on A(ε) if

ε <
2 (sepλ(A1, A2))

2

‖C‖2 +
√
‖C‖2

2 + 4 (sepλ(A1, A2))
2

and ε<
2 (sepλ(A1, A2))

2

‖C‖F +
√
‖C‖2

F + 4 (sepλ(A1, A2))
2
,

respectively. Inequality (1.4) is known to be the best upper bound for ε. We show
that our upper bound for the 2-norm compares well with (1.4) in the sense that there
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are matrices for which our bound is better than (1.4), and vice versa. In fact, we
show that they differ from each other at most by a factor of sepλ.

The geometric separation of eigenvalues gsep (defined in section 2), which can
be read off from ε-pseudospectra, provides a sufficient condition for continuous evo-
lution of eigendecompositions. For example, (1.2) evolves continuously on A(ε) if
ε < minj gsep(σj). We show that various bounds discussed above are, in fact, lower
bounds of the geometric separation gsep and are obtained by approximating Λε(A).
Thus from our general framework we show that

φ−1(sepλ(A1, A2)) ≤ gsep(σ(A1), σ(A2)).

This paper is organized as follows. Section 2 briefly reviews ε-pseudospectra and
their applications in analyzing the stability of eigendecompositions. Section 3 presents
localization theorems, old and new, for the perturbed eigenvalues in the setting of ε-
pseudospectra. The notions of spectral overlap and separation of matrices have been
discussed in section 4. Section 5 derives various lower bounds of gsep. Section 6 is
devoted to establishing relationships between various concepts such as geometric sepa-
ration, spectral overlap, dissociation, and separation of eigenvalues. Finally, section 7
shows that for 2-by-2 matrices, gsep attains some of the lower bounds.

Notation. We denote the set of n-by-n complex matrices by C
n×n. For A ∈

C
n×n, we denote the spectrum of A by σ(A). For z ∈ C \ σ(A), we set R(A, z) :=

(A− zI)−1. An operator norm of A is defined by ‖A‖ := sup‖x‖=1 ‖Ax‖. The p-norm
on C

n and the induced operator norm is denoted by ‖ · ‖p. The 2-norm is also referred
to as the spectral norm. Throughout this paper, we consider operator norms, the only
exception being the Frobenius norm ‖A‖F :=

√
trace(A∗A). We, however, mention

that most results in this paper hold for any submultiplicative norms. We say that ‖ ·‖
is a max-norm if ‖diag(A1, A2)‖ = max(‖A1‖, ‖A2‖). For example, each p-norm is a
max-norm. If X is invertible, then K(X) := ‖X−1‖ ‖X‖ is the condition number of
X. For the p-norm, K(X) is denoted by Kp(X). Finally, we denote the closed ball in
C by B[z, r], that is, B[z, r] := {w ∈ C : |w − z| ≤ r}.

2. Stability of eigendecompositions. Let A ∈ C
n×n. We briefly show that

the ε-pseudospectrum provides a natural framework for analyzing stability of eigen-
decompositions. Consider the eigendecomposition (1.1). Partition X = [X1, . . . , Xm]
and Y := (X−1)∗ = [Y1, . . . , Ym], the partitioning being conformal with that of
diag(A1, . . . , Am). Then the columns of Xi (resp., Yi ) span the right (resp., left)
invariant subspace of A corresponding to σ(Ai). Further, Pi := XiY

∗
i is the spectral

projection associated with A and σ(Ai), PiPj = 0 for i �= j, and P1 + · · · + Pm = I.
Recall that A(ε) := {A′ : ‖A− A′‖ ≤ ε}. Following [4], we identity A with A(ε) and
say that A is known to within the tolerance ε.

Definition 2.1. Let ε > 0. An eigendecomposition σ(A) = ∪m
j=1σj is said to

be ε-stable if the spectral projection Pj associated with A and σj varies continuously
when A varies in A(ε) for all j = 1, 2, . . . ,m.

Clearly, (1.2) is ε-stable if and only if an eigenvalue from σi and an eigenvalue
from σj do not move and coalesce when A varies in A(ε) for all i �= j. This shows that
for analyzing stability of (1.2), we need to understand the evolution of eigenvalues of
A when A varies in A(ε). Consequently, we are led to consider the ε-pseudospectrum
Λε(A) of A given by

Λε(A) :=
⋃

A′∈A(ε)

σ(A′).
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For operator norms, Λε(A) = {z ∈ C : ‖R(A, z)‖ ≥ ε−1} (see [17], [18]). We note,
however, that for nonoperator norms, these two definitions are not equivalent. The
only nonoperator norm we use in this paper is the Frobenius norm. However, as
shown in [1], Λε(A) is the same for the 2-norm and the Frobenius norm, that is,

Λε(A) =
⋃

‖E‖2≤ε

σ(A + E) =
⋃

‖E‖F≤ε

σ(A + E).(2.1)

Hence we effectively work with pseudospectra for operator norms. It is well known
that, for ε > 0, Λε(A) consists of nontrivial components (i.e., maximal connected
sets) and each component of Λε(A) contains at least one eigenvalue in its interior
(see [3], [7], [10]). Thus if A has k distinct eigenvalues, then for sufficiently small ε,
Λε(A) consists of exactly k components. As ε increases gradually the size of these
components increases and coalesces with other components.

Definition 2.2 (see [1]). The geometric separation of an eigenvalue λ from the
rest of σ(A), denoted by gsep(λ), is the smallest value of ε for which a component of
Λε(A) containing λ coalesces with another component of Λε(A).

If σ1 is a nonempty subset of σ(A), then the geometric separation of σ1 from the
rest of σ(A), denoted by gsep(σ1), is the smallest value of ε for which a component
of Λε(A) containing an eigenvalue from σ1 coalesces with a component containing an
eigenvalue from σ(A) \ σ1.

The geometric separation, gsep(σ1, . . . , σm), of an eigendecomposition σ(A) =
∪m
j=1σj is the smallest value of ε for which a component of Λε(A) containing an

eigenvalue from σi coalesces with a component containing an eigenvalue from σk for
some i �= k.

Notice that gsep depends on A as well as the norm, which we do not show for
notational simplicity. We denote gsep(σ1) by gsep(σ1, A) whenever it is necessary to
show the dependence on A. It is immediate that gsep is the same for the 2-norm and
the Frobenius norm and that

gsep(σ1, . . . , σm) = min
1≤j≤m

gsep(σj).

It is evident that if ε < gsep(σj), then, as A varies in A(ε), the eigenvalues generated
from σj remain disjoint from the eigenvalues generated from σi for all i �= j. Hence
the spectral projection associated with A and σj varies continuously when A varies
in A(ε).

Theorem 2.3 (see [1]). Eigendecomposition (1.2) is ε-stable if ε < gsep(σ1, . . . ,
σm). Equivalently, (1.2) is ε-stable if each component of Λε(A) contains eigenvalues
from exactly one of the sets σ1, . . . , σm.

For the 2-norm and, under appropriate assumption, the Frobenius norm, (1.2) is
ε-stable if and only if ε < gsep(σ1, . . . , σm).

Observe that for analyzing ε-stability of eigendecompositions of A, it is enough
to consider an eigendecomposition of the form σ(A) = σ1 ∪ σ2. Further, given an
ε > 0, we can choose an eigendecomposition of A that is ε-stable by looking at Λε(A).
Indeed, if Λε(A) consists of m components ∆1, . . . ,∆m, then for σj := σ(A)∩∆j , the
eigendecomposition σ(A) = ∪m

j=1σj is obviously ε-stable.

Although, gsep can be read off from Λε(A), the computation of Λε(A) is expensive.
Therefore it is desirable to have a sharp lower bound of gsep that can be computed
from a Schur or a block Schur form of A. In what follows, we describe a general
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framework for obtaining various lower bounds of gsep. We show that these bounds
are, in fact, easy consequences of approximation results of Λε(A).

3. Inclusion theorems for pseudospectra. The ε-pseudospectrum Λε(A) pro-
vides the best possible localization for σ(A + E) when ‖E‖ ≤ ε. Further, a compo-
nent of Λε(A) provides the best possible localization for the perturbed eigenvalues
generated from the eigenvalues inside it. There are localization theorems such as the
Gershgorin disk theorem, the Bauer–Fike theorem [15], and a block version of it known
as the Wilkinson–Feingold theorem [23] which localize perturbed eigen-values in the
complex plane. We present some of these theorems in the setting of ε-pseudospectra
and obtain new inclusion results for Λε(A) from which lower bounds of gsep fol-
low. Recall that B[z, r] denotes the closed disk of radius r centered at z, that is,
B[z, r] := {w ∈ C : |z − w| ≤ r}.

Theorem 3.1 (Bauer–Fike theorem). Let X be invertible and κ := K(X). Then

Λε(A) ⊂ Λκε(X
−1AX) and Λε(X

−1AX) ⊂ Λκε(A).

Proof. Set sep(z,A) := min{‖E‖ : z ∈ σ(A + E)}. Then it is easy to see that
Λε(A) = {z : sep(z,A) ≤ ε}. Now, the result follows from the fact that sep(z, X−1AX)
≤ K(X)sep(z,A).

When A is diagonalizable, the following inclusion results hold for Λε(A).

Theorem 3.2 (Bauer–Fike–Wilkinson theorem [22]). Suppose that A is diago-
nalizable and σ(A) = {λ1, . . . , λm}. Let Pj be the spectral projection associated with
A and λj for j = 1, 2, . . . ,m.

(a) Set κ := inf{K(X) : X−1AX = diag(λi)}. Then for a max-norm, we have

Λε(A) ⊂ ∪m
j=1B[λj , κ ε].

(b) For an operator norm, Λε(A) ⊂ ∪m
j=1B[λj , sε], where s :=

∑m
j=1 ‖Pj‖.

(c) Also, for an operator norm, Λε(A) ⊂ ∪m
j=1B[λj , m‖Pj‖ ε].

Proof. Note that (a) follows from Theorem 3.1. Since A is diagonalizable, we
have

R(A, z) =
P1

λ1 − z
+ · · · + Pm

λm − z
.

Therefore ‖R(A, z)‖ ≤
∑m

j=1
‖Pj‖

min1≤j≤m |z−λj | and ‖R(A, z)‖ ≤ m max1≤j≤m

( ‖Pj‖
|z−λj |

)
. Hence

the results follow.

Clearly the approximation of Λε(A) provided by Theorem 3.2 is strongly influ-
enced by the most sensitive eigenvalues of A. A block version of the above results due
to Wilkinson and Feingold [23] provides a better approximation of Λε(A) when sensi-
tive eigenvalues are grouped into clusters. Consider the eigendecomposition (1.1). If
Pj is the spectral projection associated with A and σ(Aj), then (see [22], [23])

inf
X
{K2(X) : X−1AX = diag(A1, . . . , Am)} ≤ ‖P1‖2 + · · · + ‖Pm‖2.

For a similar bound, see [5]. By Theorem 3.1, we have the following inclusions.
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Theorem 3.3 (Wilkinson–Feingold theorem [22], [23]). Let s := ‖P1‖2 + · · · +
‖Pm‖2 and εj := m‖Pj‖2 ε. Then for the 2-norm, and hence for the Frobenius norm,
we have

Λε(A) ⊂ ∪m
j=1Λsε(Aj) and Λε(A) ⊂ ∪m

j=1Λεj (Aj).

More generally, if κ := inf{K(X) : X−1AX = diag(A1, . . . , Am)}, then for a max-
norm, we have Λε(A) ⊂ ∪m

j=1Λκε(Aj).
Evidently, the approximation of Λε(A) provided by Theorem 3.3 is strongly influ-

enced by the most sensitive blocks in diag(A1, . . . , Am). In other words, the approxi-
mation of Λε(A) provided by Theorem 3.3 is strongly influenced by the ill-conditioning
of the eigendecomposition (1.1).

Next, we obtain inclusion domains for Λε(A) when A is block upper triangular.
For the rest of this section, we assume that A is given by (1.3). Let P be the spectral
projection associated with A and σ(A1). If X is such that A1X − XA2 = C, then
[5], [4]

inf
S
{K2(S) : S−1AS = diag(A1, A2)} = ‖P‖2 +

√
‖P‖2

2 − 1 = ‖X‖2 +
√
‖X‖2

2 + 1.

Therefore, by Theorem 3.1, we have the following inclusion.
Theorem 3.4 (Demmel [4]). Let ε0 := (‖P‖2 +

√
‖P‖2

2 − 1)ε. For the 2-norm,

Λε(A) ⊂ Λε0(A1) ∪ Λε0(A2).

A weaker inclusion Λε(A) ⊂ Λ2‖P‖2ε(A1) ∪ Λ2‖P‖2ε(A2) follows from Theorem 3.3.
For a max-norm, we have the following approximation of Λε(A).

Theorem 3.5. Let X be the solution of the Sylvester equation A1X −XA2 = C.

Let g(ε) := (2‖X‖ + 1)ε and f(ε) :=
ε+
√

ε2+4 ‖C‖ ε

2 . Then for a max-norm,

(a) Λε(A) ⊂ Λg(ε)(A1) ∪ Λg(ε)(A2),
(b) Λε(A) ⊂ Λf(ε)(A1) ∪ Λf(ε)(A2).

Proof. Set r := ‖X‖ and c := ‖C‖. For z ∈ C \ σ(A), we have

R(A, z) =

(
R(A1, z) −R(A1, z)CR(A2, z)
0 R(A2, z)

)
=

(
R(A1, z) 0
0 R(A2, z)

)
+

(
0 −R(A1, z)CR(A2, z)
0 0

)
.

Therefore,

‖R(A, z)‖ ≤ max(‖R(A1, z)‖, ‖R(A2, z)‖) + ‖R(A1, z)CR(A2, z)‖.

Since A1X − XA2 = C, we have (A1 − zI)X − X(A2 − zI) = C. Consequently,
R(A1, z)CR(A2, z) = X R(A2, z) −R(A1, z)X. This shows that

‖R(A1, z)CR(A2, z)‖ = ‖R(A1, z)X−XR(A2, z)‖ ≤ 2r max(‖R(A1, z)‖, ‖R(A2, z)‖).

Hence we have ‖R(A, z)‖ ≤ (2r+1) max(‖R(A1, z)‖, ‖R(A2, z)‖). Now, (a) follows by
noting that ‖R(A, z)‖ ≥ ε−1 implies

max(‖R(A1, z)‖, ‖R(A2, z)‖) ≥
1

(2r + 1)ε
=

1

g(ε)
.
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Next, we have ‖R(A, z)‖ ≤ max(‖R(A1, z)‖, ‖R(A2, z)‖) + ‖R(A1, z)CR(A2, z)‖.
Let d := max(‖R(A1, z)‖, ‖R(A2, z)‖). Then ‖R(A, z)‖ ≤ d + d2c. Therefore, if
‖R(A, z)‖ ≥ ε−1, then d2c + d ≥ ε−1, that is, εcd2 + εd− 1 ≥ 0. This gives

d ≥ −ε +
√
ε2 + 4εc

2εc
=

2

ε +
√
ε2 + 4εc

=
1

f(ε)
.

Hence (b) follows.
For the 2-norm, the following result provides a better approximation of Λε(A).

Theorem 3.6 (Grammont and Largillier [14]). Let η(ε) := ε

√
1 + ‖C‖2

ε . Then
for the 2-norm, we have

Λε(A) ⊂ Λη(ε)(A1) ∪ Λη(ε)(A2).

Note that if ‖X‖2 � 1, then ‖X‖2 +
√
‖X‖2

2 + 1 � 2‖X‖2. Therefore, in such a
case, for the 2-norm, the approximations of Λε(A) obtained, for example, by Theo-
rems 3.4, 3.5(a), and 3.6 tend to be more or less the same.

4. Separations of matrices. Spectral overlap and separation of matrices play
an important role in analyzing ε-stability of eigendecompositions [4]. We briefly
describe these concepts, extend the notion of spectral overlap to the case of arbi-
trary norms, and establish relationships between separation of matrices and spectral
overlap.

Let A ∈ C
m×m and B ∈ C

n×n. Then the separation of A and B, denoted by
sep(A,B), is defined by

sep(A,B) := min{‖AX −XB‖ : ‖X‖ = 1}.(4.1)

Equivalently, if T : X −→ AX −XB is the Sylvester operator, then (with respect to
the induced operator norm of T)

sep(A,B) :=

{
1/‖T−1‖, 0 �∈ σ(T),
0, 0 ∈ σ(T).

For more on sep(A,B), we refer to [16], [15]. We denote sep with respect to the
Frobenius norm by sepF .

In 1979 Varah [19] introduced the notion of spectral overlap of matrices. He

defined the spectral overlap of A and B, which we denote by sep
(1)
λ (A,B), by

sep
(1)
λ (A,B) := min

ε1,ε2
{ε1 + ε2 : Λε1(A) ∩ Λε2(B) �= ∅},

where Λε(A) is the 2-norm ε-pseudospectrum. This definition was motivated by the
fact that if Λε(A) and Λε(B) overlap at λ, then there are E ∈ C

m×m and F ∈ C
n×n

with ‖E‖2 ≤ ε and ‖F‖2 ≤ ε such that λ ∈ σ(A + E) ∩ σ(B + F ). Subsequently, this
definition was modified by Demmel in [4]. The modified spectral overlap, which we

denote by sep
(2)
λ (A,B), is defined by

sep
(2)
λ (A,B) := inf{max(σmin(A− zI), σmin(B − zI)) : z ∈ C},

where σmin(A) denotes the smallest singular value of A. It was stated in [4, p. 172]

that sep
(2)
λ (A,B) is the magnitude of smallest perturbations of A and B required to

induce a common eigenvalue. We prove a more general result in Proposition 4.2.
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Since our aim is to analyze ε-stability of eigendecompositions for arbitrary oper-
ator norms, we further generalize the notion of spectral overlap to operator norms.
We define

sep(z,A) := min{‖E‖ : z ∈ σ(A + E)}.(4.2)

Clearly Λε(A) = {z : sep(z,A) ≤ ε}. Here sep(z,A) plays the role of the smallest
singular value of A− zI. For operator norms and the Frobenius norm, sep(z,A) and
sep(B,A) given in (4.1) with B = z are the same.

Definition 4.1. Let A ∈ C
m×m and B ∈ C

n×n. We define

sepλ(A,B) := inf{max(sep(z,A), sep(z,B)) : z ∈ C}.

Evidently, sepλ(A,B) = sep
(2)
λ (A,B) for the spectral and Frobenius norms. The

following result shows that sepλ(A,B) can be read off from the ε-pseudospectra of A
and B.

Proposition 4.2. We have sepλ(A,B) = min{ε : Λε(A) ∩ Λε(B) �= ∅}.
Proof. Let ε0 := min{ε : Λε(A)∩Λε(B) �= ∅}. Let z be a common point of Λε0(A)

and Λε0(B). Then max{sep(z,A), sep(z,B)} ≤ ε0. Taking infimum over z, we have
sepλ(A,B) ≤ ε0. On the other hand, if ε < ε0, then Λε(A) ∩ Λε(B) = ∅. Therefore,
for any z ∈ C, we have max(sep(z,A), sep(z,B)) > ε. Taking infimum over z we have
ε ≤ sepλ(A,B). Since ε < ε0 is arbitrary, ε0 ≤ sepλ(A,B). Hence the proof.

Proposition 4.2 shows that sepλ(A,B) is the smallest value of ε for which Λε(A)
and Λε(B) have a common point. Therefore, for ε := sepλ(A,B), if z ∈ Λε(A)∩Λε(B),
then sep(z,A) = sep(z,B) = sepλ(A,B). Hence by (4.2) there are E and F such that
‖E‖ = ‖F‖ = sepλ(A,B) and z ∈ σ(A + E) ∩ σ(B + F ). This shows that sepλ(A,B)
is the magnitude of smallest perturbations of A and B required to induce a common
eigenvalue.

Recall that Λε(A) = {z : sep(z,A) ≤ ε}. Therefore the boundary ∂Λε(A) of Λε(A)
is a subset of Γ := {z : sep(z,A) = ε}. For operator norms, it is known that Γ is a
closed curve or a union of closed curves (see [3], [7], [10]). Recently it has been shown
in [13] that the same is true for any submultiplicative norm. Hence sepλ(A,B) is the
smallest value of ε for which Λε(A) and Λε(B) have a common boundary point. Thus
a common eigenvalue induced by a smallest perturbation of A and B is a common
boundary point of Λε(A) and Λε(B).

Since Λε(A) is same for the 2-norm and the Frobenius norm, the proof of the
following result is immediate.

Corollary 4.3. sepλ is the same for the 2-norm and the Frobenius norm.
It is easy to see that sepλ with respect to unitarily invariant norms is invariant

under unitary similarity transformations of A and B. More generally, the following
holds.

Proposition 4.4. (a) We have

sepλ(A,B)

max(K(S),K(Q))
≤ sepλ(SAS−1, QBQ−1) ≤ max(K(S),K(Q))sepλ(A,B).

(b) For a max-norm, we have

sepλ(diag(A1, A2, . . . , Ak), diag(B1, B2, . . . , Bl)) = min
ij

sepλ(Ai, Bj).

Proof. For z ∈ C, it is easy to see that sep(z, SAS−1) ≤ K(S)sep(z,A). Hence

sepλ(SAS−1, QBQ−1) ≤ max(K(S),K(Q))sepλ(A,B).
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Similarly, sepλ(A, B) ≤ max(K(S),K(Q))sepλ(SAS−1, QBQ−1). Hence

sepλ(A,B)

max(K(S),K(Q))
≤ sepλ(SAS−1, QBQ−1) ≤ max(K(S),K(Q))sepλ(A,B).

The proof of (b) is immediate.
The following result relates sep and sepλ.
Proposition 4.5. We have sep(A,B) ≤ 2sepλ(A,B). If dim(A) = 1 or dim(B) =

1, then

sepλ(A,B) ≤ sep(A,B) ≤ 2sepλ(A,B).

Proof. There exist E and F with ‖E‖ = ‖F‖ = sepλ(A,B) such that A + E and
B + F have a common eigenvalue. Therefore, there exists X0 with ‖X0‖ = 1 such
that (A + E)X0 −X0(B + F ) = 0. Hence

sep(A,B) ≤ ‖(A + E)X0 −X0(B + F ) − (EX0 −X0F )‖
≤ ‖EX0 −X0F‖ ≤ ‖E‖ + ‖F‖ = 2 sepλ(A,B).

To prove the second part, we assume that A = µ. Then from the definition,

sepλ(µ,B) = inf{max(sep(z,B), |z − µ|) : z ∈ C}
≤ max(sep(µ,B), 0) = sep(µ,B) = sep(A,B).

Hence the result follows.
The results in Propositions 4.4 and 4.5 have been proved in [4] for sep

(2)
λ . We have

shown that the same results hold for general sepλ as well.
If A and B are diagonal, then, for a max-norm, sepλ(A,B) = dist(σ(A), σ(B))/2

and sep(A,B) = dist(σ(A), σ(B)), where dist(σ(A), σ(B)) := min{|λ − µ| : λ ∈
σ(A), µ ∈ σ(B)}. Hence if A and B are normal, then, for the 2-norm,

sepλ(A,B) = dist(σ(A), σ(B))/2 = sep(A,B)/2 = sepF (A,B)/2.

The following result shows that small perturbations in A and B induce a small change
in sepλ(A,B).

Proposition 4.6. We have

sepλ(A,B) − ‖E‖ − ‖F‖ ≤ sepλ(A + E, B + F ) ≤ sepλ(A,B) + ‖E‖ + ‖F‖.

Proof. It is easy to see that sep(z,A) − ‖E‖ ≤ sep(z,A + E) ≤ sep(z,A) + ‖E‖
for all z and E. Hence the result follows.

We conclude this section by providing a partial solution to a conjecture due to
Demmel on the relationship between sep(A,B) and sepλ(A,B). He conjectured (see [4,

p. 183]) that if A :=
[A C

0 B

]
is such that ‖A‖F = 1, then, for the Frobenius norm,

there is a constant K such that

K · (sepλ(A,B))
2 ≤ sepF (A,B).

If the boundary of Λε(A) or Λε(B) is rectifiable, that is, it has finite length, then we
have the following result.
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Proposition 4.7. Let ε := sepλ(A,B) > 0. If the boundary of either Λε(A) or
Λε(B) is rectifiable, then for an operator norm, we have

2π

L
· (sepλ(A,B))2 ≤ sep(A,B),

where L is the length of the boundary of Λε(A) or Λε(B). Set m := min(dim(A),
dim(B)). Then for the Frobenius norm, we have

2π√
mL

· (sepλ(A,B))2 ≤ sepF (A,B).

Proof. Assume that the boundary ∂Λε(A) of Λε(A) is rectifiable and let L be its
length. Set Γ := ∂Λε(A). First, we prove the result for an operator norm. Recall from
(4.1) that sep(A,B) = 1/‖T−1‖, where T(X) = AX −XB. Since

T−1(X) =
1

2πi

∫
Γ

R(A, z)XR(B, z)dz,

we have ‖T−1(X)‖ ≤ Lmaxz∈Γ(‖R(A, z)‖ ‖R(B, z)‖) ‖X‖/2π. Note that ‖R(A, z)‖ =
ε−1 and ‖R(B, z)‖ ≤ ε−1 for z ∈ Γ. Therefore ‖T−1‖ ≤ L/2πε2. Hence

2π

L
(sepλ(A,B))2 ≤ sep(A,B).

To prove the result for the Frobenius norm, recall from (2.1) that the ε-pseudospectra
for the 2-norm and the Frobenius norm are the same. Thus sepλ(A,B) and L remain
the same for the 2-norm and the Frobenius norm. Now the result follows by using the
inequality sep2(A,B) ≤

√
m sepF (A,B), where sep2 denotes sep with respect to the

2-norm.
Obviously ∂Λε(A) is rectifiable if A is normal. Although, we are not aware of

a proof, for the 2-norm, the rectifiability of ∂Λε(A) has been implicitly assumed by
Trefethen [17] and Godunov [8]. Note, however, that for small ε, the components
of Λε(A) more or less look like deformed circles. As ε → sepλ(A,B) some of these
components may coalesce. After coalescence of components, Λε(A) is expected to
have a fairly regular shape and the boundary ∂Λε(A) is expected to be rectifiable.

5. Lower bounds of geometric separation. Recall that a lower bound of gsep
provides an upper bound of ε for ε-stability of eigendecompositions. The following
theorem provides a general framework for obtaining lower bounds of gsep. Consider
a matrix A ∈ C

n×n.
Theorem 5.1. Suppose that A is similar to diag(A1, A2), where σ(A1)∩σ(A2) =

∅. Set σ1 := σ(A1). If there exists a strictly increasing function φ such that

Λε(A) ⊂ Λφ(ε)(A1) ∪ Λφ(ε)(A2),

then φ−1(sepλ(A1, A2)) ≤ gsep(σ1) and sepλ(A1, A2) ≤ φ(gsep(σ1)).
Proof. Note that ε < gsep(σ1) if Λφ(ε)(A1) and Λφ(ε)(A2) are disjoint. But

Λφ(ε)(A1) and Λφ(ε)(A2) remain disjoint if and only if φ(ε) < sepλ(A1, A2). This shows
that if φ(ε) < sepλ(A1, A2), then ε < gsep(σ1). Since φ is strictly increasing, we have
ε < gsep(σ1) whenever ε < φ−1(sepλ(A1, A2)). Hence φ−1(sepλ(A1, A2)) ≤ gsep(σ1)
and sepλ(A1, A2) ≤ φ(gsep(σ1)).
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Thus, in view of Theorem 5.1, various lower bounds of gsep are readily available
from the inclusion theorems of Λε(A). The Bauer–Fike–Wilkinson theorem (Theo-
rem 3.2) immediately gives the following.

Proposition 5.2. Let A, κ, and s be as in Theorem 3.2. Let σ1 ⊂ σ(A). Then
for an operator norm, we have

gsep(σ1) ≥
dist(σ1, σ(A) \ σ1)

2s
.

For a max-norm, we have gsep(σ1) ≥ dist(σ1, σ(A)\σ1)
2κ .

For general matrices, we have the following bounds.
Theorem 5.3. Let A, κ, and s be as in Theorem 3.3. Set σj := σ(Aj). Then for

a max-norm, we have

gsep(σ1, . . . , σm) ≥ sepλ(A1, . . . , Am)

κ
.

In particular, for the 2-norm, we have

gsep(σ1, . . . , σm) ≥ sepλ(A1, . . . , Am)

s
.

Proof. By Theorem 3.3, we have φ(ε) = κε for the first case and φ(ε) = sε for the
second case. Hence the result follows from Theorem 5.1.

Now, for the rest of this section, we assume that A is given by (1.3). Recall that P
is the spectral projection associated with A and σ1 := σ(A1), and that A1X−XA2 =
C. By Theorems 3.4 and 5.1, we have the following bound.

Theorem 5.4 (Demmel [4]). For the 2-norm, we have

gsep(σ1) ≥
sepλ(A1, A2)

‖P‖2 +
√
‖P‖2

2 − 1
=

sepλ(A1, A2)

‖X‖2 +
√
‖X‖2

2 + 1
.(5.1)

A slightly weaker bound given by

gsep(σ1) ≥
sepλ(A1, A2)

2‖P‖2
(5.2)

is due to Wilkinson [22] and follows from Theorem 5.3. When ‖P‖2 � 1, (5.1) provides
a much better estimate of gsep than (5.2). A more conservative bound given by

gsep(σ1) ≥
sepF (A1, A2)

4‖P‖2
(5.3)

is due to Stewart [16] and follows from (5.2). Indeed, since sepF (A1, A2) ≤ 2sepλ(A1,
A2), from (5.2) we have

gsep(σ1) ≥
sepλ(A1, A2)

2‖P‖2
≥ sepF (A1, A2)

4‖P‖2
.

For a max-norm, the following bounds hold.
Theorem 5.5. Let A1X −XA2 = C. Then for a max-norm, we have

(a) gsep(σ1) ≥ sepλ(A1,A2)
2‖X‖+1 ,

(b) gsep(σ1) ≥ (sepλ(A1,A2))
2

‖C‖+sepλ(A1,A2)
.
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Proof. From Theorem 3.5(a), we have φ(ε) = g(ε) = (2‖X‖ + 1)ε. Therefore, by
Theorem 5.1, we have gsep(σ1) ≥ sepλ(A1, A2)/(2‖X‖ + 1). Next, Theorem 3.5(b)
gives φ(ε) = f(ε) = (ε+

√
ε2 + 4 ‖C‖ ε)/2. Since φ is strictly increasing on [0, ∞) and

φ−1(ε) = ε2/(ε + ‖C‖), the result follows from Theorem 5.1.
For the 2-norm, the following bounds provide better estimates of gsep.
Theorem 5.6. Set sepλ := sepλ(A1, A2). Let sep and sepF denote sep(A1, A2)

for the 2-norm and the Frobenius norm, respectively. Then for the 2-norm and the
Frobenius norm, the following bounds hold:

(a) gsep(σ1) ≥
2 sep2

λ

‖C‖2 +
√
‖C‖2

2 + 4 sep2
λ

≥ sep2

2(‖C‖2 +
√
‖C‖2

2 + sep2)
,(5.4)

(b) gsep(σ1) ≥
2 sep2

λ

‖C‖F +
√
‖C‖2

F + 4 sep2
λ

≥ sep2
F

2(‖C‖F +
√
‖C‖2

F + sep2
F )

.(5.5)

Proof. By Theorem 3.6, we have φ(ε) = ε
√

1 + ‖C‖2/ε. It is easy to see that φ is

strictly increasing on [0,∞) and φ−1(ε) = 2ε2/(‖C‖2 +
√

‖C‖2
2 + 4ε2). Hence the first

inequality in (a) follows from Theorem 5.1. The first inequality in (b) follows from
the fact that ‖C‖2 ≤ ‖C‖F . The second inequalities in (a) and (b) follow from the
fact that sep(A1, A2) ≤ 2 sepλ(A1, A2).

It is well known (see [4], [19]) that ‖P‖2 ≤
(
1 + ‖C‖2

F /sep
2
F

)1/2
. Hence the

second inequality in (5.5) also follows from (5.1). More generally, as a consequence of
Theorems 3.1 and 5.1, we have the following bounds.

Proposition 5.7. Suppose that A ∈ C
n×n is similar to diag(A1, A2), where

σ(A1)∩σ(A2) = ∅. Set σ1 := σ(A1). Then for a max-norm as well as for the Frobenius
norm, we have

gsep(σ1) ≥
sepλ(A1, A2)

infS K(S)
≥ sep(A1, A2)

2 infS K(S)
,

where S is such that S−1AS = diag(A1, A2).
Let (5.4a) refer to the lower bound in the first inequality in (5.4). The lower bound

(5.1) is known to provide the best estimate of gsep. We now show that (5.4a) compares
well with (5.1). Consider the map T : X → A1X −XA2. If C is such that ‖X‖2 =
‖T−1C‖2 = ‖T−1‖ ‖C‖2 = ‖C‖2/sep, then ‖X‖2 = ‖C‖2/sep ≥ ‖C‖2/2sepλ. Hence
it follows that (5.4a) is a better lower bound of gsep than (5.1). It is natural to ask,
How much better could (5.4a) be over (5.1) and vice versa? 1 The following result
shows that they can differ from each other at most by a factor of sepλ.

Theorem 5.8. Let τ be a constant such that τ sep2
λ ≤ sep. Then either

(5.1) ≥ (5.4a) ≥ 2sepλ

‖T‖ (5.1) or (5.4a) ≥ (5.1) ≥ τ sepλ

2
(5.4a).

Proof. First, note that τsep2
λ ≤ sep ≤ 2sepλ. Hence τsepλ ≤ 2. Set c := ‖C‖2.

Then c/‖T‖ ≤ ‖X‖2 ≤ c/sep. Since sep is bounded below by τsep2
λ and bounded

above by 2sepλ, we have two cases: either c/‖T‖ ≤ ‖X‖2 < c/2sepλ or c/2sepλ ≤
‖X‖2 ≤ c/τsep2

λ. As noted above, if ‖X‖2 = c/sep, then ‖X‖2 satisfies the second
case.

1The authors thank one of the referees for raising this question.
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Suppose that c/‖T‖ ≤ ‖X‖2 < c/2sepλ. Let κ := 2sepλ/‖T‖. Then κ · c/2sepλ ≤
‖X‖2 < c/2 sepλ. Hence κ < 1 and

κ ·
(
c/2sepλ +

√
c2/4 sep2

λ + 1

)
≤ ‖X‖2 +

√
‖X‖2

2 + 1 ≤ c/2 sepλ +
√
c2/4 sep2

λ + 1.

Consequently, we have 1
κ (5.4a) ≥ (5.1) ≥ (5.4a), which in turn gives

(5.1) ≥ (5.4a) ≥ 2sepλ

‖T‖ (5.1).

Next, suppose that ‖X‖2 satisfies the second case. Since 2/τsepλ ≥ 1, we have

c/2sepλ +
√
c2/4sep2

λ + 1 ≤ ‖X‖2 +
√
‖X‖2

2 + 1

≤ 2/τsepλ ·
(
c/2sepλ +

√
c2/4 sep2

λ + 1

)
.

Hence (5.4a) ≥ (5.1) ≥ τsepλ

2 (5.4a).
Since ‖X‖2 ≤ c/sep ≤ c/τsep2

λ, it follows that (5.1) ≥ τsepλ

2 (5.4a) always holds.
We now illustrate by numerical examples that (5.1) could be smaller than (5.4a) by
a factor of sepλ, and vice versa. We assume that A is given by (1.3).

Example 5.1. Let

A1 :=

⎡⎣ 0.5 50 30
0 0.5 50
0 0 0.5

⎤⎦ , A2 :=

⎡⎣ −0.5 −20 −80
0 −0.5 −20
0 0 −0.5

⎤⎦
and let C be the following matrix:[−5.962981568242861 × 10−5 3.725569560589521 × 10−6 −1.860207631770143 × 10−7

9.683970645185497 × 10−3 −3.723353543788620 × 10−4 9.302840353024797 × 10−6

−9.995693003184436 × 10−1 2.769622874989600 × 10−2 −4.595614058539184 × 10−4

]
.

For various values of ε, Figure 5.1 shows portions of the contour plots of Λε(diag(A1,
A2)) and Λε(A) where the components coalesce. From the left plot we have sepλ =
1.122 × 10−4 and from the right plot gsep = 1.7466 × 10−8. For these matrices, we
have sepF (A1, A2) = 1.861 × 10−7 showing that sepF = O(sep2

λ). The first row of
Table 5.1 gives the values of gsep, (5.4a), and (5.1). These results demonstrate that
(5.1) is smaller than (5.4a) by a factor of sepλ. Notice that (5.4a) provides a sharp
estimate of gsep, whereas the estimate provided by (5.1) is quite conservative.

Next, we illustrate that (5.4a) could be smaller than (5.1) by a factor of sepλ.
Example 5.2. Let A1 and A2 be as in Example 5.1 and let C be the matrix[−3.976344050589186 × 10−1 −1.919161875563033 × 10−1 −4.203140565201795 × 10−1

−1.866525471931694 × 10−1 −1.988322234548340 × 10−1 −6.650420651861800 × 10−1

−3.618542151771120 × 10−3 −7.402307617753745 × 10−2 −3.259513248630305 × 10−1

]
.

The values of sepF (A1, A2) and sepλ(A1, A2) are the same as in Example 5.1. The
second row of Table 5.1 gives the values of gsep, (5.4a), and (5.1). Notice that (5.4a)
is smaller than (5.1) by a factor of sepλ. Obviously, (5.4a) provides a conservative
estimate of gsep, whereas the estimate provided by (5.1) is sharp.

Finally, we illustrate the limitations of these bounds. The following example
shows that both (5.4a) and (5.1) provide conservative estimates of gsep.
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Fig. 5.1. The left figure shows a portion of the contour plot of Λε(diag(A1, A2)), and the
right figure shows a portion of the contour plot of Λε(A) for various values of ε. In the left figure
the components coalesce for ε = 1.122 × 10−4, and in the right figure the components coalesce for
ε = 1.7466 × 10−8, thus giving sepλ and gsep, respectively.

Table 5.1

Values of gsep(σ(A1)) with respect to the 2-norm, (5.4a), and (5.1) for Examples 5.1, 5.2, 5.3,
and 5.4. The first and second rows illustrate that these lower bounds could be smaller than each
other by a factor of sepλ. The third row illustrates that both (5.4a) and (5.1) provide conservative
estimates of gsep. The last three rows show that (5.4a) and (5.1) provide sharp estimates of gsep.

Example gsep (5.4a) (5.1)

5.1 1.7466 × 10−8 1.2589 × 10−8 1.044 × 10−11

5.2 1.1171 × 10−4 1.3016 × 10−8 1.1127 × 10−4

5.3 2.557 × 10−11 1.2552 × 10−13 6.8084 × 10−15

5.4(a) 1.5456 × 10−2 1.4253 × 10−2 1.1867 × 10−2

5.4(b) 1.48 × 10−2 1.2 × 10−2 1.28 × 10−2

5.4(c) 3.15 × 10−2 1.96 × 10−2 1.47 × 10−2

Example 5.3. Let

A1 :=

⎡⎣ 1 1 2
0 1 2
0 0 1 + 10−8

⎤⎦ , A2 :=

[
1 10−4

2 1

]
,

and

C :=

⎡⎣ 10 7
8 3
0 1

⎤⎦ .

We have sepF (A1, A2) = 10−8 and sepλ(A1, A2) = 1.3632 × 10−6. The third row of
Table 5.1 gives the values of gsep, (5.4a) and (5.1). Observe that although (5.4a) is
certainly better than (5.1), both bounds provide conservative estimates of gsep.
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Table 5.2

The first three rows give values of gsep and the lower bounds in Theorem 5.5 for the 1-norm.
The last three rows give values of gsep and the lower bounds in Theorem 5.5 for the ∞-norm.

Example gsep1 Theorem 5.5(a) Theorem 5.5(b)

5.4(a) 1.1932 × 10−1 7.41 × 10−3 1.019 × 10−2

5.4(b) 7.55 × 10−2 6.1 × 10−3 6.5 × 10−3

5.4(c) 2.63 × 10−2 8.7 × 10−3 1.29 × 10−2

Example gsep∞ Theorem 5.5(a) Theorem 5.5(b)

5.4(a) 1.371 × 10−2 1.018 × 10−2 1.051 × 10−2

5.4(b) 1.128 × 10−1 1.33 × 10−2 6.5 × 10−3

5.4(c) 5.84 × 10−2 1.71 × 10−2 3.5 × 10−2

The first three rows of Table 5.1 demonstrate the limitations of the lower bounds
of gsep. We, however, mention that these examples have been specially constructed to
expose the weaknesses of these bounds. Our contention is that, generically, these lower
bounds provide good approximations of gsep. We illustrate this by considering an
example. The matrices in the following example have been chosen almost arbitrarily.

Example 5.4. (a) Consider A1 :=
[

1 1
0 1

]
, A2 := 0.5, and C :=

[
0.4
−1

]
.

(b) Next, consider

A1 :=

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦, A2 :=

[
2 0
0 3

]
, C :=

⎡⎣ 0 1
2 1
4 2

⎤⎦.
(c) Finally, consider

A1 :=

⎡⎣ 1 −1 0
0 1 2
2 0 3

⎤⎦, A2 :=

[
3 1
0 1

]
, C :=

⎡⎣ 1 3
0 6
7 0

⎤⎦.
For these matrices, the last three rows of Table 5.1 show that the lower bounds

(5.4a) and (5.1) indeed provide sharp estimates of gsep.
For p = 1 and p = ∞, let gsepp denote gsep(σ(A1)) with respect to the p-norm.

Table 5.2 gives relevant quantities for the 1-norm and the ∞-norm.
We conclude this section with a final note. Generically, the lower bounds discussed

above may provide good approximations of gsep. As we shall see, for 2-by-2 matrices,
gsep attains some of these bounds. The lower bounds in the second inequalities of (5.4)
and (5.5), respectively, are expected to be smaller than those in the first inequalities
by an order of magnitude whenever sep = O(sep2

λ). The same is true for the lower
bound (5.3). As we have already seen, these bounds have their limitations and hence
too much should not be read into them. Whether it is our bounds or Demmel’s, or
for that matter any bounds obtained from Theorem 5.1, in general, all these lower
bounds are expected to provide poor approximations of gsep unless φ(ε) � βε for
some modest size β > 1, that is, unless the eigendecomposition is well-conditioned.
Nevertheless, most often these bounds provide a good measure of the extent of ill-
conditioning of the eigendecompositions and hence may serve the desired purpose. If
an application requires a reliable and accurate information about ill-conditioning of
an eigendecomposition, then in such a case the computation of gsep is the best option.

6. Relationship between gsep, sep, sepλ, and diss. The notion of disso-
ciation of eigenvalues was introduced in [4] in order to analyze ε-stability of eigen-
decompositions. The dissociation of an eigenvalue λ ∈ σ(A) from the rest of σ(A),
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denoted by diss(λ), is the smallest value of ‖E‖ for which λ coalesces with an eigen-
value µ ∈ σ(A) \ {λ} as A → A+E. Similarly, the dissociation of σ1 ⊂ σ(A) from the
rest of σ(A), denoted by diss(σ1), is the smallest value of ‖E‖ for which an eigenvalue
λ ∈ σ1 coalesces with an eigenvalue µ ∈ σ(A) \ σ1 as A → A + E. For more on diss
we refer to [4]. Clearly an eigendecomposition σ(A) = ∪m

j=1σj is ε-stable if and only
if ε < min1≤j≤m diss(σj) [4]. The main drawback of this approach is that except for
some special cases it is not known how to compute diss. Nevertheless a lower bound
of diss provides a sufficient condition for ε-stability of eigendecompositions, and the
main effort in [4] has been towards obtaining the lower bounds.

We denote diss for the Frobenius norm and the 2-norm by dissF and diss2, re-
spectively. Also, when it is necessary to show the dependence of diss on A, we write
diss(σ1, A) instead of diss(σ1).

We have already seen that the pseudospectra-based approach to analyzing ε-
stability of eigendecompositions leads to the notion of geometric separation of eigenval-
ues. Now, the question whether gsep characterizes ε-stability of eigendecompositions
is equivalent to asking whether gsep(σ1) = diss(σ1). This issue has been analyzed
extensively in [1], [3], where it has been shown that the equality holds for the 2-norm
and, under appropriate assumption, for the Frobenius norm. However, for other
norms, the problem is still unsolved. In what follows, we show that gsep provides a
best possible lower bound of diss, and to see how much gsep may differ from diss, we
obtain upper bound of diss in terms of gsep.

Notice that for an eigenvalue λ ∈ σ(A) to coalesce with another eigenvalue µ ∈
σ(A), it is essential for the components of Λε(A) containing λ and µ to coalesce. This
immediately gives

gsep(σ1) ≤ diss(σ1).

Since Λε(A) provides the best possible localization for eigenvalues of A when A varies
in A(ε), the lower bound provided by gsep is clearly better than any bounds obtained
by approximate localization of eigenvalues of A.

Now, assume that A is given by (1.3). Set σ1 := σ(A1).
Proposition 6.1. For a max-norm and for the Frobenius norm, respectively, we

have

diss(σ1) ≤ sepλ(A1, A2) and dissF (σ1) ≤
√

2 sepλ(A1, A2).

Proof. From the definition of sepλ(A1, A2), there are E1 and E2 with ‖E1‖ =
‖E2‖ = sepλ(A1, A2) such that A1 + E1 and A2 + E2 have a common eigenvalue.
Taking E := diag(E1, E2), the desired results follow.

Thus, in view of Proposition 6.1 and Theorem 5.1, we immediately obtain the
following general relationship between gsep, sepλ,diss, and sep.

Theorem 6.2. Let φ(ε) be a strictly increasing function such that

Λε(A) ⊂ Λφ(ε)(A1) ∪ Λφ(ε)(A2).

(a) Then we have sep(A1, A2) ≤ 2 sepλ(A1, A2) ≤ 2φ(gsep(σ1)).
(b) For a max-norm, we have

φ−1(sepλ(A1, A2)) ≤ gsep(σ1) ≤ diss(σ1) ≤ sepλ(A1, A2) ≤ φ(gsep(σ1)).

In particular, if A1 = µ, then

φ−1(sepλ(µ,A2)) ≤ gsep(µ) ≤ diss(µ) ≤ sepλ(µ,A2) ≤ sep(µ,A2) ≤ 2φ(gsep(µ)).
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As a consequence of Theorems 6.2 and 3.1, we have the following.
Proposition 6.3. For a max-norm, we have

sepλ(A1, A2)

infS K(S)
≤ gsep(σ1) ≤ diss(σ1) ≤ sepλ(A1, A2) ≤ inf

S
K(S) gsep(σ1),

where S−1AS = diag(A1, A2). Also sep(A1, A2) ≤ 2 sepλ(A1, A2) ≤ 2 infS K(S)
gsep(σ1).

In particular, if A0 := diag(A1, A2) with σ(A1) ∩ σ(A2) = ∅ and σ1 := σ(A1),
then

gsep(σ1, A0) = diss(σ1, A0) = sepλ(A1, A2).

The above result shows that all three concepts, namely, gsep, diss, and sepλ,
coincide for block diagonal matrices. This means that for analyzing the coalescence
of eigenvalues of block diagonal matrices, it is enough to restrict ourselves to block
diagonal perturbations. The following bounds follow from Theorems 3.5, 3.6, and 6.2.

Proposition 6.4. Let A1X −XA2 = C. Then for a max-norm,

gsep(σ1) ≤ diss(σ1) ≤ (2 ‖X‖ + 1) gsep(σ1),

gsep(σ1) ≤ diss(σ1) ≤
gsep(σ1) +

√
(gsep(σ1))2 + 4 ‖C‖ gsep(σ1)

2
.

For the 2-norm and the Frobenius norm, we have

gsep(σ1) ≤ diss2(σ1) ≤ gsep(σ1)

√
1 +

‖C‖2

gsep(σ1)
,

gsep(σ1) ≤ dissF (σ1) ≤
√

2 gsep(σ1)

√
1 +

‖C‖2

gsep(σ1)
.

Similarly, for the 2-norm, the bound

gsep(σ1) ≤ diss2(σ1) ≤ (‖P‖2 +
√
‖P‖2

2 − 1) · gsep(σ1)

follows from Theorems 6.2 and 3.4. Thus if an estimate of gsep is available, then the
above bounds provide intervals which localize diss. Most often, the above localization
of diss by gsep may be quite effective.

7. Bounds on gsep and diss for 2-by-2 matrices. Let A :=
[

a d
0 b

]
, where

a �= b. For the matrix A, it is shown in [4, Lemma 5.7] that the lower bound (5.1) is
equal to diss2. A simple proof of this fact follows from a result of Wilkinson.

Proposition 7.1 (Wilkinson [21]). There is a rank one matrix E such that

‖E‖2 = ‖E‖F =
|a− b|2

2(|d| +
√
|d|2 + |a− b|2)

and σ(A + E) = {a+b
2 }. Hence diss2 ≤ dissF ≤ |a−b|2

2(|d|+
√

|d|2+|a−b|2)
.

Since A1 := a and A2 := b, by Theorem 5.6, we have

sepλ

‖P‖2 +
√
‖P‖2

2 − 1
=

2 sep2
λ

‖C‖2 +
√
‖C‖2

2 + 4 sep2
λ

=
|a− b|2

2(|d| +
√
|d|2 + |a− b|2)

,

and hence |a−b|2

2(|d|+
√

|d|2+|a−b|2)
≤ gsep ≤ diss2 ≤ dissF . This proves the following.
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Theorem 7.2. We have diss2 = dissF = gsep = |a−b|2

2(|d|+
√

|d|2+|a−b|2)
.

Thus for 2-by-2 matrices, the lower bounds in Theorem 5.6 are attained by gsep
and diss. By contrast, the bounds in Theorem 5.5 may not be attained by gsep. We
show this by an example. First, note that for the 1-norm and the ∞-norm,

sepλ

2 ‖X‖ + 1
=

sep2
λ

‖C‖ + sepλ

=
|a− b|2

4|d| + 2|a− b| .

To see that this value is not attained by gsep, consider A :=
[

11 4
0 1

]
. Then for the

1-norm and the ∞-norm, gsep = 3.03336, whereas |a−b|2
4|c|+2|a−b| = 2.77778.

It is easy to see [21] that the perturbation E := − (a−b)2

4 c e2e
T
1 induces a double

eigenvalue of A + E at (a + b)/2, where e1 := [1, 0]t and e2 := [0, 1]t. Hence for the
1-norm and the ∞-norm, we have

gsep ≤ diss ≤ |a− b|2
4 |d| .

In order to obtain a sharp localization of diss, we construct a matrix E such that

‖E‖1 = ‖E‖∞ = 3
2

( |a−b|2
2|a−b|+4|d|

)
and σ(A + E) = {a+b

2 }.
Proposition 7.3. Let E := − |a−b|2

2|a−b|+4|d|
[

eiθ1

2eiθ2

] [
1
2 , − 1

4e
i(θ1−θ2)

]
, where θ1 =

2π − arg( 1
a−b ), and θ2 = 2π − arg( d

(a−b)2 ). Then σ(A + E) = {a+b
2 }.

Proof. Note that ‖E‖1 = ‖E‖∞ = 3
2

|a−b|2
2|a−b|+4|d| and trace(E) = 0. Therefore,

trace(A+E) = trace(A) = a+ b. Hence to show that σ(A+E) = {a+b
2 }, it is enough

to prove that a+b
2 ∈ σ(A + E). Set λ := (a + b)/2. Then

R(A, λ) =

⎡⎢⎣ 2

a− b

4d

(a− b)2

0 − 2

a− b

⎤⎥⎦ .

This shows that ‖R(A, λ)‖1 = ‖R(A, λ)‖∞ = 2
|a−b| + 4|d|

|a−b|2 and[
1

2
,−1

4
ei(θ1−θ2)

]
R(A, λ)

[
eiθ12eiθ2

]
=

2

|a− b| +
4|d|

|a− b|2 .

Since

|a− b|2
2|a− b| + 4|d| = 1/‖R(A, λ)‖1 = 1/‖R(A, λ)‖∞,

setting u := R(A, λ)
[

eiθ1

2eiθ2

]
, it follows that (A + E)u = λu. Hence the proof.

Proposition 7.4. For the 1-norm and the ∞-norm, we have

|a− b|2
2|a− b| + 4|d| ≤ gsep ≤ diss ≤ min

(
3

2
· |a− b|2
2|a− b| + 4|d| ,

|a− b|2
4|d|

)
.

Obviously, if |a− b| > |d|, then 3
2

|a−b|2
2|a−b|+4|d| is smaller than |a−b|2

4|d| . Although, diss

is not known, the following example shows that the above bound provides a sharp
localization of diss.

Let A :=
[

1 7
0 1.5

]
. Then |a−b|2

2|a−b|+4|d| = 8.6 × 10−3 and |a−b|2
4|d| = 8.9 × 10−3. Hence

for the 1-norm and the ∞-norm, 8.6 × 10−3 ≤ diss ≤ 8.9 × 10−3.

Next, consider A :=
[

1.1 0.01
0 1

]
. Then |a−b|2

2|a−b|+4|d| = 4.17 × 10−2. This shows that

4.17 × 10−2 ≤ diss ≤ 6.25 × 10−2.



848 R. ALAM AND S. BORA

Acknowledgment. The authors thank both referees for their helpful comments
and suggestions, which have improved the quality of presentation.

REFERENCES

[1] R. Alam and S. Bora, On sensitivity of eigenvalues and eigendecompositions of matrices,
Linear Algebra. Appl., 396 (2005), pp. 257–285.

[2] C. A. Bavely and G. W. Stewart, An algorithm for computing reducing subspaces by block
diagonalization, SIAM J. Numer. Anal., 16 (1979), pp. 359–367.

[3] S. Bora, A Geometric Analysis of Spectral Stability of Matrices and Operators, Ph.D thesis,
IIT Guwahati, India, 2001.

[4] J. W. Demmel, Computing stable eigendecompositions of matrices, Linear Algebra. Appl., 79
(1986), pp. 163–193.

[5] J. W. Demmel, The condition number of equivalence transformations that block diagonalize
matrix pencils, SIAM J. Numer. Anal., 20 (1983), pp. 599–610.
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Abstract. For which functions f does A ∈ G ⇒ f(A) ∈ G when G is the matrix automorphism
group associated with a bilinear or sesquilinear form? For example, if A is symplectic when is f(A)
symplectic? We show that group structure is preserved precisely when f(A−1) = f(A)−1 for bilinear
forms and when f(A−∗) = f(A)−∗ for sesquilinear forms. Meromorphic functions that satisfy each

of these conditions are characterized. Related to structure preservation is the condition f(A) = f(A),
and analytic functions and rational functions satisfying this condition are also characterized. These
results enable us to characterize all meromorphic functions that map every G into itself as the ratio
of a polynomial and its “reversal,” up to a monomial factor and conjugation.

The principal square root is an important example of a function that preserves every automor-
phism group G. By exploiting the matrix sign function, a new family of coupled iterations for the
matrix square root is derived. Some of these iterations preserve every G; all of them are shown, via
a novel Fréchet derivative-based analysis, to be numerically stable.

A rewritten form of Newton’s method for the square root of A ∈ G is also derived. Unlike the
original method, this new form has good numerical stability properties, and we argue that it is the
iterative method of choice for computing A1/2 when A ∈ G. Our tools include a formula for the
sign of a certain block 2 × 2 matrix, the generalized polar decomposition along with a wide class of
iterations for computing it, and a connection between the generalized polar decomposition of I + A
and the square root of A ∈ G.

Key words. automorphism group, bilinear form, sesquilinear form, scalar product, adjoint,
Fréchet derivative, stability analysis, perplectic matrix, pseudo-orthogonal matrix, Lorentz matrix,
generalized polar decomposition, matrix sign function, matrix pth root, matrix square root, structure
preservation, matrix iteration, Newton iteration
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1. Introduction. Theory and algorithms for structured matrices are of growing
interest because of the many applications that generate structure and the potential
benefits to be gained by exploiting it. The benefits include faster and more accu-
rate algorithms as well as more physically meaningful solutions. Structure comes in
many forms, including Hamiltonian, Toeplitz, or Vandermonde structure and total
positivity. Here we study a nonlinear structure that arises in a variety of important
applications and has an elegant mathematical formulation: that of a matrix automor-
phism group G associated with a bilinear or sesquilinear form.

Our particular interest is in functions that preserve matrix automorphism group
structure. We show in section 3 that A ∈ G ⇒ f(A) ∈ G precisely when f(A−1) =

∗Received by the editors March 18, 2004; accepted for publication (in revised form) by A. Frommer
June 8, 2004; published electronically April 8, 2005.

http://www.siam.org/journals/simax/26-3/44221.html
†School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom

(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham, smackey@ma.man.ac.uk, ftisseur@
ma.man.ac.uk, http://www.ma.man.ac.uk/˜ftisseur). The research of the first author was supported
by Engineering and Physical Sciences Research Council grant GR/R22612 and by a Royal Society-
Wolfson Research Merit Award. The research of the second author was supported by Engineering
and Physical Sciences Research Council grant GR/S31693. The research of the fourth author was
supported by Engineering and Physical Sciences Research Council grant GR/R45079.

‡Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 (nil.mackey@
wmich.edu, http://homepages.wmich.edu/˜mackey).

849



850 HIGHAM, MACKEY, MACKEY, AND TISSEUR

f(A)−1 for bilinear forms or f(A−∗) = f(A)−∗ for sesquilinear forms; in other words,
f has to commute with the inverse function or the conjugate inverse function at
A. We characterize meromorphic functions satisfying each of these conditions. For
sesquilinear forms, the condition f(A) = f(A), that is, f commutes with conjugation,
also plays a role in structure preservation. We characterize analytic functions and
rational functions satisfying this conjugation condition. We show further that any
meromorphic function that is structure preserving for all automorphism groups is
rational and, up to a monomial factor and conjugation, the ratio of a polynomial and
its “reversal.”

The matrix sign function and the matrix principal pth root are important exam-
ples of functions that preserve all automorphism groups. Iterations for computing the
sign function in a matrix group were studied by us in [15]. We concentrate here on
the square root, aiming to derive iterations that exploit the group structure. Connec-
tions between the matrix sign function, the matrix square root, and the generalized
polar decomposition are developed in section 4. A new identity for the matrix sign
function (Lemma 4.3) establishes a link with the generalized polar decomposition
(Corollary 4.4). For A ∈ G we show that the generalized polar decomposition of
I + A has A1/2 as the factor in G, thereby reducing computation of the square root
to computation of the generalized polar decomposition (Theorem 4.7).

A great deal is known about iterations for the matrix sign function. Our results
in section 4 show that each matrix sign function iteration of a general form leads to
two further iterations:

• a coupled iteration for the principal square root of any matrix A. The itera-
tion is structure preserving, in the sense that A ∈ G implies all the iterates lie in G,
as long as the underlying sign iteration is also structure preserving;

• an iteration for the generalized polar decomposition and hence for the square
root of A ∈ G.

Iterations for matrix roots are notorious for their tendency to be numerically
unstable. In section 5 Fréchet derivatives are used to develop a stability analysis
of the coupled square root iterations that arise from superlinearly convergent sign
iterations. We find that all such iterations are stable, but that a seemingly innocuous
rewriting of the iterations can make them unstable. The technique developed in this
section should prove to be of wider use in analyzing matrix iterations.

In section 6 two instances of the connections identified in section 4 between the
sign function and the square root are examined in detail. We obtain a family of
coupled structure-preserving iterations for the square root whose members have order
of convergence 2m+1 for m = 1, 2, . . . . We also derive a variant for A ∈ G of the well-
known but numerically unstable Newton iteration for A1/2 by using the connection
with the generalized polar decomposition. Our numerical experiments and analysis in
section 7 confirm the numerical stability of both the structure-preserving iterations
and the Newton variant, showing both to be useful in practice. Because the Newton
variant has a lower cost per iteration and shows better numerical preservation of
structure, it is our preferred method in general.

2. Preliminaries. We give a very brief summary of the required definitions and
notation. For more details, see D. S. Mackey, N. Mackey, and Tisseur [25].

Consider a scalar product on K
n, that is, a bilinear or sesquilinear form 〈·, ·〉M

defined by any nonsingular matrix M : for x, y ∈ K
n,

〈x, y〉
M =

{
xTMy for real or complex bilinear forms,
x∗My for sesquilinear forms.



FUNCTIONS PRESERVING MATRIX GROUPS 851

Here K = R or C and the superscript ∗ denotes conjugate transpose. The associated
automorphism group is defined by

G = {A ∈ K
n×n : 〈Ax,Ay〉M = 〈x, y〉M ∀x, y ∈ K

n}.

The adjoint A� of A ∈ K
n×n with respect to 〈·, ·〉M is the unique matrix satisfying

〈Ax, y〉
M = 〈x,A�y〉M ∀x, y ∈ K

n.

It can be shown that the adjoint is given explicitly by

A� =

{
M−1ATM for bilinear forms,
M−1A∗M for sesquilinear forms

(2.1)

and has the following basic properties:

(A + B)� = A� + B�, (AB)� = B�A�, (A−1)� = (A�)−1,

(αA)� =

{
αA� for bilinear forms,
αA� for sesquilinear forms.

The automorphism group can be characterized in terms of the adjoint by

G = {A ∈ K
n×n : A� = A−1}.

Table 2.1 lists some of the “classical” matrix groups. Observe that M , the matrix
of the form, is real orthogonal with M = ±MT in all these examples. Our results,
however, place no restrictions on M other than nonsingularity; they therefore apply
to all scalar products on R

n or C
n and their associated automorphism groups.

We note for later use that

A ∈ G and M unitary ⇒ ‖A‖2 = ‖A−1‖2.(2.2)

We recall one of several equivalent ways of defining f(A) for A ∈ C
n×n, where f is

an underlying scalar function. Let A have distinct eigenvalues λ1, . . . , λs occurring in
Jordan blocks of maximum sizes n1, . . . , ns, respectively. Thus if A is diagonalizable,
ni ≡ 1. Then f(A) = q(A), where q is the unique Hermite interpolating polynomial
of degree less than

∑s
i=1 ni that satisfies the interpolation conditions

q(j)(λi) = f (j)(λi), j = 0:ni − 1, i = 1: s.(2.3)

Stated another way, q is the Hermite interpolating polynomial of minimal degree that
interpolates f at the roots of the minimal polynomial of A. We use the phrase f is
defined on the spectrum of A or, for short, f is defined at A or A is in the domain of
f , to mean that the derivatives in (2.3) exist.

At various points in this work the properties f(diag(X1, X2))=diag(f(X1), f(X2))
and f(P−1AP ) = P−1f(A)P , which hold for any matrix function [24, Thms. 9.4.1,
9.4.2], will be used. We will also need the following three results.

Lemma 2.1. Let A,B ∈ C
n×n and let f be defined on the spectrum of both A and

B. Then there is a single polynomial p such that f(A) = p(A) and f(B) = p(B).
Proof. It suffices to let p be the polynomial that interpolates f and its derivatives

at the roots of the least common multiple of the minimal polynomials of A and B.
See the discussion in [16, p. 415].
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Table 2.1

A sampling of automorphism groups.

Here, R =

[
1

. .
.

1

]
, J =

[
0 In

−In 0

]
, Σp,q =

[
Ip 0
0 −Iq

]
∈ Rn×n.

Space M A� Automorphism group, G

Groups corresponding to a bilinear form

Rn I A� = AT Real orthogonals

Cn I A� = AT Complex orthogonals

Rn Σp,q A� = Σp,qAT Σp,q Pseudo-orthogonalsa

Rn R A� = RATR Real perplectics

R2n J A� = −JAT J Real symplectics

C2n J A� = −JAT J Complex symplectics

Groups corresponding to a sesquilinear form

Cn I A� = A∗ Unitaries

Cn Σp,q A� = Σp,qA∗Σp,q Pseudo-unitaries

C2n J A� = −JA∗J Conjugate symplectics

aAlso known as Lorentz matrices.

Corollary 2.2. Let A,B ∈ C
n×n and let f be defined on the spectra of both

AB and BA. Then

Af(BA) = f(AB)A.

Proof. By Lemma 2.1 there is a single polynomial p such that f(AB) = p(AB)
and f(BA) = p(BA). Hence

Af(BA) = Ap(BA) = p(AB)A = f(AB)A.

Lemma 2.3. Any rational function r can be uniquely represented in the form
r(z) = znp(z)/q(z), where p is monic, n is an integer, p and q are relatively prime,
and p(0) and q(0) are both nonzero.

Proof. The proof of the lemma is straightforward.
We denote the closed negative real axis by R

−. For A ∈ C
n×n with no eigen-

values on R
−, the principal matrix pth root A1/p is defined by the property that the

eigenvalues of A1/p lie in the segment {z : −π/p < arg(z) < π/p}. We will most often
use the principal square root, A1/2, whose eigenvalues lie in the open right half-plane.

Finally, we introduce some notation connected with a polynomial p. The polyno-
mial obtained by replacing the coefficients of p by their conjugates is denoted by p.
The polynomial obtained by reversing the order of the coefficients of p is denoted by
revp; thus if p has degree m then

revp(x) = xmp(1/x).(2.4)

3. Structure-preserving functions. Our aim in this section is to characterize
functions f that preserve automorphism group structure. For a given G, if f(A) ∈ G

for all A ∈ G for which f(A) is defined, we will say that f is structure preserving for
G. As well as determining f that preserve structure for a particular G, we wish to
determine f that preserve structure for all G.
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The (principal) square root is an important example of a function that preserves
all groups. To see this for G associated with a bilinear form, recall that A ∈ G is
equivalent to M−1ATM = A−1. Assuming that A has no eigenvalues on R

−, taking
the (principal) square root in this relation gives

A−1/2 =
(
M−1ATM

)1/2
= M−1

(
AT

)1/2
M = M−1

(
A1/2

)T
M,(3.1)

which shows that A1/2 ∈ G.
In order to understand structure preservation we first need to characterize when

f(A) ∈ G for a fixed f and a fixed A ∈ G. The next result relates this property to
various other relevant properties of matrix functions.

Theorem 3.1. Let G be the automorphism group of a scalar product. Consider
the following eight properties of a matrix function f at a (fixed) matrix A ∈ K

n×n,
where f is assumed to be defined at the indicated arguments:

(a) f(AT ) = f(A)T , (e) f(A−1) = f(A)−1,
(b) f(A∗) = f(A)∗, (g) f(A−∗) = f(A)−∗,

(c) f(A) = f(A), (h) f(A−�) = f(A)−�,
(d) f(A�) = f(A)�, (i) when A ∈ G, f(A) ∈ G.

(a) always holds. (b) is equivalent to (c). (c) is equivalent to the existence of a single
real polynomial p such that f(A) = p(A) and f(A) = p(A). Moreover,

• for bilinear forms: (d) always holds. (e), (h), and (i) are equivalent;
• for sesquilinear forms: (d) is equivalent to (b) and to (c). (g), (h), and (i)

are equivalent. Any two of (d) for A−1 and (e) and (h) for A imply the third.1

Proof. (a) follows because the same polynomial can be used to evaluate f(A)

and f(AT ), by Lemma 2.1. Property (b) is equivalent to f(A
T
) = f(A)

T
, which on

applying (a) becomes (c). So (b) is equivalent to (c).
Next, we consider the characterization of (c). Suppose p is a real polynomial such

that f(A) = p(A) and f(A) = p(A). Then f(A) = p(A) = p(A) = f(A), which is (c).
Conversely, assume (c) holds and let q be any complex polynomial that simultaneously
evaluates f at A and A, so that f(A) = q(A) and f(A) = q(A); the existence of such
a q is assured by Lemma 2.1. Then

q(A) = f(A) = f(A) = q(A) = q(A),

and hence p(x) := 1
2 (q(x) + q(x)) is a real polynomial such that f(A) = p(A). Since

q(A) = f(A) = f(A) = q(A) = q(A),

we also have f(A) = p(A).
We now consider (d). From the characterization (2.1) of the adjoint, for bilinear

forms we have

f(A�) = f(M−1ATM) = M−1f(AT )M = M−1f(A)TM = f(A)�,

so (d) always holds. For sesquilinear forms,

f(A�) = f(M−1A∗M) = M−1f(A∗)M,

1We will see at the end of section 3.4 that for sesquilinear forms neither (d) for A−1 (equivalently
(c) for A−1) nor (e) is a necessary condition for (h) (or, equivalently, for the structure-preservation
property (i)).
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which equals f(A)� = M−1f(A)∗M if and only if (b) holds.
To see that (h) and (i) are equivalent, consider the following cycle of potential

equalities:

f(A−�)
(h)

== f(A)−�

(x) \\ \\(y)

f(A)

Clearly (x) holds if A ∈ G, and (y) holds when f(A) ∈ G. Hence (h) and (i) are
equivalent.

For bilinear forms,

f(A−�) = f(A)−� ⇐⇒ f(M−1A−TM) = M−1f(A)−TM

⇐⇒ f(A−T ) = f(A)−T

⇐⇒ f(A−1) = f(A)−1 by (a).

Thus (h) is equivalent to (e). For sesquilinear forms a similar argument shows that
(h) is equivalent to (g).

Finally, it is straightforward to show for sesquilinear forms that any two of (d)
for A−1 and (e) and (h) for A imply the third.

The main conclusion of Theorem 3.1 is that f is structure preserving for G pre-
cisely when f(A−1) = f(A)−1 for all A ∈ G for bilinear forms, or f(A−∗) = f(A)−∗

for all A ∈ G for sesquilinear forms. We can readily identify two important functions
that satisfy both these conditions more generally for all A ∈ K

n×n in their domains,
and hence are structure preserving for all G.

• The matrix sign function. Recall that for a matrix A ∈ C
n×n with no pure

imaginary eigenvalues the sign function can be defined by sign(A) = A(A2)−1/2 [12],
[22]. That the sign function is structure preserving is known: proofs specific to the
sign function are given in [15] and [26].

• Any matrix power Aα, subject for fractional α to suitable choice of the
branches of the power at each eigenvalue; in particular, the principal matrix pth root
A1/p. The structure-preserving property of the principal square root is also shown by
D. S. Mackey, N. Mackey, and Tisseur [26].

In the following three subsections we investigate three of the properties in Theo-
rem 3.1 in detail, for general matrices A ∈ C

n×n. Then in the final two subsections
we characterize meromorphic structure-preserving functions and conclude with a brief
consideration of M -normal matrices.

3.1. Property (c): f(A) = f(A). Theorem 3.1 shows that this property for
A−1, together with property (e), namely, f(A−1) = f(A)−1, is sufficient for structure
preservation in the sesquilinear case. While property (c) is not necessary for structure
preservation, it plays an important role in our understanding of the preservation of
realness, and so is of independent interest.

We first give a characterization of analytic functions satisfying property (c) for
all A in their domain, followed by an explicit description of all rational functions with
the property. We denote by Λ(A) the set of eigenvalues of A.

Theorem 3.2. Let f be analytic on an open subset Ω ⊆ C such that each
connected component of Ω is closed under conjugation. Consider the corresponding
matrix function f on its natural domain in C

n×n, the set D = {A ∈ C
n×n : Λ(A) ⊆

Ω}. Then the following are equivalent:
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(a) f(A) = f(A) for all A ∈ D.
(b) f(Rn×n ∩ D) ⊆ R

n×n.
(c) f(R ∩ Ω) ⊆ R.

Proof. Our strategy is to show that (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b): If A ∈ R
n×n ∩ D then

f(A) = f(A) (since A ∈ R
n×n)

= f(A) (given),

so f(A) ∈ R
n×n, as required.

(b) ⇒ (c): If λ ∈ R∩Ω then λI ∈ D. But f(λI) ∈ R
n×n by (b), and hence, since

f(λI) = f(λ)I, f(λ) ∈ R.

(c) ⇒ (a): Let Ω̃ be any connected component of Ω. Since Ω̃ is open and connected
it is path-connected, and since it is also closed under conjugation it must contain some
λ ∈ R by the intermediate value theorem. The openness of Ω̃ in C then implies that
U = Ω̃ ∩ R is a nonempty open subset of R, with f(U) ⊆ R by hypothesis. Now

since f is analytic on Ω̃, it follows from the “identity theorem” [27, pp. 227–236 and

Ex. 4, p. 236] that f(z) = f(z) for all z ∈ Ω̃. The same argument applies to all the
other connected components of Ω, so f(z) = f(z) for all z ∈ Ω. Thus f(A) = f(A)
holds for all diagonal matrices in D, and hence for all diagonalizable matrices in D.
Since the scalar function f is analytic on Ω, the matrix function f is continuous on
D [16, Thm. 6.2.27]2 and therefore the identity holds for all matrices in D, since
diagonalizable matrices are dense in any open subset of C

n×n.

Turning to the case when f is rational, we need a preliminary lemma.

Lemma 3.3. Suppose r is a complex rational function that maps all reals (in its
domain) to reals. Then r can be expressed as the ratio of two real polynomials. In
particular, in the canonical form for r given by Lemma 2.3 the polynomials p and q
are both real.

Proof. Let r(z) = znp(z)/q(z) be the canonical form of Lemma 2.3 and consider
the rational function

h(z) := r(z) = zn
p(z)

q(z)
.

Clearly, h(z) = r(z) for all real z in the domain of r, and hence p(z)/q(z) = p(z)/q(z)
for this infinitude of z. It is then straightforward to show (cf. the proof of Lemma 3.6
below) that p = αp and q = αq for some nonzero α ∈ C. But the monicity of p implies
that α = 1, so p and q are real polynomials.

Combining Lemma 3.3 with Theorem 3.2 gives a characterization of all rational
matrix functions with property (c) in Theorem 3.1.

Theorem 3.4. A rational matrix function r(A) has the property r(A) = r(A)
for all A ∈ C

n×n such that A and A are in the domain of r if and only if the scalar
function r can be expressed as the ratio of two real polynomials. In particular, the
polynomials p satisfying p(A) = p(A) for all A ∈ C

n×n are precisely those with real
coefficients.

2Horn and Johnson require that Ω should be a simply-connected open subset of C. However, it
is not difficult to show that just the openness of Ω is sufficient to conclude that the matrix function
f is continuous on D.
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3.2. Property (e): f(A−1) = f(A)−1. We now investigate further the prop-
erty f(A−1) = f(A)−1 for matrix functions f . We would like to know when this
property holds for all A such that A and A−1 are in the domain of f . Since a function
of a diagonal matrix is diagonal, a necessary condition on f is that f(z)f(1/z) = 1
whenever z and 1/z are in the domain of f . The following result characterizes mero-
morphic functions satisfying this identity. Recall that a function is said to be mero-
morphic on an open subset U ⊆ C if it is analytic on U except for poles. In this paper
we consider only meromorphic functions on C, so the phrase “f is meromorphic” will
mean f is meromorphic on C.

Lemma 3.5. Suppose f is a meromorphic function on C such that f(z)f(1/z) = 1
holds for all z in some infinite compact subset of C. Then

(a) The identity f(z)f(1/z) = 1 holds for all nonzero z ∈ C \ S, where S is the
discrete set consisting of the zeros and poles of f together with their reciprocals.

(b) The zeros and poles of f come in reciprocal pairs {a, 1/a} with matching
orders. That is,

z = a is a zero (pole) of order k ⇐⇒ z = 1/a is a pole (zero) of order k.(3.2)

Consequently, the set S is finite and consists of just the zeros and poles of f . Note that
{0,∞} is also to be regarded as a reciprocal pair for the purpose of statement (3.2).

(c) The function f is meromorphic at ∞.
(d) The function f is rational.
Proof. (a) The function g(z) := f(z)f(1/z) is analytic on the open connected set

C \ {S ∪ {0}}, so the result follows by the identity theorem.
(b) Consider first the case where a �= 0 is a zero or a pole of f . Because f is

meromorphic the set S is discrete, so by (a) there is some open neighborhood U of
z = a such that f(z)f(1/z) = 1 holds for all z ∈ U \ {a} and such that f can be
expressed as f(z) = (z − a)kg(z) for some nonzero k ∈ Z (k > 0 for a zero, k < 0 for
a pole) and some function g that is analytic and nonzero on all of U . Then for all
z ∈ U \ {a} we have

f(1/z) =
1

f(z)
= (z − a)−k 1

g(z)
.

Letting w = 1/z, we see that there is an open neighborhood Ũ of w = 1/a in which

f(w) =

(
1

w
− a

)−k
1

g(1/w)
=

(
w − 1

a

)−k
(−1)kwk

akg(1/w)
=:

(
w − 1

a

)−k

h(w)

holds for all w ∈ Ũ \ { 1
a}, where h(w) is analytic and nonzero for all w ∈ Ũ . This

establishes (3.2) and hence that the set S consists of just the zeros and poles of f .
Next we turn to the case of the “reciprocal” pair {0,∞}. First note that the zeros

and poles of any nonzero meromorphic function can never accumulate at any finite
point z, so in particular z = 0 cannot be a limit point of S. In our situation the set
S also cannot have z = ∞ as an accumulation point; if it did, then the reciprocal
pairing of the nonzero poles and zeros of f just established would force z = 0 to be
a limit point of S. Thus if z = ∞ is a zero or singularity of f then it must be an
isolated zero or singularity, which implies that S is a finite set.

Now suppose z = 0 is a zero or pole of f . In some open neighborhood U of z = 0
we can write f(z) = zkg(z) for some nonzero k ∈ Z and some g that is analytic and
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nonzero on U . Then for all z ∈ U \ {0} we have

f(1/z) =
1

f(z)
= z−k 1

g(z)
=: z−kh(z),

where h is analytic and nonzero in U . Thus z = 0 being a zero (pole) of f implies
that z = ∞ is a pole (zero) of f . The converse is established by the same kind of
argument.

(c) That f is meromorphic at ∞ follows from (3.2), the finiteness of S, and the
identity f(z)f(1/z) = 1, together with the fact that f (being meromorphic on C) can
have only a pole, a zero, or a finite value at z = 0.

(d) By [9, Thm. 4.7.7] a function is meromorphic on C and at ∞ if and only if it
is rational.

Since Lemma 3.5 focuses attention on rational functions, we next give a complete
description of all rational functions satisfying the identity f(z)f(1/z) = 1. Recall
that revp is defined by (2.4).

Lemma 3.6. A complex rational function r(z) satisfies the identity r(z)r(1/z) = 1
for infinitely many z ∈ C if and only if it can be expressed in the form

r(z) = ±zk
p(z)

revp(z)
(3.3)

for some k ∈ Z and some polynomial p. For any r of the form (3.3) the identity
r(z)r(1/z) = 1 holds for all nonzero z ∈ C except for the zeros of p and their recip-
rocals. Furthermore, there is always a unique choice of p in (3.3) so that p is monic,
p and revp are relatively prime, and p(0) �= 0; in this case the sign is also uniquely
determined. In addition, r(z) is real whenever z is real if and only if this unique p is
real.

Proof. For any r of the form (3.3) it is easy to check that r(1/z) = ±z−k(revp(z))/
p(z), so that the identity r(z)r(1/z) = 1 clearly holds for all nonzero z ∈ C except for
the zeros of p and their reciprocals (which are the zeros of revp).

Conversely, suppose that r(z) satisfies r(z)r(1/z) = 1 for infinitely many z ∈ C.
By Lemma 2.3, we can uniquely write r as r(z) = zkp(z)/q(z), where p and q are
relatively prime, p is monic, and p(0) and q(0) are both nonzero. For this unique
representation of r, we will show that q(z) = ±revp(z), giving us the form (3.3).
Begin by rewriting the condition r(z)r(1/z) = 1 as

p(z)p(1/z) = q(z)q(1/z).(3.4)

Letting n be any integer larger than deg p and deg q (where deg p denotes the degree
of p), multiplying both sides of (3.4) by zn and using the definition of rev results in

zn−deg pp(z)revp(z) = zn−deg qq(z)revq(z).

Since this equality of polynomials holds for infinitely many z, it must be an identity.
Thus deg p = deg q, and

p(z)revp(z) = q(z)revq(z)(3.5)

holds for all z ∈ C. Since p has no factors in common with q, p must divide revq.
Therefore revq(z) = αp(z) for some α ∈ C, which implies q(z) = αrevp(z) since
q(0) �= 0. Substituting into (3.5) gives α2 = 1, so that q(z) = ±revp(z), as desired.
The final claim follows from Lemma 3.3.
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Lemmas 3.5 and 3.6 now lead us to the following characterization of meromorphic
matrix functions with the property f(A−1) = f(A)−1. Here and in the rest of this
paper we use the phrase “meromorphic matrix function f(A)” to mean a matrix
function whose underlying scalar function f is meromorphic on all of C.

Theorem 3.7. A meromorphic matrix function f(A) has the property f(A−1) =
f(A)−1 for all A ∈ C

n×n such that A and A−1 are in the domain of f if and only if
the scalar function f is rational and can be expressed in the form

f(z) = ±zk
p(z)

revp(z)
(3.6)

for some k ∈ Z and some polynomial p. If desired, the polynomial p may be chosen
(uniquely) so that p is monic, p and revp are relatively prime, and p(0) �= 0. The
matrix function f(A) maps real matrices to real matrices if and only if this unique p
is real.

Proof. As noted at the start of this subsection, f(z)f(1/z) = 1 for all z such
that z and 1/z are in the domain of f is a necessary condition for having the prop-
erty f(A−1) = f(A)−1. That f is rational then follows from Lemma 3.5, and from
Lemma 3.6 we see that f must be of the form (3.6). To prove sufficiency, consider
any f of the form (3.6) with deg p = n. Then we have

f(A)f(A−1) = ±Akp(A)[revp(A)]−1 · ±A−kp(A−1)[revp(A−1)]−1

= Akp(A)[Anp(A−1)]−1 · A−kp(A−1)[A−np(A)]−1

= Akp(A)p(A−1)−1A−n · A−kp(A−1)p(A)−1An

= I.

The final claim follows from Theorem 3.2 and Lemma 3.6.

3.3. Property (g): f(A−∗) = f(A)−∗. The results in this section provide a
characterization of meromorphic matrix functions satisfying f(A−∗) = f(A)−∗. Con-
sideration of the action of f on diagonal matrices leads to the identity f(z)f(1/z) = 1
as a necessary condition on f . Thus the analysis of this identity is a prerequisite for
understanding the corresponding matrix function property.

The following analogue of Lemma 3.5 can be derived, with a similar proof.
Lemma 3.8. Suppose f is a meromorphic function on C such that f(z)f(1/z) = 1

holds for all z in some infinite compact subset of C. Then f is a rational function
with its zeros and poles matched in conjugate reciprocal pairs {a, 1/a}. That is,

z = a is a zero (pole) of order k ⇐⇒ z = 1/a is a pole (zero) of order k,(3.7)

where {0,∞} is also to be regarded as a conjugate reciprocal pair.
In view of this result we can restrict our attention to rational functions.
Lemma 3.9. A complex rational function r(z) satisfies the identity r(z)r(1/z) = 1

for infinitely many z ∈ C if and only if it can be expressed in the form

r(z) = αzk
p(z)

revp(z)
(3.8)

for some k ∈ Z, some |α| = 1, and some polynomial p. For any r of the form (3.8)
the identity r(z)r(1/z) = 1 holds for all nonzero z ∈ C except for the zeros of p and
their conjugate reciprocals. Furthermore, there is always a unique choice of p in (3.8)
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so that p is monic, p and revp are relatively prime, and p(0) �= 0; in this case the
scalar α is also unique. In addition, r(z) is real whenever z is real if and only if this
unique p is real and α = ±1.

Proof. The proof is entirely analogous to that of Lemma 3.6 and so is omit-
ted.

With Lemmas 3.8 and 3.9 we can now establish the following characterization of
meromorphic functions with the property f(A−∗) = f(A)−∗.

Theorem 3.10. A meromorphic matrix function f(A) has the property f(A−∗) =
f(A)−∗ for all A ∈ C

n×n such that A and A−∗ are in the domain of f if and only if
the scalar function f is rational and can be expressed in the form

f(z) = αzk
p(z)

revp(z)
(3.9)

for some k ∈ Z, some |α| = 1, and some polynomial p. If desired, the polynomial
p may be chosen (uniquely) so that p is monic, p and revp are relatively prime, and
p(0) �= 0; in this case the scalar α is also unique. The matrix function f(A) maps
real matrices to real matrices if and only if this unique p is real and α = ±1.

Proof. As noted at the start of this subsection, f(z)f(1/z) = 1 for all z such
that z and 1/z are in the domain of f is a necessary condition for having the prop-
erty f(A−∗) = f(A)−∗. That f is rational then follows from Lemma 3.8, and from
Lemma 3.9 we see that f must be of the form (3.9). To prove sufficiency, consider
any f of the form (3.9) with deg p = n. Then we have

f(A)∗f(A−∗) =
[
αAkp(A)[revp(A)]−1

]∗ · α(A−∗)kp(A−∗)[revp(A−∗)]−1

=
[
αAkp(A)[Anp(A−1)]−1

]∗ · α(A∗)−kp(A−∗)[(A−∗)np(A∗)]−1

= (A∗)−np(A−1)−∗p(A)∗(A∗)kαα(A∗)−kp(A−∗)p(A∗)−1(A∗)n

= (A∗)−np(A−∗)−1p(A∗)p(A−∗)p(A∗)−1(A∗)n

= I.

The final claim follows from Lemma 3.9.
Perhaps surprisingly, one can also characterize general analytic functions f sat-

isfying f(A−∗) = f(A)−∗. The next result has a proof very similar to that of Theo-
rem 3.2.

Theorem 3.11. Let f be analytic on an open subset Ω ⊆ C such that each
connected component of Ω is closed under reciprocal conjugation (i.e., under the map
z �→ 1/z). Consider the corresponding matrix function f on its natural domain in
C

n×n, the set D = {A ∈ C
n×n : Λ(A) ⊆ Ω}. Then the following are equivalent:

(a) f(A−∗) = f(A)−∗ for all A ∈ D.
(b) f(U(n)∩D) ⊆ U(n), where U(n) denotes the group of n×n unitary matrices.
(c) f(C ∩ Ω) ⊆ C, where C denotes the unit circle {z : |z| = 1}.
This theorem has the striking corollary that if a function is structure preserv-

ing for the unitary group then it is automatically structure preserving for any other
automorphism group associated with a sesquilinear form.

Corollary 3.12. Consider any function f satisfying the conditions of Theo-
rem 3.11. Then f is structure preserving for all G associated with a sesquilinear form
if and only if f is structure preserving for the unitary group U(n).

In view of the connection between the identity f(z)f(1/z) = 1 and the property
f(C) ⊆ C established by Theorem 3.11, we can now see Lemma 3.9 as a natural
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generalization of the well-known classification of all Möbius transformations mapping
the open unit disc bijectively to itself, and hence mapping the unit circle to itself.
These transformations are given by [9, Thm. 6.2.3], [27, sect. 2.3.3]

f(z) = α
z − β

1 − β z
,

where α and β are any complex constants satisfying |α| = 1 and |β| < 1. This formula
is easily seen to be a special case of Lemma 3.9.

3.4. Structure-preserving meromorphic functions. We can now give a
complete characterization of structure-preserving meromorphic functions. This re-
sult extends [15, Thm. 2.1], which covers the “if” case in part (e).

Theorem 3.13. Consider the following two types of rational functions, where
k ∈ Z, |α| = 1, and p is a polynomial:

(I) : ± zk
p(z)

revp(z)
, (II) : αzk

p(z)

revp(z)
.

Let G denote the automorphism group of a scalar product. A meromorphic matrix
function f is structure preserving for all groups G associated with

(a) a bilinear form on C
n if and only if f can be expressed in Type I form;

(b) a bilinear form on R
n if and only if f can be expressed in Type I form with

a real p;
(c) a sesquilinear form on C

n if and only if f can be expressed in Type II form;
(d) a scalar product on C

n if and only if f can be expressed in Type I form with
a real p;

(e) any scalar product if and only if f can be expressed in Type I form with a
real p.
Any such structure-preserving function can be uniquely expressed with a monic poly-
nomial p such that p and revp (or p and revp for Type II) are relatively prime and
p(0) �= 0.

Proof. (a) Theorem 3.1 shows that structure preservation is equivalent to the con-
dition f(A−1) = f(A)−1 for all A ∈ G (in the domain of f), although not necessarily
for all A ∈ C

n×n (in the domain of f). Thus we cannot directly invoke Theorem 3.7
to reach the desired conclusion. However, note that the complex symplectic group
contains diagonal matrices with arbitrary nonzero complex numbers z in the (1,1)
entry. Thus f(z)f(1/z) = 1 for all nonzero complex numbers in the domain of f is a
necessary condition for f(A−1) = f(A)−1 to hold for all G. Hence f must be rational
by Lemma 3.5, and must be a Type I rational by Lemma 3.6. That being of Type I
is sufficient for structure preservation follows from Theorem 3.7.

(b) The argument used in part (a) also proves (b), simply by replacing the word
“complex” throughout by “real” and noting that Lemma 3.6 implies that p may be
chosen to be real.

(c) The argument of part (a) can be adapted to the sesquilinear case. By Theo-
rem 3.1, structure preservation is in this case equivalent to the condition f(A−∗) =
f(A)−∗ for all A ∈ G (in the domain of f). Again we cannot directly invoke The-
orem 3.10 to complete the argument, but a short detour through Lemmas 3.8 and
3.9 will yield the desired conclusion. Observe that the conjugate symplectic group
contains diagonal matrices D with arbitrary nonzero complex numbers z in the (1,1)
entry. The condition f(D−∗) = f(D)−∗ then implies that f(1/z) = 1/f(z) for all
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nonzero z in the domain of f , or, equivalently, f(z)f(1/z) = 1. Lemma 3.8 now
implies that f must be rational, Lemma 3.9 implies that f must be of Type II, and
Theorem 3.10 then shows that any Type II rational function is indeed structure pre-
serving.

(d) The groups considered here are the union of those in (a) and (c), so any
structure-preserving f can be expressed in both Type I and Type II forms. But
Lemmas 3.6 and 3.9 show that when f is expressed in the Lemma 2.3 canonical form
znp(z)/q(z), with p monic, p(0) �= 0, and p relatively prime to q, then this particular
expression for f is simultaneously of Type I and Type II. Thus q = ±revp = β revp
for some |β| = 1, and hence p = γp (γ = ±β). The monicity of p then implies γ = 1,
so that p must be real. Conversely, it is clear that any Type I rational with real p
is also of Type II and hence is structure preserving for automorphism groups of both
bilinear and sesquilinear forms on C

n.
(e) Finally, (b) and (d) together immediately imply (e).
We note a subtle feature of the sesquilinear case. That the conditions f(A−1) =

f(A)−1 and f(A) = f(A) hold for all A ∈ G is sufficient for f to be structure
preserving for G (as shown by Theorem 3.1). However, neither condition is necessary,
as a simple example shows. Consider the function f(z) = iz. Since f is a Type II
rational, it is structure preserving by Theorem 3.13(c). But it is easy to see that
neither f(A−1) = f(A)−1 nor f(A) = f(A) holds for any nonzero matrix A.

3.5. M-normal matrices. We conclude this section with a structure-preserva-
tion result of a different flavor. It is well known that if A is normal (A∗A = AA∗) then
f(A) is normal. This result can be generalized to an arbitrary scalar product space.
Following Gohberg, Lancaster, and Rodman [8, sect. I.4.6], define A ∈ K

n×n to be
M -normal, that is, normal with respect to the scalar product, defined by a matrix
M , if A�A = AA�. If A belongs to the automorphism group G of the scalar product,
then A is certainly M -normal. The next result shows that any function f preserves
M -normality. In particular, for A ∈ G, even though f(A) may not belong to G, f(A)
is M -normal and so has some structure.

Theorem 3.14. Consider a scalar product defined by a matrix M . Let A ∈ K
n×n

be M -normal and let f be any function defined on the spectrum of A. Then f(A) is
M -normal.

Proof. Let p be any polynomial that evaluates f at A. Then

f(A)� = p(A)� =

{
p(A�) for bilinear forms,

p(A�) for sesquilinear forms.

Continuing with the two cases,

f(A)f(A)� =

{
p(A)p(A�) = p(A�)p(A)

p(A)p(A�) = p(A�)p(A)
(since AA� = A�A)

= f(A)�f(A).

Theorem 3.14 generalizes a result of Gohberg, Lancaster, and Rodman [8, Thm.
I.6.3], which states that if A ∈ G or A = A� with respect to a Hermitian sesquilinear
form then f(A) is M -normal.

4. Connections between the matrix sign function, the generalized polar
decomposition, and the matrix square root. Having identified the matrix sign
function and square root as structure preserving for all groups, we now consider com-
putational matters. We show in this section that the matrix sign function and square
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root are intimately connected with each other and also with the generalized polar
decomposition. Given a scalar product on K

n with adjoint (·)�, a generalized polar
decomposition of a matrix A ∈ K

n×n is a decomposition A = WS, where W is an
automorphism and S is self-adjoint with spectrum contained in the open right half-
plane; that is, W� = W−1, S� = S, and sign(S) = I. The existence and uniqueness
of a generalized polar decomposition are described in the next result, which extends
[15, Thm. 4.1].

Theorem 4.1 (generalized polar decomposition). With respect to an arbitrary
scalar product on K

n, a matrix A ∈ K
n×n has a generalized polar decomposition

A = WS if and only if (A�)� = A and A�A has no eigenvalues on R
−. When such

a factorization exists, it is unique.
Proof. (⇒) Note first that if the factorization exists then

(A�)� = (S�W�)� = (SW−1)� = W−�S� = WS = A.

Also we must have

A�A = S�W�WS = S�S = S2.(4.1)

But if sign(S) = I is to hold then the only possible choice for S is S = (A�A)1/2, and
this square root exists only if A�A has no eigenvalues on R

−.
(⇐) Letting S = (A�A)1/2, the condition sign(S) = I is automatically satisfied,

but we need also to show that S� = S. First, note that for any B with no eigenvalues
on R

− we have (B�)1/2 = (B1/2)�. Indeed (B1/2)� is a square root of B�, because
(B1/2)�(B1/2)� = (B1/2 ·B1/2)� = B�, and the fact that (B1/2)� is similar to (B1/2)T

(for bilinear forms) or (B1/2)∗ (for sesquilinear forms) implies that (B1/2)� must be
the principal square root. Then, using the assumption that (A�)� = A, we have

S� =
(
(A�A)1/2

)�
=

(
(A�A)�

)1/2
= (A�A)1/2 = S.

Finally, the uniquely defined matrix W = AS−1 satisfies

W�W = (AS−1)�(AS−1) = S−�(A�A)S−1 = S−1(S2)S−1 = I,

using (4.1), and so W ∈ G.
For many scalar products, including all those in Table 2.1, (A�)� = A holds for all

A ∈ K
n×n, in which case we say that the adjoint is involutory. It can be shown that

the adjoint is involutory if and only if MT = ±M for bilinear forms and M∗ = αM
with |α| = 1 for sesquilinear forms [26]. But even for scalar products for which the
adjoint is not involutory, there are always many matrices A for which (A�)� = A, as
the next result shows. We omit the straightforward proof.

Lemma 4.2. Let G be the automorphism group of a scalar product. The condition

(A�)� = A(4.2)

is satisfied if A ∈ G, A = A�, or A = −A�. Moreover, arbitrary products and linear
combinations of matrices satisfying (4.2) also satisfy (4.2).

The generalized polar decomposition as we have defined it is closely related to the
polar decompositions corresponding to Hermitian sesquilinear forms on C

n studied by
Bolshakov et al. [2], [3], the symplectic polar decomposition introduced by Ikramov
[17], and the polar decompositions corresponding to symmetric bilinear forms on C

n

considered by Kaplansky [19]. In these papers the self-adjoint factor S may or may
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not be required to satisfy additional conditions, but sign(S) = I is not one of those
considered. The connections established below between the matrix sign function,
the principal matrix square root, and the generalized polar decomposition as we have
defined it, suggest that sign(S) = I is the appropriate extra condition for a generalized
polar decomposition of computational use.

The following result, which we have not found in the literature, is the basis for
the connections to be established.

Lemma 4.3. Let A,B ∈ C
n×n and suppose that AB (and hence also BA) has no

eigenvalues on R
−. Then

sign

([
0 A
B 0

])
=

[
0 C

C−1 0

]
,

where C = A(BA)−1/2.
Proof. The matrix P = [ 0

B
A
0 ] cannot have any eigenvalues on the imaginary axis,

because if it did, then P 2 = [AB
0

0
BA ] would have an eigenvalue on R

−. Hence sign(P )
is defined and

sign(P ) = P (P 2)−1/2 =

[
0 A
B 0

] [
AB 0
0 BA

]−1/2

=

[
0 A
B 0

] [
(AB)−1/2 0

0 (BA)−1/2

]
=

[
0 A(BA)−1/2

B(AB)−1/2 0

]
=:

[
0 C
D 0

]
.

Since the square of the matrix sign of any matrix is the identity,

I = (sign(P ))2 =

[
0 C
D 0

]2

=

[
CD 0
0 DC

]
;

thus D = C−1. Alternatively, Corollary 2.2 may be used to see more directly that
CD = A(BA)−1/2B(AB)−1/2 is equal to I.

Two important special cases of Lemma 4.3 are, for A ∈ C
n×n with no eigenvalues

on R
− [13],

sign

([
0 A
I 0

])
=

[
0 A1/2

A−1/2 0

]
,(4.3)

and, for nonsingular A ∈ C
n×n [12],

sign

([
0 A
A∗ 0

])
=

[
0 U
U∗ 0

]
,(4.4)

where A = UH is the polar decomposition. A further special case, which generalizes
(4.4), is given in the next result.

Corollary 4.4. If A ∈ K
n×n has a generalized polar decomposition A = WS

then

sign

([
0 A
A� 0

])
=

[
0 W

W� 0

]
.(4.5)
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Proof. Lemma 4.3 gives

sign

([
0 A
A� 0

])
=

[
0 C

C−1 0

]
,

where C = A(A�A)−1/2. Using the given generalized polar decomposition, C =
WS · S−1 = W and therefore

sign

([
0 A
A� 0

])
=

[
0 W

W−1 0

]
=

[
0 W

W� 0

]
.

The significance of (4.3)–(4.5) is that they enable results and iterations for the
sign function to be translated into results and iterations for the square root and gen-
eralized polar decomposition. For example, Roberts’ integral formula [28], sign(A) =
(2/π)A

∫∞
0

(t2I+A2)−1 dt, translates, via (4.5), into an integral representation for the
generalized polar factor W :

W =
2

π
A

∫ ∞

0

(t2I + A�A)−1 dt.

Our interest in the rest of this section is in deriving iterations, beginning with a
family of iterations for the matrix square root.3

Theorem 4.5. Suppose the matrix A has no eigenvalues on R
−, so that A1/2

exists. Let g be any matrix function of the form g(X) = Xh(X2) such that the
iteration Xk+1 = g(Xk) converges to sign(X0) with order of convergence m whenever
sign(X0) is defined. Then in the coupled iteration

Yk+1 = Ykh(ZkYk), Y0 = A,
Zk+1 = h(ZkYk)Zk, Z0 = I,

(4.6)

Yk → A1/2 and Zk → A−1/2 as k → ∞, both with order of convergence m, Yk

commutes with Zk, and Yk = AZk for all k. Moreover, if g is structure preserving
for an automorphism group G, then iteration (4.6) is also structure preserving for G,
that is, A ∈ G implies Yk, Zk ∈ G for all k.

Proof. Observe that

g

([
0 Yk

Zk 0

])
=

[
0 Yk

Zk 0

]
h

([
YkZk 0

0 ZkYk

])
=

[
0 Yk

Zk 0

] [
h(YkZk) 0

0 h(ZkYk)

]
=

[
0 Yk h(ZkYk)

Zk h(YkZk) 0

]
=

[
0 Yk h(ZkYk)

h(ZkYk)Zk 0

]
=

[
0 Yk+1

Zk+1 0

]
,

where the penultimate equality follows from Corollary 2.2. The initial conditions
Y0 = A and Z0 = I together with (4.3) now imply that Yk and Zk converge to A1/2

and A−1/2, respectively. It is easy to see that Yk and Zk are polynomials in A for all k,

3We note that if we generalize to Z0 = B in (4.6), where BA has no eigenvalues on R−, then
Yk → A(BA)−1/2, which is a solution of the special Riccati equation XBX = A, while Zk →
B(AB)−1/2, which solves XAX = B.
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and hence Yk commutes with Zk. Then Yk = AZk follows by induction. The order
of convergence of the coupled iteration (4.6) is clearly the same as that of the sign
iteration from which it arises.

Finally, if g is structure preserving for G and A ∈ G, then we can show induc-
tively that Yk, Zk ∈ G for all k. Clearly Y0, Z0 ∈ G. Assuming that Yk, Zk ∈ G,
then ZkYk ∈ G. Since sign[ 0

Zk

Yk

0 ] = sign[ 0I
A
0 ], we know that P = [ 0

Zk

Yk

0 ] has no

imaginary eigenvalues and hence that P 2 = [YkZk

0
0

ZkYk
] has no eigenvalues on R

−.

Thus (ZkYk)
1/2 exists, and from section 3 we know that (ZkYk)

1/2 ∈ G. But for any
X ∈ G, g(X) ∈ G and hence h(X2) = X−1g(X) ∈ G. Thus with X = (ZkYk)

1/2, we
see that h(X2) = h(ZkYk) ∈ G, and therefore Yk+1, Zk+1 ∈ G.

The connection between sign iterations and square root iterations has been used
previously [13], but only for some particular g. By contrast, Theorem 4.5 is very gen-
eral, since all commonly used sign iteration functions have the form g(X) = Xh(X2)
considered here. Note that the commutativity of Yk and Zk allows several variations
of (4.6); the one we have chosen has the advantage that it requires only one eval-
uation of h per iteration. We have deliberately avoided using commutativity prop-
erties in deriving the iteration within the proof above (instead, we invoked Corol-
lary 2.2). In particular, we did not rewrite the second part of the iteration in the
form Zk+1 = Zkh(ZkYk), which is arguably more symmetric with the first part. The
reason is that experience suggests that exploiting commutativity when deriving ma-
trix iterations can lead to numerical instability (see, e.g., [11]). Indeed we will show
in section 5 that while (4.6) is numerically stable, the variant just mentioned is not.

We now exploit the connection in Corollary 4.4 between the sign function and the
generalized polar decomposition. The corollary suggests that we apply iterations for
the matrix sign function to

X0 =

[
0 A
A� 0

]
,

so just as in Theorem 4.5 we consider iteration functions of the form g(X) = Xh(X2).
It is possible, though nontrivial, to prove by induction that all the iterates Xk of such
a g have the form

Xk =

[
0 Yk

Y �
k 0

]
(4.7)

with (Y �
k )� = Yk, and that Yk+1 = Ykh(Y �

k Yk)—under an extra assumption on g in
the sesquilinear case. Corollary 4.4 then implies that Yk converges to the generalized
polar factor W of A. While this approach is a useful way to derive the iteration for
W , a shorter and more direct demonstration of the claimed properties is possible, as
we now show.

Theorem 4.6. Suppose the matrix A has a generalized polar decomposition A =
WS with respect to a given scalar product. Let g be any matrix function of the form
g(X) = Xh(X2) such that the iteration Xk+1 = g(Xk) converges to sign(X0) with
order of convergence m whenever sign(X0) is defined. For sesquilinear forms assume
that g also satisfies (d) in Theorem 3.1 for all matrices in its domain. Then the
iteration

Yk+1 = Ykh(Y �
k Yk), Y0 = A(4.8)

converges to W with order of convergence m.
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Proof. Let Xk+1 = g(Xk) with X0 = S, so that limk→∞ Xk = sign(S) = I. We
claim that X�

k = Xk and Yk = WXk for all k. These equalities are trivially true for
k = 0. Assuming that they are true for k, we have

X�
k+1 = g(Xk)

� = g(X�
k ) = g(Xk) = Xk+1

and

Yk+1 = WXkh(X�
kW

�WXk) = WXkh(X2
k) = WXk+1.

The claim follows by induction. Hence limk→∞ Yk = W limk→∞ Xk = W . The order
of convergence is readily seen to be m.

Theorem 4.6 shows that iterations for the matrix sign function automatically yield
iterations for the generalized polar factor W . The next result reveals that the square
root of a matrix in an automorphism group is the generalized polar factor W of a
related matrix. Consequently, iterations for W also lead to iterations for the matrix
square root, although only for matrices in automorphism groups. We will take up this
topic again in section 6.

Theorem 4.7. Let G be the automorphism group of a scalar product and A ∈ G.
If A has no eigenvalues on R

−, then I+A = WS with W = A1/2 and S = A−1/2+A1/2

is the generalized polar decomposition of I+A with respect to the given scalar product.
Proof. Clearly, I + A = WS and W� = A�/2 = A−1/2 = W−1. It remains to

show that S� = S and sign(S) = I. We have

S� = A−�/2 + A�/2 = A1/2 + A−1/2 = S.

Moreover, the eigenvalues of S are of the form µ = λ−1 + λ, where λ ∈ Λ(A1/2) is in
the open right half-plane. Clearly µ is also in the open right half-plane, and hence
sign(S) = I.

Note that Theorem 4.7 does not make any assumption on the scalar product or its
associated adjoint. The condition (B�)� = B that is required to apply Theorem 4.1
is automatically satisfied for B = I +A, since A ∈ G implies that I +A is one of the
matrices in Lemma 4.2.

Theorem 4.7 appears in Cardoso, Kenney, and Silva Leite [5, Thm. 6.3] for real
bilinear forms only and with the additional assumption that the matrix M of the
scalar product is symmetric positive definite.

5. Stability analysis of coupled square root iterations. Before investigat-
ing any specific iterations from among the families obtained in the previous section, we
carry out a stability analysis of the general iteration (4.6) of Theorem 4.5. A whole
section is devoted to this analysis for two reasons. First, as is well known, minor
rewriting of matrix iterations can completely change their stability properties [11],
[13]. As already noted, (4.6) can be rewritten in various ways using commutativity
and/or Corollary 2.2, and it is important to know that a choice of form motivated
by computational cost considerations does not sacrifice stability. Second, we are able
to give a stability analysis of (4.6) in its full generality, and in doing so introduce a
technique that is novel in this context and should be of wider use in analyzing the
stability of matrix iterations.

We begin by slightly changing the notation of Theorem 4.5. Consider matrix
functions of the form g(X) = Xh(X2) that compute the matrix sign by iteration and
the related function

G(Y,Z) =

[
g1(Y,Z)
g2(Y,Z)

]
=

[
Y h(ZY )
h(ZY )Z

]
.(5.1)
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Iterating G starting with (Y,Z) = (A, I) produces the coupled iteration (4.6), which
we know converges to (A1/2, A−1/2). Recall that the Fréchet derivative of a map
F : C

m×n → C
m×n at a point X ∈ C

m×n is a linear mapping LX : C
m×n → C

m×n

such that for all E ∈ C
m×n [6], [29],

F (X + E) − F (X) − LX(E) = o(‖E‖).

For our purposes it will not matter whether LX is C-linear or only R-linear.
Our aim is to find the Fréchet derivative of the map G at the point (Y,Z) =

(A1/2, A−1/2), or, more generally, at any point of the form (B,B−1); later, these
points will all be seen to be fixed points of the map G. We denote the Fréchet
derivative of G by dG, the derivative at a particular point (A,B) by dG(A,B), and the
matrix inputs to dG by dY and dZ. With this notation, we have

dG(Y,Z)(dY, dZ) =

[
dg1(dY, dZ)
dg2(dY, dZ)

]
=

[
Y dhZY (ZdY + dZ · Y ) + dY · h(ZY )
dhZY (ZdY + dZ · Y ) · Z + h(ZY )dZ

]
.

At the point (Y,Z) = (B,B−1) this simplifies to

dG(B,B−1)(dY, dZ) =

[
BdhI(B

−1dY + dZ ·B) + dY · h(I)
dhI(B

−1dY + dZ ·B) ·B−1 + h(I)dZ

]
.(5.2)

In order to further simplify this expression we need to know more about h(I) and dhI .
We give a preliminary lemma and then exploit the fact that h is part of a function
that computes the matrix sign.

Lemma 5.1. For any matrix function F (X) with underlying scalar function f
that is analytic at z = 1, the Fréchet derivative of F at the matrix I is just scalar
multiplication by f ′(1), that is, dFI(E) = f ′(1)E.

Proof. Expand the scalar function f as a convergent power series about z = 1:
f(z) =

∑∞
k=0 bk(z − 1)k, where bk = f (k)(1)/k!. Then

F (I + E) − F (I) =

∞∑
k=0

bkE
k − b0I = b1E + O(‖E‖2).

Thus dFI(E) = b1E = f ′(1)E.
Lemma 5.2. Suppose h is part of a matrix function of the form g(X) = Xh(X2)

such that the iteration Xk+1 = g(Xk) converges superlinearly to sign(X0) whenever
sign(X0) exists. If the scalar function h is analytic at z = 1, then h(I) = I and
dhI(E) = − 1

2E.
Proof. Since sign(I) = I, I is a fixed point of the iteration, so g(I) = I and hence

h(I) = I.
At the scalar level, g(x) = xh(x2) and g′(x) = 2x2h′(x2) + h(x2), so g′(1) =

2h′(1) + h(1). But h(I) = I implies h(1) = 1, so g′(1) = 2h′(1) + 1. Now we are
assuming that the iterates of g converge superlinearly to sign(X0), so in particular
we know that a neighborhood of 1 contracts superlinearly to 1 under iteration by g.
From fixed point iteration theory this means that g′(1) = 0. Hence h′(1) = − 1

2 and,
using Lemma 5.1, dhI(E) = h′(1)E = − 1

2E.
Because h(I) = I, it is now clear that any point (B,B−1) is a fixed point for G.

Furthermore, our knowledge of h(I) and dhI allows us to complete the simplification
of dG, continuing from (5.2):
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dG(B,B−1)(dY, dZ) =

⎡⎣ −1

2
dY − 1

2
BdZB + dY

−1

2
B−1dY B−1 − 1

2
dZ + dZ

⎤⎦

=

⎡⎣ 1

2
dY − 1

2
BdZB

1

2
dZ − 1

2
B−1dY B−1

⎤⎦ .

A straightforward computation shows that dG(B,B−1) is idempotent and hence is a
projection. We summarize our findings in a theorem.

Theorem 5.3. Consider any iteration of the form (4.6) and its associated map-
ping

G(Y,Z) =

[
Y h(ZY )
h(ZY )Z

]
,

where Xk+1 = g(Xk) = Xkh(X2
k) is any superlinearly convergent iteration for the

matrix sign such that the scalar function h is analytic at z = 1. Then any matrix pair
of the form P = (B,B−1) is a fixed point for G, and the Fréchet derivative of G at
P is given by

dGP (E,F ) =
1

2

[
E −BFB

F −B−1EB−1

]
.

The derivative map dGP is idempotent, that is, dGP ◦ dGP = dGP .
Following Cheng et al. [7], we define an iteration Xk+1 = g(Xk) to be stable in a

neighborhood of a fixed point X = g(X) if for X0 := X +H0, with arbitrary H0, the
errors Hk := Xk −X satisfy

Hk+1 = LX(Hk) + O(‖Hk‖2),(5.3)

where LX is a linear operator (necessarily the Fréchet derivative of g at X) with
bounded powers, that is, there exists a constant c such that for all s > 0 and arbitrary
H of unit norm, ‖Ls

X(H)‖ ≤ c. Note that the iterations we are considering have a
specified X0 and so the convergence analysis in section 4 says nothing about the effect
of arbitrary errors Hk in the Xk. In practice, such errors are of course introduced
by the effects of roundoff. The significance of Theorem 5.3 is that it shows that any
iteration belonging to the broad class (4.6) is stable, for LX is here idempotent and
hence trivially has bounded powers.

A further use of our analysis is to predict the limiting accuracy of the iteration
in floating point arithmetic, that is, the smallest error we can expect. Consider
X0 = X + H0 with ‖H0‖ ≤ u‖X‖, where u is the unit roundoff, so that X0 can
be thought of as X rounded to floating point arithmetic. Then from (5.3) we have
‖H1‖ <∼ ‖LX(H0)‖, and so an estimate of the absolute limiting accuracy is any bound
for ‖LX(H0)‖. In the case of iteration (4.6), a suitable bound is, from Theorem 5.3
with B = A1/2,

max
{
‖E0‖ + ‖A1/2‖2‖F0‖, ‖F0‖ + ‖A−1/2‖2‖E0‖

}
,

where ‖E0‖ ≤ ‖A1/2‖u and ‖F0‖ ≤ ‖A−1/2‖u. For any of the classical groups in
Table 2.1, M is unitary and so A ∈ G implies ‖A1/2‖2 = ‖A−1/2‖2, by (2.2) (since
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A1/2 ∈ G). Hence this bound is just ‖A1/2‖2(1 + ‖A1/2‖2
2)u, giving an estimate for

the relative limiting accuracy of (1 + ‖A1/2‖2
2)u.

The Fréchet derivative-based analysis of this section would be even more useful if
it also allowed us to identify otherwise plausible iterations that are unstable. To see
that it does, consider the mathematically equivalent variant of (4.6),

Yk+1 = Ykh(ZkYk), Y0 = A,
Zk+1 = Zkh(ZkYk), Z0 = I,

(5.4)

mentioned earlier as being arguably more symmetric but of questionable stability
since its derivation relies on commutativity properties. For this iteration we define
the map G̃(Y,Z) = [Y h(ZY )

Zh(ZY )
], analogous to the map G for iteration (4.6), and see by

a calculation similar to the one above that

dG̃P (E,F ) =
1

2

[
E −BFB

2F −B−1FB −B−2E

]
.(5.5)

The following lemma, whose proof we omit, shows that for many B the map dG̃P has
an eigenvalue of modulus exceeding 1 and hence does not have bounded powers; the
iteration is then unstable according to our definition.

Lemma 5.4. If α and β are any two eigenvalues of B then γ = 1
2 (1 − α

β ) is an

eigenvalue for dG̃P in (5.5), where P = (B,B−1).
The stability and instability, respectively, of particular instances of iterations (4.6)

and (5.4) are confirmed in the numerical experiments of section 7.
Finally, we note that the following analogue of Theorem 5.3 can be proved for the

iterations computing the generalized polar factor W described in Theorem 4.6.
Theorem 5.5. Consider any iteration of the form (4.8) and the associated map-

ping f(Y ) = Y h(Y �Y ), where Xk+1 = g(Xk) = Xkh(X2
k) is any superlinearly con-

vergent iteration for the matrix sign such that the scalar function h is analytic at
z = 1. Then any B ∈ G is a fixed point for f , and the Fréchet derivative of f at B is
given by dfB(E) = 1

2 (E −BE�B). If the underlying scalar product has an involutory
adjoint, then the derivative map dfB is idempotent.

As an immediate consequence we see that any iteration of the form (4.8) is stable,4

at least when the adjoint is involutory (see the remarks preceding Lemma 4.2 for
details of when this condition holds). Special cases of this include the unitary polar
factor iterations developed in [15] and the iteration (6.7) for the square root of matrices
in G derived in the next section.

6. Iterations for the matrix square root. We now use the theory developed
above to derive some specific new iterations for computing the square root of a matrix
in an automorphism group. We assume throughout that A has no eigenvalues on R

−,
so that A1/2 is defined. First, we recall the well-known Newton iteration

Xk+1 =
1

2
(Xk + X−1

k A), X0 = A,(6.1)

which can be thought of as a generalization to matrices of Heron’s iteration for the
square root of a scalar. This iteration converges quadratically to A1/2, but it is nu-
merically unstable and therefore not of practical use [11], [23]. There has consequently
been much interest in deriving numerically stable alternatives.

4Because of the presence of the adjoint in iteration (4.8), the map LX in (5.3) is no longer
complex linear in the sesquilinear case, but it is a real linear map and hence we can still deduce
stability.
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We first derive a structure-preserving iteration. We apply Theorem 4.5 to the
family of structure-preserving matrix sign function iterations identified by Higham
et al. [15], which comprises the main diagonal of a table of Padé-based iterations
discovered by Kenney and Laub [20].

Theorem 6.1. Let A ∈ K
n×n and consider the iterations

Yk+1 = Yk pm(I − ZkYk) [revpm(I − ZkYk)]
−1, Y0 = A,(6.2a)

Zk+1 = pm(I − ZkYk) [revpm(I − ZkYk)]
−1Zk, Z0 = I,(6.2b)

where pm(t) is the numerator in the [m/m] Padé approximant to (1−t)−1/2 and m ≥ 1.
Assume that A has no eigenvalues on R

− and A ∈ G, where G is any automorphism
group. Then Yk ∈ G, Zk ∈ G, and Yk = AZk for all k, and Yk → A1/2, Zk → A−1/2,
both with order of convergence 2m + 1.

Proof. It was shown in [15] that the iteration Xk+1 = Xk pm(I −X2
k) [revpm(I −

X2
k)]−1, with X0 = A, is on the main diagonal of the Padé table in [20] and so

converges to sign(A) with order of convergence 2m + 1. This iteration was shown in
[15] to be structure preserving, a property that can also be seen from Theorem 3.13(e).
The theorem therefore follows immediately from Theorem 4.5.

The polynomial pm(1 − x2) in Theorem 6.1 can be obtained by taking the odd
part of (1 + x)2m+1 and dividing through by x [20]. The first two polynomials are
p1(1−x2) = x2 +3 and p2(1−x2) = x4 +10x2 +5. The cubically converging iteration
(m = 1) is therefore

Yk+1 = Yk(3I + ZkYk)(I + 3ZkYk)
−1, Y0 = A,(6.3a)

Zk+1 = (3I + ZkYk)(I + 3ZkYk)
−1Zk, Z0 = I.(6.3b)

A rearrangement of these formulae that can be evaluated in fewer flops is the continued
fraction form, adapted from [15],

Yk+1 =
1

3
Yk

[
I + 8(I + 3ZkYk)

−1
]
, Y0 = A,(6.4a)

Zk+1 =
1

3

[
I + 8(I + 3ZkYk)

−1
]
Zk, Z0 = I.(6.4b)

This iteration can be implemented in two ways: using three matrix multiplications and
one (explicit) matrix inversion per iteration, or with one matrix multiplication and
two solutions of matrix equations involving coefficient matrices that are transposes of
each other. The latter approach has the smaller operation count, but the former could
be faster in practice as it is richer in matrix multiplication, which is a particularly
efficient operation on modern computers.

A related family5 of coupled iterations for the square root was derived by Higham
[13] from the first superdiagonal of Kenney and Laub’s Padé table. However, unlike
(6.2), that family is not structure preserving: when A ∈ G the iterates do not stay in
the group.

With the aid of Theorem 4.7 we can derive iterations that, while not structure
preserving, are specifically designed for matrices in automorphism groups. Theo-
rem 4.7 says that computing the square root of A ∈ G is equivalent to computing the

5In [13], iteration (2.8) therein was rewritten using commutativity to obtain a more efficient form
(2.10), which was found to be unstable. This form is (essentially) a particular case of (5.4). If instead
(2.8) is rewritten using Corollary 2.2, as we did in deriving (4.6) in section 4, efficiency is gained
without the loss of stability.



FUNCTIONS PRESERVING MATRIX GROUPS 871

generalized polar factor W of I + A. Theorem 4.6 says that any of a wide class of
iterations for the sign of a matrix yields a corresponding iteration for the generalized
polar factor W of the matrix. The simplest application of this result is to the Newton
iteration for the sign function,

Xk+1 =
1

2

(
Xk + X−1

k

)
, X0 = A.(6.5)

Applying Theorem 4.6 we deduce that for any A having a generalized polar decom-
position A = WS, the iteration

Yk+1 =
1

2

(
Yk + Y −�

k

)
, Y0 = A(6.6)

is well-defined and Yk converges quadratically to W . This iteration is also analyzed
by Cardoso, Kenney, and Silva Leite [5, sect. 4], who treat real bilinear forms only
and assume that the matrix M underlying the bilinear form is orthogonal and either
symmetric or skew-symmetric. Higham [14] analyzes (6.6) in the special case of the
pseudo-orthogonal group. In the special case of the real orthogonals, M = I, and
(6.6) reduces to the well-known Newton iteration for the orthogonal polar factor [10].

On invoking Theorem 4.7 we obtain the matrix square root iteration in the next
result.

Theorem 6.2. Let G be any automorphism group and A ∈ G. If A has no
eigenvalues on R

− then the iteration

Yk+1 =
1

2

(
Yk + Y −�

k

)
(6.7)

=

⎧⎪⎨⎪⎩
1

2

(
Yk + M−1Y −T

k M
)

for bilinear forms,

1

2

(
Yk + M−1Y −∗

k M
)

for sesquilinear forms,

with starting matrix Y1 = 1
2 (I + A), is well defined and Yk converges quadratically to

A1/2. The iterates Yk are identical to the Xk (k ≥ 1) in (6.1) generated by Newton’s
method.

Proof. Only the last part remains to be explained. It is easy to show by induction
that X�

k = A−1Xk (k ≥ 1), from which Xk = Yk (k ≥ 1) follows by a second
induction.

Note that the factor 1
2 in Y1 is chosen to ensure that Yk ≡ Xk for k ≥ 1; since

1
2 (I + A) = W ( 1

2S), W is unaffected by this factor.
Theorem 6.2 shows that for A in an automorphism group the Newton iteration

(6.1) can be rewritten in an alternative form—one that has much better numerical
stability properties, as we will show below.

The iteration in Theorem 6.2 is also investigated by Cardoso, Kenney, and Silva
Leite [5, sect. 6], with the same assumptions on G as mentioned above for their
treatment of (6.6).

If M is a general matrix then the operation count for (6.7) is higher than that for
the Newton iteration (6.1). However, for all the classical groups M is a permutation
of diag(±1) (see Table 2.1) and multiplication by M−1 and M is therefore of trivial
cost; for these groups the cost of iteration (6.7) is one matrix inversion per iteration,
which operation counts show is about 75% of the cost per iteration of (6.1) and 30%
of that for (6.4).
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Matrix Newton iterations benefit from scaling when the starting matrix A is far
from the limit. Much is known about scalings for the sign function iteration (6.5) of
the form

Xk+1 =
1

2

(
αkXk + α−1

k X−1
k

)
, X0 = A;(6.8)

see Kenney and Laub [21]. The corresponding scaled version of (6.7) is

Yk+1 =
1

2

(
γkYk + (γkYk)

−�), Y1 =
1

2
(I + A).(6.9)

By considering the discussion just before the proof of Theorem 4.6 we can see how
to map αk into γk. In particular, the determinantal scaling of Byers [4], which for
A ∈ C

n×n takes αk = |det(Xk)
−1/n| in (6.8), yields

γk = |det(Yk)
−1/n|(6.10)

in (6.9), while the spectral scaling αk = (ρ(X−1
k )/ρ(Xk))

1/2 of Kenney and Laub [21]
yields γk = (ρ(Y −1

k Y −�
k )/ρ(Y �

k Yk))
1/4. The latter acceleration parameter is suggested

in [5]; it has the disadvantage of significantly increasing the cost of each iteration.
Finally, we give another example of the utility of Theorem 4.6. The Schulz itera-

tion

Xk+1 =
1

2
Xk(3I −X2

k), X0 = A,(6.11)

is a member of Kenney and Laub’s Padé table of iterations for sign(A). Applying
Theorem 4.6 (or, strictly, a slightly modified version, since (6.11) is not globally
convergent), we obtain the iteration

Yk+1 =
1

2
Yk(3I − Y �

k Yk), Y0 = A(6.12)

for computing W , assuming that the generalized polar decomposition A = WS exists.
Using a known recurrence for the residuals I−X2

k of (6.11) [1, Prop. 6.1] we find that

Rk+1 =
3

4
R2

k +
1

4
R3

k for either Rk = I − Y �
k Yk or Rk = I − YkY

�
k .

Hence a sufficient condition for the convergence of (6.12) is that the spectral radius
ρ(R0) = ρ(I−A�A) < 1. Iteration (6.12) was stated in [14] for the pseudo-orthogonal
group, but the derivation there was ad hoc. Our derivation here reveals the full gen-
erality of the iteration.

7. Numerical properties. Key to the practical utility of the iterations we have
described is their behavior in floating point arithmetic. We begin by presenting two
numerical experiments in which we compute the square root of

• a random perplectic matrix A ∈ R
7×7, with ‖A‖2 =

√
10 = ‖A−1‖2, gener-

ated using an algorithm of Mackey described in [18],
• a random pseudo-orthogonal matrix A ∈ R

10×10, with p = 6, q = 4 and
‖A‖2 = 105 = ‖A−1‖2, generated using the algorithm of Higham [14]. The matrix A
is also chosen to be symmetric positive definite, to aid comparison with the theory,
as we will see later.
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Table 7.1

Results for a perplectic matrix A ∈ R7×7 with κ2(A) = 10. Here, err(X) and µ
G
(X) are defined

in (7.1) and (7.2).

k Newton, (6.1) (6.9) with γk ≡ 1 (6.9) with γk of (6.10) Cubic, (6.4)
err(Xk) err(Yk) µ

G
(Yk) err(Yk) µ

G
(Yk) γk err(Yk) µ

G
(Yk)

0 1.0e+0 1.0e+0 2.5e-15
1 6.1e-1 6.1e-1 4.1e-1 6.1e-1 4.1e-1 1.4e+0 5.1e-1 8.9e-16
2 3.6e-1 3.6e-1 3.7e-1 2.5e-1 2.3e-1 1.1e+0 4.7e-2 4.4e-16
3 8.1e-2 8.1e-2 5.1e-2 2.0e-2 1.6e-2 1.0e+0 4.0e-5 4.7e-16
4 3.5e-3 3.5e-3 2.1e-3 2.3e-4 2.0e-4 1.0e+0 1.7e-14 5.3e-16
5 5.7e-6 5.7e-6 4.0e-6 1.9e-8 1.5e-8 1.0e+0 2.1e-15 4.2e-16
6 1.4e-11 1.4e-11 1.3e-11 2.0e-15 2.1e-16 1.0e+0
7 2.2e-15 1.9e-15 1.2e-16

Table 7.2

Results for a pseudo-orthogonal matrix A ∈ R10×10 with κ2(A) = 1010. Here, err(X) and
µ

G
(X) are defined in (7.1) and (7.2).

k Newton, (6.1) (6.9) with γk ≡ 1 (6.9) with γk of (6.10) Cubic, (6.4)
err(Xk) err(Yk) µ

G
(Yk) err(Yk) µ

G
(Yk) γk err(Yk) µ

G
(Yk)

0 3.2e+2 3.2e+2 1.4e-15
1 1.6e+2 1.6e+2 1.0e-5 1.6e+2 1.0e-5 2.0e-2 1.0e+2 7.2e-15
2 7.8e+1 7.8e+1 1.0e-5 7.4e-1 2.1e-3 3.7e-1 3.4e+1 6.0e-14
3 3.9e+1 3.9e+1 1.0e-5 1.9e-1 1.8e-4 6.5e-1 1.1e+1 5.1e-13
4 1.9e+1 1.9e+1 1.0e-5 6.0e-2 1.7e-5 8.7e-1 3.0e+0 2.9e-12
5 8.9e+0 8.9e+0 9.9e-6 4.9e-3 1.6e-6 9.8e-1 5.5e-1 4.4e-12
6 4.0e+0 4.0e+0 9.6e-6 1.2e-4 3.1e-8 1.0e+0 2.0e-2 4.1e-12
7 3.2e+1 1.6e+0 8.5e-6 3.6e-8 1.4e-11 1.0e+0 2.0e-6 4.1e-12
8 2.3e+5 4.9e-1 5.5e-6 2.1e-11 1.3e-16 2.1e-11 4.1e-12
9 4.6e+9 8.2e-2 1.5e-6

10 2.3e+9 3.1e-3 6.1e-8
11 1.1e+9 4.7e-6 9.5e-11
12 5.6e+8 2.1e-11 2.4e-16

For definitions of the perplectic and pseudo-orthogonal groups see Table 2.1. All our
experiments were performed in MATLAB, for which u ≈ 1.1 × 10−16.

Tables 7.1 and 7.2 display the behavior of the Newton iteration (6.1), the cubic
iteration (6.4), iteration (6.9) without scaling, and iteration (6.9) with determinantal
scaling (6.10). We report iterations up to the last one for which there was a significant
decrease in the error

err(X) =
‖X −A1/2‖2

‖A1/2‖2
.(7.1)

We also track the departure from G-structure of the iterates, as measured by

µ
G
(X) =

‖X�X − I‖2

‖X‖2
2

;(7.2)

see section 7.1 for justification of this measure. The next lemma gives a connection
between these two quantities that applies to all the classical groups in Table 2.1.

Lemma 7.1. Let A ∈ G, where G is the automorphism group of any scalar product
for which M is unitary. Then for X ∈ K

n×n close to A1/2 ∈ G,

µ
G
(X) ≤ 2err(X) + O(err(X)2).(7.3)
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Proof. Let A ∈ G and X = A1/2 + E. Then

X�X − I = (A1/2)�(A1/2 + E) + E�A1/2 + E�E − I

= A−1/2E + E�A1/2 + E�E.

Taking 2-norms and using (2.1) and (2.2) gives

‖X�X − I‖2 ≤ ‖E‖2(‖A−1/2‖2 + ‖A1/2‖2) + ‖E‖2
2

= 2‖E‖2 ‖A1/2‖2 + ‖E‖2
2.

The result follows on multiplying throughout by ‖X‖−2
2 and noting that ‖X‖−2

2 =
‖A1/2‖−2

2 + O(‖E‖2).
The analysis in section 6 shows that for A ∈ G the Newton iteration (6.1) and

iteration (6.9) without scaling generate precisely the same sequence, and this explains
the equality of the errors in the first two columns of Tables 7.1 and 7.2 for 1 ≤ k ≤ 6.
But for k > 6 the computed Newton sequence diverges for the pseudo-orthogonal
matrix, manifesting the well-known instability of the iteration (even for symmetric
positive definite matrices). Table 7.2 shows that scaling brings a clear reduction in the
number of iterations for the pseudo-orthogonal matrix and makes the scaled iteration
(6.9) more efficient than the cubic iteration in this example.

The analysis of section 5 shows that the cubic structure-preserving iteration is
stable, and for the classical groups it provides an estimate (1 + ‖A1/2‖2

2)u of the
relative limiting accuracy. This fits well with the observed errors in Table 7.2, since in
this example ‖A1/2‖2

2 = ‖A‖2 = 105 (which follows from the fact that A is symmetric
positive definite). We know from Theorem 5.5 that the unscaled iteration (6.7) is
stable if the adjoint is involutory, and the same estimate of the relative limiting
accuracy as for the cubic iteration is obtained for the classical groups. These findings
again match the numerical results very well.

The original Newton iteration (6.1) has a Fréchet derivative map whose powers

are bounded if the eigenvalues λi of A satisfy 1
2 |1 − λ

1/2
i λ

−1/2
j | < 1 for all i and j

[11]. This condition is satisfied for our first test matrix but not for the second. The
term on the left of this inequality also arises in Lemma 5.4 with B = A1/2. Hence our
theory predicts that the variant of (6.4) that corresponds to (5.4), in which (6.4b) is
replaced by Zk+1 = 1

3Zk[I + 8(I + 3ZkYk)
−1], will be unstable for the second matrix.

Indeed it is, with minimum error 7.5e-3 occurring at k = 7, after which the errors
increase; it is stable for the first matrix.

Turning to the preservation of structure, the values for µ
G
(Yk) in the tables con-

firm that the cubic iteration is structure preserving. But Table 7.2 also reveals that
for the pseudo-orthogonal matrix, iteration (6.9), with or without scaling, is numer-
ically better at preserving group structure at convergence than the cubic structure-
preserving iteration, by a factor 104. The same behavior has been observed in other
examples. Partial explanation is provided by the following lemma.

Lemma 7.2. Assume that (A�)� = A for all A ∈ K
n×n. If

Yk+1 =
1

2
(Yk + Y −�

k )

then

Y �
k+1Yk+1 − I =

1

4
(Y �

k Yk)
−1(Y �

k Yk − I)2.
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Proof.

Y �
k+1Yk+1 − I =

1

4

(
Y �
k Yk + Y �

k Y −�
k + (Y −�

k )�Yk + (Y −�
k )�Y −�

k − 4I
)

=
1

4
(Y �

k Yk + I + I + Y −1
k Y −�

k − 4I)

=
1

4

(
Y �
k Yk

)−1(
(Y �

k Yk)
2 − 2Y �

k Yk + I
)
,

which gives the result.
Since Lemma 7.2 makes no assumptions about Yk, we can think of Yk as being

an exact iterate perturbed by errors. The lemma shows that the iteration enforces
quadratic convergence to the structure: an arbitrary error introduced at a particular
stage can be expected to have rapidly decreasing effect on the departure from struc-
ture (though not necessarily on the error). The structure-preserving cubic iteration
does not satisfy such a relation: while it automatically preserves structure, it has
no mechanism for reducing a loss of structure caused by arbitrary perturbations in
the iterates. However, as Lemma 7.1 shows, for any method the loss of structure is
approximately bounded by the relative error, so severe loss of structure in the cubic
iteration can occur only for ill-conditioned problems.

7.1. Justification of measure µG(A). The measure of structure µ
G

in (7.2)
was used in [15] and justified by Lemma 4.2 therein, which shows that if A has
a generalized polar decomposition A = WS, the matrix M of the scalar product is
unitary, and ‖S−I‖2 < 1, then W ∈ G is within relative distance approximately µ

G
(A)

of A. In Theorem 7.4 below we simplify this result to assume only that ‖A�A−I‖ < 1
and strengthen it to apply to any consistent norm and any scalar product.

Lemma 7.3. Suppose that sign(S) = I and S2 = I + E, where ‖E‖ < 1, for any
consistent norm. Then

‖S − I‖ ≤ ‖E‖
1 +

√
1 − ‖E‖

< ‖E‖.

Proof. We will make use of the observation that if |x| < 1 then (1 + x)1/2 has
a convergent Maclaurin series 1 +

∑∞
k=1 akx

k such that
∑∞

k=1 |ak||x|k = 1 −
√

1 − x.

Since sign(S) = I we have S = (S2)1/2 and hence S = (I + E)1/2 = I +
∑∞

k=1 akE
k,

since ‖E‖ < 1. Then

‖S − I‖ =

∥∥∥∥∥
∞∑
k=1

akE
k

∥∥∥∥∥ ≤
∞∑
k=1

|ak|‖E‖k

= 1 −
√

1 − ‖E‖ =
‖E‖

1 +
√

1 − ‖E‖
< ‖E‖.

The following theorem generalizes [12, Lem. 5.1], [14, Lem. 5.3], and [15, Lem. 4.2].
Theorem 7.4. Let G be the automorphism group of a scalar product. Suppose

that A ∈ K
n×n satisfies (A�)� = A and ‖A�A − I‖ < 1. Then A has a generalized

polar decomposition A = WS and, for any consistent norm, the factors W and S
satisfy

‖A�A− I‖
‖A‖(‖A�‖ + ‖W�‖) ≤ ‖A−W‖

‖A‖ ≤ ‖A�A− I‖
‖A‖2

‖A‖‖W‖,(7.4)

‖A�A− I‖
‖S‖ + ‖I‖ ≤ ‖S − I‖ ≤ ‖A�A− I‖.(7.5)
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The inequalities (7.4) can be rewritten as

µ
G
(A)‖A‖

‖A�‖ + ‖W�‖ ≤ ‖A−W‖
‖A‖ ≤ µ

G
(A)‖A‖‖W‖.

Proof. The condition ‖A�A− I‖ < 1 implies that the spectral radius of A�A− I
is less than 1, and hence that A�A has no eigenvalues on R

−. Since (A�)� = A,
Theorem 4.1 implies that A has a (unique) generalized polar decomposition A = WS.
Using W� = W−1 and S� = S we have

(A + W )�(A−W ) = A�A−A�W + W�A−W�W

= A�A− S�W�W + W�WS − I = A�A− I.

The lower bound in (7.4) follows on taking norms and using ‖(A + W )�‖ = ‖A� +
W�‖ ≤ ‖A�‖ + ‖W�‖.

The upper bound in (7.5) follows from Lemma 7.3, since

A�A− I = S�W�WS − I = S2 − I.(7.6)

The upper bound in (7.4) then follows by taking norms in A−W = WS−W = W (S−
I). Finally, the lower bound in (7.5) follows by writing (7.6) as A�A−I = (S−I)(S+I)
and taking norms.

Note that the term ‖A�‖ in the denominator of (7.4) can be replaced by κ(M)‖AT‖
or κ(M)‖A∗‖ for bilinear forms and sesquilinear forms, respectively, and for a uni-
tarily invariant norm both expressions are just ‖A‖ for all the groups in Table 2.1;
likewise for ‖W�‖.

7.2. Conclusions on choice of method for A1/2 when A ∈ G. Our overall
conclusion is that the rewritten form (6.9) of Newton’s iteration, with the scaling
(6.10) or perhaps some alternative, is the best iteration method for computing the
square root of a matrix A in an automorphism group. This iteration

• overcomes the instability in the standard Newton iteration (6.1) and is less
costly per iteration than (6.1) for the classical groups;

• is generally more efficient than the cubic structure-preserving iteration (6.4):
it costs significantly less per iteration than (6.4), and (6.4) typically requires approx-
imately the same number of iterations;

• when iterated to convergence to machine precision is likely to produce a
computed result lying closer to the group than the cubic iteration (6.4) when A is ill
conditioned;

• for the classical groups has half the cost per iteration of the mathematically
equivalent Denman–Beavers iteration recommended in [13]. In fact, another way to
derive (6.7) is to exploit the structure in the Denman–Beavers iteration that results
when A ∈ G.
If a structure-preserving iteration is required then an iteration from the family (6.2)
can be recommended, such as the cubically convergent iteration (6.4). These itera-
tions have the advantage that even if they are terminated well before convergence to
machine precision, the result will lie in the group to approximately machine precision,
though some loss of structure (no worse than that described by (7.3)) may occur for
ill-conditioned problems.
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QRT: A QR-BASED TRIDIAGONALIZATION ALGORITHM FOR
NONSYMMETRIC MATRICES∗

ROGER B. SIDJE† AND K. BURRAGE†

Abstract. The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form
has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process
is in principle a candidate method for this task, but in practice it is confined to sparse matrices
and is restarted periodically because roundoff errors affect its three-term recurrence scheme and de-
grade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns
or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead tech-
nique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable
block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary
similarity transformations that are prone to numerical instabilities. Such concomitant difficulties
have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This
study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from
within a general framework, we present a new elimination technique combining orthogonal similarity
transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications
of this study include eigenvalue calculation and the approximation of matrix functions.

Key words. matrix reduction, nonsymmetric tridiagonalization, QR

AMS subject classifications. 15A23, 65F15, 65F25
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1. Introduction. The tridiagonalization of a general square matrix represents
the most compact similarity reduction that can be computed directly. Attempting to
reduce further (diagonalization or bidiagonalization) implies the retrieval of eigenval-
ues, which can only be done iteratively in general, unless the order of the matrix is
under five. As yet, however, no stable tridiagonalization algorithm has been found. In
fact we know of only one finite, though unstable and impractical, tridiagonalization
algorithm due to George et al. [7].

While the biorthogonal Lanczos process is in principle a candidate tridiagonal-
ization algorithm, it is generally confined to sparse matrices because rounding errors
build up in its three-term recurrence scheme and degrade the biorthogonality after
a few steps, making it necessary to restart periodically (though the restart may also
be motivated by memory considerations in large-scale problems). The process is also
vulnerable to serious breakdowns or near-breakdowns, the handling of which involves
recovery strategies such as the look-ahead technique. But the look-ahead needs a
careful implementation, and furthermore it produces a block-tridiagonal form with
unpredictable block sizes.

Other candidate methods, geared generally towards full matrices, are not immune
to serious breakdowns or near-breakdowns either, relying on elementary similarity
transformations that are prone to numerical instabilities. Such concomitant difficulties
have hampered finding a satisfactory solution to the problem for either sparse or full
matrices. This study focuses primarily on nonsymmetric full matrices.
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Historically, interest in tridiagonalization stemmed primarily from its usefulness in
reducing the cost of the LR algorithm, which predated the QR algorithm for comput-
ing the eigenvalues of a general dense matrix. However, the quest for tridiagonalization
algorithms has been marred by numerical instabilities (see Wilkinson [19]). With a
tridiagonalization A = STS−1, computing an eigenpair (λ, y) of T gives the corre-
sponding eigenpair (λ, Sy) of A. Therefore an added drawback is that eigenvectors
can be contaminated when they are later retrieved by reapplying the transformations
at the source of the inaccuracies.

The discovery of the QR algorithm proved very popular because it works really
well, especially in conjunction with other enhancements for quick convergence (e.g.,
double shift) and accuracy (e.g., balancing). Tridiagonalization is unnecessary because
the tridiagonal form is not preserved. The QR algorithm uses instead a preliminary
orthogonal reduction to Hessenberg form for improved efficiency.

The inherent difficulties associated with tridiagonalization, together with the fact
that the QR algorithm already works so well, nearly halted interest in finding stable
algorithms for the reduction of a general matrix to strict tridiagonal form. But in-
terest was rekindled by Dax and Kaniel [3], who reported that theoretical predictions
are much more pessimistic than observed in practice (especially considering today’s
64-bit computer architecture). Further investigation was then carried out by Geist [6],
who added pivoting strategies and reported that instabilities arise at larger matrix
sizes. Unfortunately, the likelihood of instabilities means that practical implementa-
tions have to anticipate them in order to remain robust and competitive [5, 6, 10, 12].
Although consolidation techniques bring some benefits, their added complexity dis-
courages users, causing them to prefer the standard elegant QR approach with its
renowned stable foundation, albeit at higher cost.

Our own interest in the problem stemmed from the computation of matrix func-
tions [2, 15, 16]. Given a matrix A and a function f for which A is admissible
(i.e., f(A) is defined), the matrix function may be computed more economically as
f(A) = Sf(T )S−1, provided A = STS−1 is a preliminary reduction to condensed
form. The generic nature of the problem makes it compelling to have reduction algo-
rithms that are useful in applications other than eigenvalue estimation.

We shall first outline a general framework for tridiagonalization algorithms. We
subsequently present a new elimination technique combining orthogonal similarity
transformations that are stable. We then discuss recovery techniques when serious
breakdowns are encountered. We provide a roundoff error analysis. Finally, we present
some numerical results and give some concluding remarks.

2. General principles of tridiagonalization.

2.1. Elementary similarity transformations. We use R throughout our pre-
sentation to emphasize that complex arithmetic is avoided for real data, but with
minor adjustments the discussion applies to C as well. Let x = (x1, . . . , xn)T , y =
(y1, . . . , yn)T be vectors of R

n, and consider the problem of finding an invertible ma-
trix M ∈ R

n×n such that {
Mx = αe1,
yTM−1 = βeT1 ,

(2.1)

where α and β are scalars to be determined and ej is the jth column of the identity
matrix of appropriate size.
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Lemma 2.1. Assume x1 �= 0, y1 �= 0, and yTx �= 0. Then the matrices

M1 ≡ I − 1

x1
xeT1 +

1

y1
e1y

T , M2 ≡ I − 1

x1
xeT1 − 1

y1
e1y

T

are solutions of (2.1), and the following hold:

1. M1x = yT x
y1

e1; M2x = −yT x
y1

e1.

2. yTM−1
1 = y1e

T
1 ; yTM−1

2 = −y1e
T
1 .

3. M−1
1 = I − e1e

T
1 − 1

yT x
x(y − 2y1e1)

T ; M−1
2 = I − e1e

T
1 − 1

yT x
xyT .

4. detM1 = yT x
y1x1

; detM2 = −detM1.

Proof. (1) can be verified by a straightforward multiplication; (2) and (3) follow
from the Sherman–Morrison formula; finally, (4) follows from expanding the determi-
nant.

Remarks.
1. In the same spirit as other elementary transformations such as Householder,

Gauss, or Gauss–Jordan, the transformation M zeroes a part of a vector.
However, in contrast to those transformations, it has the special feature that
its inverse M−1 is also a transformation targeted at a different vector.

2. Multiplying these transformations by a scalar, or more generally a diagonal
matrix, preserves their basic effect. The conditions x1 �= 0 and y1 �= 0 ensure
that M is defined. The condition yTx �= 0 ensures that M is invertible.

3. The inverse M−1 is in general a full matrix. This is, however, of limited
consequence because M−1 is not used in isolation. What matters is its action.
Notice also that if z ∈ R

n, then Mz and zTM−1 are computed using a dot
product and a gaxpy.

4. There are other matrices that satisfy Lemma 2.1. M1 is the matrix that is
often used in the literature (Geist [6] and Dongarra, Geist, and Romine [4]).
It can be written as M1 = NrN

−1
c , where Nr = I − 1

x1
xeT1 is the usual Gauss

transformation for the row and Nc = I − 1
y1
e1y

T is that for the column. As
we shall show in section 3, our new algorithm relies on another different type
of matrix that is constructed with improved stability.

For convenience in the rest of this section we shall simply consider one case,
say M ≡ M2. The next illustration is a motivation for what follows. Let a matrix
A ∈ R

n×n be partitioned in the form

A =

(
δ yT

x Z

)
,

where x, y ∈ R
n−1 for compatibility. If the assumptions of Lemma 2.1 are satisfied,

a transformation M of order n− 1 can be constructed such that

(
1 0
0 M

)(
δ yT

x Z

)(
1 0
0 M

)−1

=

⎛⎜⎜⎜⎜⎝
δ β 0 · · · 0
α
0
...
0

MZM−1

⎞⎟⎟⎟⎟⎠ .

The same process may be carried out on MZM−1 and so on. Upon termination,
we end up with a tridiagonal matrix that is similar to the original matrix A. The
method can also be used just to reduce the bandwidth of a matrix [12]. An overview
of the overall procedure is outlined in the following section.



A QR-BASED TRIDIAGONALIZATION ALGORITHM 881

2.2. Nonsymmetric tridiagonalization. Starting with A0 ≡ A and applying
the process above we obtain an updated matrix Ak−1 ≡ (ak−1

i,j ) at stage k − 1 whose
pattern is

Ak−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 β1

α1 δ2
. . . 0

. . .
. . . βk−2

αk−2 δk−1 βk−1

αk−1 ak−1
k,k ak−1

k,k+1 . . . ak−1
k,n

ak−1
k+1,k ak−1

k+1,k+1 . . . ak−1
k+1,n

0 ...
...

. . .
...

ak−1
n,k ak−1

n,k+1 . . . ak−1
n,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
Tk−1 0

0 Ak−1
22

)
+ αk−1eke

T
k−1 + βk−1ek−1e

T
k .

The kth transformation is then constructed as

Mk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik 0
1 −mk+1,k+2 · · · −mk+1,n

−mk+2,k+1 1

0 ...
. . .

−mn,k+1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= I −mke

T
k+1 − ek+1m̃

T
k

where the multipliers are⎧⎪⎪⎪⎨⎪⎪⎪⎩
mk = (0, . . . , 0︸ ︷︷ ︸

k+1

,mk+2,k+1, . . . ,mn,k+1)
T , mi,k+1 =

ak−1
i,k

ak−1
k+1,k

, i = k + 2, . . . , n

m̃k = (
︷ ︸︸ ︷
0, . . . , 0,mk+1,k+2, . . . ,mk+2,n)T , mk+1,j =

ak−1
k,j

ak−1
k,k+1

, j = k + 2, . . . , n.

(2.2)

The move from stage k − 1 to stage k is described by

Ak = MkAk−1M
−1
k .

The method will be of practical value if this update can be done cheaply, especially
without having to manipulate M−1 explicitly. A handy result to that effect is sum-
marized below, which shows how to update based on Zx/yTx.

Lemma 2.2. For the case M ≡ M2, the ij-entries of Z̃ = MZM−1 satisfy the
following identities.

Case i = 1, j = 1: z̃1,1 = yTZx
yT x

.

Case i = 1, j �= 1: z̃1,j = 1
y1

(yj
yTZx
yT x

− yTZej).

Case i �= 1, j = 1: z̃i,1 = xi
eT1 Zx
x1

− y1
eTi Zx
yT x

.

Case i �= 1, j �= 1: z̃i,j = zi,j − xi

x1
z1,j − yj(

eTi Zx
yT x

− xi

x1

eT1 Zx
yT x

).
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Proof. The identities come after expanding z̃i,j = eTi MZM−1ej .

The method does not necessarily preserve the symmetry when the matrix is sym-
metric. This is of no importance since there are other techniques best suited for the
symmetric case. The major concerns are rather that the algorithm may break down
due to a zero pivot ak−1

k,k+1 or ak−1
k+1,k in the multipliers (2.2), or it may have near-

breakdowns due to small pivots that amplify the multipliers and introduce severe
roundoff errors.

There is an intimate connection with the nonsymmetric (also known as biorthog-
onal) Lanczos process, a full description of which can be found in Golub and Van
Loan [8, section 9.4.3]. The algorithm given above is equivalent to applying the
biorthogonal Lanczos process to A with the starting vectors u1 = e1 and v1 = e1.
In fact, any similarity tridiagonalization A = STS−1 can always be understood as
representing the biorthogonal Lanczos process with the starting vectors uT

1 = eT1 S
−1

and v1 = Se1. In exact arithmetic, therefore, all tridiagonalization algorithms seeded
with the same vectors are essentially equivalent, producing a tridiagonal matrix and
a transformation matrix that are identical to within diagonal scaling. This is called
the implicit-Q theorem, and its implications are described in detail by Parlett [14].
In particular, the desirable pairs (u1, v1) immune to breakdowns can be characterized
in terms of Hankel determinants. It is therefore hard to tell in advance whether a
pair is good, and, as with the Lanczos process, all tridiagonalization algorithms are
susceptible to breakdowns.

Numerically, however, algorithms implemented in finite arithmetic may behave
differently due to different stability properties. In the Lanczos process, for example,
rounding errors build up rapidly in the three-term recurrence scheme and degrade
the biorthogonality. It becomes unclear whether a breakdown or near-breakdown is
genuine or the consequence of inaccurate intermediate computations. It is also possible
for transformations of type M1 and M2 above to break down just because x1 = 0
and/or y1 = 0, or more likely they may have near-breakdowns at the neighborhood of
these critical points, corrupting the ongoing tridiagonalization. Clearly, although the
tridiagonalization is unique to within diagonal scaling once the starting vectors are
prescribed, there can be numerical differences between algorithms, as is the case in
other contexts such as in the QR decomposition which is unique but much different
if computed via Modified Gram–Schmidt (MGS) or via the Classical Gram–Schmidt
(CGS). Consider also QR vs. normal equations in least-squares problems or the
myriad ways to get to the unique solution of a linear system. The pivoting strategy
in the tridiagonalization algorithm of Geist [6] was motivated by such concerns. As
we shall see later, our primary contribution is that each step of our new algorithm is
nearly optimal in terms of minimizing rounding errors.

2.3. Related tridiagonalization algorithms. We will present our new algo-
rithm in section 3. The framework that we just outlined in section 2 builds on previous
works (see below). This framework bears a striking resemblance to an earlier work of
Bauer [1], who showed that a class of solutions to Lemma 2.1 can be represented in
the form M = I− τuvT and can therefore be understood as generalizations of House-
holder reflectors. (M1 and M2 above are rank-two additions and do not belong to this
class unless x = 0 or y = 0.) Bauer [1] used, however, a loose terminology, defining a
solution as “stable” if it exists in the neighborhood of x1 = 0 and y1 = 0 even though
it is unstable when yTx ≈ 0. His transformations are also set in C

n and involve
√
yTx

if need be, thus inducing complex arithmetic when yTx < 0. Intriguingly, his work is
not well publicized in the community and has gone unreferenced in other works. We
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thank the anonymous referee who brought it to our attention. We believe that these
general principles provide a unified and coherent approach of describing tridiagonal-
ization algorithms. One such algorithm was described by La Budde [11], unwittingly
using precisely the generalized Householder reflectors of Bauer [1]. La Budde seemed
to think that his algorithm was breakdown-free. But this was promptly refuted by
Parlett [13] and Wang and Gregory [18]. We cite some of the other tridiagonalization
algorithms here.

ELR: This was introduced by Strachey and Francis [17]. It can be very unstable
and was abandoned soon after the discovery of the QR algorithm. It was revived
owing to the analysis and empirical results of Dax and Kaniel [3]. The algorithm first
uses the standard Hessenberg reduction of a general matrix and then uses elementary
similarity transformations to zero the terms in the upper part. One of the main
weaknesses of this work is that it did not include recovery strategies.

ATOTRI: Geist [6] added a pivoting strategy to the elimination procedure in an
attempt to stabilize the transformations. This proved successful in many practical
problems. However, since the similarity must be preserved, there is no guarantee that
the multipliers on both the column and the row will be bounded by unity. As we
indicated in remark 4 above, this approach amounts to using M1 but with pivoting.
That is, the elementary transformation is M̃ = Ñr(Ñc)

−1, where Ñr and Ñc use
Px and Py with P being a permutation matrix. Several multipliers can remain
unbounded should there be no permutation P that is simultaneously suitable for Ñr

and Ñc.

BHESS: This is one of the many attempts to improve stability by reducing to
a banded, as opposed to a tridiagonal, matrix. It is a variant of the elimination
algorithm with pivoting in which the least stable Gauss transformations are omitted
[10]. The drawback is that it produces a “trapezoidal” matrix as a compromise, i.e.,
an upper-Hessenberg matrix with an unfinished tridiagonalization. Thus the onus is
on subsequent computations to exploit its special structure.

3. The QR-based tridiagonalization algorithm (QRT). We now describe
our new tridiagonalization algorithm. It involves the following core ingredients. At
each stage, it first uses a stable orthogonal similarity transformation to reduce both
the column and the row. This reduces the column fully but leaves one trailing element
on the row. The algorithm then finds another similarity transformation to eliminate
that element. In the event of a serious breakdown, the algorithm restarts in an attempt
to bypass the critical point.

3.1. The algorithm. To describe the technical aspects of the algorithm in de-
tail, consider the partitioning

A =

(
δ yT

x Z

)
,(3.1)

and let

[x, y] = QR = Q

⎛⎜⎜⎜⎜⎜⎝
α β
0 γ
0 0
...

...
0 0

⎞⎟⎟⎟⎟⎟⎠
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be the QR decomposition of the pair [x, y]. Now observe that

(
1 0
0 Q

)T (
δ yT

x Z

)(
1 0
0 Q

)
=

⎛⎜⎜⎜⎜⎝
δ β γ 0 · · · 0
α
0
...
0

QTZQ

⎞⎟⎟⎟⎟⎠ .

We therefore have a configuration where the only element to be eliminated is γ. All
the other unwanted elements have been eliminated in a stable manner by the Q factor.
Although orthogonal transformations have been used by other tridiagonalization al-
gorithms (e.g., for preliminary reduction to Hessenberg form), the two-sided approach
that we have just illustrated above is new, and our algorithm is the first method based
on this approach. This special feature forms the centerpiece of our contribution.

Now, provided γ is eliminated without significant loss of stability, we can antic-
ipate that the overall algorithm will remain stable for many practical problems. If
|γ| ≤ |β|, it is sufficient to use an elementary similarity transformation, as we saw
earlier. The following result gives a precise characterization of the elimination in ad-
vance. It also shows that it makes no difference whether we use [x, y] or [y, x] (i.e., the
QL variant), but we shall see later that a particular choice can improve the stability
of the next step.

Lemma 3.1 (stability condition). We have γ/β = tanθ(x, y), and so |γ/β| ≤ 1
is equivalent to |θ| ≤ π/4, i.e.,

| cosθ(x, y)| =
|xT y|

‖x‖2‖y‖2
≥

√
2

2
·(3.2)

Proof. The thin R factor in the QR decomposition of [x, y] is

(
α β
0 γ

)
=

(
‖x‖2 yTx/‖x‖2

0 ‖y − (yTx/xTx)x‖2

)
.

Evaluating the ratio γ/β gives the result.

While bounding the multiplier by unity assists safety, the process really depends
on the condition number of the similarity transformation, as our roundoff error analy-
sis will enlighten later. Hence for the case where |γ| > |β| > 0 it may still be possible
to apply a Gauss transformation if |γ/β| does not exceed some tolerance, as done by
Dax and Kaniel [3] and Geist [6], who reported that doing so is not always as bad
as it seems in practice. Ideally, we would like to only use an orthogonal similarity
transformation, but this is not typically possible, and our transformation attempts
to come as close as we can get to one. Since the elimination step of our algorithm
has only a single element to deal with, it is worth looking at the impact of a small
pivot in detail. Assume that k − 1 steps of the tridiagonalization process have been
performed, and the kth orthogonal similarity transformation has just been applied to
produce the following result:
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AQ
k = QT

kAk−1Qk

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tk−1

0
...
0

βk−1

0
...
0
0

0
...
0
0

0

0 · · · 0 αk−1 δ β γ 0 · · · 0
0 · · · 0 0 α p s g′k+3 · · · g′n
0 · · · 0 0 0 q t gk+3 · · · gn

0
0
...
0

f ′
k+3

...
f ′
n

fk+3

...
fn

H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ T X 0
Y W G
0 F H

⎞⎠ .(3.3)

To zero γ, the Gauss elimination matrix is

Sk =

⎛⎝ Ik−1 0 0
0 S 0
0 0 In−k−2

⎞⎠ ∈ R
n×n, S =

⎛⎝ 1 0 0
0 1 μk

0 0 1

⎞⎠ , μk =
γ

β
≡ μ.

Using (3.3) with the fact that SY = Y and XS−1 = X, we get

AS
k = SkA

Q
k S

−1
k =

⎛⎝ T X 0
Y SWS−1 SG
0 FS−1 H

⎞⎠ ,(3.4)

where

SWS−1 =

⎛⎝ δ β 0
α μq + p −μ2q + μ(t− p) + s
0 q −μq + t

⎞⎠ ,

SG =

⎛⎝ 0 · · · 0
μgk+3 + g′k+3 · · · μgn + g′n

gk+3 · · · gn

⎞⎠ ,

FS−1 =

⎛⎝ 0 · · · 0
f ′
k+3 · · · f ′

n

−μf ′
k+3 + fk+3 · · · −μf ′

n + fn

⎞⎠T

.

This leads to a stable elimination of γ when |μ| = |γ/β| ≤ 1. Unfortunately, it shows
that the occurrence of a very large multiplier μ can affect a row in SG and a column
in FS−1. Therefore there is still a possibility of having roundoff errors that build up
due to very small pivots.

In order to attempt to mitigate these difficulties, we now consider a general elim-
ination procedure aimed at the case where |γ| > |β| > 0. Looking at (3.3), it can be
seen that we have obtained a structure where the upcoming elimination step can be
identified to the problem of reducing the smaller inner 3-by-3 block

W =

⎛⎝ δ β γ
α p s
0 q t

⎞⎠



886 ROGER B. SIDJE AND K. BURRAGE

to tridiagonal form while using a transformation matrix that will preserve the existing
zeros in the other surrounding blocks. It is not difficult to see that the corresponding
transformation matrix for this must therefore have its first column and first row both
equal to the first canonical basis vector (to within diagonal scaling). We can write

the smaller tridiagonalization problem S̃WS̃−1 = W ′ as⎛⎝ 1 0 0
0 ξ1 ξ2
0 ξ3 ξ4

⎞⎠⎛⎝ δ β γ
α p s
0 q t

⎞⎠⎛⎝ 1 0 0
0 ξ1 ξ2
0 ξ2 ξ3

⎞⎠−1

=

⎛⎝ δ β′ 0
α′ p′ s′

0 q′ t′

⎞⎠ .(3.5)

It is interesting to note that this problem does not have a solution if β = 0, just as the
earlier Gauss elimination matrix was undefined in that case. This situation amounts
precisely to the serious breakdown case in the nonsymmetric Lanczos algorithm. In-
deed (3.5) is equivalent to applying the nonsymmetric Lanczos process to W with the
starting vectors u1 = e1 and v1 = e1. As theory predicts [5, 7, 14], the first iteration
can be taken only if we have nonzero Hankel determinants

Δ1 = uT
1 W

0v1 = 1 �= 0 and Δ2 =

∣∣∣∣uT
1 W

0v1 uT
1 W

1v1

uT
1 W

1v1 uT
1 W

2v1

∣∣∣∣ = αβ �= 0.

We will propose an heuristic for the breakdown later. Continuing for now with the
premise that |γ| > |β| > 0, it is easily seen that a solution to (3.5) is given (to within
diagonal scaling) by

S̃ =

⎛⎝ 1 0 0
0 τ 1
0 0 1

⎞⎠ , τ =
β

γ
< 1.

All the quantities involved so far are computed in a stable manner. Letting

S̃k =

⎛⎝ Ik−1 0 0

0 S̃ 0
0 0 In−k−2

⎞⎠ ∈ R
n×n(3.6)

and using (3.3) once more with the fact that S̃X = X and Y S̃−1 = Y , we get

AS̃
k = S̃kA

Q
k S̃

−1
k =

⎛⎜⎝ T Y 0

X S̃WS̃−1 S̃G

0 FS̃−1 H

⎞⎟⎠ .(3.7)

The appearance of S̃−1 involves a risky division by τ < 1 in the computations. This
may still introduce numerical difficulties, but the potential of growth is basically
confined to FS̃−1, and we now show how to lessen its extent. Direct calculation gives

S̃WS̃−1 =

⎛⎝ δ γ 0
τα q/τ + p −q/τ − p + τs + t
0 q/τ −q/τ + t

⎞⎠ ,(3.8)

S̃G =

⎛⎝ 0 · · · 0
τg′k+3 + gk+3 · · · τg′n + gn

gk+3 · · · gn

⎞⎠ ,(3.9)

FS̃−1 =

⎛⎝ 0 · · · 0
f ′
k+3/τ · · · f ′

n/τ
−f ′

k+3/τ + fk+3 · · · −f ′
n/τ + fn

⎞⎠T

.(3.10)
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This suggests that the algorithm can remain reasonably robust if we can bound most
of f ′

i/τ , i = k + 3, . . . , n. To do so, consider the earlier partitioning (3.1), and let

[x, y, Zx] = Q̃

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α β ρ
0 γ σ
0 0 ν
0 0 0
...

...
...

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
be the QR decomposition of the triplet [x, y, Zx]. Now observe that

(
1 0
0 Q̃

)T (
δ yT

x Z

)(
1 0
0 Q̃

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ β γ 0 · · · 0
α p × × · · · ×
0 q × × · · · ×
0 r × × · · · ×
0 0 × × · · · ×
...

...
...

...
. . .

...
0 0 × × · · · ×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with p = ρ/α, q = σ/α, r = ν/α. Indeed this comes from the fact that Q̃TZQ̃e1 =

Q̃TZx/‖x‖2. Applying this process at step k, we will therefore obtain a structure of
the form

AQ̃
k = Q̃T

kAk−1Q̃k(3.11)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tk−1

0
...
0

βk−1

0
...
0
0

0
...
0
0

0

0 · · · 0 αk−1 δ β γ 0 · · · 0
0 · · · 0 0 α p s g′k+3 · · · g′n
0 · · · 0 0 0 q t gk+3 · · · gn

0
0
0
...
0

r
0
...
0

fk+3

.

...
fn

H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If |r| ≤ |q|, the term r can further be annihilated in another safe preliminary step
before zeroing γ. Overall, this reorganization shows that we can significantly restrict
the side effects of a large multiplier when zeroing γ in the elimination stage (3.7).
Regardless the size of the problem, there can be at most six vulnerable entries at any
one time: p, q, r, s, t, fk+3. These are the entries where q/τ or r/τ come into play.
It becomes possible to monitor them before opting for a breakdown and a recovery
method. The risky entries reduce to four if |r| ≤ |q| and the term r is annihilated.
The downside of this approach is the extra cost of Zx, but this might be preferable to
other alternatives such as restarting from scratch. Moreover, the zeros that have been
introduced can be exploited at the next step in a production code. If large multipliers
reappear, we can alternate between the row variant and the column variant by taking
the QR decomposition of [y, x, ZT y] in an attempt to diffuse the side effects evenly.
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However, the trade-off now is that it brings S̃−1 in the transformation matrix. When
a precise distinction is necessary, we shall refer to the QR of [x, y] (or [y, x]) as the
xy-QR (or yx-QR) step and to the augmented QR of [x, y, Zx] (or [y, x, ZT y]) as the
xyz-QR (or yxz-QR) step. A reference to the QR step means either of these cases.
This provides a similar distinction as with the ijk forms of loop notation.

The term q/τ , which occurs in (3.8), and the term r/τ , which will now occur in
(3.10), satisfy

q

τ
=

σ

α

γ

β
,

r

τ
=

ν

α

γ

β
,

and this shows that they depend on the common quantity ω = γ/αβ. Different values
arise if we iterate with the xy- or yx-QR step. Let ωxy denote the value from using
the xy-QR step and ωyx that of the yx-QR step. A similar reasoning as in the proof
of Lemma 3.1 shows that ω2

xy/ω
2
yx = ‖x‖2

2/‖y‖2
2. Hence, of the pairs [x, y] and [y, x],

the smallest ω comes from the pair where the first vector is of smaller norm. This is
how we decide whether to take a xy- or yx-QR step in practice.

In general, the unified quantity ω = γ/αβ highlights the relative importance
of the parameters of interest in a remarkable way. If γ ≈ 0, the matrix obtained
after the orthogonal similarity transformation (3.3) is already tridiagonal, and so the
elimination step is unnecessary. If α ≈ 0, an invariant subspace has been found, and
the process can still be continued (e.g., by pivoting to eliminate β safely, also known
as deflation), but the user may actually prefer an early termination. If β ≈ 0, and αβ
is still small compared to γ (i.e., |ω|−1 = |αβ/γ| 
 1), there is a serious breakdown
needing a full recovery method, as we shall see later. It appears therefore that, when
the algorithm does continue, it does so under favorable conditions. We can choose to
avoid near-breakdowns to limit the risk of introducing severe roundoff errors.

Notice that the simpler Gauss elimination matrix is a particular case of this
general procedure. We use the Gauss elimination directly when |γ| ≤ |β|, but it

can be recovered here with the diagonal scaling diag(1, γ
β , 1)S̃. Also note that the

transformation matrix of other solutions to (3.5) need not be necessarily triangular,
though similar numerical issues arise.

For the sake of completeness, we mention another simpler but ad hoc measure
which is reminiscent of diagonal scaling and thus comes with reservations. An imple-
mentation can scale (3.4) by μ−1 to avoid using μ, thereby preventing large numbers
from being introduced as the tridiagonalization progresses. At the kth step, this
scaling is summarized as

μ−1
k · · ·μ−1

1 Ak = μ−1
k SkQ

T
k (· · · (μ−1

1 S1Q
T
1 AQ1S

−1
1 ) · · ·)QkS

−1
k .

Of course, the scaling factor is unity in those cases where the pivot is sufficiently
large. After accumulating the scaling factors, applications can then scale back their
end result when/if it is necessary to do so. A similar reasoning can be made with
(3.7) using τ as scaling factors. In both cases, the danger is that not only entries of
the working matrix can become quite small but that the cumulative effect of the large
multipliers reappears again when unscaling the final result, suggesting that this way
of doing so might not be trustworthy in general.

3.2. Breakdown and recovery. Focusing now on the more promising algo-
rithm described earlier, it is worth noting that excessively small values of τ are often
indicative of a serious breakdown requiring one to resort to recovery methods. Look-
ing at τ alone can be too pessimistic, however. As our earlier analysis showed, the
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compound quantity ω = γ/αβ can provide valuable insight. There are cases where a
so-called happy breakdown may arise as well. Such cases are detected if α ≈ 0 (case
of invariant subspace) or γ ≈ 0 (case when the elimination step is unnecessary). The
case of a serious breakdown arises when β ≈ 0 after the current xy-QR step, with
additionally |ω|−1 = |αβ/γ| 
 1 so that it remains unsafe to use the augmented
xyz-QR step, as discussed earlier. In the Lanczos algorithm, the look-ahead tech-
nique is a popular recovery strategy for such breakdowns. However, it introduces a
block-tridiagonal structure with unpredictable block sizes.

To maintain the strict tridiagonal form, it is, unfortunately, necessary to restart.
This is necessary because it is not generally possible to avoid breakdowns locally. Local
attempts to avoid the division by zero destroy the existing tridiagonal form. (That is
why the look-ahead is the other alternative.) Dealing with breakdowns remains one
of the unsatisfactory aspects of tridiagonalization algorithms. Avenues are inhibited
by the tight connection to Hankel determinants and the implicit-Q theorem, as we
alluded to earlier. In [19], Wilkinson suggested restarting from scratch with NAN−1

for some N in the hope that failure will be avoided in the modified matrix. Similarly,
one can use different starting vectors, as we now describe.

We presented the QRT algorithm using u = e1 and v = e1 as starting vectors.
Other starting vectors can be used by just applying the algorithm to the augmented
matrix (

0 uT

v A

)
.

This is tridiagonalized by the QRT algorithm as(
0 uT

v A

)
=

(
1 0
0 P

)−1 (
0 (uT v/‖v‖2)e

T
1

‖v‖2e1 T

)(
1 0
0 P

)
so that A = P−1TP , with the first column of P−1 and the first row of P now

P−1e1 =
v

‖v‖2
, eT1 P =

‖v‖2

uT v
uT .

It is always possible to choose u and v that guarantee a termination of the algo-
rithm [7]. In general, however, whether a choice is good is not known in advance. But
an interesting aspect of the principle above is that it can also be used as a recovery
method. Indeed, assuming a breakdown happens at the kth step and augmenting the
unfinished tridiagonalization Ak−1, we get

(
0 uT

v Ak−1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 u1 u2 · · · uk−1 uk uk+1 · · · un

v1 δ1 β1

v2 α1 δ2
. . . 0

...
. . .

. . . βk−2

vk−1 αk−2 δk−1 βk−1

vk αk−1 ak−1
k,k ak−1

k,k+1 . . . ak−1
k,n

vk+1 ak−1
k+1,k ak−1

k+1,k+1 . . . ak−1
k+1,n

... 0 ...
...

. . .
...

vn ak−1
n,k ak−1

n,k+1 . . . ak−1
n,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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As we apply elimination steps to this augmented matrix, the existing tridiagonal
form is, unfortunately, destroyed. But if we take u = (1, r, 0, . . . , 0)T and v = e1 or,
alternatively, u = e1 and v = (1, r, 0, . . . , 0)T , where r is a random number, we obtain
what is sometimes termed “bulge chase” (see, e.g., Geist [6]). The advantage here
comes from the fact that only one term has to be dealt with as the bulge is chased
down to regain the tridiagonal form. This is a low-cost procedure taking O(k) flops.
However, in [14, section 13.3], Parlett warned that this simple recovery technique is
not good enough. And indeed we observed in practice that it is not always effective in
remedying breakdowns. We observed improvements when u and v had several nonzero
terms, but this comes at extra cost. We could not draw from our extensive exper-
iments a default number of nonzero terms suitable in all situations. We also noted
that the bulge chase was excluded from the final Fortran code of Dongarra, Geist,
and Romine [4], which was based on the work of Geist [6]. Consequently, our own
implementation simply restarts by augmenting A with full vectors with components
randomly chosen from a uniform distribution in the interval (0, 1). We allowed only
one restart in the experiments, but, as we noted before, repeatedly trying full vectors
ultimately yields termination, although stability may suffer in the more difficult cases.

To detect breakdowns, we do not rely on the τ coefficients alone, as they are
transient and can be too pessimistic. We instead rely on the condition number
κ∞(P ) = ‖P‖∞‖P−1‖∞ that can be updated incrementally from the computations.
This allows us to account for the compound effects of near-breakdowns as well. In
our experiments we took εbrk = 10−10 as the tolerance parameter for the breakdown;
i.e., breakdown was assumed when the reciprocal of the condition number satisfies
1/κ∞(P ) ≤ εbrk.

3.3. Roundoff error analysis. An error analysis of the elimination method in
full was made by Dax and Kaniel [3]. Since the elimination step of our algorithm
involves only a single element, we wish to carry out a comparative study. We leave
aside the orthogonal similarity transformations. This is not much different from the
approach in [3], which omitted the preliminary reduction to Hessenberg form since
there are no numerical difficulties associated with orthogonal transformations. We
assume the worst-case scenario of having used the augmented Q̃ factor at every step.
If we include roundoff errors in (3.7), the exact formulation of the kth elimination
step becomes

AS̃
k = S̃kA

Q̃
k S̃

−1
k + Ẽk(3.12)

in which

S̃k = I + (τk − 1)ek+1e
T
k+1 + ek+1e

T
k+2,

S̃−1
k = I +

(
1

τk
− 1

)
ek+1e

T
k+1 −

1

τk
ek+1e

T
k+2,

Ẽk = εkpqre
T
k+1 + εkstfe

T
k+2 + ek+1(ε

k
αg)

T .

S̃k is the elimination matrix (3.6), and Ẽk denotes the error matrix with nonzero

entries due to roundoff errors only on those positions affected by S̃k. We write Ẽk

using three n-vectors for convenience. As the updating formulas (3.8)–(3.11) show,
εkpqr has only three nonzero components induced by the change of p, q, and r; εkstf has
only three nonzero components induced by the change of s, t, and fk+3; and, finally,
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εkαg has n−k−1 nonzero components induced by the change of α, g′k+3, . . . , g
′
n. Hence

we have

eTi ε
k
pqr = 0 = eTi ε

k
stf if i �∈ {k+1, k+2, k+3}; (εkαg)

T ej = 0 if j �∈ {k, k+3, . . . , n}.

Although all contributions are included in the analysis, εkαg is in principle unessential
since it is only induced by multiplicative terms with τk and by construction τk < 1.
From (3.12) the final computed result satisfies

AS̃
n−2 = S̃n−2 · · · S̃1A

Q̃
1 S̃

−1
1 · · · S̃−1

n−2 − Ẽ,

Ẽ = Ẽn−2 + S̃n−2Ẽn−3S̃
−1
n−2 +

n−4∑
k=1

S̃n−2 · · · S̃k+1ẼkS̃
−1
k+1 · · · S̃

−1
n−2.

Owing to the special pattern of Ẽk, we get

Ẽ = Ẽn−2 + S̃n−2Ẽn−3S̃
−1
n−2 +

n−4∑
k=1

(S̃k+1 + (τk+2 − 1)ek+3e
T
k+3)ẼkS̃

−1
k+1 · · · S̃

−1
n−2,

and using the fact that ‖S̃k‖∞ = 1 + |τk| ≤ 2, ‖S̃−1
k ‖∞ = 2/|τk|, we obtain

‖Ẽ‖∞ ≤ ‖Ẽn−2‖∞ +

n−3∑
k=1

2‖Ẽk‖∞‖S̃−1
k+1‖∞ · · · ‖S̃−1

n−2‖∞

≤ 2(n− 2) max
1≤k≤n−2

(
2

|τk|

)n−k−2

max
1≤k≤n−2

‖Ẽk‖∞.(3.13)

The theoretical upper bound is still pessimistic, however, and the usual trade-off
between speed and accuracy appears. Placing a restrictive constraint on the multi-
pliers (e.g., τk ≈ 1) implies a growth factor, as in Gaussian elimination with partial
pivoting, but a potential risk here is that recovery techniques may be triggered more
often than necessary. However, this can largely be offset by the payoff from using
the tridiagonal representation depending of the application. For example, Geist [6]
reported a 300-by-300 eigenvalue computation on a Sun 3/280 which took 2305.14 sec-
onds for the Hessenberg HQR method and 23.84 seconds for the tridiagonal TLR
method, i.e., a hundred-fold speedup.

Further analysis suggests that our method should in general be numerically prefer-
able over other tridiagonalization methods. As stated in Golub and Van Loan
[8, eq. (7.1.11)], any similarity transformation MZM−1 is susceptible to roundoff
errors, roughly εκ2(M)‖Z‖2, where ε is the machine precision and κ2(M) =
‖M‖2‖M−1‖2 is the condition number. This heuristic bound implies that the safest
transformation is that for which κ2(M) is minimum. Let M and N be transfor-
mation matrices that satisfy (2.1). There exists an invertible matrix X such that
N = XM . It follows from (2.1) that Xe1 = e1 and eT1 X

−1 = eT1 (to within diago-
nal scaling). Take M = MQRT from our QRT algorithm. With the earlier notation
it can be written as MQRT = SQT , where [x, y] = QR and S = I + μe1e

T
2 or

S = I + (τ − 1)e1e
T
1 + e1e

T
2 = diag(μ−1, 1, . . . , 1)(I + μe1e

T
2 ). Minimizing κ2(N) is

equivalent to minimizing κ2(XSQT ) = κ2(XS) over all matrices X with Xe1 = e1

and eT1 X
−1 = eT1 . Consider now the QR factorization given by X = Y U , where Y

is orthogonal and U is upper-triangular with Ue1 = e1 and eT1 U = eT1 . The problem
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becomes that of minimizing κ2(US) over all such U . The minimum is attained when
US = I or, more generally, when US = Π with Π orthonormal. The case US = I
implies that U = S−1, which is, however, inconsistent with the requirement that
eT1 U = eT1 . Due to the particular structures of U and S, an effective choice has U
close to the identity matrix. The case US = Π implies that ΠTUS = I, which amounts
to the first case. We do not need an exact minimization of a heuristic bound. But
this analysis hints at the near-optimality of our scheme with respect to minimizing
roundoff errors.

The following example will illustrate the point. Let x = (−1, 1, . . . , (−1)n)T ,
y = (1, 1, . . . , 1)T of length n, with n odd to make xT y = 1. Computing M = M2

from Lemma 2.1 and S from the QRT scheme, we obtain

M =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 · · · −1
1 1 0 · · · 0

−1 0
. . .

. . .
...

...
...

. . . 1 0
(−1)n 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , S =

⎛⎜⎜⎜⎜⎜⎝
1√

n2−1
1 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

Hence M is stable in the Gauss sense since all its multipliers are bounded by unity.
Lemma 3.1 stated the corresponding stability condition in the QRT context

| cosθ(x, y)| =
|xT y|

‖x‖2‖y‖2
=

1

n
�≥

√
2

2
= 0.707.

It would appear that the QRT step would not be stable in the Gauss sense, whereas
methods from Lemma 2.1 would be. But for n = 5 we get

10 ≈ κ2(S) < κ2(M) ≈ 14,

and this shows that the QRT step is preferable, as far as the similarity transformation
is concerned. Larger n gave similar observations with wider differences. For example
n = 101 gave κ2(S) ≈ 202, whereas κ2(M) ≈ 103.

3.4. Pseudocode. We summarize the ideas discussed so far into a pseudocode
that can be translated into a computer program. The tridiagonalization occurs in
Algorithm 2 with Algorithm 1 being the driver.

Algorithm 1: Compute [T, P, Pinv, rcond] = QRT(A)
[T, P, Pinv, rcond] := QRTRI(A) ;
{Attempt a recovery method if there is a breakdown}
if rcond ≤ εbrk then

Choose random u and v ;

[T, P, Pinv, rcond] := QRTRI

((
0 uT

v A

))
;

T := T (2 : n + 1, 2 : n + 1) ;
P := P (2 : n + 1, 2 : n + 1) ;
Pinv := Pinv(2 : n + 1, 2 : n + 1) ;

endif

Note in the pseudocode that a quantity θ ≈ 0 if |θ| ≤ εzero. Our MATLAB
implementation used the drop tolerance εzero = 10−7. Note also that each iteration
of the pseudocode begins by deciding whether to take a xy- or yx-QR step. Any
subsequent action then uses the appropriate indices, depending on the step retained.
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Details are omitted in the pseudocode for readability. When there is breakdown, the
control is passed back to the driver routine to possibly initiate a recovery attempt.
An implementation can choose to exit with the last good values before the breakdown
in case the user wants them, albeit they represent a partial decomposition.

Algorithm 2: Compute [T, P, Pinv, rcond] = QRTRI(A)
P := I ; Pinv := I ; T := A ;
for k := 1 : n− 2 do

x := T (k + 1 : n, k) ; y := T (k, k + 1 : n)T ;
{Decide whether to use [x, y] or [y, x]}
if ‖x‖2 ≤ ‖y‖2 then

[Q,R] := QR(x, y) ;
else

[Q,R] := QR(y, x) ;
endif
α = R(1, 1) ; β = R(1, 2) ; γ = R(2, 2) ;
{Use the simple xy- or yx-QR step if no xyz- or yxz-QR step is needed}
if α ≈ 0 or γ ≈ 0 or |β| ≥ |γ| then

T :=

(
Ik 0
0 QT

)
T

(
Ik 0
0 Q

)
; P :=

(
Ik 0
0 QT

)
P ; Pinv := Pinv

(
Ik 0
0 Q

)
endif
{Move on to the next step if no elimination is necessary}
if γ ≈ 0 continue ;
{Deflation when we have an invariant subspace}
if α ≈ 0 then

• apply Gauss elimination with pivoting to eliminate γ or β in T
• update the transformation matrix P and its inverse Pinv

continue ;
endif
{Use the simple Gauss elimination if possible}
if |β| ≥ |γ| then

• apply Gauss elimination to eliminate γ in T
• update the transformation matrix P and its inverse Pinv

continue ;
endif
{Use the xyz- or yxz-QR elimination if possible}
if β ≈ 0 then

{serious breakdown}
set rcond := 0 ;

else
• apply the extended xyz- or yxz-QR step
• eliminate the r term if possible in T — see the discussion following (3.11)
• eliminate γ in T
• update the transformation matrix P and its inverse Pinv

• compute rcond := 1/‖P‖∞‖Pinv‖∞, the reciprocal of the condition number
endif
{Exit if there is a breakdown}
if rcond ≤ εbrk return ;

endfor

3.5. A breakdown-free variant. We outline here a modified variant useful
in certain applications. This variant avoids serious breakdowns at the trade-off of
not producing a strict tridiagonal form. Consequently, we call it the breakdown-free
QRT (BFQRT). There are applications where a strict tridiagonal form (or a form with
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bandwidth fourth or more) is not essential. But having as many zeros as possible is key
to efficiency because floating-point operations involving zero elements can be avoided.
This can be seen, for example, in Nikolajsen [12], where skipping null elements in the
Laguerre eigensolver resulted in a marked speedup over the QR algorithm.

The BFQRT variant consists of omitting the elimination steps that would nor-
mally trigger recovery attempts. A similar strategy is used in BHESS [10] and Niko-
lajsen [12]. However, their approach gives a “trapezoidal” matrix of increasing band-
width, whereas our approach reduces the density further by retaining a tridiagonal
matrix but with occasional rows on the upper part. These rows appear where the
elimination steps have not been applied. The pseudocode for this looks similar to
Algorithm 2, except that we use only the xy- or xyz-QR steps and do not alternate
with the yx- or yxz-QR steps. Another difference is that if β ≈ 0, we just move on
to the next step. We also use the updated rcond merely to decide whether to revert
to the last good values before proceeding with the next step. Below are examples of
patterns that BFQRT may produce in a 7-by-7 case:⎛⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × × ×
× × ×

× × × × × ×
× × ×

× × ×
× × ×

× ×

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

× ×
× × × × × × ×

× × ×
× × ×

× × ×
× × ×

× ×

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that in practice it is not necessary to apply a xy-QR step on rows set to be filled
again. We can use a simple Hessenberg step there and move on to the next iteration.

4. Numerical experiments. We report some numerical examples using an ex-
ploratory MATLAB implementation on a Sun4u Sparc Workstation. Given a matrix
A, we apply the QRT algorithm to compute T = PAP−1, where T is tridiagonal and
P is the similarity transformation matrix.

We compare our method with the ATOTRI Fortran code of Dongarra, Geist, and
Romine [4] and Geist [6]. To this end, we implemented a MEX interface to invoke
the native Fortran code of ATOTRI from within MATLAB. The comparison is based
therefore on their original Fortran implementation available in the TOMS directory
at netlib.org.

In the first set of examples, we also use [L,U ] = lu(A) in MATLAB to compute
the LU decomposition with partial pivoting. We report ‖U‖∞, which gives insight into
the growth factor that would arise with the Gauss elimination procedure itself. The
following statistics (as computed by MATLAB) are given to assist in the evaluation
of the results:

n order of the matrix A
Xeig eigenvectors of A, as computed by [X,D] = eig(A) in MATLAB
‖U‖∞ L-∞ norm, indicator of the growth in the LU decomposition of A
κ2(P ) condition number of the matrix P , κ2(P ) = ‖P‖2‖P−1‖2

4.1. GFPP examples. Results are shown on Table 1. The matrices are gener-
ated using the function called gfpp in Higham’s testsuite [9]. This function generates
a matrix that has the effect of attaining the maximal growth factor in Gaussian elim-
ination with partial pivoting. We use gfpp(n, c), which sets all the multipliers to c
and gives a growth factor (1 + c)n−1.
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Table 1

GFPP examples.

GFPP Problem ‖A‖2 κ2(Xeig) κ2(P )
‖A−P−1TP‖2

‖A‖2
‖U‖∞ ‖A−LU‖2

‖A‖2

n = 50, c = 0.3 1.10E+01 3.42E+00 E+01 E−15 E+05 E−12
n = 100, c = 0.3 2.05E+01 4.74E+00 E+01 E−15 E+11 E−06
n = 200, c = 0.3 1.04E+07 1.06E+07 E+02 E−15 E+22 E−02

Although this problem clearly affects the LU algorithm as n increases, it is handled
well by the tridiagonalization method. This supports the observation made by Dax
and Kaniel [3] that tridiagonalization methods are not necessarily doomed to fail on
practical problems. In the same spirit that LU can fail but is widely used nonetheless,
cheap elimination methods can be tried first before resorting to other robust (but
expensive) alternatives to compute eigenvalues.

4.2. EigTool examples. Results appear on Table 2 and Figure 1. Most of the
matrices in the EigTool set [20] are notoriously pathological. They are specifically
aimed at showcasing the importance of pseudospectra analysis, and so each eigen-
system is very sensitive to small perturbations. We refer the reader to EigTool [20]
for further details about these problems. The QRT tridiagonalization is successful
for most cases but suffers from serious breakdowns in some cases. The column with
label err gives an error exit status. A value of 0 means that the algorithm completed
all the steps. A value in the form (k1)k2 means that the algorithm encountered a
serious breakdown at the k1th step and the conservative recovery technique discussed
earlier in section 3.2 was applied. A null k2 means that the recovery was successful.
Otherwise it means that the recovery itself failed at the k2th step. We allocated a
similar column for ATOTRI, but as our analysis will show, its error exit status is not
entirely reliable.

Table 2

EigTool examples.

QRT ATOTRI

Problem ‖A‖2 κ2(Xeig) err κ2(P )
‖A−P−1TP‖2

‖A‖2
err κ2(P )

‖A−P−1TP‖2
‖A‖2

hatano 50x50 2.93E+00 E+07 0 1 0 0 1 0
demmel 50x50 3.19E+04 Inf 0 E+04 E−15 0 E+08 E−13
gallery3 3x3 8.18E+02 E+03 0 7.55 E−16 0 E+01 E−17
gallery5 5x5 1.01E+05 E+11 0 E+07 E−15 0 E+08 E−13
godunov 7x7 4.32E+03 E+14 0 E+03 E−14 0 E+04 E−15
convdiff 49x49 1.02E+04 E+12 0 E+04 E−15 0 E+04 E−14
chebspec 49x49 1.32E+03 E+13 0 E+02 E−13 0 E+03 E−13
kahan 50x50 5.76E+00 E+12 0 E+01 E−15 0 E+02 E−15
sparserandom 50x50 3.28E+00 E+01 0 E+04 E−11 0 E+04 E−11
random 50x50 1.95E+00 E+01 0 E+03 E−14 0 E+02 E−13
boeing 55x55 1.69E+07 E+06 (17)0 E+07 E−15 − −− −−
twisted 50x50 2.74E+00 E+05 (37)0 E+07 E−11 0 E+10 E−06
frank 50x50 6.73E+02 E+10 (7)0 E+07 E−12 0 E+11 E−02
grcar 50x50 3.23E+00 E+08 (15)0 E+08 E−09 0 E+14 E−02
companion 50x50 4.59E+64 E+63 (1)0 E+04 E−16 − −− −−
markov 55x55 1.18E+00 E+02 (26)0 E+04 E−10 0 E+10 E−03
randomtri 50x50 1.64E+00 E+18 (25)25 E+07 E−10 − E+47 E+16
riffle 50x50 2.36E+00 E+44 (8)11 E+08 E−10 − E+35 E+05
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Fig. 1. History of the condition number of the transformation matrix, cond2(Pk) =
‖Pk‖2‖P−1

k
‖2, during the reduction of a few representative matrices from EigTool.

Recall that ‖A−P−1TP‖2

‖A‖2
is bound to have rounding errors of order εκ2(P ), where

ε is the machine precision, which is about 10−16 on the Sun4u Sparc Workstation
where we conduct the experiments. We can make the following main observations:

• The hatano matrix is already tridiagonal and should be left untouched because
the methods used u = e1 and v = e1 as default starting vectors. Thus this
matrix served as an identity test for the codes.

• It is clear from the table that QRT is more accurate than ATOTRI in gen-
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eral. The plots in Figure 1 depict the history of the condition number of the
transformation matrix in various examples. There are occasional cases such
as random where ATOTRI looks better. But even in those cases the relative
error of QRT is as good as or better than ATOTRI, as seen on the main
results on Table 2. In general, therefore, the transformation matrix produced
by QRT tends to have the smallest condition number, leading to a smaller
relative error. This agrees with the roundoff error analysis.

• The behavior of ATOTRI is disturbing in a number of pathological cases
where its computed solution is seriously contaminated by roundoff errors,
but the user is not given any warning. We use a dash (−) on Table 2 to
draw the attention of the reader in those cases. The code actually returns
an error exit status err of 0 that can mislead the user into thinking that the
result is reliable when in fact there has been a total loss of accuracy. The
companion example gave huge values. Another dramatic example was the
boeing matrix that gave a transformation matrix for which the singular value
decomposition to compute its condition number failed. Other examples are
riffle and randomtri. As the history of randomtri in Figure 1 shows, QRT
stopped at some point after reporting that its recovery attempt failed. But
ATOTRI continued with meaningless data. Looking at the Fortran code of
ATOTRI, we noted that it does not account for near-breakdowns. It detects
the breakdown only if the inner product xT y = 0. Other ramifications can be
seen in the frank example: the condition number grows exaggeratedly before
decaying, with the effect of corrupting the rest of the computations in a way
not made apparent to the user. Such examples justify the careful attention
for a more reliable breakdown criteria, as done by QRT.

• In the successful cases, a few problems (those for which err is in the form
(k1)k2) needed recovery from breakdown. Recall that our recovery method
consists of restarting with random vectors. Restarting was allowed only once.

• It can be seen that failure often arises because the conditioning of the eigen-
system is simply too large compared with the norm of A. This is the case for
the randomtri and riffle examples. A breakdown that happens very late in
the tridiagonalization is suggestive of a critical choice of starting vectors. It
is worth nothing that the results remain meaningful because they represent
an unfinished tridiagonalization, which can still be useful, as the error bound
shows. In those cases, it should be understood that T = Ak−1 for some k
and is not really tridiagonal. See, for example, (3.11). Recall that the tridi-
agonalization is not an end in itself. When k is close to n, the remaining
block can be reduced to Hessenberg form, and/or subsequent computations
can take advantage of this nearly tridiagonal structure.

In other less pathological problems not reported here, QRT had a similar pattern
of encouraging results. Overall, therefore, this algorithm was generally successful.

4.3. Eispack examples. We also applied our algorithm to matrices in the test-
suite of Eispack. Results are displayed in Table 3 and Figure 2. This testsuite consists
of 35 small matrices (none exceeding 20 × 20) that were thoughtfully designed to ex-
ercise the general purpose eigensolvers in Eispack. As in EigTool, the matrices are
pathological with defective and/or derogatory cases. The examples do not appear as
challenging as the EigTool examples, and we note that both algorithms were success-
ful on all of the problems, and the accuracy remains very good. There are cases where
recovery is needed at the very first step, suggesting that u = e1 and v = e1 are not
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Table 3

Eispack examples.

QRT ATOTRI

Problem ‖A‖2 κ2(Xeig) err κ2(P )
‖A−P−1TP‖2

‖A‖2
err κ2(P )

‖A−P−1TP‖2
‖A‖2

1: 8x8 1.02E+03 1 0 1 E−15 0 2.05 E−16
2: 6x6 2.66E+09 5.73 0 1.69 E−16 0 3.28 E−16
3: 5x5 4.55E+01 E+08 0 E+02 E−16 0 E+02 E−15
4: 12x12 6.34E+01 1 0 1 E−16 0 1 E−16
5: 10x10 1.92E+08 E+02 0 E+02 E−16 0 E+02 E−15
6: 15x15 6.68E+06 E+01 0 E+01 E−15 0 E+01 E−15
7: 19x19 5.96E+05 E+01 0 E+03 E−14 0 E+03 E−13
8: 6x6 0 1 0 1 NaN 0 1 NaN
9: 6x6 5.58E+01 E+11 0 E+01 E−15 0 E+01 E−16
10: 6x6 1.67E+06 E+02 (2)0 E+01 E−15 (2)0 E+02 E−15
11: 5x5 2.41E+01 2.45 0 7.66 E−15 0 9.34 E−16
12: 5x5 1.93E+01 3.40 (1)0 6.32 E−16 (1)0 6.64 0
13: 5x5 1.93E+01 3.27 (1)0 E+01 E−14 (1)0 E+02 E−14
14: 5x5 2.07E+01 2.69 0 E+02 E−15 0 E+02 E−14
15: 5x5 2.07E+01 2.72 0 E+01 E−15 0 E+01 0
16: 3x3 1.80E+01 Inf 0 1 0 0 1 0
17: 3x3 1.07E+02 Inf 0 1 0 0 1 0
18: 3x3 1.06E+01 Inf 0 1 0 0 1 0
19: 4x4 1.26E+02 E+11 (1)0 2.49 E−17 (1)0 2.43 E−18
20: 3x3 1.00E+01 1 (1)0 5.17 E−15 (1)0 5.04 E−16
21: 4x4 1.00E+01 1 (1)0 2.75 E−15 (1)0 3.20 E−16
22: 5x5 1.00E+01 1 (1)0 E+01 E−14 (1)0 E+02 E−14
23: 6x6 1.00E+01 1 (1)0 E+01 E−14 (1)0 E+01 E−14
24: 8x8 1.00E+09 E+07 0 E+02 E−14 0 E+01 E−14
25: 4x4 7.01E+01 2.25 0 E+02 E−15 0 E+02 0
26: 3x3 7.12E+01 6.61 0 2.62 0 0 2.62 0
27: 4x4 4.35E+01 E+08 0 5.31 E−16 0 6.81 E−17
28: 4x4 1.23E+02 5.98 0 4.73 E−16 0 6.26 E−16
29: 6x6 7.28E+01 E+01 0 E+01 E−15 0 E+01 E−16
30: 6x6 1.93E+02 E+01 0 E+01 E−14 0 E+02 E−15
31: 8x8 2.37E+01 1.80 0 E+01 E−15 0 E+01 E−15
32: 4x4 1.78E+02 E+12 0 3.94 E−16 0 4.67 E−16
33: 6x6 1.46E+02 E+12 0 E+01 E−15 0 E+01 E−16
34: 8x8 3.12E+02 E+11 0 E+02 E−14 0 E+03 E−14
35: 10x10 1.08E+02 E+10 0 E+03 E−13 (5)0 E+02 E−15

suitable as default starting vectors there. Notice that the matrix in problem 8 is zero
and that this is why the relative error is NaN (Not-a-Number).

5. Conclusion. We have described a promising algorithm for the tridiagonaliza-
tion of nonsymmetric matrices. The algorithm primarily involves two stable House-
holder transformations per step and is twice as expensive as the symmetric tridiago-
nalization. The robust QR step provides a solid foundation to the proposed algorithm.
There is still the possibility of suffering from the effect of a large multiplier, but we
showed how to restrict risky roundoff errors to at most six entries irrespective of the
size of the matrix. This suggests that the algorithm may be of assistance in a wide
class of practical problems where a preliminary tridiagonalization is useful. Recovery
techniques were discussed in the case where a serious breakdown happens or when
a small pivot is rejected. A breakdown-free variant was described with the trade-off
of not producing a strict tridiagonal form. Largely successful numerical experiments
were conducted using a conservative restarting criteria to ascertain the robustness of
the method. A comparison was made with a previous tridiagonalization algorithm of
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Fig. 2. History of the condition number of the transformation matrix, cond2(Pk) =
‖Pk‖2‖P−1

k
‖2, during the reduction of a few representative matrices from Eispack.

Dongarra, Geist, and Romine [4] and Geist [6], and it shows that our algorithm is gen-
erally more robust and reliable. A roundoff error analysis suggests that our method
should in general be numerically preferable over other tridiagonalization methods be-
cause it is nearly optimal in minimizing roundoff errors.

Acknowledgment. We would like to thank Prof. Nick Trefethen for his com-
ments on drafts of this paper.
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Abstract. It is proved that, for a real matrix which is skew-adjoint with respect to a skew-
symmetric inner product, every given neutral invariant subspace is contained in an invariant subspace
which is also maximal semidefinite with respect to an associate symmetric bilinear form. Applications
are given to the existence of solutions of continuous and discrete algebraic Riccati equations, with
the property that the ranks of skew-symmetric parts of the solutions have a fixed upper bound. As
a particular case, a known basic result concerning symmetric solutions of the Riccati equations is
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1. Introduction. All matrices are assumed to be real. Denote by R
p×q the

vector space (algebra if p = q) of p × q real matrices. A skew-symmetric matrix,
which is allowed to be singular, H ∈ R

m×m induces a skew-symmetric inner product
[x, y]H = yTHx, x, y ∈ R

m. (The superscript T stands for the transpose.) A matrix
A ∈ R

m×m is called H-skew-adjoint if [Ax, y]H = −[x,Ay]H for all x, y ∈ R
m, in

other words, if the matrix HA is symmetric. If ( 0
−I

I
0 ), then H-skew-adjoint matrices

are often called Hamiltonian (see, for example, [7]). Pairs of matrices (A,H), where
H is skew-symmetric and A is H-skew-adjoint, play a key role in several significant
problems of applied analysis, in particular Riccati equations (which are ubiquitous
in systems and control); see, e.g., the books [1, 10, 16, 17], gyroscopic vibrating
systems [4, 11], Hamiltonian systems, and transfer functions with symmetries and
their factorizations (see, e.g., [2, 8, 14, 19]).

In this paper we study invariant subspaces of H-skew-adjoint matrices that have
neutrality or definitiveness properties with respect to the skew-symmetric inner prod-
uct induced by H. The study is motivated by applications to algebraic Riccati
equations to be presented in section 3. Since H is skew-symmetric, and therefore
[x, x]H = 0 for every vector x ∈ R

m, to formulate the definiteness properties we will
use the bilinear form defined by the symmetric matrix HA.

To state the main results we recall several definitions and introduce some no-
tation. Throughout this discussion we fix a skew-symmetric H ∈ R

m×m and an
H-skew-adjoint A ∈ R

m×m. A subspace M ⊆ R
m is called H-neutral if [x, y]H = 0

for all x, y ∈ M. The maximal dimension of an H-neutral subspace is easily seen
to be dim (KerH) + 1

2 (rankH). A subspace M ⊆ R
m is called HA-nonnegative

(resp., HA-nonpositive) if xTHAx ≥ 0 (resp., xTHAx ≤ 0) for all x ∈ M. An HA-
nonnegative subspace is called maximal HA-nonnegative if it is not properly contained
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in any larger HA-nonnegative subspace; maximal HA-nonpositive subspaces are de-
fined analogously. It is well known that an HA-nonnegative (resp., HA-nonpositive)
subspace M is maximal if and only if

dimM = ν+(HA) + ν0(HA) (resp., dimM = ν−(HA) + ν0(HA)),

where we denote by ν+(G), ν−(G), and ν0(G) the numbers of positive, negative, and
zero eigenvalues, respectively, of a symmetric matrix G (counted with multiplicities).

Theorem 1.1. Let H,A ∈ R
m×m be such that H is skew-symmetric and A is

H-skew-adjoint. Let N ⊆ R
m be an A-invariant H-neutral subspace. Then there

exist A-invariant subspaces L+ and L− such that each of them contains N and L+ is
maximal HA-nonnegative, whereas L− is maximal HA-nonpositive.

In connection with Theorem 1.1 note that invariant neutral subspaces (under the
additional assumption that H is invertible) have been studied in [15].

The subspaces L± of Theorem 1.1 may have additional spectral properties. To
formulate these properties, it will be convenient to assume that the skew-symmetric
matrix H is invertible. Let A be an H-skew-adjoint matrix. Then A is similar to −A,
and therefore the set of eigenvalues of A is symmetric relative to both the real and
the imaginary axis: if λ ∈ σ (A), then ±λ ∈ σ (A). A set of eigenvalues S of A will
be call a c-set (the terminology is borrowed from [9]) if the following four conditions
are fulfilled: (1) the eigenvalues in S all have nonzero real parts; (2) if λ0 ∈ S, then
λ0 ∈ S; (3) if λ0 ∈ S, then −λ0 �∈ S; (4) S is a maximal (in the sense of sets
containment) set of eigenvalues of A that satisfies conditions (1), (2), and (3).

Theorem 1.2. Under the hypotheses of Theorem 1.1, assume in addition that H
is invertible and that the set S0 of eigenvalues with nonzero real parts of the restriction
A|N is such that

λ0 ∈ S0 =⇒ −λ0 �∈ S0.

Then for every c-set S such that S ⊇ S0 there exist subspaces L± as in Theorem 1.1
with the additional property that S coincides with the set of eigenvalues with nonzero
real parts of A|L± .

The cases when N = {0} and/or when S0 = ∅ are not excluded in Theorems 1.1
and 1.2.

Under the additional hypotheses that H is invertible (in Theorem 1.1) and A is
invertible, these theorems were proved in [20]. The case when A is singular presents
additional difficulties largely due to the fact that (assuming H is invertible) the spec-
trum of A has double symmetry: it is symmetric with respect to both the real axis
and the imaginary axis. These two symmetries come together at the eigenvalue 0.

Theorem 1.2 can be extended to the case when H is singular, at the expense of
accounting for the spectrum of A|KerH ; since the formulation of the extended result
is somewhat cumbersome, we leave it out.

2. Proofs of Theorems 1.1 and 1.2. For future reference, we present a lemma.
Lemma 2.1. Let Z ∈ R

m×m be a symmetric matrix partitioned as follows:

Z =

⎛⎝ 0 0 QT
1

0 Q2 KT
1

Q1 K1 K2

⎞⎠ ,

where the p× q block Q1 is right invertible (and thus p ≤ q). Then

ν±(Z) + ν0(Z) = q + ν±(Q2) + ν0(Q2).
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Proof. Let Q
[−1]
1 be a right inverse of Q1, and let

X = −KT
1

(
Q

[−1]
1

)T

, Y = −1

2
KT

2

(
Q

[−1]
1

)T

.

Then ⎛⎝ I 0 0
X I 0
Y 0 I

⎞⎠ Z

⎛⎝ I XT Y T

0 I 0
0 0 I

⎞⎠ =

⎛⎝ 0 0 QT
1

0 Q2 0
Q1 0 0

⎞⎠
and (cf. [3, Theorem 2.1])

ν±

(
0 QT

1

Q1 0

)
+ ν0

(
0 QT

1

Q1 0

)
= q.

Proof of Theorems 1.1 and 1.2. We prove these results only for HA-nonnegative
subspaces. (For nonpositive subspaces the proof is analogous, or else use −H in place
of H.) Applying a transformation

A, H 
→ S−1AS, STHS(2.1)

for a suitable invertible matrix S, we may assume that H has the block form H =
(H1

0
0
0 ), where H1 is invertible. Since A is H-skew-adjoint, we obtain that A has

the conformally partitioned block form A = (A11

A21

0
A22

), where A11 is H1-skew-adjoint.
Without loss of generality, we may assume that N ⊇ KerH; then the proof of Theorem
1.1 is easily reduced to the situation where A and H are replaced by A11 and H1,
respectively; i.e., we may assume that H is invertible.

The canonical form of the pair of matrices (A,H) (with invertible H) under the
transformations (2.1) (see, for example, [5, 15, 18] and in a different setup [22]) allows
us to reduce the proofs to separate consideration of two cases: (1) A is invertible; (2)
A is nilpotent. In the first case Theorems 1.1 and 1.2 were proved in [20, Lemma 5.2],
whereas in the second case Theorem 1.2 reduces to Theorem 1.1. Thus, it remains to
prove Theorem 1.1 in the case when H is invertible (and then m is necessarily even)
and A is nilpotent.

We assume therefore that H is invertible and A is nilpotent, and we prove Theo-
rem 1.1 under this assumption. Consider the subspace

N [⊥] := {x ∈ R
m |xTHy = 0 for all y ∈ N},

the H-orthogonal companion of N . As N is H-neutral, we have N ⊆ N [⊥]. Since
A is H-skew-adjoint and N is A-invariant, the subspace N [⊥] is A-invariant as well.
Assuming N �= N [⊥], choose an ordered euclidean orthonormal basis

(y1, . . . , ym)(2.2)

in R
m so that the first vectors in (2.2) form a basis of N , the next vectors in (2.2)

form a basis of the euclidean orthogonal complement of N in N [⊥], and the remaining
vectors in (2.2) form a basis of the euclidean orthogonal complement of N [⊥] in R

m.
With respect to the basis (2.2), A has a block form

A =

⎛⎝ A11 A12 A22

0 A22 A23

0 0 A33

⎞⎠ ,
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and the corresponding representation of H is

H =
[
yTi Hyj

]m
i,j=1

=

⎛⎝ 0 0 H13

0 H22 H23

−HT
13 −HT

23 H33

⎞⎠ .

The matrix H22 is skew-symmetric, and A22 is H22-skew-adjoint and nilpotent. Let
x0 ∈ KerA22 \ {0}. Then the subspace N + Span {x0} is clearly A-invariant and
H-neutral. Now we repeat the above procedure with N replaced with N +Span {x0}.
Eventually, we reduce the proof to the case when

N = N [⊥].(2.3)

In this case, since

dimN = m− dimN [⊥]

(this equality holding because N [⊥] coincides with the euclidean orthogonal comple-
ment to the (dimN )-dimensional subspace H(N )), we have

dimN = dimN [⊥] =
m

2
.(2.4)

Thus, we assume (in addition to the assumptions made before) that (2.3) and
(2.4) hold. Choosing a euclidean orthogonal basis in R

m such that the first half of its
elements form a basis in N , we represent A and H in the form

A =

(
B11 B12

0 B22

)
, Bi,j ∈ R

m/2×m/2, H =

(
0 H1

−HT
1 H2

)
.(2.5)

Here

N = Span {e1, . . . , em/2},

where ej is the jth unit coordinate vector in R
m, j = 1, . . . ,m, the matrix H1 is

invertible (because H is so), and H2 is skew-symmetric. Applying a transformation
(2.1) with S = ( I0

W1

W2
) for suitable W1 and W2, we may (and do) assume that in fact

H =

(
0 I
−I 0

)
.(2.6)

Then, since A is H-skew-adjoint, we have

A =

(
B11 B12

0 −BT
11

)
, B12 symmetric.(2.7)

Next, with A and H given by (2.6) and (2.7), we apply a transformation (2.1) with
S of the form S = (U0

0
V ), where the invertible matrices U and V are chosen so that

UTV = I and

U−1B11U =

(
0r×r 0
C1 C2

)
, r = dim (KerB11) .
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The matrix [C1 C2] is clearly right invertible, the matrix H given by (2.6) being fixed
under this transformation, whereas the transformed matrix A (which will be again
denoted by A) is of the form

A =

⎛⎜⎜⎝
0 0 D1 D2

C1 C2 D3 D4

0 0 0 −CT
1

0 0 0 −CT
2

⎞⎟⎟⎠ .

Thus,

HA =

⎛⎜⎜⎝
0 0 0 −CT

1

0 0 0 −CT
2

0 0 −D1 −D2

−C1 −C2 −D3 −D4

⎞⎟⎟⎠ .

Since HA is symmetric, we have D1 = DT
1 , D4 = DT

4 , and D3 = DT
2 . Let M+ be a

maximal (−D1)-nonnegative subspace, and let L+ = N + M+. By Lemma 2.1,

dimL+ = ν+(HA) + ν0(HA).

Also, L+ is clearly HA-nonnegative and A-invariant. This concludes the proof.

3. Riccati equations. Consider the continuous algebraic Riccati equation

XDX + XA + ATX − C = 0,(3.1)

where A, D, and C are given n × n matrices, and X is the matrix unknown. We
assume throughout this section that D and C are symmetric and that D is positive
semidefinite. The 2n× 2n matrices

M =

(
A D
C −AT

)
, H =

(
0 In×n

−In×n 0

)
are crucial in the study of (3.1). Note that H is skew-symmetric and M is H-skew-
adjoint. The neutrality index γ(M,H) is defined as the maximal dimension of an
M -invariant H-neutral subspace in R

2n. (It was proved in [15] that all maximal (by
containment) real M -invariant H-neutral subspaces have the same dimension.) This
notion was introduced in [12] in the context of complex matrices that are self-adjoint
in a sesquilinear inner product. The pair (A,D) is called sign controllable if for every
λ ∈ R at least one of the two subspaces Ker ((λI −A)n) and Ker ((−λI −A)n) is
contained in the controllable subspace

C(A,D) := Range
(
[D AD A2D . . . An−1D]

)
⊆ R

n(3.2)

and for every complex number λ+ iμ, where λ and μ are real and μ �= 0, at least one
of the two subspaces

Ker
(
(λ2 + μ2)I ± 2λA + A2

)n
is contained in C(A,D). The notion of sign controllability is well known in control
systems, in particular in studies of algebraic Riccati equations [6, 21].

Theorem 3.1. Assume that the pair (A,D) is sign controllable. Then the fol-
lowing statements are equivalent:



906 LEIBA RODMAN

(1) Equation (3.1) has a solution X ∈ R
n×n.

(2) Equation (3.1) has a solution X ∈ R
n×n for which

rank (X −XT ) ≤ 2 (n− γ(M,H)) .

(3) The matrix M has a real n-dimensional invariant subspace.
Note that, for any real matrix M , statement (3) holds true if and only if either n

is even, or n is odd and M has a real eigenvalue.
Under the additional hypotheses that M is invertible, Theorem 3.1 was proved in

[20]. The proof of Theorem 3.1 proceeds in the same way as the proof of [20, Theorem
2.2], using Theorems 1.1 and 1.2 instead of [20, Lemma 5.2].

If γ(M,H) = 0 in Theorem 3.1, then we recover a basic result proved in [8] on
the existence of symmetric solutions of algebraic Riccati equations.

The discrete algebraic Riccati equation has the form (one of several well-studied
forms in the literature)

X = ATXA + Q−ATXB(R + B∗XB)−1BTXA,(3.3)

where A ∈ R
n×n, B ∈ R

n×m, Q = QT ∈ R
n×n, and R = RT ∈ R

m×m are given
matrices, with the unknown X ∈ R

n×n. Applying a method of reduction of (3.3)
to the continuous Riccati equation (see [13, 20] and [16, Chapter 12]), Theorem 3.1
yields a result concerning the existence of solutions of (3.3). We give only the necessary
definitions and state the result, omitting further details (which can be easily adapted
from [20] and [16, Chapter 12]).

Assume that A and R are invertible, and define the matrix

T =

(
A + BR−1BT (AT )−1Q −BR−1BT (AT )−1

−(AT )−1Q (AT )−1

)
.

A pair of matrices (A,B), where A ∈ R
n×n, B ∈ R

n×m, is called d-sign control-
lable if for every nonzero real λ at least of the two subspaces Ker ((λI −A)n) and
Ker

(
(λ−1I −A)n

)
is contained in the controllable subspace C(A,B) (defined in (3.2))

and for every nonzero complex number λ + iμ, where λ and μ are real and μ �= 0, at
least one of the two subspaces

Ker
(
(λ2 + μ2)I − 2λA + A2

)n
and

Ker
(
(u2 + v2)I − 2uA + A2

)n
(u + iv = (λ + iμ)−1)

is contained in C(A,B).
Theorem 3.2. Let (3.3) be given, and assume that A and R are invertible and

that the pair (A,B) is d-sign controllable. Further assume that there exists η ∈ {1,−1}
such that η is not an eigenvalue of A, A−1, and T and that, moreover, the matrix

R−1 −
(
−R−1BT (AT )−1Q R−1BT (AT )−1

)
(ηI − T )−1

(
BR−1

0

)
(3.4)

is positive definite symmetric. Then (3.3) admits a solution X such that

rank (X −XT ) ≤ 2 (n− γ(T, J)) , J =

(
0 I
−I 0

)
,
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where γ(T, J) is the maximal dimension of a T -invariant J-neutral subspace.
Under an additional invertibility condition, Theorem 3.2 was proved in [20].

Again, specializing to the case when γ(T, J) = 0 recovers a known result on the
existence of symmetric solutions of (3.3).
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Abstract. Given a real matrix, we analyze an open interval, called a row exclusion interval,
such that the real eigenvalues do not belong to it. We characterize when the row exclusion interval is
nonempty. In addition to the exclusion interval, inclusion intervals for the real eigenvalues, alternative
to those provided by the Gerschgorin disks, are also considered for matrices whose off-diagonal entries
present a restricted dispersion. The results are applied to obtain a sharp upper bound for the real
eigenvalues different from 1 of a positive stochastic matrix and a sufficient condition for the stability
of a negative matrix, among other applications.
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1. Introduction. Several inclusion regions in the complex plane for the eigen-
values of a matrix have been considered: Gerschgorin disks (see [14]), Brauer ovals
of Cassini (see [1] and [15]), Brualdi lemniscata sets (see [3]), or the minimal Gersch-
gorin set (see [12]). These sets have recently been compared in [13], and in [4] other
inclusion regions appear. In order to localize the real parts of the eigenvalues of a
real matrix, alternative methods to Gerschgorin disks and Brauer ovals of Cassini
have been presented in [10] and [11], respectively. A key tool for these alternative
methods has been the use of a class of real matrices with positive determinant, called
B-matrices.

We consider in section 2 another class of nonsingular real matrices, called C-
matrices. In Proposition 2.6, we use C-matrices in order to obtain an open interval
(called the row exclusion interval) associated with a real matrix and such that no real
eigenvalue belongs to it. In Example 2.1 we prove that, in contrast to the results
of [10], the row exclusion interval cannot be applied to the localization of the real
parts of the eigenvalues because these real parts can belong to it.

In Proposition 3.1, we characterize when the row exclusion interval is nonempty.
In the case of stochastic matrices, the row exclusion interval depends on the least
off-diagonal element of the matrix. This phenomenon also happened in the context
of bounding the Perron root of a positive matrix (see, for instance, section 2.1 of [9]).
In section 3, we see that the class of matrices with a nonempty row exclusion interval
contains the class of matrices which are multiples of a stochastic matrix, and we
also apply the row exclusion interval in order to provide an upper bound of the real
eigenvalues different from 1 of a stochastic matrix in terms of the least off-diagonal
entry of the matrix. Example 3.1 shows that this bound cannot be improved.

In section 4 we consider matrices whose off-diagonal entries present a restricted
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dispersion. In particular, the results can be applied to matrices A satisfying

sJ ≤ A ≤ 2sJ,

where s > 0 and J is the matrix of ones. In Theorem 4.1 we show that, for these
matrices, the row exclusion interval is nonempty and the inclusion intervals for the
real eigenvalues obtained in [10], called B̄-intervals, provide sharper information than
the real intervals provided by Gerschgorin circles, and we also obtain a lower bound
for the real parts of all the eigenvalues. In fact, analogously to the property that
Gerschgorin disks provide sharper information when the matrix resembles a diago-
nally dominant matrix, the (inclusion) B̄-intervals and the exclusion interval provide
sharper information when the off-diagonal entries decrease their dispersion. In Corol-
lary 4.2, we give a sufficient condition for the stability of a negative matrix. Finally,
we derive some applications to Toeplitz matrices.

2. C-matrices and the exclusion interval. Let us start by introducing a
class of nonsingular matrices.

Definition 2.1. We say that a square real matrix A = (aik)1≤i,k≤n with positive
row sums is a C-matrix if all its off-diagonal elements are bounded below by the
corresponding row means, i.e., for all i = 1, . . . , n

n∑
k=1

aik > 0 and
1

n

(
n∑

k=1

aik

)
< aij ∀ j �= i.

Remark 2.1. From the previous definition we can deduce that all the off-diagonal
elements of a C-matrix are positive and the diagonal elements of a C-matrix satisfy
for all i = 1, . . . , n

aii < min{aij | j �= i},

and therefore each row mean of a C-matrix is bounded below by the maximal between
0 and the diagonal element and bounded above by any off-diagonal element of the
row.

Although we could derive the nonsingularity of a C-matrix from an adequate
application of Theorem 4.4 of [5], for the sake of completeness we provide a direct
proof of this fact.

Lemma 2.2. If A is an n× n C-matrix, then (−1)n−1 detA > 0.
Proof. Let e := (1, . . . , 1)T , and let m := 1

nAe be the vector of row means. If
m = (m1, . . . ,mn)T , let d > 0 be such that

1 + 2d = min
j=1,...,n

(
min
k �=j

akj
mj

)
.

Then, for all i = 1, . . . , n and j �= i,

aij ≥ (1 + 2d)mi > (1 + d)mi > 0.(2.1)

The identity matrix will be denoted by I. If we define the matrices P := 1+d
n eeT − I

and M := AP , then mij = (1+d)mi−aij for all i, j. By construction, M is a Z-matrix
(i.e., a matrix whose off-diagonal elements are nonpositive) because, by (2.1), its off-
diagonal elements are negative. In addition, the row sums of M are positive because
Me = (1 + d)nm − nm = dnm is a vector with positive components. This means
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that M is a matrix strictly diagonally dominant by rows and has positive diagonal
entries. Then it is well known that detM > 0 (cf. [5] or, for a direct proof, use the
Gerschgorin circles to see that M has its eigenvalues with positive real part). Since
the eigenvalues of P are d and −1 (with multiplicity n−1), we get detP = (−1)n−1d,
and the result follows from taking determinants in M = AP .

Let A = (aik)1≤i,k≤n be a real matrix. From now on, we shall use the following
notation: for each i = 1, . . . , n

s+
i := max{0,min{aij | j �= i}}, s−i := min{0,max{aij | j �= i}}.(2.2)

Let us remark that

s+
i s

−
i = 0, i = 1, . . . , n.(2.3)

The next result provides a characterization of C-matrices which can be derived
from Definition 2.1.

Proposition 2.3. Let A = (aik)1≤i,k≤n be a real matrix, and, for each i =
1, . . . , n, let s+

i be the number given in (2.2). Then A is a C-matrix if and only if for
all i ∈ {1, . . . , n}

0 <

n∑
k=1

aik < ns+
i .

We now introduce a class of nonsingular matrices closely related to C-matrices.
Definition 2.4. We say that a real matrix is a C̄-matrix if it is of the form DA,

where D is a diagonal matrix whose diagonal elements belong to the set {1,−1} and
A is a C-matrix.

Remark 2.2. If either A or AT is a C̄-matrix, then it is a nonsingular matrix
because, by Lemma 2.2, C-matrices are nonsingular.

Remark 2.3. If A is a C̄-matrix, then all its off-diagonal elements are nonzero.
In addition, for each row i of A the off-diagonal elements of row i agree in sign.

The following characterization of C̄-matrices is a consequence of Proposition 2.3
and Definition 2.4.

Proposition 2.5. Let A = (aik)1≤i,k≤n be a real matrix, and, for each i =
1, . . . , n, let s+

i , s
−
i be as in (2.2). Then A is a C̄-matrix if and only if for each

i ∈ {1, . . . , n} either

0 <
n∑

k=1

aik < ns+
i

or

0 >

n∑
k=1

aik > ns−i .

The following result provides information on the localization of the real eigenval-
ues of a real matrix.

Proposition 2.6. Let A = (aik)1≤i,k≤n be a real matrix, let s+
i , s

−
i be as in

(2.2), and let λ be a real eigenvalue of A. Then

λ /∈ E :=

⎛⎝ max
i=1,...,n

⎧⎨⎩
n∑

j=1

aij − ns+
i

⎫⎬⎭, min
i=1,...,n

⎧⎨⎩
n∑

j=1

aij − ns−i

⎫⎬⎭
⎞⎠.(2.4)
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Proof. Let e := (1, . . . , 1)T and r := Ae. Therefore

ri :=

n∑
j=1

aij(2.5)

for all i = 1, . . . , n. From the definition of E, we see that, for each i and for any t ∈ E,

(ri − t) − ns+
i < 0 < (ri − t) − ns−i .

If t = rk for some k, then −ns+
k < 0 < −ns−k , which contradicts (2.3). Thus no

element in E can equal any row sum. Now consider A− tI. For each i, either

ns+
i > ri − t > 0

or

ns−i < ri − t < 0.

By Proposition 2.5, A− tI is a C̄-matrix and is thus nonsingular.
The interval E of the previous result will play a key role in this paper.
Definition 2.7. The interval E appearing in (2.4) will be called the row exclusion

interval.
By using AT instead of A and applying Remark 2.2, we could prove a result

similar to Proposition 2.6 but changing the role of the rows by columns, and we also
could define a column exclusion interval. The remaining results of this paper could
also be adapted into a version “by columns.”

Corollary 2.8. Let A = (aik)1≤i,k≤n be a real matrix. If A has a row i with
two off-diagonal elements of different signs or with some null entries, then the row
exclusion interval is empty.

Proof. Clearly, s−i = 0 = s+
i , and so the second endpoint of the (open) row

exclusion interval is bounded above by
∑n

j=1 aij , which in turn is less than or equal
to the first endpoint.

As the previous result shows, Proposition 2.6 provides information on the local-
ization of the real eigenvalues when the matrix has the off-diagonal elements of each
row of the same sign. This happens, for instance, with the Z-matrices or the matrices
opposite Z-matrices.

A P -matrix is a matrix such that all its leading principal minors are positive.
In [10], a class of P -matrices (called B-matrices) was considered in order to obtain
localization results on the real eigenvalues of a real matrix. In that paper, the results
could be extended (using a property of P -matrices) in order to localize the real parts
of the eigenvalues of a real matrix. So, it is natural to ask whether Proposition 2.6
is also valid replacing “real eigenvalues” by “real parts of the eigenvalues.” The
following example shows that this extension is not possible and also shows the deep
differences between both situations. (A result similar to Corollary 4.2 of [10] does not
hold here: given a complex matrix A whose off-diagonal entries are real, A can be
singular, although the real parts Re(A) and Re(AT ) are C̄-matrices.)

Example 2.1. The matrix

B =

(
0 −1
1 0

)
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has s+
1 = 0 = s−2 , s−1 = −1, s+

2 = 1, and so the row exclusion interval is E = (−1, 1),
which contains the real parts of its eigenvalues ±i. In fact, the matrix

A =

(
i −1
1 i

)
is singular, although Re(A) = B and Re(AT ) = BT are C̄-matrices. In contrast to B,
the symmetric matrix

C =

(
0 1
1 0

)
also has the row exclusion interval E = (−1, 1), and its eigenvalues are the endpoints
of the intervals provided by the Gerschgorin circles.

3. Bounds for the real eigenvalues of a positive matrix. Given a nonneg-
ative matrix A = (aik)1≤i,k≤n, let us recall that the number ri =

∑n
j=1 aij defined

in (2.5) is the right endpoint of the real interval provided by the corresponding row
Gerschgorin circle for each i = 1, . . . , n. Let us also define

ρ := min{ri| i = 1, . . . , n}, R := max{ri| i = 1, . . . , n}.(3.1)

The following proposition characterizes the matrices whose row exclusion interval
is nonempty.

Proposition 3.1. Let A = (aik)1≤i,k≤n be a real matrix for each i = 1, . . . , n,
let s+

i and ri be the numbers given by (2.2) and (2.5), respectively, and let R and ρ be
the numbers given by (3.1). Then the row exclusion interval is nonempty if and only
if either its off-diagonal entries are positive and

ri − ns+
i < ρ, i = 1, . . . , n,(3.2)

or its off-diagonal entries are negative and

R < ri − ns−i , i = 1, . . . , n.

Proof. By Corollary 2.8, a matrix with a nonempty row exclusion interval must
have either all its off-diagonal elements positive or all its off-diagonal elements nega-
tive. If A has positive off-diagonal entries, s−i = 0 for all i = 1, . . . , n. By Proposi-
tion 2.6, the row exclusion interval is

E = (max{ri − ns+
i | i = 1, . . . , n}, ρ),(3.3)

and so E is nonempty if and only if (3.2) holds. The case when A has negative
off-diagonal entries can be proved analogously.

Let us recall that a nonnegative matrix is called row stochastic (or simply stochas-
tic) if all its row sums are 1. The following result provides a new upper bound of the
real eigenvalues different from 1 of a stochastic matrix in terms of the least off-diagonal
element.

Proposition 3.2. Let A = (aik)1≤i,k≤n be a stochastic matrix, and let s+

and w be the least off-diagonal and diagonal entries of A, respectively. If λ is a
real eigenvalue of A, then either λ = 1 (with algebraic multiplicity 1 if s+ > 0) or
2w − 1 ≤ λ ≤ 1 − ns+. If, in addition, A is positive, then the row exclusion interval
is nonempty.
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Proof. If

w = min{aii| i = 1, . . . , n},(3.4)

then it is known (see [6] or Theorem 1.4 of Chapter 6 of [9] or use the Gerschgorin
circles) that |λ − w| ≤ 1 − w. It is well known that the eigenvalues of a stochastic
matrix A have absolute value less than or equal to 1 and that 1 is an eigenvalue of A.
Since 0 ≤ w ≤ 1 and λ ≤ 1, we obtain 2w − 1 ≤ λ.

The bound λ ≤ 1− ns+ clearly holds if s+ = 0 because then 1− ns+ = 1. Let us
now assume that s+ > 0 (and so that A is positive). Then A is irreducible, and, by
Theorem 4.3 of Chapter 1 of [9], the eigenvalue 1 has algebraic multiplicity 1. Observe
that the number

s+ = min{s+
i | i = 1, . . . , n},(3.5)

where the numbers s+
i are given in (2.2). By formula (3.3), the row exclusion interval

is E = (1−ns+, 1). So, the real eigenvalues of A different from 1, which are less than 1,
are in fact less than or equal to 1 − ns+. Finally, since s+ > 0, E is nonempty.

By Proposition 3.2, the class of positive matrices with a nonempty row exclusion
interval contains the class of positive stochastic matrices. In fact, taking into account
(3.3), any nontrivial multiple of a stochastic matrix has a nonempty row exclusion
interval E.

Remark 3.1. Let us observe that the length of the row exclusion interval (2.4) of
a real matrix is invariant under a scalar diagonal translation; that is, it coincides for
a matrix A and for a matrix A + D, where D = diag{d, . . . , d}. Besides, as shown in
the proof of the previous proposition, the row exclusion interval of a stochastic matrix
(which is given by (3.3)) depends on its least off-diagonal element.

The next example shows that the bound of Proposition 3.2 cannot be improved.
Example 3.1. Any n × n stochastic matrix whose off-diagonal entries coincide

has the form

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

z y · · · · · · y

y
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . y

y · · · · · · y z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, y ≥ 0,(3.6)

with z ≥ 0 and z + (n − 1)y = 1. Its eigenvalues are 1 and z − y (with multiplicity
n− 1). Then, since s+ = y, we have 1− ns+ = z + (n− 1)y − ny = z − y, and so the
bound of Proposition 3.2 is sharp.

A theorem due to Frobenius (see [7] or Theorem 1.1 of Chapter 2 of [9]) shows
that the maximal eigenvalue of a nonnegative matrix belongs to the interval [ρ,R].
On the other hand, Brauer proved (see [2] or Theorem 1.5 of Chapter 2 of [9]) that
the maximal eigenvalue of a positive matrix belongs to the interval

J =

[
ρ + η(h− 1), R−

(
1 − 1

g

)
η

]
,(3.7)

where η := min{w, s+} and w, s+ are given by (3.4) and (3.5) (i.e., η is the minimal
element of A) and

g =
R− 2η +

√
R2 − 4η(R− ρ)

2(ρ− η)
, h =

−ρ + 2η +
√

ρ2 + 4η(R− ρ)

2η
.
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The following result shows that the condition (3.2), together with some additional
hypotheses, implies that the interval J of (3.7) contains a unique real eigenvalue and
provides an upper bound for the remaining n−1 real eigenvalues of A. First, we need
some auxiliary notation.

Given a matrix B = (bik)1≤i,k≤n, let us define the family of matrices

Bt := S+ + t(B − S+), t ∈ [0, 1],(3.8)

where

S+ =

⎛⎜⎝s+ · · · s+

...
...

s+ · · · s+

⎞⎟⎠(3.9)

and s+ is given by (3.2) (i.e., s+ = min{s+
i | i = 1, . . . , n}, where the numbers s+

i come
from (2.2), using B = (bik)1≤i,k≤n instead of A = (aik)1≤i,k≤n).

Theorem 3.3. Let A = (aik)1≤i,k≤n be a positive matrix for each i = 1, . . . , n,
let s+

i and ri be the numbers given by (2.2) and (2.5), respectively, and let ρ be the
number given by (3.1). If (3.2) holds and, in addition, A ∈ C, where C is a class
of real matrices such that if B ∈ C all eigenvalues of B are real and all matrices
of the form (3.8) belong to C, then n − 1 eigenvalues of A are less than or equal to
max{ri−ns+

i | i = 1, . . . , n}, and there exists a unique eigenvalue of A in the interval J
of (3.7).

Proof. For each i = 1, . . . , n and for every t ∈ [0, 1], let s+
i,t and ri,t be the

numbers given by (2.2) and (2.5) (replacing A by At), respectively, and let ρt be
the number given by (3.1) (replacing ri by ri,t). Observe that s+

i,t = ts+
i + (1 − t)s+,

ri,t = tri+(1−t)ns+ ≥ tri. So, given h ∈ {1, . . . , n} such that ρt = rh,t, ρt ≥ trh ≥ tρ.
Then, by (3.2), we deduce that, for all t ∈ (0, 1] and for all i = 1, . . . , n,

ri,t − ns+
i,t = t(ri − ns+

i ) < tρ ≤ ρt.

So, by Proposition 3.1, the row exclusion interval Et of each positive matrix At,
t ∈ (0, 1], is nonempty.

On the other hand, by formula (3.3) (using ri,0 = ns+, s+
i,0 = s+ for all i =

1, . . . , n, and ρ0 instead of ri, s
+
i and ρ, respectively), the n× n matrix A0 = S+ has

the row exclusion interval E = (0, ρ0), where ρ0 = ns+ and s+ is given by (3.2). The
eigenvalues of A0 are 0 (with multiplicity n− 1) and ns+(= ρ0).

Since all the eigenvalues of the matrices At (t ∈ [0, 1]) are real and the matrix A0

has precisely one eigenvalue greater than or equal to ρ0, we derive in this case from
the fact that the row exclusion intervals of the matrices At are nonempty for all
t ∈ [0, 1] and the continuity of the eigenvalues as functions of the elements of the
matrix that there exists precisely one real eigenvalue greater than or equal to ρt. In
particular, there exists a unique eigenvalue greater than or equal to ρ = ρ1, and, by
Theorem 1.5 of Chapter 2 of [9], there exists a unique eigenvalue in the interval J
of (3.7). By Proposition 2.6, there are n − 1 eigenvalues of A less than or equal to
max{ri − ns+

i | i = 1, . . . , n}.
Observe that the previous result can be applied to the class of symmetric matrices.
In order to illustrate an application of Theorem 3.3, let us assume that a positive

matrix A is positive definite symmetric and such that max{ri − ns+
i | i = 1, . . . , n} <

ρ + η(h − 1). Then the quotient between the second largest eigenvalue λ2 and the
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largest eigenvalue λ1 of A satisfies

λ2

λ1
≤ max{ri − ns+

i | i = 1, . . . , n}
ρ + η(h− 1)

,

and it is well known that this quotient provides information on the speed of conver-
gence of the power method.

4. Inclusion and exclusion intervals for the real eigenvalues of matrices
whose off-diagonal entries have restricted dispersion. Let us start this section
by introducing a class of matrices to which we shall apply results on the localization
of eigenvalues. Let A be a matrix such that all its off-diagonal elements are positive
and satisfy

s+ ≤ aij < 2s+, i �= j,(4.1)

where s+ is its least off-diagonal element (see (3.5)).

The following result shows for matrices satisfying (4.1) that the inclusion intervals
for the real parts of its eigenvalues, called B̄-intervals in [10, 11], are contained in the
real intervals provided by the Gerschgorin circles. Let us recall the following notation
introduced in [10]: given a real matrix A = (aik)1≤i,k≤n, for each i = 1, . . . , n

r+
i := max{0, aij | j �= i}, r−i := min{0, aij | j �= i}.(4.2)

For each row i = 1, . . . , n, the corresponding row B̄-interval is given by the interval⎡⎣aii − r+
i −

∑
k �=i

|r+
i − aik|, aii − r−i +

∑
k �=i

|r−i − aik|

⎤⎦.(4.3)

Theorem 3.5(i) of [10] proves that the real eigenvalues of a real matrix A belong to
the union of the row B̄-intervals. Analogously, the column B̄-intervals can be defined,
and Theorem 4.3(i) of [10] proves that all the real parts of the eigenvalues of A belong
to the union of the row and column B̄-intervals.

Theorem 4.1. Let A = (aik)1≤i,k≤n be a matrix satisfying (4.1), let w and s+

be the numbers given by (3.4) and (3.5), respectively, and let R be the number given
by (3.1). Then the following properties hold:

(i) For each row i = 1, . . . , n, the corresponding row B̄-interval is contained in
the real interval provided by the corresponding Gerschgorin circle.

(ii) The interval [w − ns+, R] contains all the row B̄-intervals. Besides, all the
real parts of the eigenvalues of A are bounded below by w − ns+.

(iii) If, in addition, the diagonal elements satisfy

max
i=1,...,n

aii − min
i=1,...,n

aii < s+,

then the row exclusion interval contains the nonempty interval E′ = (R−ns+,
ρ).

Proof. (i) Given a positive matrix A = (aik)1≤i,k≤n, the right endpoints of the row
B̄-intervals (4.3) and the right endpoints of the real intervals provided by Gerschgorin
row-regions coincide. Since A is positive, for each i = 1, . . . , n there exists j �= i such
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that r+
i = aij . The left endpoints of the real intervals provided by Gerschgorin row-

regions are given by

aii − aij −
∑
k �=i,j

aik, i = 1, . . . , n,(4.4)

and the left endpoints of the row B̄-intervals (4.3) can be written as

aii − nr+
i +

∑
k �=i

aik = aii − aij − (n− 2)r+
i +

∑
k �=i,j

aik, i = 1, . . . , n.(4.5)

Since A satisfies (4.1), r+
i − aik < s+ ≤ aik (k �= i, j), and then we can deduce that

each number of (4.5) is greater than the corresponding number of (4.4) and (i) holds.
(ii) Again, let j �= i be such that r+

i = aij . The left endpoints of the row B̄-
intervals (4.3) can be written as in (4.5). Since A satisfies (4.1), we derive r+

i −aik < s+

when k �= i, and, taking into account that aij < 2s+, the elements of (4.5) are greater
than the corresponding numbers

aii − ns+, i = 1, . . . , n,(4.6)

which, in turn, are bounded below by w − ns+. Since the right endpoints of the
row B̄-intervals (4.3) and the right endpoints of the real intervals provided by the
Gerschgorin row-regions coincide (because A is positive), they are bounded above
by R, and so the interval [w − ns+, R] contains all the row B̄-intervals. Applying
to AT the reasoning of the beginning of this paragraph we also conclude that the
left endpoints of its row B̄-intervals (which are the left endpoints of the column
B̄-intervals of A) are bounded below by w − ns+. Then, since, by Theorem 4.3(i)
of [10], all the real parts of the eigenvalues of A belong to the union of the row and
column B̄-intervals, (ii) follows.

(iii) Since A has positive off-diagonal entries, we deduce from formula (3.3) that
the row exclusion interval of A is E = (max{ri − ns+

i | i = 1, . . . , n}, ρ), which clearly
contains E′. Let us now prove that R− ρ < ns+. Without loss of generality we may
assume that w = s+. By the hypotheses satisfied by all entries of A, we can deduce
that ns+ ≤ R, ρ < 2ns+. Hence 0 ≤ R− ns+ < ns+ ≤ ρ. Thus R− ρ < ns+, and so
E′ is nonempty.

From Theorem 4.1(ii), we can derive the following sufficient condition for a posi-
tive stable matrix.

Corollary 4.2. Let A = (aik)1≤i,k≤n be a positive matrix satisfying (4.1), and
let w and s+ be the numbers given by (3.4) and (3.5), respectively. If w > ns+, then
the real parts of all eigenvalues of A are positive.

Given a negative matrix, we can apply the previous corollary to −A, and then
the following sufficient condition for stability holds.

Corollary 4.3. Let A = (aik)1≤i,k≤n be a negative matrix, and let v and s−

be the maximal diagonal and off-diagonal entries of A, respectively. If, for all i �= j,
2s− < aij ≤ s− and, in addition, v < ns−, then the real parts of all eigenvalues of A
are negative.

Any n × n matrix of the form (3.6) shows that the combination of the row
B̄-intervals and the row exclusion interval can provide sharp information on the eigen-
values. In this case, the numbers given by (4.2) are r+

i = y, r−i = 0, and so the row
B̄-intervals are [z− y, z+(n−1)y]. Since the numbers given by (2.2), (2.5), and (3.1)
are s+

i = y and ρ = z + (n − 1)y = R = ri for all i = 1, . . . , n, the row exclusion
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interval is, by (3.3), (z−y, z+(n−1)y). Hence we already obtain that the eigenvalues
of A can only be the numbers z− y and z+(n− 1)y. On the other hand, since ρ = R
and h = 1 = g, the interval J of (3.7) is in fact the point ρ. So, by Theorem 4.1(ii),
z + (n − 1)y is an eigenvalue with multiplicity 1, and z − y is an eigenvalue with
multiplicity n− 1.

The previous matrix M is Toeplitz. Let us recall that matrices whose entries
are constant along each diagonal arise in many applications and are called Toeplitz
matrices (see [8]): a matrix A = (aij)1≤i,j≤n is Toeplitz if there exist real numbers

r−n+1, . . . , r−1, r0, r1, . . . , rn−1

such that aij = rj−i for all i, j. If a positive (resp., negative) Toeplitz matrix satisfies
max{ri−rj | i, j �= 0} < min{rk| k �= 0} (resp., min{ri−rj | i, j �= 0} > max{rk| k �= 0})
and r0 > nmin{rk| k �= 0} (resp., r0 < nmax{rk| k �= 0}), then, by Corollary 4.2
(resp., Corollary 4.3), A is positive stable (resp., is stable).
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Abstract. A new rank-revealing method is proposed. For a given matrix and a threshold for
near-zero singular values, by employing a globally convergent iterative scheme as well as a deflation
technique the method calculates approximate singular values below the threshold one by one and
returns the approximate rank of the matrix along with an orthonormal basis for the approximate
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approximate rank and null space are straightforward, stable, and efficient. Numerical results exhibit-
ing the advantages of our code over existing packages based on two-sided orthogonal rank-revealing
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1. Introduction. The numerical rank determination arises in many applications
that involve matrix computations, such as those discussed in a series of proceedings,
SVD and Signal Processing, I, II, III [5, 13, 18]. While the singular value decom-
position (SVD) is undoubtedly the most reliable method of determining the rank
numerically, there are certain drawbacks. Among them, it is quite expensive when
matrices become large. Moreover, it may not be able to take the matrix structure into
account, and it is not easy to update or downdate when rows/columns are inserted or
deleted. Alternative methods have been proposed, such as rank-revealing QR decom-
position (RRQR) [2, 3, 4] and rank-revealing two-sided orthogonal decompositions
(UTV, or URV/ULV) [6, 16, 17].

In this paper, a new rank-revealing algorithm is presented. For a given m × n
matrix A, instead of calculating a decomposition that reveals the approximate rank,
our method calculates the approximate rank and null space of A directly. We briefly
outline the method as follows. Without loss of generality, we assume m ≥ n, and let
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be singular values of A. Since the smallest singular value
σmin ≡ σn satisfies

σmin = min
‖x‖2=1

‖Ax ‖2,

the problem of finding σmin can be converted to solving the overdetermined system(
τx�

A

)
x =

(
τ
0

)
, where τ > σn,(1.1)
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for its least squares solution x. For this purpose, one may use the Gauss–Newton
iteration [3] ⎧⎪⎪⎪⎨⎪⎪⎪⎩

xj+1 =xj −
(

2τx�
j

A

)+(
τx�

j xj − τ
Axj

)
,

ςj+1 =
‖Axj+1 ‖2

‖xj+1 ‖2

, j = 0, 1, . . . .

(1.2)

Here and throughout, for an arbitrary matrix B of full column rank, B+ stands
for its pseudo-inverse. It can be shown that (Lemma 4.1 in section 4) the Gauss–
Newton iteration in (1.2) is essentially the inverse iteration on the matrix A�A without
undesirable matrix multiplication. The global convergence of the iteration is therefore
warranted, and (ςj ,xj) will converge to the singular pair (σn,vn). In this article,
unless otherwise mentioned, we always use “singular vector” to represent the right
singular vector. After σn = σmin is calculated along with its associated singular
vector vn, the matrix

A� =

(
�v�

n

A

)
, � ∈ R,(1.3)

has the same set of singular values along with the associated singular vectors as
those of A except the smallest singular value σn of A is replaced by the singular
value

√
�2 + σ2

n of A� with associated singular vector vn (Corollary 5.2 in section 5).

Therefore, if we choose � = ‖A‖F , then the replacement
√

�2 + σ2
n becomes the

largest singular value of A�. In the meantime, the second smallest singular value
σn−1 of A becomes the smallest one of A�, and iteration (1.2) for finding the smallest
singular pair of A can be applied to A� to calculate the singular pair (σn−1,vn−1)
of A. This process can be continued recursively to calculate as many singular values
of A as desired in ascending order σn ≤ σn−1 ≤ · · · , along with their associated
singular vectors vn,vn−1, . . . . Once σk is larger than the prescribed threshold θ > 0,
we will admit k as the approximate rank of A and the computed vk+1, . . . ,vn as an
orthonormal basis for the approximate null space of A.

Our method has been implemented as a MATLAB package RankRev and applied
to many applications. In section 7 we present comprehensive numerical results of our
code compared with UTV Tools [6] and the MATLAB SVD function. To calculate
the approximate rank and null space of a given matrix that has a low rank deficit,
our code can be 20 times faster than the full SVD when the matrix size becomes
very large. Compared with UTV Tools, our method seems to be more robust and
accurate in general, especially when the singular value gap at the rank threshold is
relatively small. Moreover, row/column updating and downdating in our method,
elaborated in section 8, are quite simple and straightforward. Separate numerical
results are presented in section 8.5 comparing our method with UTV Tools in this
respect. While UTV Tools may return incorrect ranks in certain difficult cases, our
code always produces accurate results on all the matrices tested.

While rank-revealing has a large variety of applications, the development of our
algorithm follows the needs of two important applications which emerged recently: a
stable numerical algorithm for the computation of the GCD of univariate polynomials
and the identification of nonisolated numerical solutions of polynomial systems. The
details of those applications will be illustrated in section 9.
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2. Notation, terminology, and definitions. The terms rank, nullity, and null
space are used in the exact sense as in common linear algebra textbooks. In numerical
linear algebra, the approximate rank, also known as the numerical rank, has a specific
meaning given in Definition 2.1 below. Since the approximate rank, approximate null
space, and approximate nullity are important concepts in our discussion, to be more
clear and concise we shall use the specific terms approxi-rank, approxi-null space, and
approxi-nullity for those notions. The usual notation rank(A) remains the exact rank
of a matrix A.

Throughout this paper, matrices are denoted by upper-case letters such as A, B,
Q, R, etc. Lower-case boldface letters like u, v, and x represent column vectors. The
notation (·)� denotes the transpose of a matrix or vector (·), and vector spaces are
denoted by a boldface upper-case letters like W with W⊥ denoting its orthogonal
complement.

The definition of approxi-rank was first given by Golub, Klema, and Stewart [7].
We shall use a somewhat simplified definition.

Definition 2.1. For a given threshold θ > 0, a matrix A ∈ R
m×n has approxi-

rank k within θ, denoted by rankθ(A) = k, if k is the smallest rank of all matrices
within a 2-norm distance θ of A. Namely,

k = min
‖A−B‖2≤θ

{rank(B)}.(2.1)

In this case, we also say the approxi-nullity of A within θ is n− k.

Notice that the exact rank of a matrix may be considered the approxi-rank of the
matrix within zero.

The minimum in (2.1) is attainable [7, 12]: For θ > 0, let A = UΣV � be the SVD
of A with singular values satisfying

σ1 ≥ · · · σk > θ ≥ σk+1 ≥ · · · ≥ σn.(2.2)

Let Ak = UΣkV
� with Σk = diag{σ1, . . . , σk, 0, . . . , 0}; then ‖A − Ak‖2 = σk+1 ≤ θ

and rank(Ak) = rankθ(A) = k (see [7]). Moreover, Ak is nearest to A (with respect
to the 2-norm) with rank k. In other words, for

�
σ= inf

{
μ | rankμ(A) = k

}
,(2.3)

we have ‖A−Ak‖2 =
�
σ . Let

�
σ= sup

{
η | rankη(A) = k

}
.

We call the ratio γ =
�
σ/

�
σ the approxi-rank gap. The size of this gap strongly in-

fluences the difficulties in achieving the accuracy of rank-revealing computation as
shown in numerical examples in sections 7 and 8.5. If the singular values of A and

the threshold θ satisfy (2.2), then clearly
�
σ = σk and

�
σ = σk+1. When rankθ(A) = k,

we called the null space of Ak the approxi-null space of A within θ since Ak is the
nearest matrix to A with rank k. Let v1, . . . ,vn be the singular vectors of A (and
Ak) associated with singular values σj , j = 1, . . . , n; the approxi-null space of A is
spanned by {vk+1, . . . ,vn}. The approxi-nullity of A equals the dimension of the
approxi-null space. Any vector v satisfying ‖Av‖2 ≤ θ is called an approxi-null vector
of A within θ.
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3. The basic algorithm. As before, let A ∈ R
m×n (m ≥ n) with singular

values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We first establish the equivalence between finding the
smallest singular value σmin ≡ σn of A and solving the least squares problem of the
quadratic system (

τx�

A

)
x =

(
τ
0

)
with τ > σn.(3.1)

Proposition 3.1. Let u ∈ R
n be a vector satisfying∥∥∥∥( τu�

A

)
u −

(
τ
0

)∥∥∥∥2

2

= min
x∈Rn

∥∥∥∥( τx�

A

)
x −

(
τ
0

)∥∥∥∥2

2

with a scaling factor τ > σn. Then u is in the subspace W spanned by the singular
vector(s) of A associated with the smallest singular value(s).

Proof. Let A = UΣV � be the SVD of A with orthogonal U and V . Let z = V �x
or x = V z, where x = (x1, . . . , xn)� and z = (z1, . . . , zn)�. Let

f(x1, . . . , xn) =

∥∥∥∥( τx�

A

)
x −

(
τ
0

)∥∥∥∥2

2

=

∥∥∥∥( τx�x − τ
Ax

)∥∥∥∥2

2

;

then

f(x1, . . . , xn) = τ2
(
x�x − 1

)2
+ ‖Ax ‖2

2 = τ2
(
z�z − 1

)2
+ ‖Σz ‖2

2

= τ2
(
z2
1 + · · · + z2

n − 1
)2

+ σ2
1z

2
1 + · · · + σ2

nz
2
n ≡ g(z1, . . . , zn).

Assume g(z) reaches its minimum at z = y ≡ (y1, . . . , yn)�. Then

∂g

∂zj

∣∣∣∣∣
z=y

= 0, j = 1, . . . , n, i.e., 4τ2
(
y2
1 + · · · + y2

n − 1
)
yj + 2σ2

j yj = 0.

If y �= 0, let J = {1 ≤ j ≤ n | yj �= 0}. Then for j ∈ J , σ2
j = 2τ2(1 −

∑
l∈J y2

l ).

Hence, σ2
j ≤ 2τ2, and σj = σ for all j ∈ J for certain σ ∈ {σ1, . . . , σn} with σ <

√
2τ .

It follows that

g(y1, . . . , yn) = τ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠2

+
∑
j∈J

σ2
j y

2
j = τ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠2

+ σ2
∑
j∈J

y2
j

= τ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠2

+ σ2

⎛⎝∑
j∈J

y2
j − 1

⎞⎠+ σ2

= τ2

(
− σ2

2τ2

)2

+ σ2

(
− σ2

2τ2

)
+ σ2 = σ2 − σ4

4τ2
.

Therefore, the possible minimum values of g(z) are σ2
j − σ4

j

4τ2 , j = 1, . . . , n, and,

perhaps, g(0, . . . , 0) = τ2. Those values are all attainable since, for every singular

pair (σj ,vj), letting z = sV �vj with s2 = 1 − σ2
j

2τ2 yields

g(z) = τ2(s2 − 1)2 + σ2
j s

2 = τ2
σ4
j

4τ4
+ σ2

j

(
1 −

σ2
j

2τ2

)
= σ2

j −
σ4
j

4τ2
.
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The function h(β) = β2 − β4

4τ2 is increasing in [0, τ ], so

min
j=1,...,n

{
σ2
j −

σ4
j

4τ2

}
= σ2

n − σ4
n

4τ2
≤ σ2

n < τ2

and g(z1, . . . , zn) reaches the minimum if σ = σn. Consequently, σj = σn for all
j ∈ J , and u =

∑
j∈J yjvj , where vj is the singular vector associated with σj ,

j = 1, . . . , n.
Based on Proposition 3.1, the smallest singular value of A can be calculated via

solving system (3.1) by the Gauss–Newton iteration [3]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
xj+1 =xj −

(
2τx�

j

A

)+(
τx�

j xj − τ
Axj

)
,

ςj+1 =
‖Axj+1 ‖2

‖xj+1 ‖2

, j = 0, 1, . . . .

(3.2)

We shall prove in section 4 that the scalar sequence ςj , j = 1, 2, . . . , always converges
to the smallest singular value σmin of A. And if σmin is a simple singular value, namely,
σn−1 �= σn, then the vector sequences 1

ςj
Axj and xj , j = 1, 2, . . . , converge to the

corresponding left and right singular vectors, respectively. When σmin is not simple,
ςj still converges to σmin, while 1

ςj
Axj and xj converge into left and right singular

subspaces associated with σmin.

When A has more than one zero singular values, the matrix ( 2τx�
j

A
) becomes

rank deficient and its pseudoinverse is undefined. While exact rank deficiency rarely
happens in real computation, when it occurs, replacing A by A+E with tiny ‖E‖2 will
ensure the existence of the pseudoinverse. Such substitution has virtually no effect
on the computing results. For details, see [8].

In the remainder of this paper, we shall frequently refer to the iteration (3.2)
above as “applying the Gauss–Newton iteration on matrix A” for solving the least
squares quadratic system in (3.1).

4. The convergence theory. The theory of the Gauss–Newton iteration war-
rants its local convergence under some restrictions, and the convergence rate is at
least linear. The following lemma shows that the Gauss–Newton iteration (3.2) on
the overdetermined quadratic system (3.1) is essentially the inverse iteration on the
matrix A�A, and the convergence is therefore global.

Lemma 4.1. Let A ∈ R
m×n be of full column rank, and let {xj} be a vector

sequence generated by iteration (3.2). Then there are constants cj, j = 0, 1, . . . , such
that

xj+1 = cj
(
A�A

)−1
xj .(4.1)

Proof. For simplicity, let x and y denote xj and xj+1, respectively. Now,

y = x −
(

2τx�

A

)+(
τx�x − τ

Ax

)
= x −

[(
2τx, A�)( 2τx�

A

)]−1 (
2τx, A�)( τx�x − τ

Ax

)
= x −

(
4τ2xx� + A�A

)−1 [(
2τ2xx� + A�A

)
x − 2τ2x

]
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= x −
(
4τ2xx� + A�A

)−1 [(
4τ2xx� + A�A

)
x − 2τ2x(x�x) − 2τ2x

]
=
(
4τ2xx� + A�A

)−1
2τ2

(
1 + x�x

)
x.

This yields (
4τ2xx� + A�A

)
y = 2τ2

(
1 + x�x

)
x,(

A�A
)
y = τ2

(
2 + 2x�x − 4x�y

)
x,

y = 2τ2
(
1 + x�x − 2x�y

) (
A�A

)−1
x.(4.2)

So, y = c(A�A)−1x with c = 2τ2 (1+x�x)
1+4τ2 x�(A�A)−1x

.

For a given matrix A ∈ R
m×n and a threshold θ > 0, we assume rankθ(A) = k

and the singular values of A satisfy

σ1 ≥ · · · ≥ σk =
�
σ >θ ≥�

σ = σk+1 ≥ · · · ≥ σn.

Then W = span{vk+1, . . . ,vn} is the approxi-null space of A, where vj is the singular
vector associated with σj for j = k + 1, . . . , n. The orthogonal complement W⊥ of

W is span{v1, . . . ,vk}, and every vector z ∈ R
n can be written as z=

�
z +

�
z with

�
z ∈ W⊥ and

�
z ∈ W. We say a sequence of nonzero vectors {zj} converges into W if

lim
j→∞

‖ �
z j ‖2

‖ �
z j ‖2

= 0, ‖ �
z j ‖2 �= 0, j = 0, 1, . . . .

The approxi-rank depends critically on the threshold θ > 0 one chooses, and the

approxi-rank gap γ =
�
σ/

�
σ dictates its computing difficulties. The following proposi-

tion ensures that the vector sequence {xj} generated by iteration (3.2) converges into
the approxi-null space of A.

Proposition 4.2. Suppose A ∈ R
m×n and rankθ(A) = k with a nontrivial

approxi-null space W and approxi-rank gap γ. Then for x0 not orthogonal to W, the
iteration (3.2) generates a vector sequence {xj} and a scalar sequence {ςj}, where xj

converges into W linearly in the sense∥∥∥�
xj

∥∥∥
2∥∥∥�

xj

∥∥∥
2

≤
(

1

γ

)2j

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

, j = 0, 1, . . . ,(4.3)

and ςj satisfies

σn ≤ ςj ≤
�
σ +

(
1

γ

)2j

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

σ1.(4.4)

Proof. Let x0 = u1v1 + · · · + unvn. From Lemma 4.1,

x1 = η

(
u1

σ2
1

v1 + · · · + un

σ2
n

vn

)
for certain η ∈ R, and with α = η

�
σ

2 ,

x1 = α

(
�
σ

2

σ2
1

u1v1 + · · · +
�
σ

2

σ2
n

unvn

)
=

�
x1 +

�
x1,
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where ∥∥∥�
x1

∥∥∥
2

=

∥∥∥∥∥α
(

�
σ

2

σ2
1

u1v1 + · · · +
�
σ

2

σ2
k

ukvk

)∥∥∥∥∥
2

≤ |α|
(

1

γ

)2 ∥∥∥�
x0

∥∥∥
2
,

∥∥∥�
x1

∥∥∥
2

=

∥∥∥∥∥α
(

�
σ

2

σ2
k+1

uk+1vk+1 + · · · +
�
σ

2

σ2
n

unvn

)∥∥∥∥∥
2

≥ |α|
∥∥∥�

x0

∥∥∥
2
.

Since ‖�
x0 ‖2 �= 0, we have ‖

�
x1 ‖2

‖
�
x1 ‖2

≤ ( 1
γ )2 ‖

�
x0 ‖2

‖
�
x0 ‖2

. By a simple induction, inequality

(4.3) follows. For inequality (4.4),

σn ≤
‖Axj ‖2

‖xj ‖2

≤

∥∥∥A �
xj

∥∥∥
2

‖xj ‖2

+

∥∥∥A �
xj

∥∥∥
2

‖xj ‖2

≤

∥∥∥∥∥∥A
⎛⎝ �

xj∥∥∥�
xj

∥∥∥
2

⎞⎠∥∥∥∥∥∥
2

+

∥∥∥∥∥∥A
⎛⎝ �

xj∥∥∥�
xj

∥∥∥
2

⎞⎠∥∥∥∥∥∥
2

≤ σ1

⎡⎣( 1

γ

)2j

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

⎤⎦+
�
σ.

As an important special case, if there is a significant gap in magnitude between
σn−1 and σn, then the iteration (3.2) converges to σn and its associated singular
vector vn.

Corollary 4.3. If σn−1 > σn and x0 satisfies x�
0 vn �= 0, then for each j the

matrix Bj = ( 2τx�
j

A
) in the Gauss–Newton iteration in (3.2) is of full rank with a

well-defined pseudoinverse. Moreover, the sequences {ςj} and { xj

‖xj ‖2
} converge to σn

and vn, respectively, with

∥∥∥∥ xj

‖xj ‖2

− vn

∥∥∥∥
2

≤
(

σn

σn−1

)2j
[
1 +

(
σn

σn−1

)2j
] ∥∥∥�

x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

,

∣∣∣ςj − σn

∣∣∣ ≤ (
σn

σn−1

)2j

σ1

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

, j = 1, 2, . . . .

Proof. Since σn−1 > σn ≥ 0, Avj �= 0 for j = 1, . . . , n − 1. So, B0 is of full
rank because of the assumption x�

0 vn �= 0. Similarly Bj is of full rank for all j > 0
since x�

j vn �= 0 from (4.3). The proof of the remaining assertions is a straightforward
verification.

5. Computing the approxi-null space. The iteration (3.2) produces a vector
w1 in the approxi-null space W of A. When the approxi-nullity of A is bigger than
one, we may stack a scalar multiple of w�

1 on top of A to form a new matrix B. We will
show in this section that when iteration (3.2) is applied to B it may produce another
approxi-null vector w2 of A that is orthogonal to w1. This deflation-iteration process
can be continued recursively to produce an orthonormal basis for the approxi-null
space W.
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Proposition 5.1. Under the same assumptions of Proposition 4.2, for any unit
vector w ∈ W, the matrix

B =

(
�w�

A

)
with � ≥�

σ(5.1)

has singular values {σ′
j}nj=1 satisfying

σ′
1 ≥ · · · ≥ σ′

k+1 ≥�
σ >

�
σ ≥ σ′

k+2 ≥ · · · ≥ σ′
n,(5.2)

and its approxi-null space W′ spanned by the singular vectors of B associated with
σ′
k+2, . . . , σ

′
n is a subspace of W.

Proof. Since w ∈ W, we can write w = ρk+1vk+1 + · · ·+ ρnvn with ρ2
k+1 + · · ·+

ρ2
n = 1. The SVD A = UΣV � yields

(
1

U�

)
BV

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 �ρk+1 · · · �ρn
σ1

. . .

σk

σk+1

. . .

σn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .

σk

�ρk+1 · · · �ρn
σk+1

. . .

σn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P

(
Ik×k

Û

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .

σk

σ̂k+1

. . .

σ̂n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

Ik×k

V̂ �

)
,

where P is a permutation matrix with Û and V̂ being orthogonal matrices in the SVD
of

D =

⎛⎜⎜⎜⎜⎜⎝
�ρk+1 · · · �ρn
σk+1

. . .

σn

⎞⎟⎟⎟⎟⎟⎠ = Û

⎛⎜⎜⎜⎜⎜⎝
σ̂k+1

. . .

σ̂n

⎞⎟⎟⎟⎟⎟⎠ V̂ �.

We claim that

σ̂k+1 ≥ � and σ̂j ≤ σj−1, j = k + 2, . . . , n.(5.3)
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In fact, σ̂k+1 is the largest singular value of D which is larger than or equal to � since

σ̂k+1 = max
x∈Rn−k, ‖x‖2=1

‖Dx ‖2 ≥

∥∥∥∥∥∥∥D
⎛⎜⎝ ρk+1

...
ρn

⎞⎟⎠
∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎝
�
ρk+1σk+1

...
ρnσn

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥
2

≥ �.

On the other hand, let y = (0, . . . , 0, yn−1, yn)� ∈ R
n−k such that ‖y ‖2 = 1 and

yn−1ρn−1 + ynρn = 0. Then

σ̂n = min
x∈Rn−k, ‖x‖2=1

‖Dx ‖2 ≤ ‖Dy ‖2 =
√

(σn−1yn−1)2 + (σnyn)2 ≤ σn−1.

Denote the columns of V̂ by v̂k+1, . . . , v̂n. For any fixed j ∈ {k + 1, . . . , n − 2}, let
z = (0, . . . , 0, zj , . . . , zn)� with ‖ z ‖2 = 1, where v̂�

l z = 0 for l = j + 2, . . . , n, and
Σn

i=jρizi = 0. Then

σ̂j+1 = min
{
‖Dx ‖2 | ‖x‖2 = 1,x�v̂l = 0, l = j + 2, . . . , n

}
≤ ‖Dz ‖2 =

√
(zjσj)2 + · · · + (znσn)2 ≤ σj

and inequalities (5.3) hold. Consequently, they lead to the validity of the inequalities
in (5.2) with{

σ′
1, . . . , σ

′
k+1

}
=
{
σ1, . . . , σk, σ̂k+1

}
, σ′

l = σ̂l, l = k + 2, . . . , n.

In practice, we may choose � = ‖A‖∞. In applying iteration (3.2) on B, as the
least squares solution of ⎛⎝ τw�

2

�w�
1

A

⎞⎠w2 =

⎛⎝ τ
0
0

⎞⎠,

w2 ∈ W, is approximately orthogonal to w1. Continuing this process recursively, an
orthonormal basis for W can be constructed.

As an important special case, if σn−1 	 σn, iteration (3.2) converges to w = vn

and ς = σn. In this case, stacking �v�
n on top of A makes σn−1 the smallest singular

value of the resulting matrix.

Corollary 5.2. Let σ be a singular value of A with associated singular vector
v. The matrix

Aρ =

(
ρv�

A

)
(5.4)

has the same singular values and corresponding singular vectors as those of A, except
the singular value σ of A is replaced by the singular value

√
ρ2 + σ2 of Aρ associated

with the same singular vector v.
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Proof. For simplicity, let σ = σn and A = UΣV � be the SVD of A. We have

(
1

U�

)(
ρv�

A

)
V =

(
ρv�V
U�AV

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ρ
σ1

. . .

σn−1

σ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By applying a Givens transformation from the left on ρ and σ, it is clear that the
singular value σ of A is replaced by the singular value

√
ρ2 + σ2 of Aρ, while the

associated singular vector remains the same.

6. The overall algorithm. As mentioned before, the approxi-rank k of matrix
A depends critically on the chosen threshold θ > 0 for which singular values of A
satisfy

σ1 ≥ · · · ≥ σk > θ > σk+1 ≥ · · · ≥ σn.(6.1)

There is no uniform threshold for all applications. The user must make a decision on
the threshold θ > 0 based on the nature of the application.

The approxi-rank gap γ = σk

σk+1
may be considered a condition number for this

rank-revealing problem. If γ is large, say, 103, then every iterative step in (3.2) will
improve the convergence by six digits because in Proposition 4.2 the sequences {xj}
and {ςj} satisfy∥∥∥�

xj

∥∥∥
2∥∥∥�

xj

∥∥∥
2

≤
(
10−3

)2j ∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

and σn ≤ ςj ≤ σk+1 +
(
10−3

)2j ∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

σ1.

After three iteration steps they become∥∥∥�
x3

∥∥∥
2∥∥∥�

x3

∥∥∥
2

≤ 10−18

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

and σn ≤ ς3 ≤ σk+1 + 10−18

∥∥∥�
x0

∥∥∥
2∥∥∥�

x0

∥∥∥
2

σ1.

Since the machine epsilon of IEEE standard double precision is about 2.2× 10−16, in
this case x3 is sufficiently accurate to be an approxi-null vector unless the randomly
chosen initial vector x0 is almost orthogonal to the approxi-null space.

Let (σ1,v1), . . . , (σn,vn) be the singular pairs of A with σj ’s satisfying (6.1).
For an input threshold θ > 0, our algorithm begins with calculating the smallest
singular pair (σ̂n, v̂n). If σ̂n > θ, A will be classified as being of full approxi-rank, and
the process stops. Otherwise, the algorithm continues by calculating singular pairs
(σ̂n−1, v̂n−1), (σ̂n−2, v̂n−2), . . . . Once we reach σ̂k > θ, the process will be terminated
with k being the approxi-rank of A and span{v̂k+1, . . . , v̂n} the approxi-null space. If
the approxi-rank gap γ = σ̂k

σ̂k+1
is not as large, it may need more than three iteration

steps in (3.2) for each singular value. The users can set the number of iteration steps
based on the nature of the application. The overall algorithm RankRev is shown in
a pseudocode in Figure 6.1.
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Pseudocode RankRev:

input: Matrix A ∈ R
m×n, threshold θ > 0

output: approxi-rank k, orthonormal basis {wk+1, . . . ,wn}
for the approxi-null space.

Compute the QR decomposition A = QR
Initialize B = R, τ = ‖A‖∞
For k = n, n− 1, . . . , 1 do

generate a random unit vector x0

for j = 0, 1, 2 do

D =

[
2τx�

j

B

]
, b =

[
τx�

j xj − τ
Bxj

]
Hessenberg QR decomposition D = QR
backward substitution to solve Rz = Q�b for z

xj+1 = xj − z, ς = ‖Rxj+1 ‖2 ‖xj+1 ‖−1
2

if ς < θ then

wk = xj+1/ ‖xj+1 ‖2
break j-loop

end if

end do

if ς > θ then

break k-loop
else

Hessenberg QR decomposition [τw�
k ; B] = QR

update B = R
end if

end do

Fig. 6.1. Pseudocode of RankRev.

Practically, the iteration (3.2) is carried out by finding a least squares solution
Δx (= xj+1 − xj) to the linear system(

2τx�
j

A

)
Δx = −

(
τ
(
x�
j xj − 1

)
Axj

)
(6.2)

at the jth stage. To avoid unnecessary QR decomposition of the full matrix at each
step, we may calculate the QR decomposition of A before the iteration and update
the QR decomposition at each step.

With QR factorization A = Q(R0), finding the least squares solution to (6.2) is
equivalent to solving the least squares problem of(

2τx�
j

R

)
Δx = −

(
τx�

j xj − τ
Rxj

)
(6.3)

for Δx = xj+1−xj , in which one uses the QR decomposition of the upper Hessenberg

matrix ( 2τx�
j

R
). Updating the QR factorization of an n-column upper Hessenberg

matrix requires n Givens transformations which cost O(n2) flops in total. After QR
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updating, solving (6.3) for its least squares solution requires a total of O(n2) flops in
backward substitutions.

The final QR factorization of ( 2τx�
j

R
) can be used as the QR decomposition of the

matrix B in (5.1) with ρ = 2τ and w = xj . The computations are all on the order of
O(n2) except the first QR factorization of A which costs O(mn2). Actually, on many
occasions the QR decomposition of A had already been calculated for other purposes.

7. Numerical experiments and comparisons. Our rank-revealing algorithm
is implemented as a MATLAB module RankRev that is electronically available from
the authors upon request. Here we compare its efficiency, robustness, and accuracy
with the MATLAB built-in SVD function as well as hurv in UTV Tools implemented
by Fierro, Hansen, and Hansen [6]. The package UTV Tools is perhaps the only pub-
lished comprehensive rank-revealing package with updating/downdating capabilities.
All tests are carried out in MATLAB 6.1 on a Dell personal computer with a Pentium
4 CPU of 1.8 Mhz, 768 Mb of memory, and machine precision ε ≈ 10−16.

The main objective of our code RankRev is to calculate the approxi-rank and the
approxi-null space of a matrix A that has a low approxi-nullity (equivalently, A is close
to being of full approxi-rank) within a user-specified threshold. If the given matrix A
is of approxi-rank about n/2, the full SVD can be more efficient. For low approxi-rank
(i.e., high approxi-nullity) cases, UTV Tools function lurv and SVDPACK based on
Lanczos method [1] are efficient options.

When A ∈ R
m×n has an approxi-rank k within threshold θ > 0, then A is often

considered to be under a perturbation of a “noise” matrix E with ‖E‖2 ≤ θ such
that A − E has exact rank k. The 2-norm of E is often referred to as noise level.
Usually, we consider a perturbation magnitude near machine precision, say, 1.0e-12,
a low noise level, perturbation near 1, say, 1.0e-3, a high noise level, and the median
noise level is around 1.0e-8.

7.1. Type 1: Low approxi-nullity, median noise level, small gap. Matri-
ces for this test are of size 2n×n with approxi-nullity fixed at 10 within threshold 10−8.
The singular values range from ε to ‖A‖2 = 20 with approxi-rank gap σn−10

σn−9
= 103.

Each matrix A is constructed using those specified singular values to form a diagonal
matrix Σ and by setting A = UΣV � with randomly generated orthogonal matrices
U and V with proper sizes. We use this type of matrix to test the efficiency and
accuracy of RankRev compared with SVD and hurv for increasing n.

All three algorithms output accurate approxi-ranks. Table 7.1 lists the times and
errors in executing SVD, hurv, and RankRev. The time measures are in seconds,
and the error measures the distances of the computed approxi-null spaces to the
spaces spanned by the right singular vectors associated with the ten smallest singular
values. The results show that our RankRev is at least as efficient as hurv with
significantly higher accuracy. When matrix sizes are in the thousands, both hurv

Table 7.1

Results for Type 1 matrices.

Matrix sizes

400 × 200 800 × 400 1600 × 800 3200 × 1600

time error time error time error time error

SVD 0.67 1e-15 5.6 2e-15 43.6 1e-15 1166.9 2e-15

hurv 1.41 1e-06 3.4 2e-06 11.6 1e-05 79.2 7e-06

RankRev 1.23 2e-09 3.3 2e-09 11.3 2e-09 48.8 2e-09
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Table 7.2

Results for Type 2 matrices. The computed approxi-ranks in parentheses are inaccurate results
from hurv.

Matrix column size n 100 200 300 400 500

Approxi-rank 50 100 150 200 250

hurv Computed approxi-rank 50 100 150 (234) (294)

Approxi-null space error 1e-10 1e-05 3e-05 — —

RankRev Computed approxi-rank 50 100 150 200 250

Approxi-null space error 3e-10 6e-10 3e-08 5e-08 6e-08

Table 7.3

The accuracy measures on Type 3 matrices without refinement. Due to the fixed size of the test
matrices, the execution time is close to a constant for each code. We therefore list only the average
time in the parentheses next to the code name.

Approxi-rank gaps γ

Code (time) 106 105 104 103 102 101

hurv (4.86) 7.4e-11 2.7e-09 3.4e-08 1.6e-06 1.1e-04 1.8e-02

RankRev (4.58) 7.4e-11 2.2e-10 6.3e-10 2.0e-09 6.9e-08 2.6e-04

and RankRev are more than ten times faster than standard SVD even with the
interpretation overhead in MATLAB codes.

7.2. Type 2: Median approxi-nullity, median noise level, small gap.
Matrices used for this test are of 2n× n with approxi-rank n

2 within threshold 10−8.
They are constructed in the same way as Type 1 above except for different singular
values. The singular values range from ε to ‖A‖2 = 20 with approxi-rank gap γ = 103.
While computing approxi-ranks of matrices of this sort is not the main goal of either
RankRev or hurv; we simply use them to test the robustness of both codes since
both algorithms must recursively deflate n

2 times here. As shown in Table 7.2, the
approxi-null space accuracy for hurv seems to deteriorate when n increases and it
fails to provide accurate approxi-ranks for n = 400 and n = 500 even when its
refinement option is activated.1 In contrast, our code RankRev always outputs
accurate approxi-ranks and tiny errors in computed approxi-null spaces.

7.3. Type 3. Decreasing gaps, fixed size, low approxi-nullity, median
noise level. Matrices Aj , j = 6, 5, . . . , 2, 1, used in this test are of size 1000 × 500
with an approxi-nullity fixed at 10 within the same threshold 10−8. The singular
values range from ε to ‖Aj‖2 = 20. However, the approxi-rank gaps are set at 10j for
j = 6, 5, . . . , 2, 1, respectively.

Table 7.3 lists the accuracy measures on computed approxi-null spaces with de-
creasing approxi-rank gaps. While the accuracy in computing the approxi-null spaces
of both RankRev and hurv deteriorate when the approxi-rank gap diminishes, our
code RankRev achieves a higher accuracy level with slightly faster speed. When
tighter accuracy on the approxi-null space is required in application, while UTV Tools
has its own refinement strategy [6, 11], we may simply set tighter criteria for stopping
the Gauss–Newton iteration. Table 7.4 shows both codes are about equally accurate
with their refinements.

1In a recent correspondence, the authors of UTV Tools indicated that the source of the problem
leading to those failures has been identified and will be dealt with in future releases.
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Table 7.4

The accuracy measures on Type 3 matrices with refinement.

Approxi-rank gaps

Code (time) 106 105 104 103 102 101

hurv (9.74) 7.4e-11 2.2e-10 6.3e-10 2.0e-09 6.9e-09 1.6e-08

RankRev (7.82) 7.4e-11 2.2e-10 6.3e-10 2.0e-09 6.9e-09 1.8e-08

Table 7.5

Results for Type 4 matrices.

Matrix sizes

400 × 200 800 × 400 1600 × 800 3200 × 1600

time error time error time error time error

hurv 1.55 8.3e-05 3.42 3.2e-03 15.8 1.4e-04 71.9 2.6e-03

RankRev 1.27 8.5e-11 3.05 6.8e-11 12.9 4.0e-10 48.5 1.6e-10

Table 7.6

Results for Type 5 matrices.

Matrix sizes

400 × 200 800 × 400 1600 × 800 3200 × 1600

time error time error time error time error

hurv 1.40 1.2e-15 3.47 9.0e-16 23.7 1.1e-15 — failed

RankRev 1.16 2.0e-14 3.11 4.1e-14 18.9 9.5e-14 53.7 6.5e-13

7.4. Type 4. High noise level, low approxi-nullity, small gap. The series
of matrices used in this test are of 2n × n with singular values in the interval [1, 2]
except ten small singular values in the interval [0, 10−2]. Those matrices are used to
test the accuracy and robustness of the rank-revealing computation in the presence
of high noise level.

The results exhibited in Table 7.5 show the significant advantage of RankRev

over hurv in accuracy without refinement. If both codes activate the refinement
option, however, hurv achieves slightly higher accuracy (2.9e-15) over RankRev

(4.3e-14), while RankRev is slightly faster in speed by about 15%.

7.5. Type 5. Near-zero noise level, low approxi-nullity, large gap. This
series of test matrices has singular values in the interval [1, 2], except for the smallest
ten, which are in the magnitude of machine precision. Table 7.6 shows that hurv

consistently achieves slightly higher accuracy when the approxi-ranks are correctly
determined, while our code maintains the advantage in efficiency. Nonetheless, hurv

did not report an accurate approxi-rank for the 3200×1600 matrix. (The error appears
to be machine-dependent. The authors of hurv are currently investigating it.)

8. Updating and downdating. For A ∈ R
m×n, the algorithm RankRev in

Figure 6.1 produces an approxi-rank k, a matrix W = [wk+1,wk+2, . . . ,wn] whose
columns form an orthonormal basis of the approxi-null space W of A, and a QR
decomposition (

τW�

A

)
= Q

(
R

0

)
.(8.1)
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When a row/column is inserted in A, the determination of a new set of k, W , Q, and
R of the new matrix using the information already available is called updating. It is
called downdating if a row/column is deleted from A instead.

One of the main motivations in seeking alternatives to SVD in determining
approxi-ranks is its difficulties in updating and downdating. The UTV decomposition
possesses good updating capabilities, but its downdating seems somewhat compli-
cated. In contrast, both updating and downdating in our method are straightforward
and also quite stable and efficient.

In elaborating our procedure for updating and downdating, we shall repeatedly
use the following QR downdating strategy [8, section 12.5.3].

We wish to compute the QR decomposition of the submatrix B̂ in

B =

[
b�

B̂

]
1

m − 1

= Q

(
R

0

)
∈ R

m×n,

where the QR decomposition of B is available as given above. Let q� be the first row
of Q and G1, . . . , Gm−1 be Givens rotations such that

G1 · · ·Gm−1q = e1.

Notice that

H = G1 · · ·Gm−1

(
R

0

)
=

⎡⎢⎣v�

R̂

0

⎤⎥⎦1

n

m − n − 1

is upper Hessenberg and

QG�
m−1 · · ·G�

1 =

[
1

Q̂

]
1

m − 1

,

where Q̂ is orthogonal. Thus, for G = G1 · · ·Gm−1,

(
b�

B̂

)
=
[
QG�] [G (

R

0

)]
=

[
1

Q̂

]⎡⎢⎣ b�(
R̂

0

)⎤⎥⎦,(8.2)

and therefore

B̂ = Q̂

(
R̂

0

)
.

This QR downdating process requires O(n2) flops.

8.1. Column updating. For A = (a1, . . . ,an) ∈ R
m×n and an+1 ∈ R

m, let Â =

(a1, . . . ,an,an+1). Clearly the approxi-null space Ŵ of Â contains {ŵk+1 . . . , ŵn},
where

ŵj =

(
wj

0

)
, j = k + 1, . . . , n.
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Those ŵj ’s remain orthonormal. The approxi-rank of Â is either k or k + 1. Only

when it stays at k, the orthonormal basis of Ŵ contains an additional vector which
is the only approxi-null vector of the matrix

Ă =

(
τŴ�

Â

)
=

(
τW� 0

A an+1

)
,(8.3)

where Ŵ = [ŵk+1, . . . , ŵn]. For the QR decomposition(
τW�

A

)
= Q

(
R

0

)

in (8.1), let

Q�Ă = Q�

(
τW� 0

A an+1

)
=

(
R d1

0 d2

)

and H be the Householder transformation satisfying

Hd2 = (ζ, 0, . . . , 0)�.

Then

Ă =

(
τW� 0

A an+1

)
=

[
Q

(
In×n 0

0 H�

)]
⎡⎢⎢⎢⎢⎢⎢⎣

(
R d1

0 ζ

)
0 0
...

...

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ = Q̃

(
R̃

0

)
,(8.4)

and we may obtain the possible additional approxi-null vector by

solving Rx = −d1 for x ∈ R
n

and setting y =

(
x

1

)
, ŵn+1 =

1

‖y‖2
y.

(8.5)

Clearly,

Ŵ�ŵn+1 = 0 and
∥∥∥ Âŵn+1

∥∥∥
2

=
|ζ|

‖y‖2
.

When |ζ|
‖y‖2

is below the threshold θ, ŵn+1 becomes the additional approxi-null vector

and {ŵk+1, . . . , ŵn+1} constitutes an orthonormal basis for the approxi-null space Ŵ
of Â.

For further updating or downdating, if needed, we also update the QR decompo-
sition in (8.1): ⎛⎜⎝ τŵ�

n+1

τŴ�

Â

⎞⎟⎠ =

(
1

Q̃

)⎡⎢⎣ τŵ�
n+1(
R̃

0

) ⎤⎥⎦ = Q̂

(
R̂

0

)
.(8.6)
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Computing Q̂ and R̂ requires O(n2) additional flops since R̃ is already upper-
triangular.

If the new column is inserted between the (l − 1)th and the lth column of A
where l < n, we may first append the new column as the last (i.e., the (n + 1)th)
column and complete the computation described above. Then by switching its lth
and (n + 1)th components for each approxi-null vector ŵj , j = k + 1, . . . , n + 1, we

obtain an orthonormal basis for the approxi-null space of Â, the new matrix with a
new lth column inserted.

For further updating and/or downdating, the QR decomposition in (8.6) needs
to be revised. We illustrate the process for n = 4 and l = 2 as

(
τŴ�

Â

)
= Q̂

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

× + + +

× + +

× +

×

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Q̂G�

1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

× + + +

× + +

∗ ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= Q̂G�
1 G

�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

× + + +

∗ ∗ ∗
0 ∗ ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Q̂G�

1 G
�
2 G

�
3

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+ × + + +

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Q̌

(
Ř

0

)
,(8.7)

where the Gj ’s are the Givens rotations. The new Q̌ and Ř are then available for
further use.

We summarize the column updating process as follows.
• Input: matrix A, approxi-rank k, scaling factor τ , rank threshold θ, orthonor-

mal basis for the approxi-null space W, the QR decomposition Q and R as
in (8.1), a new column an+1, and its location l to be inserted.

• Append Â = (a1, . . . ,an,an+1), form Ă as in (8.3).

• Update the QR decomposition Q̃ and R̃ of Ă as in (8.4).

• Calculate ŵn+1 as in (8.5), and obtain the residual |ζ|
‖y‖2

.

• If the residual |ζ|
‖y‖2

> θ, then

– Set k = k + 1, Ŵ =
[
ŵk+1, . . . , ŵn

]
, Q̂ = Q̃, R̂ = R̃

else

– Calculate Q̂ and R̂ as in (8.6), set Ŵ =
[
ŵk+1, . . . , ŵn, ŵn+1

]
end if

• If l �= n + 1, then

– Swap the lth and the (n+ 1)th components of every approxi-null vector
as columns of Ŵ

– Calculate Q̌ and Ř as in (8.7), set as Q̂ and R̂, respectively.
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end if

• Output updated k, Ŵ , Q̂, R̂.
While the only significant cost of updating is solving an upper-triangular system

Rx = −d1 in (8.5) with n2 +O(n) flops when Q̂ and R̂ are not needed, the cost stays
at O(mn + n2) with output Q̂ and R̂.

8.2. Column downdating. Let Ã = (a1, . . . ,al−1,al+1, . . . ,an) where the lth
colum al of A is deleted and W̃ be its approxi-null space. If the approxi-nullity of A,
or the dimension n− k of its approxi-null space W, is zero, then the approxi-nullity
of Ã remains zero, requiring no further computations. We therefore assume n−k ≥ 1
and write

W = [wk+1, . . . ,wn] =

⎛⎜⎜⎝
w1,k+1 · · · w1,n

...
. . .

...

wn,k+1 · · · wn,n

⎞⎟⎟⎠ ∈ R
n×(n−k).

Let H ∈ R
(n−k)×(n−k) be the Householder transformation satisfying

H

⎛⎜⎜⎜⎜⎝
wl,k+1

wl,k+2

...

wl,n

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
η

0
...

0

⎞⎟⎟⎟⎟⎠.(8.8)

This yields

WH� = [ŵk+1, . . . , ŵn] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗
...

...
. . .

...

∗ ∗ · · · ∗
η 0 · · · 0

∗ ∗ · · · ∗
...

...
. . .

...

∗ · · · ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
←− lth row.

Because (
WH�)� (WH�) = H

(
W�W

)
H� = H�In−kH = In−k,

the columns of WH� also form an orthonormal basis for W. By removing the lth
component of ŵj for each j = k + 1, . . . , n, we obtain a set of vectors w̃k+1, . . . , w̃n

satisfying

Ãw̃k+1 = Aŵk+1 − η al, Ãw̃j = Aŵj , j = k + 2, . . . , n.

Apparently, {w̃k+2, . . . , w̃n} is a subset of an orthonormal basis for W̃, and the mag-
nitude of ‖ Ãw̃k+1 ‖2 determines the possible existence of an additional approxi-null
vector: when it is small enough, the normalization of w̃k+1 completes {w̃k+1, . . . , w̃n}
as an orthonormal basis for W̃ .
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To downdate the QR decomposition in (8.1) for further updating/downdating,
since (

τH W�

A

)
=

[(
H

I

)
Q

](
R

0

)
,

we have (
τW̃�

Ã

)
=

[(
H

I

)
Q

](
R̂

0

)
=

[(
H

I

)
QG�

l · · ·G�
n−1

](
Ř

0

)
,(8.9)

where R̂ is obtained from R by deleting its lth column and Gl, · · ·Gn−1 are the Givens
rotations that transform R̂ into upper-triangular Ř. Applying the QR downdating
technique in (8.2) yields ⎛⎜⎜⎜⎜⎝

τw̃�
k+2

...

τw̃�
n

Ã

⎞⎟⎟⎟⎟⎠ = Q̃

(
R̃

0

)
.(8.10)

The column downdating process stops here if w̃k+1 is not an approxi-null vector.
Otherwise, we will stack τw̃�

k+1 as the top row and update the QR decomposition in
(8.10): ⎛⎜⎜⎜⎜⎜⎜⎝

τw̃�
k+1

τw̃�
k+2

...

τw̃�
n

Ã

⎞⎟⎟⎟⎟⎟⎟⎠ =

(
1

Q̃

)⎛⎜⎝ τw̃n

R̃

0

⎞⎟⎠(8.11)

=

[(
1

Q̃

)(
G�

I

)](
R̆

0

)
= Q̆

(
R̆

0

)
,

where G is a product of n− 1 Givens rotations that transforms the upper Hessenberg

matrix (
τw̃k+1

R̃
) into upper triangular form R̆.

The column downdating algorithm can be summarized as follows:
• Input: matrix A, approxi-rank k, scaling factor τ , threshold θ, orthonormal

basis {wk+1, . . . ,wn} for the approxi-null space W, the QR decomposition
Q and R as in (8.1), a column index l indicating the lth column of A is to be
deleted.

• Form W = [wk+1, . . . ,wn] and the Householder transformation H in (8.8).

• Set Ŵ = W H� and η as in (8.8).

• Get W̃ = [w̃k+1, . . . , w̃n] by deleting the lth row of Ŵ and normalizing the
first column afterward.

• Form the QR decomposition (8.9).

• Apply the QR downdating process (8.2) on (8.9) to obtain Q̃ and R̃ in (8.10).

• If ‖ Ãw̃k+1 ‖2 > θ, then
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– Output k, W̃ = [w̃k+2, . . . , w̃n], Q̃, R̃, the approxi-rank stays at k.

else

– Update the QR decomposition as in (8.11).
– Output k = k− 1, W̃ = [w̃k+1, . . . , w̃n], Q̆, R̆, the approxi-rank reduces

by one.

end if
It requires O(n2) flops to carry out the column downdating process.

8.3. Row updating. Inserting a row b� into A for a new matrix Â, the approxi-
rank of Â will remain the same unless the approxi-rank k of A is less than n. In such
cases, it is clear that the approxi-null space Ŵ of Â is a subset of the approxi-null space
W of A, and they are equal if b is approximately orthogonal to W. Namely, W = Ŵ
if ‖W�b ‖2 ≤ θ, where W = [wk+1, . . . ,wn] ∈ R

n×(n−k), whose columns form an
orthogonal basis of W. When ‖W�b ‖2 > θ, the approxi-rank of the new matrix Â

becomes k+1. To find an orthonormal basis of Ŵ in this case, we first let y = W�b ∈
R

n−k and H ∈ R
(n−k)×(n−k) be the Householder transformation such that Hy =

(‖y‖2, 0, . . . , 0)�. Denoting H = [yk+1, . . . ,yn], we have {y}⊥ = span{yk+2, . . . ,yn}.
For E = [yk+2, . . . ,yn] ∈ R

(n−k)×(n−k−1), let WE = [ŵk+2, . . . , ŵn] ∈ R
n×(n−k−1).

The columns {ŵk+2, . . . , ŵn} form an orthonormal basis for Ŵ because

(WE)
�

(WE) = E� (W�W
)
E = I(n−k−1)×(n−k−1),

and for j = k + 2, . . . , n, ‖ Âŵj ‖2 = ‖Aŵj ‖2 since b� W E = y�E = 0.
To update the QR decomposition in (8.1), we apply the QR downdating strategy

in (8.2) on (
τHW�

A

)
=

[(
H

I

)
Q

](
R

0

)
= Q̆

(
R

0

)
(8.12)

to delete its first row, yielding(
τE�W�

A

)
= Q̂

(
R̂

0

)
.(8.13)

When inserting a new row b� into A, let P be the permutation matrix that swaps
the new row to the top. It follows that

(
τE�W�

Â

)
= P

⎛⎜⎝ b�

τE�W�

A

⎞⎟⎠ = P

(
1

Q̆

)⎛⎜⎝b�

R̂

0

⎞⎟⎠ = Q̃

(
R̃

0

)
,(8.14)

where

Q̃ = P

(
1

Q̆

)
G�, G

⎛⎜⎝b�

R̂

0

⎞⎟⎠ =

(
R̃

0

)
,

and G is the product of n Givens rotations.
Our row-updating algorithm can be summarized as follows:
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• Input: matrix A, approxi-rank k, scaling factor τ , threshold θ, orthonormal
basis {wk+1, . . . ,wn} for the approxi-null space W, the QR decomposition
Q and R as in (8.1), a new row b�, and the row index l indicating b� will
be inserted above the lth row of A.

• Form W = [wk+1, . . . ,wn].

• If ‖W�b ‖2 < θ, then

– Update the QR decomposition (8.1) for inserting b�

– Output k, W and the updated Q, R.

else

– Construct the Householder transformation H such that H(W�b) =
(∗, 0, . . . , 0)�.

– Use H to get Q̆ as in (8.12).
– Downdate the QR decomposition (8.12) to obtain Q̂ and R̂ in (8.13)
– Insert b� into A and update the QR decomposition (8.13) to obtain Q̃

and R̃ in (8.14)
– Output k = k + 1, W̃ = WE, Q̃, R̃, the approxi-rank increases by one.

end if

8.4. Row downdating. Let Ǎ be the matrix obtained from A by deleting its
lth row r�. For a proper permutation matrix P , we have, from (8.1),⎛⎜⎝ r�

τW�

Ǎ

⎞⎟⎠ = P

(
τW�

A

)
= [PQ]

(
R

0

)
.(8.15)

Applying the QR downdating algorithm (8.2) on this QR decomposition yields

Ã =

(
τW�

Ǎ

)
= Q̌

(
Ř

0

)
.(8.16)

Obviously, the approxi-null space Ŵ of Â contains the approxi-null space W of A. For
the possible emergence of an extra approxi-null vector of Â, we may apply the Gauss–
Newton iteration (3.2) on the matrix Ř to calculate the singular vector. As explained
earlier, if this singular vector is indeed an extra approxi-null vector, it is orthogonal
to columns of W and forms an orthonormal basis for Ŵ along with columns of W .
We omit the pseudocode since the process is a straightforward application of QR
downdating algorithm.

Remark. As mentioned in [6], row downdating may be difficult and complex
for UTV decomposition: “. . . [W]e want to emphasize that numerically stable UTV
downdating algorithms have become very complex, and the computational overhead
can become quite large, especially when the exact rank decreases. It may be worth
to consider whether recomputation of the ULV decomposition . . . is to be preferred.”
In comparison, row downdating in our algorithm seems quite straightforward.

8.5. Numerical results on updating and downdating. Our updating and
downdating algorithms have been thoroughly tested for all circumstances of insert-
ing/deleting rows or columns. Since UTV Tools [6] contains only row updating and
row downdating modules, we shall restrict our comparisons with UTV Tools to those
situations only. The results of our method on column updating and downdating are
quite similar.
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Table 8.1

Comparisons on random row updating with changing approxi-ranks.

Number of random rows inserted

1 2 3 · · · 8 9 10

Time urv up 0.66 0.64 0.63 · · · 0.67 0.67 0.49

(seconds) rowup 1.00 0.98 0.95 · · · 0.98 0.98 0.98

Approxi-null space urv up 1e-8 1e-8 1e-8 · · · 3e-8 1e-8 0.0

accuracy rowup 3e-9 2e-8 2e-8 · · · 4e-8 2e-9 0.0

The two modules in UTV Tools for row updating and row downdating are urv up

and urv dw, respectively. The updating module urv up works on inserting a row
at the bottom, and the downdating module urv dw applies to deleting the top row.
Row inserting/deleting may or may not change the approxi-rank. Our tests show that
there seems to be a significant difference in performance for both modules of UTV
Tools in rank invariant and rank altering cases.

All tests in this section are conducted on the same computer listed in section 7.
Both urv up and urv dw are set to use their default control parameters, while our
codes rowup and rowdown are set to optimize the speed.

8.5.1. Row updating with changing approxi-ranks. The test matrix is ini-
tially a 1000 × 500 matrix having an approxi-nullity 10 with threshold 10−8. The
approxi-rank gap is γ = 104. After executing our RankRev and hurv on this ini-
tial matrix separately, a random vector is inserted at the bottom in each updating
step. Therefore, every update results in an increase in the approxi-rank by one.
Both urv up in UTV Tools and our rowup have no difficulty identifying the in-
creasing approxi-ranks with nearly identical accuracy in the updated approxi-null
space. As shown in Table 8.1, urv up is considerably faster than our rowup in this
case.

8.5.2. Row updating without changing approxi-ranks. When no changes
in the approxi-rank occur for row updating, the code urv up in UTV Tools seems
to have difficulties in identifying the approxi-ranks during the recursive updating,
especially when the approxi-rank gap is not large enough. Even when the gap is
large, urv up is still prone to miscalculating the approxi-rank at certain points. In
contrast, our code rowup always outputs accurate approxi-ranks in all occasions and
runs more than twice as fast.

Table 8.2 shows this event in a typical example. The initial matrix has the same
features as the one in section 8.5.1 except the approxi-rank gap γ is increased to
106 since urv up fails too soon for the gap 104. A sequence of rows consisting of
linear combinations of the existing rows are inserted at the bottom one at a time.
The approxi-rank should stay at 490. However, after certain steps in the recursive
updating, urv up outputs inaccurate approxi-ranks.

8.5.3. Row downdating without changing approxi-ranks. When deleting
a row does not change the approxi-rank, our code rowdown and its counterpart
urv dw in UTV Tools show similar performance in both efficiency and accuracy. The
test starts by constructing an initial matrix A ∈ R

1000×500 with the same features as
in the initial matrix in section 8.5.1. Then 20 rows that are linear combinations of
the existing rows of A are generated and stacked on top of A. Deleting those rows
one by one does not alter the approxi-rank. Table 8.3 shows the results.
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Table 8.2

Comparisons on random row updating without changing approxi-ranks. Data in parentheses
indicate inaccurate computation.

Number of linearly dependent rows inserted

1 2 · · · 5 6 7 · · · 10

Time urv up 1.09 1.14 · · · 1.11 0.69 0.69 · · · 1.11

(seconds) rowup 0.39 0.50 · · · 0.39 0.48 0.59 · · · 0.42

Approxi-null urv up 2e-6 4e-6 · · · 3e-6 (0.15) (0.06) · · · (0.14)

space error rowup 1e-9 1e-9 · · · 2e-9 2e-9 3e-9 · · · 3e-9

Approxi-rank urv up 490 490 · · · 490 (491) (492) · · · (492)

output rowup 490 490 · · · 490 490 490 · · · 490

Table 8.3

Comparisons on random row downdating without changing approxi-ranks.

Number of linear dependent rows deleted

1 2 3 · · · 8 9 10

Time urv dw 0.75 0.73 0.78 · · · 0.75 0.72 0.72

(seconds) rowdown 0.78 0.78 0.89 · · · 0.76 0.70 0.70

Approxi-null urv dw 6e-8 1e-7 1e-7 · · · 4e-7 4e-7 4e-7

space error rowdown 6e-8 1e-7 1e-7 · · · 4e-7 4e-7 4e-7

8.5.4. Row downdating with decreasing approxi-ranks. As mentioned in
[6], UTV decomposition may have difficulties in downdating especially when it reduces
the approxi-ranks. This phenomenon does occur in the experiment we conducted
below. We downdate a matrix of 1030 × 500 obtained by stacking 30 random rows
on top of a matrix A of size 1000× 500 with an approxi-nullity 30 within a threshold
of 10−8. The approxi-rank gap is set at a relatively large threshold 106. During the
test, the 30 random rows are deleted one-by-one and both urv dw and rowdown

are used to downdate the approxi-rank and the approxi-null space. The approxi-rank
should decrease by one at every downdating step.

Table 8.4 shows that when downdating the approxi-rank accurately as in steps
1 to 15, both urv dw and rowdown exhibit similar efficiency and accuracy. At
step 16, urv dw miscalculates the approxi-rank by one and this error is carried on
in remaining downdating steps, whereas our code rowdown always produces the
correct approxi-rank.

It is not clear whether the inaccurate outputs of UTV Tools in those difficult tests
in both sections 7 and 8.5 are inherent in the UTV decomposition or the results of
coding errors. They are under investigation by the authors of UTV Tools.

9. Applications.

9.1. Computing polynomial GCD. A new method for computing the GCD
of univariate polynomials plays a key role in establishing a novel algorithm that accu-
rately calculates polynomial roots and their multiplicities without using multiprecision
arithmetic even if the polynomial is inexactly given [19]. This root-finding method is
implemented in the MATLAB package MultRoot [20]. Our rank-revealing method
and recursive column updating constitute indispensable components in the new GCD
finder and the root finder.

For any polynomial h(x) = h0x
k + h1x

k−1 + · · · + hk, its coefficient vector is
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Table 8.4

Comparisons on random row downdating with changing approxi-ranks. Data in parentheses
indicate inaccurate computation.

Number of linearly independent rows deleted

1 · · · 15 16 17 · · · 30

Approxi-null urv dw 9e-10 · · · 6e-10 (0.89) (0.89) · · · (0.87)

space error rowdown 9e-10 · · · 2e-9 3e-9 3e-9 · · · 6e-8

Approxi-rank urv dw 499 · · · 485 (485) (484) · · · (471)

output rowdown 499 · · · 485 484 483 · · · 470

Time urv dw 1.06 · · · 1.17 — — · · · —

(seconds) rowdown 0.95 · · · 1.03 1.03 1.05 · · · 1.03

denoted by h = (h0, h1, . . . , hk)
�. Let p(x) and q(x) be polynomials of degrees n and

m, respectively. Write

p(x) = p0x
n + p1x

n−1 + · · · + pn,

q(x) = q0x
m + q1x

m−1 + · · · + qm,

with n ≥ m. A polynomial u(x) is a GCD of p(x) and q(x), denoted by GCD (p, q),
if there are polynomials v(x) and w(x) such that

u(x)v(x) = p(x),

u(x)w(x) = q(x),
(9.1)

where v(x) and w(x) share no common roots (or, equivalently, no common factors).
The (n + r) × (n−m + 2r) matrix

Sr(p, q) =

r︷ ︸︸ ︷ n−m+r︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1
. . .

...
. . . p0

pn p1

. . .
...

pn

q0

q1
. . .

...
. . . q0

qm q1
. . .

...

qm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, n ≥ m, r = 1, 2, . . . ,m,

is called the rth Sylvester subresultant matrix of p and q. The following results are
well known [14, 19]:

• Sm(p, q) is of rank n + m− 2l + 1 if and only if deg(GCD (p, q)) = l ≥ 1.
• Sr(p, q) has full rank if and only if deg(GCD (p, q)) ≤ m− r.
• If Sr−1(p, q) is of full rank and Sr(p, q) is rank deficient, then the null space

of Sr(p, q) is spanned by the vector
(

w
−v

)
whose components v ∈ R

n−m+r and w ∈ R
r

are coefficient vectors of v(x) and w(x) in (9.1), respectively. Also, deg(GCD (p, q)) =
m− r + 1.

From those results, one may calculate GCD (p, q) by finding the first approxi-rank
deficient Sylvester matrix Sr(p, q) in the sequence

S1(p, q), S2(p, q), . . . , Sm(p, q)
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and a (single vector) basis of the approxi-null space. A GCD finder constructed in
this way can be illustrated in the following process.

First, we form S1(p, q), set the first permutation P1 = I(n−m+2)×(n−m+2), and
calculate its QR decomposition

T1 = S1(p, q)P1

= Q .

R

1

1

If S1(p, q) is approxi-rank deficient, then GCD (p, q) = q. The process needs to con-
tinue only if S1(p, q) is of full approxi-rank. In general, if Sj(p, q) is of full approxi-rank
with its pivoted QR decomposition Tj = Sj(p, q)Pj = QjRj being available, we attach
one zero row to the bottom of Tj and add two columns

[
Q�

j

1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

q0
...

qm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

[
Q�

j

1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

p0

...

pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
to the right of the resulting matrix to form Tj+1. With a proper permutation matrix
Pj+1, we have Tj+1P

�
j+1 = Sj+1(p, q). Therefore,

Tj = Sj(p, q)Pj

=

Rj

jQ

Rj

jQ
1

=

Rj+1

Q j+1 = Sj+1(p, q)Pj+1 = Tj+1.
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Updating the QR decomposition of Tj+1 = Sj+1(p, q)Pj+1 requires only O(n + m)
additional flops. We apply the iteration (3.2) on Rj+1 for an approxi-null vector. If
Rj+1 (or, equivalently, Sj+1(p, q)) remains in full approxi-rank, the process continues
to j + 2 in a similar way. It stops at the (column permuted) kth Sylvester resultant
matrix Tk = Sk(p, q)Pk, the first to be approxi-rank deficient.

It can be shown that the null space of Tk is of dimension one with a single null
vector z ∈ R

n−m+2k in its basis. Let(
w

−v

)
= P�

k z with w ∈ R
k and v ∈ R

n−m+k.

Then v and w are coefficient vectors of v(x) and w(x) satisfying (9.1). Now u(x) =
GCD (p, q) is the quotient of p(x) and v(x). However, it is numerically unstable to
use polynomial synthetic division p(x) ÷ v(x) for finding u(x) [19]. Instead, we use
the “least squares division” [19] which solves the coefficient vector u of u(x) as a least
squares solution to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

v1
. . .

...
. . . v0

vs v1

. . .
...

vs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

...

...

...

pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u ∈ R

m−k+2, s = n−m + k − 1.(9.2)

The procedure listed in Figure 9.1 illustrates the calculation of deg(GCD (p, q)) and
the coefficients of u(x), v(x), and w(x) in (9.1). To achieve highest attainable accu-
racy, the Gauss–Newton iteration on a quadratic system based on (9.1) can be applied
to refine the GCD [19].

9.2. Nonisolated solutions to a polynomial system. When a numerical
solution x0 of a system of polynomial equations

P (x) =
(
p1(x), . . . , pn(x)

)
= 0, where x = (x1, . . . , xn)� ∈ C

n,

is obtained, we wish to identify whether x0 is an isolated solution of P (x) = 0. While
in the previous sections we mainly focused our attention on the development of our
method and algorithm in the real vector space R

n, the entire content remains valid
in C

n with proper adjustments.
If the Jacobian of P (x), denoted by Px(x), at x0 allows no small (relative to

‖Px(x0)‖∞) singular values, x0 is of course an isolated solution. When our rank-
revealing algorithm is applied to Px(x0) and the result shows it admits very small
singular values, x0 may lie on a solution component of P (x) = 0 with positive di-
mension or it may still be an isolated zero with multiplicity ≥ 2. Our strategy to
distinguish those cases is given below.

If Px(x0) permits only one singular value that appears tiny and if x0 is not an iso-
lated solution, then x0 must lie on a one- (complex) dimensional solution component
M of P (x) = 0. We will begin to identify this path to a substantial length by a path
following scheme developed in [9]. If this attempt fails, no such solution component
M may exist and x0 will be classified as an isolated solution of P (x) = 0.
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Pseudocode GCD:

input: coefficient vectors for p(x), q(x)
output: d = deg(GCD (p, q)),

coefficients of v(x) and w(x) in (9.1)

QR decomposition QR = S1(p, q)
For j = 1, 2, . . . ,m do

Gauss--Newton iteration (3.2) on R, get � and x
if � is small enough, then

extract coefficients of v(x) and w(x) from x
solve (9.2) for the coefficients of u(x)
exit

else

if j ≤ m then

update Qj+1Rj+1 = Sj+1(p, q)Pj+1

else

deg(GCD (p, q)) = 0, v(x) = p(x), w(x) = q(x)
end if

end if

end do

Fig. 9.1. Pseudocode of GCD.

When Px(x0) has k > 1 very small singular values as a result of our rank-revealing
algorithm, we augment P (x) = 0 with k − 1 generic hyperplanes

aH
j (x − x0) = 0, j = 1, . . . , k − 1,

at x0. The enlarged system

P̂ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (x) = 0,

aH
1 (x − x0) = 0

...

aH
k−1(x − x0) = 0

(9.3)

will produce a one-dimensional component M̂ of P̂ (x) = 0 if the solution component
M of P (x) = 0 to which x0 belongs is of dimension k. Thus, the assertion that

dim(M) = k is valid only if we can identify M̂ by following this path to a satisfactory

length. If the path following cannot be carried out successfully, such a component M̂
may not exist. We will then remove hyperplane aH

k−1(x−x0) = 0 in (9.3) and restart

our effort to identify the one-dimensional component
̂̂
M produced by

̂̂
P (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (x) = 0,

aH
1 (x − x0) = 0

...

aH
k−2(x − x0) = 0.

(9.4)
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The existence of such a component
̂̂
M of

̂̂
P = 0 implies the solution component M of

P (x) = 0 containing x0 is of dimension k−1. If it fails, the process may be continued
in the same manner and the dimension of M will ultimately (very soon in practice) be
determined. Of course, when dim(M) = 0, x0 is an isolated zero even though Px(x0)
may have very small singular values from our rank-revealing algorithm.

Example (see [15]). Consider the polynomial system P (x) = (p1(x), p2(x), p3(x)),
x = (u, v, w) ∈ C

3, where

p1(x) = (v − u2) · (u2 + v2 + w2 − 1)(u− 0.5),

p2(x) = (w − u3)(u2 + v2 + w2 − 1)( v − 0.5),

p3(x) = (v − u2)(w − u3)(u2 + v2 + w2 − 1)(w − 0.5).

Obviously, the solution set of P (x) = 0 consists of
1. a two-dimensional component u2 + v2 + w2 = 1;
2. four one-dimensional components

(a) line u = 0.5, v = (0.5)3;
(b) line u =

√
0.5, v = 0.5;

(c) line u = −
√

0.5, v = 0.5;
(d) twisted cubic v = u2, w = u3;

3. one isolated solution (u, v, w) = (0.5, 0.5, 0.5).
When the polyhedral homotopy continuation method [10] was used to solve P (x) = 0,
129 numerical solutions were obtained. We applied our method to all those solutions,
and the result shows

• 112 of them lie on the two-dimensional component,
• 16 of them lie on one-dimensional components (four on line 2a, four on line

2b, four on line 2c, four on line 2d),
• one isolated solution.

When we classified a solution x0 that is lying on a two-dimensional component of
P (x) = 0, for instance, we substituted x0 into u2 +v2 +w2 = 1 to verify the accuracy
of our identification, and the results were all accurate.

Acknowledgments. The authors wish to thank R. D. Fierro, P. C. Hansen,
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Abstract. We investigate the behavior of isotropic invariant subspaces of skew-Hamiltonian
matrices under structured perturbations. It is shown that finding a nearby subspace is equivalent
to solving a certain quadratic matrix equation. This connection is used to derive meaningful error
bounds and condition numbers that can be used to judge the quality of invariant subspaces computed
by strongly backward stable eigensolvers.
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1. Introduction. A real 2n× 2n matrix of the form

W =

[
A G
H AT

]
, G = −GT , H = −HT ,(1.1)

with A,G,H ∈ R
n×n is called skew-Hamiltonian. The imposed structure has a num-

ber of consequences for the eigenvalues and eigenvectors of W ; one is that each eigen-
value appears at least twice. Hence, well-known results from matrix perturbation
theory predict that the eigenvectors of W are extremely ill conditioned; i.e., they may
change drastically under small perturbations. For example, consider the parameter-
dependent matrix

W (ε1, ε2) =

⎡⎢⎢⎣
1 0 0 0
0 2 0 0
ε1 ε2 1 0
−ε2 0 0 2

⎤⎥⎥⎦.
The vector e1 = [1, 0, 0, 0]T is an eigenvector of W (0, 0) associated with the eigenvalue
λ = 1. No matter how small ε1 > 0 is, any eigenvector of W (ε1, 0) associated with
λ has the completely different form [0, 0, α, 0]T for some α �= 0. On the other hand,
W (0, ε2) has an eigenvector [1, 0, 0, ε2]

T rather close to e1. The fundamental difference
between W (ε1, 0) and W (0, ε2) is that the latter is a skew-Hamiltonian matrix while
the former is not.

In this paper we investigate the behavior of eigenvectors of skew-Hamiltonian
matrices under perturbations that are structure-preserving, as in the case of W (0, ε2).
More generally, the discussion is concerned with isotropic invariant subspaces, which
are, loosely speaking, the invariant subspaces of W associated with at most one copy of
each eigenvalue. We derive error bounds that allow users of strongly backward stable

∗Received by the editors June 7, 2003; accepted for publication (in revised form) by B. T.
K̊agström March 3, 2004; published electronically May 6, 2005. This research was supported by
the DFG Research Center “Mathematics for Key Technologies” (FZT 86) in Berlin and a Marie
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†Institut für Mathematik, MA 4-5, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, Germany

(kressner@math.tu-berlin.de).
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eigensolvers [11, 19] to quantify their obtained results. Furthermore, applications that
directly depend on the computation of isotropic invariant subspaces such as certain
Riccati equations [13] and quadratic eigenvalue problems [18] may benefit from these
bounds.

The perturbation theory given here owes much to the fact that there exist consid-
erably simple condensed forms for skew-Hamiltonian matrices. Section 2 reviews some
of these forms along with other theoretical tools required later on. In section 3, the
connection between finding a nearby isotropic subspace and solving a quadratic ma-
trix equation is explained. The solution of this equation is complicated by an artificial
singularity; its lengthy derivation is described in section 4. The subsequent section
contains the central result of this work: Theorem 5.2 gives an upper bound for the
sensitivity of isotropic invariant subspaces. This will lead us to define a corresponding
condition number, and section 6 contains some discussion on how this quantity can
be computed. Finally, in section 7 a numerical example is presented to illustrate the
use of the derived condition number.

2. Basic tools. Equivalent to the block representation (1.1), a skew-Hamiltonian
matrix W is characterized by the fact that JnW is skew-symmetric, where Jn =

[ 0 In
−In 0 ] and In is the n× n identity matrix. In the following we will drop the sub-

script n whenever the dimension of the corresponding matrix is clear from its context.
A matrix S ∈ R

2n×2n is called symplectic if STJS = J . It is easy to show that in this
case JS−1WS is skew-symmetric; thus symplectic similarity transformations preserve
skew-Hamiltonian structures. Moreover, an orthogonal matrix U is symplectic if and
only if it has the representation

U =

[
U1 U2

−U2 U1

]
, U1, U2 ∈ R

n×n.(2.1)

We will call such a matrix orthogonal symplectic. An important property of U is that
its first k ≤ n columns span an isotropic subspace.

Definition 2.1. A subspace X ⊂ R
2n is called isotropic if JX ⊥ X .

Van Loan [19] showed that for any skew-Hamiltonian matrix W there exists an
orthogonal symplectic matrix U so that

UTWU =

[
Ã G̃

0 ÃT

]
,(2.2)

where Ã is in real Schur form. Moreover, real eigenvalues and complex conjugate
pairs of eigenvalues may appear in any desirable order on the diagonal of Ã. Closely
related to (2.2) is the following characterization of isotropic invariant subspaces of W .

Lemma 2.2. Let W ∈ R
2n×2n be a skew-Hamiltonian matrix, and let X ∈

R
2n×k (k ≤ n) have orthonormal columns. Then the columns of X span an isotropic

invariant subspace of W if and only if there exists an orthogonal symplectic matrix
U = [X,Z, JTX, JTZ] with some Z ∈ R

2n×(n−k) so that

UTWU =

⎡⎢⎢⎣
k n− k k n− k

k A11 A12 G11 G12

n− k 0 A22 −GT
12 G22

k 0 0 AT
11 0

n− k 0 H22 AT
12 AT

22

⎤⎥⎥⎦.(2.3)
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Proof. Assume that the columns of X span an isotropic subspace. Then the
symplectic QR factorization [2] can be used to construct an orthogonal symplectic
matrix U = [X,Z, JTX, JTZ]. Moreover, if the columns of X span an invariant
subspace, then [Z, JTX, JTZ]TWX = 0, completing the proof of (2.3). The other
direction is straightforward.

As the spectral properties of A11 = XTWX and[
A22 G22

H22 AT
22

]
= [Z, JTZ]TW [Z, JTZ]

do not depend on the choice of bases, the following definition can be used to adapt
the notion of simple invariant subspaces to skew-Hamiltonian matrices.

Definition 2.3. Let the orthonormal columns of X ∈ R
2n×k span an isotropic

invariant subspace X of a skew-Hamiltonian matrix W . Furthermore, choose Z ∈
R

2n×(n−k) so that U = [X,Z, JTX, JTZ] is orthogonal symplectic and UTWU has

the form (2.3). Then X is called semisimple if λ(A11)∩ λ([
A22 G22

H22 AT
22

]) = ∅ and A11 is

nonderogatory, i.e., each eigenvalue of A11 has geometric multiplicity one.
Semisimple subspaces allow us to block diagonalize W by a simple transformation.

For this purpose, we require two facts about Sylvester equations. The first is a well-
known result. Proofs can be found in many places; see, e.g., [8].

Proposition 2.4. The Sylvester equation

AP − PB = C

with A ∈ R
n×n, B ∈ R

m×m, and C ∈ R
n×m has a unique solution P ∈ R

n×m if and
only if λ(A) ∩ λ(B) = ∅.

The second is concerned with a certain type of singular Sylvester equations that
do not fit into the framework of Proposition 2.4.

Proposition 2.5. The Sylvester equation

AP − PAT = G(2.4)

is solvable for all skew-symmetric matrices G if and only if A is nonderogatory. In
this case, any solution P to (2.4) is real and symmetric.

Proof. This result can be found in [4]. Actually, the second part is not explicitly
stated there but follows easily from the proof of Proposition 5 in [4].

Propositions 2.4 and 2.5 can be combined to successively annihilate the blocks
A12, G12, and G11 in the block representation (2.3) for a semisimple subspace. To
see this, solve

A11

[
P1 P2

]
−
[
P1 P2

] [A22 G22

H22 AT
22

]
= −

[
A12 G12

]
,

and construct the symplectic matrix

SP =

⎡⎢⎢⎣
I P1 −P1P

T
2 P2

0 I PT
2 0

0 0 I 0
0 0 −PT

1 I

⎤⎥⎥⎦,
yielding

S−1
P

⎡⎢⎢⎣
A11 A12 G11 G12

0 A22 −GT
12 G22

0 0 AT
11 0

0 H22 AT
12 AT

22

⎤⎥⎥⎦SP =

⎡⎢⎢⎣
A11 0 G̃11 0
0 A22 0 G22

0 0 AT
11 0

0 H22 0 AT
22

⎤⎥⎥⎦(2.5)
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with a skew-symmetric matrix G̃11. Next, use a solution of

A11Q−QAT
11 = −G̃11(2.6)

to construct

SQ =

⎡⎢⎢⎣
I 0 Q 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎦.
The matrix SQ is symplectic since Proposition 2.5 guarantees that Q is symmetric.
If the similarity transformation associated with SQ is applied to the right-hand side

of (2.5), then the block G̃11 is annihilated. Note that there is a lot of freedom in the
choice of Q as (2.6) admits infinitely many solutions. From a numerical point of view
the matrix Q should be chosen so that the condition number of the product SPSQ is
as small as possible.

3. Perturbations and a quadratic matrix equation. Consider an isotropic
invariant subspace X of a skew-Hamiltonian matrix W . Given a skew-Hamiltonian
perturbation E of small norm we now investigate the question of whether W +E has
an isotropic invariant subspace X̂ close to X . What follows is in many aspects similar
to the treatment of general matrices by Stewart [14, 15]; however, we end up with a
quadratic matrix equation of quite a different nature.

Let the columns of X form an orthonormal basis for X . Apply Lemma 2.2 to con-
struct a matrix Y = [Z, JTZ, JTX] so that Ũ = [X,Y ] is an orthogonal matrix. Note
that ŨT (W +E)Ũ is a permuted skew-Hamiltonian matrix and can be partitioned as

ŨT (W + E)Ũ =

⎡⎣
k 2(n− k) k

k W11 WT
23J

T
n−k W13

2(n− k) W21 W22 W23

k W31 WT
21Jn−k WT

11

⎤⎦,(3.1)

where W13 and W31 are skew-symmetric matrices, and W22 is skew-Hamiltonian. For
E = 0, the matrices W21 and W31 are zero and the other blocks in (3.1) correspond
to the block representation (2.3) as follows:

W11 = A11, W13 = G11, W22 =

[
A22 G22

H22 AT
22

]
, W23 =

[
−GT

12

AT
12

]
.

Now, let

X̂ =

(
X + Y

[
P
Q

])
(I + PTP + QTQ)−1/2,(3.2)

Ŷ = (Y −X
[
PT QT

]
)

(
I +

[
P
Q

] [
PT QT

])−1/2

,(3.3)

where P ∈ R
2(n−k)×k and Q ∈ R

k×k are matrices to be determined so that X̂ =
span(X̂) is an isotropic invariant subspace of W + E. This is equivalent to the con-
ditions QT −Q = PTJP and Ŷ T (W + E)X̂ = 0. In terms of (3.1), the latter can be
written as [

P
Q

]
W11 −

[
W22 W23

WT
21J WT

11

] [
P
Q

]
+

[
P
Q

] [
JW23

WT
13

]T [
P
Q

]
=

[
W21

W31

]
.(3.4)
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Once we have solved (3.4), the sines of the canonical angles between X and X̂ are the
singular values of

Y T X̂ =

[
P
Q

]
(I + PTP + QTQ)−1/2;

see, e.g., [16, sect. I.5]. We will see that (3.4) may admit infinitely many solutions
satisfying QT −Q = PTJP . In the interest of a small distance between X and X̂ , a
solution of small norm is preferred.

4. A solution of the quadratic matrix equation. Solving (3.4) is compli-
cated by two facts. First, we have to guarantee that the solution satisfies QT −Q =
PTJP , and second, the linear part of (3.4) is close to a singular linear matrix equation
if W21 ≈ 0. Unfortunately, it is not easy to see from the present formulation of (3.4)
that this singularity is, due to the special structure of the nonlinearities and the right-
hand side, artificial. Both issues can be more easily addressed after a reformulation
of (3.4).

4.1. Skew-symmetrizing the bottom part. Let

R = Q + PT J̃P, J̃ =

[
0 In−k

0 0

]
;(4.1)

then R is symmetric if and only if QT −Q = PTJP . The following lemma reveals a
particular useful nonlinear matrix equation satisfied by (P,R).

Lemma 4.1. Let R = Q + PT J̃P be symmetric. Then the matrix pair (P,Q) is
a solution of (3.4) if and only if (P,R) is a solution of[

P
R

]
W11 −

[
W22 W23

WT
21J WT

11

] [
P
R

]
+

[
Φ1(P,R)

Φ2(P,R) − PTJW21

]
=

[
W21

W31

]
,(4.2)

where

Φ1(P,R) = W23(P
T J̃P ) + P (JW23)

TP + PW13(R− PT J̃P ),

Φ2(P,R) = (R− PT J̃TP )WT
23J

TP − PTJW23(R− PT J̃TP )T

+(R− PT J̃P )TW13(R− PT J̃P ) − PTJW22P.

Proof. Adding the top part of (3.4) premultiplied by PTJ ,

PTJW21 = PTJPW11 − PTJW22P − PTJW23Q+ PTJP (JW23)
TP + PTJPW13Q,

to the bottom part of (3.4) yields the transformed equation (4.2) after some basic
algebraic manipulations.

The reformulated equation (4.2) has the advantage that the nonlinear function
Φ2(P,R), the right-hand side term W31, as well as the coupling term −WT

21JP −
PTJW21 are skew-symmetric. Hence, these terms belong to the range of the operator
R 
→ RW11 − WT

11R provided that W11 is nonderogatory. This indicates that the
singularity caused by this operator is indeed artificial.

4.2. Solving the decoupled linearized equation. Linearizing (4.2) around
(P,R) = (0, 0) yields

T̃ (P,R) =

[
W21

W31

]
,(4.3)
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where the operator T̃ : R
2(n−k)×k × R

k×k → R
2(n−k)×k × R

k×k is given by

T̃ : (P,R) 
→
[
P
R

]
W11 −

[
W22 W23

WT
21J WT

11

] [
P
R

]
−
[

0
PTJW21

]
.

Note that we sometimes identify (X,Y ) ∼ [XY ] for notational convenience. It is

assumed that the perturbation E is considerably small implying that W21 is small.
Hence, WT

21JP and PTJW21 can be regarded as weak coupling terms. Let us neglect
these terms and consider the operator

T : (P,R) 
→
[
P
R

]
W11 −

[
W22 W23

0 WT
11

] [
P
R

]
,(4.4)

which allows for an easy characterization. In the following lemma, Sym(k) denotes the
set of all symmetric k×k matrices, and Skew(k) denotes the set of all skew-symmetric
k × k matrices.

Lemma 4.2. Consider the operator T defined by (4.4) with domain and codomain
restricted to dom T = R

2(n−k)×k×Sym(k) and codom T = R
2(n−k)×k×Skew(k), respec-

tively. Then T is onto if and only if W11 is nonderogatory and λ(W11)∩λ(W22) = ∅.
Proof. If W11 is nonderogatory and λ(W11) ∩ λ(W22) = ∅, then we can apply

Propositions 2.5 and 2.4 combined with backward substitution to show that T is
onto. For the other direction, assume that T is onto. Proposition 2.5 implies that
W11 is nonderogatory; it remains to show that λ(W11) ∩ λ(W22) = ∅. By continuity,
we may assume w.l.o.g. that there is a nonsingular matrix X so that Λ = X−1W11X
is diagonal with diagonal elements λ1, . . . , λk ∈ C. Then there is a matrix R̃0 ∈ C

k×k

so that every solution of the transformed equation R̃Λ − Λ̄R̃ = X−1W31X has the
form

R̃ = R̃0 +

k∑
i=1

αieie
T
i , α1, . . . , αk ∈ C.

Inserting this representation into the equation P̃Λ − W22P̃ − W23X
−T R̃ = W13X

leads to the k separate equations

[
λiI −W22 bi

] [ p̃i
αi

]
= (W13X + W23R̃0)ei,(4.5)

where p̃i and bi denote the ith columns of P̃ and W23X
−T , respectively. Equation (4.5)

has a solution for any W13 ∈ R
2(n−k)×k if and only if [λiI − W22, bi] has full rank

2(n− k). This implies λi �∈ λ(W22), since otherwise

rank
([

λiI −W22 bi
])

≤ rank(λiI −W22) + 1 ≤ 2(n− k) − 1,

where we used the fact that the geometric multiplicity of each eigenvalue of the skew-
Hamiltonian matrix W22 is at least two [4, Thm. 1]. Thus λ(W11) ∩ λ(W22) = ∅,
which concludes the proof.

For the remainder of this section only the restricted operator T will be considered,
and it will be assumed that this operator is onto. Note that for E = 0 the latter is
equivalent to the assumption that X is semisimple; see Definition 2.3. The dimensions
of the matrix spaces Skew(k) and Sym(k) differ by k. More precisely, it can be shown
that the set of solutions corresponding to a particular right-hand side in the codomain
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of T form an affine subspace of dimension k [4]. In view of an earlier remark, one
should pick a solution that has minimal norm. Using the Frobenius norm this solution
is uniquely determined as the following lemma shows.

Lemma 4.3. Let T be defined as in (4.4), and let (W21,W31) ∈ codom T . Then
there is one and only one matrix pair (P�, R�) ∈ dom T satisfying

‖(P�, R�)‖F = min
(P,R)∈dom T

{
‖(P,R)‖F | T (P,R) =

[
W21

W31

]}
.(4.6)

Proof. Using the second part of Proposition 2.5 the constraint (P,R) ∈ dom T in
(4.6) can be dropped. Let us define

KT := WT
11 ⊗ I − I ⊗

[
W22 W23

0 WT
11

]
,

where “⊗” denotes the Kronecker product of two matrices [5, sect. 4.5.5]. Using
the vec operator, which stacks the columns of a matrix into one long vector, the
minimization problem (4.6) can be written in the form

min
x∈R(2n−k)×k

{‖x‖2 : KT · x = w},(4.7)

where w = vec([W21

W31
]). Well-known results about linear least-squares problems show

that (4.7) has a unique minimum given by K†
T · w, where K†

T denotes the pseudo-
inverse of KT [5, sect. 5.5.4].

This lemma allows us to define an operator

T † : codom T → dom T

which maps a matrix pair (W21,W31) to the solution of (4.6). A sensible choice of
norm for T † is the one induced by the Frobenius norm:

‖T †‖ := sup
‖(W21,W31)‖F =1

(W21,W31)∈codom T

‖T †(W21,W31)‖F .(4.8)

4.3. Solving the coupled linearized equation. The key to solving the cou-
pled equation (4.3) is to note that T̃ can be decomposed into T − �TW , where
�T : dom T → codom T is defined by

�T : (P,R) 
→
[

0
PTJW21 + WT

21JP

]
.(4.9)

This implies that the composed operator T † ◦�T : dom T → dom T is well defined;
its norm is again the one induced by the Frobenius norm.

Lemma 4.4. If T is onto and δ := ‖T † ◦ �T ‖ < 1, then

T̃ †̃(W21,W31) :=

∞∑
i=0

(T † ◦ �T )i ◦ T †(W21,W31)(4.10)

is a solution of (4.3).
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Proof. If δ < 1, then∥∥∥∥∥
∞∑
i=0

(T † ◦ �T )i ◦ T †

∥∥∥∥∥ ≤
∞∑
i=0

δi‖T †‖ =
‖T †‖
1 − δ

,(4.11)

implying that the infinite sum in (4.10) converges absolutely. Moreover, premulti-

plying (4.10) with T −�T shows that T̃ †̃(W21,W31) solves (4.3).
Inequality (4.11) yields the bound

‖T̃ †̃(W21,W31)‖F ≤ ‖T †‖
1 − δ

· ‖(W21,W31)‖F .(4.12)

An upper bound for the quantity δ is clearly given by 2‖T †‖‖W21‖F . It should be

stressed that T̃ †̃ : codom T → dom T does not necessarily give the solution of smallest
norm. However, if ‖�T ‖ is sufficiently small, it can be expected to be rather close
to it.

Lemma 4.5. Under the assumption of Lemma 4.4, let T̃ † : codom T → dom T
denote the operator that maps a pair (W21,W31) to the minimal norm solution of the
coupled equation (4.3). Then

lim
�T →0

T̃ †̃ = lim
�T →0

T̃ † = T †.(4.13)

Proof. Lemma 4.4 shows that the coupled equation (4.3) has, for a given right-
hand side in codom T , a nonempty set of solutions. This set is, according to Propo-
sition 2.5, a subset of dom T . The solution of minimal norm is uniquely defined for
reasons similar to those that have been used in the proof of Lemma 4.3. Hence, the
operator T̃ † is well defined. By checking the four Penrose conditions it can be shown

that T̃ †̃ = (T −�T ◦ (T † ◦T ))†. Equalities (4.13) follow from the fact that the ranges
of T −�T ◦ (T † ◦ T ), T̃ , and T have equal dimensions [16, sect. III.3].

We remark that Lemmas 4.4 and 4.5 are not restricted to perturbations of the
form (4.9). In fact, they hold for any �T : dom T → codom T satisfying ‖T †◦�T ‖<1.

4.4. Solving the nonlinear equation. Using the terminology developed above,
we can rewrite the nonlinear equation (4.2) in the more convenient form

T̃ (P,R) + Φ(P,R) =

[
W21

W31

]
,(4.14)

where Φ(P,R) = [Φ1(P,R)T ,Φ2(P,R)T ]T .
Theorem 4.6. Let the matrices Wij be defined by (3.1) and assume that the

operator T defined by (4.4) is onto in the sense of Lemma 4.2. Assume that δ =
2‖T †‖‖W21‖F < 1, where ‖T †‖ is defined by (4.8). Set

γ = ‖(W21,W31)‖F , η =

∥∥∥∥[WT
23J

T W13

W22 W23

]∥∥∥∥
F

, κ =
‖T †‖
1 − δ

.

Then if

8γκ < 1, 20γηκ2 < 1,

there is a solution (P,R) of (4.14) satisfying

‖(P,R)‖F ≤ 2γκ.(4.15)
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Proof. We adapt the technique used by Stewart [15, sect. 3] and solve (4.14) by
constructing an iteration. First, some facts about the nonlinearities are required:

‖Φ1(P,R)‖F ≤ ‖W13‖F (‖P‖F ‖R‖F + ‖P‖3
F ) + 2‖W23‖F ‖P‖2

F ,

‖Φ2(P,R)‖F ≤ η‖(P,R)‖2
F + ‖W13‖F (2‖P‖2

F ‖R‖F + ‖P‖4
F ) + 2‖W23‖F ‖P‖3

F ,

⇒ ‖Φ(P,R)‖F ≤ (1 +
√

3)η‖(P,R)‖2
F + (

√
2 +

√
3)η‖(P,R)‖3

F + η‖(P,R)‖4
F .

Using a rough estimate, we have ‖Φ(P,R)‖F ≤ 4η‖(P,R)‖2
F for ‖(P,R)‖F ≤ 1/4.

Similarly, it can be shown that

‖Φ(P̂ , R̂) − Φ(P,R)‖F ≤ [2(1 +
√

3)ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F }
+4(

√
2 +

√
3)ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F }2

+8ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F }3] · ‖(P̂ − P, R̂−R)‖F
≤ 10ηmax{‖(P̂ , R̂)‖F , ‖(P,R)‖F } · ‖(P̂ − P, R̂−R)‖F ,

where the latter inequality holds for max{‖(P,R)‖F , ‖(P̂ , R̂)‖F } ≤ 1/4. Next, we
define a sequence by (P0, R0) = (0, 0) and

(Pk+1, Rk+1) = T̃ †̃(W21,W31) + T̃ †̃ ◦ Φ(Pk, Rk).

Note that this iteration is well defined as Φ : dom T → codom T . We show by
induction that the iterates stay bounded. Under the assumption ‖(Pk, Rk)‖ < 2γκ ≤
1/4, it follows that

‖(Pk+1, Rk+1)‖F ≤ κ(γ + 4η‖(Pk, Rk)‖2
F ) < 2γκ.

The operator T̃ †̃Φ is a contraction on D = {(P,R) : ‖(P,R)‖F < 2γκ} since

‖T̃ †̃ ◦ Φ(P̂ , R̂) − T̃ †̃ ◦ Φ(P,R)‖F ≤ 20γηκ2‖(P̂ − P, R̂−R)‖F < ‖(P̂ − P, R̂−R)‖F

for all (P,R) ∈ D and (P̂ , R̂) ∈ D. Thus, the contraction mapping theorem [12] shows
that the sequence (Pk, Rk) converges to a fixed point, which solves (4.14).

Corollary 4.7. Under the assumptions of Theorem 4.6, there is a solution
(P,Q) of the quadratic matrix equation (3.4) satisfying QT −Q = PTJP and

‖(P,Q)‖F ≤ 2γκ + 4γ2κ2 < 2.5γκ.

Proof. The result is a direct consequence of the relationship Q=R−
PT J̃P .

5. Perturbation bounds and a condition number. From the discussion in
section 3 it follows that Corollary 4.7 yields the existence of an isotropic invariant
subspace X̂ of W + E close to X , which is an isotropic invariant subspace of the
unperturbed matrix W .

Corollary 5.1. Under the assumptions of Theorem 4.6, there is an isotropic
invariant subspace X̂ of the skew-Hamiltonian matrix W + E so that√

tan2 θ1(X , X̂ ) + · · · + tan2 θk(X , X̂ ) ≤ 2γκ + 4γ2κ2 < 2.5γκ,(5.1)

where θi(X , X̂ ), i = 1, . . . , k, are the canonical angles between X and X̂ .
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Proof. Inequality (5.1) follows from Corollary 4.7 using the fact that tan θi(X , X̂ ),
i = 1, . . . , k, are the singular values of the matrix [PT , QT ]T .

The catch of this corollary is that it works with quantities that are usually not
known. For example, the operator T , used to define κ, explicitly depends on the
matrix W + E. However, often not the perturbation E itself but only an upper
bound on its norm is given. For this reason, given a partitioning (2.3), let us use the
unperturbed data to define an operator TW : dom T → codom T as follows:

TW : (P,Q) 
→
[
P
Q

]
A11 −

[
P
Q

]⎡⎣A22 G22 −GT
12

H22 AT
22 AT

12

0 0 AT
11

⎤⎦.(5.2)

The operator T †
W and its norm are defined in the same sense as T † and ‖T †‖.

Theorem 5.2. Let U = [X,Z, JTX, JTZ] be orthogonal symplectic, and suppose
that X = span X is a semisimple isotropic invariant subspace of the skew-Hamiltonian
matrix W so that

UTWU =

⎡⎢⎢⎣
A11 A12 G11 G12

0 A22 −GT
12 G22

0 0 AT
11 0

0 H22 AT
12 AT

22

⎤⎥⎥⎦.(5.3)

Given a skew-Hamiltonian perturbation E, let

UTEU =

⎡⎢⎢⎣
E11 E12 E13 E14

E21 E22 −ET
14 E24

E31 E32 ET
11 ET

21

−ET
32 E42 ET

12 ET
22

⎤⎥⎥⎦.
Assume that δ̂ =

√
3‖T †

W ‖ · ‖E‖F < 1, where T †
W is defined by (5.2). Set

γ̂ =

∥∥∥∥∥∥
⎡⎣E21

E31

ET
32

⎤⎦∥∥∥∥∥∥
F

, η̂ =

∥∥∥∥∥∥
⎡⎣A12 G11 G12

A22 −GT
12 G22

H22 AT
12 AT

22

⎤⎦∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
⎡⎣E12 E13 E14

E22 −ET
14 E24

E42 ET
12 ET

22

⎤⎦∥∥∥∥∥∥
F

,

and κ̂ = ‖T †
W ‖/(1 − δ̂). Then if

8γ̂κ̂ < 1, 20γ̂η̂κ̂2 < 1,

there are matrices P and Q satisfying

‖(P,Q)‖F ≤ 2γ̂κ̂ + 4γ̂2κ̂2 < 2.5γ̂κ̂

so that the columns of

X̂ =

(
X + [Z, JTZ, JTX]

[
P
Q

])
(I + PTP + QTQ)−1/2

form an orthonormal basis for an isotropic invariant subspace of Ŵ = W + E.
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Proof. First, note that the semisimplicity of X implies that TW is onto. The
operator T̃ , defined in section 4.2, is decomposed into TW − �TW , where �TW :
dom T → codom T is given by

�TW :

[
P
R

]

→

[
P
R

]
E11 −

⎡⎣ E22 E24 −ET
14

E42 ET
22 ET

12

−E32 −ET
21 ET

11

⎤⎦[
P
R

]
−
[

0
F

]

with F = PT [E
T
32

E21
]. Hence, ‖�TW ‖ ≤

√
3‖E‖F , and Lemma 4.4 implies that

T̃ †̃ =

∞∑
i=0

(T †
W ◦ �TW )i ◦ T †

W

converges absolutely and satisfies ‖T̃ †̃‖ ≤ κ̂. The remainder of the proof is analogous
to the proof of Theorem 4.6.

The bound (5.1) on the canonical angles between X and X̂ holds with the quan-
tities γ and κ replaced by γ̂ and κ̂:

‖ tan Θ(X , X̂ )‖F ≤ 2γ̂κ̂ + 4γ̂2κ̂2 < 2.5γ̂κ̂.(5.4)

Similar to the standard notion of the condition number for an invariant sub-
space of a general matrix [16], we define the structured condition number cW (X ) for
a semisimple isotropic invariant subspace X of a skew-Hamiltonian matrix by the
quantity that is approximated by ‖Θ(X , X̂ )‖F /ε as the perturbation level ε tends to
zero. From the bound (5.4) and the expansion of tan(·) around zero we conclude that
cW (X ) satisfies

cW (X ) := lim
ε→0

sup
‖E‖F ≤ε

E skew-Hamiltonian

‖Θ(X , X̂ )‖F
ε

≤ α‖T †
W ‖

for some α ≤ 2. The presence of the factor α in this bound is artificial; a slight
modification of the proof of Theorem 4.6 shows that α can be made arbitrarily close
to 1 under the assumption that the perturbation E is sufficiently small. This reveals
that ‖T †

W ‖ is an upper bound on cW (X ).

To show that cW (X ) and ‖T †
W ‖ actually coincide we construct skew-Hamiltonian

perturbations E so that

lim
‖E‖F→0

‖Θ(X , X̂ )‖F /‖E‖F ≥ ‖T †
W ‖

holds. Given a block Schur decomposition of the form (5.3), choose matrices E21

and E31 so that ‖(E21, E31)‖F = 1 and ‖T †
W (E21, E31)‖F = ‖T †

W ‖, and consider the
perturbation

E = ε · [Z, JTX, JTZ]

[
E21

E31

]
XT .

By choosing ε sufficiently small, we may assume that there is an invariant subspace
X̂ of W +E satisfying ‖Θ(X , X̂ )‖2 < π

2 . This implies the existence of matrices P and
Q so that the columns of

X̂ =

(
X + [Z, JTZ, JTX]

[
P
Q

])
(I + PTP + QTQ)−1/2
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form an orthonormal basis of X̂ . We have seen that any such matrix pair (P,Q) must
satisfy the nonlinear matrix equation

TW (P,R) −�TW (P,R) + Φ(P,R) = ε

[
E21

E31

]
,(5.5)

where R, �TW , and Φ are defined as in (4.1), (4.9), and (4.14), respectively. If we
decompose

(P,R) = (P1 + P2, R1 + R2), (P1, R1) ∈ kernel(TW ), (P2, R2) ∈ kernel(TW )⊥,

then

(P2, R2) = ε · T †
W (E21, E31) + T †

W ◦ [�TW (P,R) − Φ(P,R)].

Since ‖(P,R)‖ = O(ε), it follows that ‖�TW (P,R) − Φ(P,R)‖F = O(ε2) and thus

lim
ε→0

‖(P2, R2)‖F /ε = ‖T †
W (E21, E31)‖F = ‖T †

W ‖.

Combining this equality with ‖(P,R)‖F ≥ ‖(P2, R2)‖F and ‖Θ(X , X̂ )‖F = ‖(P,R)‖F+
O(ε2) yields the desired result:

lim
ε→0

‖Θ(X , X̂ )‖F /ε ≥ ‖T †
W ‖.

6. On the computation of ‖T †
W ‖. The discussion above shows that ‖T †

W ‖
measures the sensitivity of an isotropic invariant subspace. It remains to compute
this quantity. It turns out that ‖T †

W ‖ is considerably easy to compute if k = 1 (real
eigenvectors).

Lemma 6.1. Let λ ∈ R be an eigenvalue of the skew-Hamiltonian matrix W with
algebraic multiplicity two, and let x be an associated eigenvector satisfying ‖x‖2 = 1.
Given a partitioning of the form (5.3) with respect to x, it follows that

‖T †
W ‖ = σmin(Wλ)−1,

where σmin denotes the minimum singular value of a matrix and

Wλ =

[
A22 − λI G22 −GT

12

H22 AT
22 − λI AT

12

]
.

Proof. The operator TW can be identified with [Wλ

0 ]. Hence,

‖T †
W ‖ = sup

‖x‖2=1

‖T †
W (x, 0)‖2 = sup

‖x‖2=1

‖W †
λx‖2 = σmin(Wλ)−1,

using the fact that the space of 1 × 1 skew-symmetric matrices is {0}.
If UTWU is in skew-Hamiltonian Schur form (2.2), then H22 = 0 and A22 is in real

Schur form. Then the computation of ‖T †
W ‖ becomes particularly cheap. Construct

an orthogonal matrix Q so that

WλQ =

[
T11 T12 0
0 TT

22 0

]
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with upper triangular matrices T11 and T22. Since Q can be represented as a product
of O(n) Givens rotations (see [5, sect. 12.5]), the computation of T11, T12, and T22

requires O(n2) floating point operations (flops). In this case, one of the condition
number estimators for triangular matrices [6, Chap. 15] can be used to estimate∥∥∥∥∥

[
T11 T12

0 TT
22

]−1
∥∥∥∥∥

2

= σmin(WλU)−1 = σmin(Wλ)−1

within O(n2) flops.
The case k > 1 is more complicated. A possible but quite expensive option is

provided by the Kronecker product approach that was already used in the proof of
Lemma 4.3. Let

KTW
:= AT

11 ⊗ I − I ⊗

⎡⎣A22 G22 −GT
12

H22 AT
22 AT

12

0 0 AT
11

⎤⎦,
and let the columns of KSkew form an orthonormal basis for all vectors in vec(codom T ).

Then ‖T †
W ‖ is given by the minimum singular value of the matrix KT

SkewKTW
. Note

that this is a (2nk − k(3k + 1)/2) × (2nk − k2) matrix, and thus a direct method for
computing its minimum singular value requires O(k3n3) flops.

Another approach would consist of adapting a condition estimator for Sylvester
equations [3, 9] to estimate ‖T †

W ‖. This would require the application of T †
W (and

its dual) to particular elements of codom T (and dom T ). The efficient and reliable
computation of these “matrix-vector products” is a delicate task (see, e.g., [7]) and is
beyond the scope of this paper.

7. Numerical example. Algorithms for computing the derived condition num-
bers for eigenvectors of skew-Hamiltonian matrices have been implemented in Fortran
77. They are part of HAPACK [1], a prospective software library for solving eigen-
value problems with Hamiltonian, skew-Hamiltonian, or block cyclic structures. Let
us illustrate their use with the following 2n× 2n skew-Hamiltonian matrix:

Wn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 · · · −1 0 1 · · · 1

0 −1 · · · −1 −1 0
. . .

...
...

. . .
. . .

...
...

. . .
. . . 1

0 · · · 0 −1 −1 · · · −1 0
0 · · · · · · 0 0 0 · · · 0
...

... −1 −1
. . .

...
...

...
...

...
. . . 0

0 · · · · · · 0 −1 −1 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We computed exact values of ‖T †
W ‖ for the eigenvector e1 of Wn, n = 2, . . . , 30.

Furthermore, we applied the algorithm proposed in section 6 to produce estimates
of ‖T †

W ‖. These theoretical results were compared with practical observations in the
following way. A skew-Hamiltonian matrix E with random entries chosen from N(0, 1)
had been scaled so that ‖E‖F = 10−10. Using HAPACK routines, we computed
eigenvectors v and w corresponding to two identical eigenvalues of Wn + E that
have smallest absolute value. Let the columns of U form an orthonormal basis for
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Fig. 7.1. Exact, estimated and observed values of ‖T †
W ‖ for the eigenvector e1 of Wn.

span{v, w}⊥. Then the sine of the angle between span{e1} and span{v, w} is given by

‖UHe1‖2. The observed value of ‖T †
W ‖ was taken as the maximum over all quantities

1010 · ‖UHe1‖2 for 500 different samples of E. The results of the computations, which
were performed in a Compaq Visual Fortran environment, are displayed in Figure 7.1.
It turns out that the exact value of ‖T †

W ‖ is underestimated for n = 2 by a factor of
0.88 and overestimated for all other values of n by a factor of at most 2.2. Furthermore,
the exact value is consistently larger than the observed value by a factor of at most 20.

8. Conclusions. While the change of eigenvalues under structured perturba-
tions has received a lot of attraction (for a recent work in this area, see, e.g., [17]),
invariant subspaces have been much less studied. An extensive perturbation analysis
for (block) Hamiltonian Schur forms has been presented in [10]. However, we are not
aware of any work on perturbation theory for eigenvectors or invariant subspaces of
skew-Hamiltonian matrices. Therefore, we believe that our results are novel. The
obtained condition numbers reflect the actual sensitivity of isotropic invariant sub-
spaces rather well, at least for the numerical example presented in the previous section.
We hope that the integration of these condition numbers in HAPACK [1] will show
whether their usefulness stands the test of practical applications.
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Abstract. We have observed that the residual vectors at the end of each restart cycle of
restarted GMRES often alternate direction in a cyclic fashion, thereby slowing convergence. We
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1. Introduction. Iterative methods are a common choice for solving the large
sparse system of linear equations

Ax = b,(1)

where A ∈ R
n×n is nonsingular and x, b ∈ R

n. A popular class of iterative methods
are Krylov subspace methods. Krylov subspace methods find an approximate solution

xi ∈ x0 + Ki(A, r0),(2)

where Ki(A, r0) ≡ span{r0, Ar0, . . . , A
i−1r0} denotes an i-dimensional Krylov sub-

space, x0 is the initial guess, and r0 is the initial residual (r0 ≡ b − Ax0). Krylov
subspace methods are also known as polynomial methods since (2) implies that the
residual ri can be written in terms of a polynomial in A: ri = p(A)r0.

At present, a large variety of Krylov subspace methods exist. When A is non-
symmetric, choosing the most appropriate method can be difficult (see, e.g., [22]),
though the generalized minimum residual algorithm (GMRES) [27] is arguably the
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most popular choice. GMRES is often referred to as an “optimal” method because it
finds the approximate solution in the Krylov subspace that minimizes the 2-norm of
the residual [27].

At each iteration of GMRES, the amount of storage and computational work
required increases. Therefore, when the required resources make standard GMRES
impractical, the restarted version of the algorithm is used as suggested in [27]. In
restarted GMRES (GMRES(m)), the method is “restarted” once the Krylov sub-
space reaches dimension m, and the current approximate solution becomes the new
initial guess for the next m iterations. The restart parameter m is generally chosen
small relative to n to keep storage and computation requirements reasonable. How-
ever, choosing an appropriate restart parameter can be difficult as the choice can
significantly affect the convergence rate (see, e.g., [17, 13]).

In general, restarting slows the convergence of GMRES. When an iterative ap-
proach is restarted, the current approximation space is discarded at each restart.
Therefore, a well-known drawback of GMRES(m) is that orthogonality to previously
generated subspaces is not preserved at each restart. In fact, GMRES(m) can stall
as a result. Stalling means that there is no decrease in the residual norm at the end
of a restart cycle. Restarting also negates the potential for superlinear convergence
behavior [29].

This paper is organized as follows. In section 2, we describe some existing modifi-
cations to GMRES(m) aimed at accelerating convergence or overcoming stalling. We
introduce our new acceleration technique in section 3. We present numerical results
and discuss the convergence behavior of the new algorithm in section 4. We close
with concluding remarks in section 5.

2. Background. In this section, we briefly describe some existing modifications
to the standard GMRES algorithm. These modifications all have the common goal of
enhancing the robustness of restarted GMRES. Two primary categories of modifica-
tion include hybrid iterative methods and acceleration techniques. Hybrid iterative
methods combine standard iterative methods in a variety of ways to reduce the number
of required vector operations. Many of these methods are essentially modifications to
GMRES(m) aimed at improving its performance. Nachtigal, Reichel, and Trefethen
provide a general overview of this class of iterative methods in [21]. Our work falls into
the category of acceleration techniques. These techniques attempt to mimic the con-
vergence of full GMRES more closely or to accelerate the convergence of GMRES(m)
by retaining some of the information that is typically discarded at the time of restart.
In [11], Eiermann, Ernst, and Schneider present a thorough overview and analysis of
the most common acceleration techniques.

Augmented methods are a class of acceleration techniques. In particular, these
methods seek to avoid stalling by improving information in GMRES at the time of
the restart. Typically a (nearly) A-invariant subspace is appended to the Krylov ap-
proximation space, resulting in an “augmented Krylov subspace” [5]. The invariant
subspace of A associated with the smallest eigenvalues is commonly used, as those
eigenvalues are thought to hinder convergence the most. Algorithms that include spec-
tral information at the restart to overcome stalling are presented by Morgan in [18],
[19], and [20] (GMRES-E, GMRES-IR, and GMRES-DR, respectively) and are further
discussed in [5] and [26]. These augmentation techniques are more suitable for some
types of problems than others. They can be very effective when convergence is being
hampered by a few eigenvalues [18]. However, they may have little effect on highly
nonnormal problems [5], or solving the eigenvalue problem may be too costly for the
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technique to be beneficial [18]. Of interest to us is the simple framework provided for
appending (non-Krylov) vectors to the approximation space.

Another class of acceleration techniques is based on the fact that ideally the
approximation space should contain the correction c such that x = x0 + c is the exact
solution to the problem [11]. The nested Krylov subspace method GMRESR (GMRES
Recursive) [30] is one such technique. In GMRESR, the outer generalized conjugate
residual method (GCR) [12] invokes an inner iterative method (like GMRES) at each
step i to approximate the solution to Ac = ri, where ri is the current residual at
step i. The approximate solution to Ac = ri then becomes the next direction for the
outer approximation space. The goal of this method is to obtain similar convergence
to that of full GMRES with less computational cost under certain conditions. Note
that the method FGMRES (Flexible GMRES) [24] can also be viewed as a method
that approximates solutions to similar residual equations at each step. In fact, both
FGMRES and GCR provide a framework for using a GMRES-like method with any
approximation space.

Another related acceleration technique is GCRO (GCR with inner orthogonal-
ization) [7]. The aim of this method is twofold: to compensate for the information
that is lost due to restarting as well as to overcome some of the stalling problems
that GMRESR can experience in the inner iteration. GCRO is a modification to
GMRESR such that the inner iterative method maintains ATA-orthogonality to the
outer approximation space. Thus, the approximation from the inner iteration at step
i takes into account both the inner and outer approximation spaces. See also [9] for
more details on preserving orthogonality in the inner iteration of a nested Krylov
subspace method. In most cases, both GCRO and GMRESR must be truncated to
keep storage costs reasonable. Therefore, a truncated version of GCRO, the method
GCROT (GCRO Truncated), is subsequently described in [8]. GCROT attempts to
determine which subspace of the outer approximation space should be retained for
the best convergence of future iterations as well as if any portion of the inner Krylov
subspace should also be kept.

As Fokkema, Sleijpen, and van der Vorst point out in [15], “the distinction
between preconditioning and acceleration is not a clear one.” These acceleration
techniques (GMRESR, GCRO, and FGMRES) can also be viewed as methods with
variable preconditioning (allowing the preconditioner to change with each iteration
step). We show that our new method can also be viewed in this way.

3. A new algorithm: LGMRES. In this section, we describe a new method
for accelerating GMRES(m). We begin with observations about the convergence
behavior of GMRES(m) that lead us to the new technique. We then present the new
algorithm LGMRES (Loose GMRES), discuss some of its properties, and compare
LGMRES to closely related existing acceleration techniques.

3.1. Motivation. Consider restarted GMRES(m) when solving problem (1). In
this discussion, we refer to the group of m iterations between successive restarts as
a cycle. The restart number is denoted with a subscript: ri is the residual after i
cycles or m × i iterations. The residual at the end of cycle i + 1 is a polynomial
in A times the residual from the previous cycle, ri+1 = pmi+1(A)ri, where pmi+1(A) is
the degree m residual polynomial. During each restart cycle (i), GMRES(m) finds
xi+1 ∈ xi + Km(A, ri) such that ri+1 ⊥ AKm(A, ri) (see, e.g., [25]).

As previously mentioned, GMRES(m) does not maintain orthogonality between
approximation spaces generated at successive restarts. As a result, slow convergence
or even stalling can occur. In the case of slow convergence, we have observed a pattern
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Table 1

Results for GMRES(30). Problem size, iterations required for ‖ri‖2/‖r0‖2 ≤ 10−9, median
skip angle, and median sequential angle are listed for each problem.

Median seq. angle Median skip angle
Problem Size (n) Iterations ∠(ri, ri−1) ∠(ri+1, ri−1)

add20 2395 1002 51.3 5.4
orsirr 1 1030 6659 23.0 6.9
orsreg 1 2205 888 59.3 8.4
sherman 1 1000 3688 27.5 .2

in GMRES(m) where the residual vectors point in nearly the same direction at the
end of every other restart cycle. In other words, the angle between ri+1 and ri−1 is
small and ri+1 ≈ α ri−1. We refer to the angles between every other residual vector
as skip angles, e.g., ∠(ri+1, ri−1), and the angles between consecutive restart cycles
as sequential angles.

For many problems, we find that skip angles are relatively small even when the
sequential angles are a reasonable size (i.e., stalling is not occurring). For exam-
ple, Table 1 gives results for GMRES(30) on several problems available from the
Matrix Market Collection [23]. The number of iterations required for convergence
(‖ri‖2/‖r0‖2 ≤ 10−9) as well as the median sequential and median skip angle values
are listed. GMRES(30) is not stalling for these four problems. However, the low skip
angle values appear to indicate that faster convergence should be possible if some
degree of orthogonality to previous approximation spaces were maintained, a goal
embraced by several acceleration techniques described in section 2. In our experience,
this type of alternating pattern is most pronounced (most “exact”) for symmetric
matrices, but it is noticeable for many nonsymmetric matrices as well.

There no mechanism in GMRES(m) to prevent this alternating phenomenon be-
cause it is simply a symptom of the lack of orthogonality between the approximation
space generated during a particular restart cycle of GMRES(m) and the approxima-
tion spaces from previous cycles. However, only for the special case when the restart
parameter is one less than the matrix order can we show that alternating must occur
for both symmetric and skew-symmetric problems. Consider the following lemma.

Lemma 1 (equivalent constraints). When A ∈ R
n×n is symmetric or skew-

symmetric, and w and y are arbitrary real vectors of length n, the requirement that
w ⊥ AKm(A, y) is equivalent to the requirement that w ⊥ ATKm(AT , y).

With this easily proved lemma, the following theorem is straightforward.
Theorem 2 (alternating residuals). When A ∈ R

n×n is symmetric or skew-
symmetric and the restart parameter is one less than the matrix order (m = n − 1),
GMRES(m) produces a sequence of residual vectors at the end of each restart cycle
such that ri+2 = αri, |α| ≤ 1.

Proof. During restart cycle i,

ri ⊥ AKm(A, ri−1) ⇒ ri−1 ⊥ ATKm(AT , ri).

From Lemma 1,

ri−1 ⊥ ATKm(AT , ri) ⇒ ri−1 ⊥ AKm(A, ri).(3)

Let Wm ≡ [w1 w2 . . . wm] be an orthonormal basis for AKm(A, ri). There exists
a wn such that Wn = [Wm wn] is an orthonormal basis for R

n. From (3), ri−1 = αwn,
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where α is some scalar. During restart cycle i + 1,

ri+1 ⊥ AKm(A, ri) ⇒ ri+1 = βwn,

where β is some scalar. Therefore, ri+1 = β
αri−1, and |βα | ≤ 1 because the GMRES(m)

residual norm is nonincreasing.

3.2. Idea and implementation. The motivation for the new algorithm, LGM-
RES, came from a desire to prevent the alternating behavior observed for GMRES(m)
which results in repetitive information in successive restart cycles. In addition, we
wanted a method for which the idea and implementation easily lent themselves to a
block method for solving a single right-hand side system (see, e.g., [2]). Therefore, the
new algorithm is a combination of ideas from several existing acceleration techniques
described in section 2: GMRES-E, GMRESR, and GCRO. In short, LGMRES utilizes
the simple framework of Morgan’s GMRES-E method [18] for appending vectors to the
standard Krylov space in a manner that allows for the extension to a block method as
in [5], for example. GMRESR [30] and GCRO [7], on the other hand, provide ideas for
choosing appropriate vectors to append to the standard Krylov approximation space.
The algorithmic components from these existing techniques are combined in a manner
that results in a new acceleration technique with both a simple implementation and
the ability to prevent the previously described alternating behavior.

To prevent alternating, LGMRES mimics GMRESR’s technique of including ap-
proximations to the error in the current approximation space. Suppose that x̂ is the
true solution to problem (1). The error after the ith restart cycle of GMRES(m) is
denoted by ei, where

ei ≡ x̂− xi.(4)

As explicitly pointed out in [11] and noted in section 2, if our approximation space
contains the exact correction ei such that x̂ = xi+ei, then we have solved the problem.
We define

zi ≡ xi − xi−1(5)

as the approximation to the error after the ith GMRES(m) restart cycle, and zj ≡ 0
for j < 1. This error approximation vector serves as our choice of vector with which
to augment our next approximation space Km(A, ri). Note that zi ∈ Km(A, ri−1).
Therefore, this error approximation zi in some sense represents the space Km(A, ri−1)
generated in the previous cycle and subsequently discarded and is a natural choice of
vector with which to augment our next approximation space Km(A, ri).

We denote our new restarted augmented GMRES algorithm by LGMRES(m, k).
LGMRES(m, k) augments the standard Krylov approximation space with k previous
approximations to the error. Therefore, at the end of restart cycle i+1, LGMRES(m,
k) finds an approximate solution to (1) in the following way:

xi+1 = xi + qm−1
i+1 (A)ri +

i∑
j=i−k+1

αijzj ,(6)

where polynomial qm−1
i+1 and αij are chosen such that ‖ri+1‖2 is minimized. Note that

k = 0 corresponds to standard GMRES(m).
The implementation of LGMRES(m, k) is quite similar to that of Morgan’s GM-

RES with eigenvectors (GMRES-E) method described in [18] and requires minimal
changes to the standard GMRES(m) implementation. At each restart cycle (i) we
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1. ri = b−Axi, β = ‖ri‖2, v1 = ri/β, s = m + k
2. for j = 1 : s

3. u =

{
Avj if j ≤ m,
Azi−(j−m−1) otherwise

4. for l = 1 : j
5. hl,j = 〈u, vl〉
6. u = u− hl,jvl
7. end
8. hj+1,j = ‖u‖2, vj+1 = u/hj+1,j

9. end
10. Vs+1 = [v1, . . . , vm, . . . , vm+k+1], Ws = [v1, . . . , vm, zi, . . . , zi−k+1] ,

Hs = {hl,j}1≤l≤j+1;1≤j≤s

11. find ys s.t. ‖βe1 −Hsys‖2 is minimized
12. zi+1 = Wsys (also Azi+1 = Vs+1Hsys)
13. xi+1 = xi + zi+1

Fig. 1. LGMRES(m, k) for restart cycle i.

generate the Krylov subspace Km(A, ri) and augment it with the k most recent er-
ror approximations zj , j = (i − k + 1) : i. The augmented approximation space
M = Km(A, ri) ∪ span{zj}j=(i−k+1):i has dimension s ≡ m + k. We then find the
approximate solution from M whose corresponding residual is a minimum in the
Euclidean norm.

One restart cycle (i) of the LGMRES(m, k) algorithm is given in Figure 1. Note
that Vs+1 is the n × (s + 1) orthonormal matrix whose first m + 1 columns are the
Arnoldi vectors and last s columns result from orthogonalizing the k error approxima-
tion vectors (zj , j = (i− k + 1) : i) against the previous columns of Arnoldi vectors.
Ws is the n × s matrix whose first m columns are equal to the first m columns of
Vs+1 and whose last k columns of W are the k error approximation vectors (typically
normalized so that all columns are of unit length). Then the relationship

AWs = Vs+1Hs(7)

holds for LGMRES(m, k), where Hs denotes an (s+ 1)× s Hessenberg matrix whose
elements hl,j are defined in the algorithm in Figure 1. This relationship is analogous
to equations (11) in [18] and (3) in [27].

When implementing LGMRES(m, k), only m matrix-vector multiplies are re-
quired per restart cycle, irrespective of the value of k, provided that we form both
zi and Azi at the end of cycle i as is done in the algorithm given in Figure 1. Note
that forming Azi does not require an explicit multiplication by A and that at most
k pairs of zj and Azj need to be stored. Typically the number of vectors appended,
k, is much smaller than the restart parameter m (discussed in section 4). The algo-
rithm requires storage for the following vectors of length n: m + k + 1 orthogonal
basis vectors (v1, v2, . . . vm+k+1), k pairs of zj and Azj , the approximate solution,
and the right-hand side. Therefore, this implementation of LGMRES(m, k) requires
storage for m+ 3k + 3 vectors of length n and m matrix-vector multiplies per restart
cycle. Recall that standard GMRES(m+ k) requires storage for m+ k + 3 vectors of
length n and m + k matrix-vector multiplies per restart cycle (see, e.g., [25]). Also,
LGMRES(m, k) and GMRES(m + k) require equivalent numbers of inner products
and vector updates. One could reduce the storage requirement for LGMRES(m, k) by
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recomputing Azi in each cycle. The storage requirement for vectors of length n would
then drop to m+2k+3, but the number of matrix-vector multiplies required per cycle
would increase to m+ k. We prefer the former method (as given in Figure 1) because
it reduces the number of matrix-vector multiplies and is therefore generally faster.

Note that only i error approximations are available at the beginning of restart
cycles with i < k because zj = 0 when j < 1. Therefore, we recommend using
additional Arnoldi vectors instead of zj when j < 1 so that the approximation space
is of dimension m + k for each cycle. In other words, the first cycle (i = 0) of
LGMRES(m, k) is equivalent to the first cycle of GMRES(m + k).

LGMRES(m, k) can be preconditioned in a straightforward manner. Let M−1

denote the preconditioner. For left preconditioning, we simply precondition the initial
residual in line 1 of the algorithm in Figure 1 (ri = M−1b−M−1Axi). Then we replace
A with M−1A everywhere in lines 3 and 12. For right preconditioning, the required
modifications are more subtle. To include previous approximations to the error in the
approximation space, we must now append ẑj ≡ M(xj − xj−1) = Mzj instead of zj
to the standard Krylov subspace (no matrix-vector products with M are explicitly
computed). Therefore, we replace A with AM−1 everywhere in lines 3 and 12 and z
with ẑ everywhere in lines 3, 10, and 12. While no explicit change is required for line
13 as given in Figure 1, note that, with right preconditioning, line 13 is equivalent to
xi+1 = xi + M−1ẑi+1.

3.3. Properties. In this section, we first address the similarity between LGM-
RES and a full conjugate gradient (FCG) method with polynomial precondition-
ing. We then discuss skip angles and sequential angles for both GMRES(m) and
LGMRES(m, k).

We consider the “full” (i.e., nontruncated) version of LGMRES, denoted by
LGMRES(m), in which all previous error approximations are kept (i.e., k = i):

zi+1 = qm−1
i+1 (A)ri +

i∑
j=1

αijzj .(8)

In this form, the resemblance of LGMRES(m) to a minimal residual FCG method
that minimizes ‖ei‖ATA at each step, such as ORTHOMIN, is readily apparent (see,
e.g., [25] or [1]). In (8), the GMRES(m) iteration polynomial (qm−1

i+1 (A)) corresponds
to a polynomial preconditioner. Notice, however, that LGMRES effectively changes
the preconditioner with each iteration i, whereas preconditioned FCG typically uses
a constant preconditioner (not dependent on i). Vectors zj in (8) correspond to
conjugate gradient direction vectors in that they are also ATA-orthogonal, as is shown
below. Therefore, we can categorize the LGMRES(m, k) method as a truncated
polynomial-preconditioned FCG method.

Theorem 3 (orthogonality of the error approximations). The error approxima-
tion vectors zj ≡ xj −xj−1 with which we augment the Krylov space in full LGMRES
(8) or truncated LGMRES (6) are ATA-orthogonal.

Proof. First, we define subspaces Mi+1 and Mi as

Mi+1 ≡ Km(A, ri) ∪ span{zj}j=(i−k+1):i

and

Mi ≡ Km(A, ri−1) ∪ span{zj}j=(i−k):(i−1),
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respectively. By construction,

ri ⊥ AMi and ri+1 ⊥ AMi+1.

From (5),

ri − ri+1 = Azi+1.

Therefore,

Azi+1 ⊥ A(Mi ∩Mi+1).

Because {zj}j=(i−k+1):i ⊂ Mi ∩Mi+1,

zi+1 ⊥ATA {zj}j=(i−k+1):i.

Although full LGMRES is interesting from a theoretical point of view, it is not
a practical algorithm. Storing all past values of zj (j = 1 : i) requires an increasing
amount of storage at each restart. As with GMRESR and GCRO, truncating is nec-
essary. Therefore, in practice, we use truncated LGMRES(m, k) as given in (6) with
some k < i. In section 4, we show that optimal values for k are typically very small:
k ≤ 3. Furthermore, note that the ATA-orthogonality of the error approximation
vectors shown in Theorem 3 is not exploited in the implementation of LGMRES de-
scribed in the previous section. In fact, a total of k vector products and updates per
restart cycle in the algorithm given in Figure 1 are extraneous due to a zero vector
product in line 5. However, for small k, the benefit of modifying the LGMRES(m, k)
implementation to exploit this orthogonality is negligible.

Now we compare the skip and sequential angles for GMRES(m) and LGMRES(m,
k). For standard restarted GMRES, the angle between two residuals from consecutive
restart cycles (i.e., the sequential angle) can be expressed in terms of a ratio of their
residual norms. The following result is mathematically equivalent to a result first
given by Simoncini as Proposition 4.1 in [28], but here we present it in a simplified
form with a more straightforward and concise proof.

Theorem 4 (GMRES(m) sequential angles). Let ri+1 and ri be the residuals
from GMRES restart cycles i + 1 and i, respectively. Then the angle between these
residuals is given by

cos ∠(ri+1, ri) =
‖ri+1‖2

‖ri‖2
.(9)

Proof. In restart cycle i + 1 of GMRES(m), xi+1 = xi + δi+1, where δi+1 ∈
Km(A, ri). Therefore, the corresponding residual is

ri+1 = ri −Aδi+1.

By construction,

〈ri+1, Aδi+1〉 = 0 ⇒ 〈ri+1, ri〉 = 〈ri+1, ri+1〉 = ‖ri+1‖2
2.(10)

The above, combined with the definition of cosine, completes the proof.
The above indicates that, for GMRES(m), the convergence rate correlates to the

size of the angles between consecutive residual vectors. If consecutive residual vectors
are nearly orthogonal to each other, then convergence is fast. (If we find an ri+1 such
that ri+1 ⊥ ri, then we have found the exact solution.) Note that this result also
holds for LGMRES. We refer to the related work in [10] for a more general discussion
on how the angles between approximation and residual spaces define convergence for
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Krylov methods. Note that Theorem 4 above is also a special case of the more general
result in (3.9) in [10]. Now we consider the angle between every other residual (i.e.,
the skip angle).

Theorem 5 (GMRES(m) skip angles). Let ri+1 and ri−1 be the residuals from
GMRES restart cycles i + 1 and i − 1, respectively. Then the angle between these
residuals is given by

cos ∠(ri+1, ri−1) =
‖ri+1‖2

‖ri−1‖2
− 〈Aδi+1, Aδi〉

‖ri+1‖2‖ri−1‖2
,

where ri+1 = ri −Aδi+1 and ri = ri−1 −Aδi.
Proof. As in the previous proof, it is easily shown that

〈ri+1, ri−1〉 = 〈ri+1, ri+1〉 − 〈Aδi+1, Aδi〉.(11)

The proof follows directly from (11).
In terms of describing convergence, the above result is not immediately helpful.

However, we will discuss a few of its implications after giving a corresponding result
for LGMRES. Recall from section 3.2 that LGMRES(m, k) appends k previous ap-
proximations to the error to the current Krylov approximation space. Therefore, if
k ≥ 1, then ri+1 ⊥ AKm(A, ri) and ri+1 ⊥ Azi at the end of restart cycle i+1. Since
Azi = ri−1 − ri,

〈ri+1, ri−1 − ri〉 = 0(12)

after i + 1 LGMRES cycles, and we can prove the following theorem.
Theorem 6 (LGMRES: Every other residual vector). Let ri+1 and ri−1 be the

residuals from LGMRES restart cycles i + 1 and i − 1, respectively. Then the angle
between these residuals is given by

cos ∠(ri+1, ri−1) =
‖ri+1‖2

‖ri−1‖2
.

Proof. This theorem directly follows from Theorems 5 and 3 (noting the corre-
lation between δi in GMRES(m) and zi in LGMRES). Alternatively, from (12) and
(10),

〈ri+1, ri−1〉 = 〈ri+1, ri〉 = 〈ri+1, ri+1〉.

The proof follows directly from the above relation.
This result indicates that, for LGMRES, the progress of the iteration also corre-

lates with the skip angles. Therefore, fast convergence implies large skip angles. More
generally, for any 0 ≤ j ≤ k and i ≥ k, we can show for LGMRES(m, k) that

cos∠(ri+1, ri−j) =
‖ri+1‖2

‖ri−j‖2
.

When a problem exhibits signs of alternating residuals with GMRES(m), then
the angle between ri−1 and ri+1 is small. In this case, since Aδi+1 = ri − ri+1 and
Aδi = ri−1 − ri, then the term 〈Aδi+1, Aδi〉 in Theorem 5 is negative. We have
observed this result in our experiments, and it can be seen pictorially in Figure 2.
Since LGMRES appends a previous error approximation to the approximation space
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Fig. 2. Two cases with alternating residual vectors: r1 and r3 point in nearly the same direction.
〈Az3, Az2〉 < 0 in both (A) and (B).

during cycle i + 1, the term 〈Aδi, Aδi−1〉 is equal to zero by construction. We show
in section 4.1 that this LGMRES augmenting scheme tends to increase the skip angle
over that of GMRES(m) and prevents the alternating behavior often observed in
restarted GMRES.

We also investigated adaptive versions of LGMRES that determine whether or not
to augment during each restart cycle. One often effective adaptive version is based on
the above observation that the term 〈Aδi+1, Aδi〉 in Theorem 5 is generally negative
when alternating occurs. In particular, after m standard Arnoldi iterations in restart
cycle i+ 1, we form the current residual r̂i+1. In the k = 1 case, the decision is made
to augment during cycle i + 1 if 〈r̂i+1, Aδi〉 > 0. Referring back to Theorem 5, note
that 〈ri+1, Aδi〉 = −〈Aδi+1, Aδi〉. Results for this adaptive version of LGMRES are
discussed in section 4.1.

3.4. Comparison to existing methods. As previously stated, LGMRES(m,
k) acts as an accelerator for GMRES(m). The algorithm is not designed to overcome
stalling as the error approximation vectors, zj , are zero when the residual norm does
not decrease within a cycle. Thus, while the LGMRES implementation mimics that
of Morgan’s GMRES-E [18], we do not compare the two algorithms, as GMRES-
E is most effective for problems that stall due to the effects of a few eigenvalues.
However, as noted at the beginning of this section, the general idea of LGMRES
is very similar to that of GCRO [7]; both methods look for a minimum residual
solution in the approximation space consisting of previous approximations to the
error as well as a Krylov space built on the current residual. The algorithms are not
mathematically equivalent, and we briefly explain their similarities and differences
in this section. First, we discuss the GMRESR [30] method, of which GCRO is a
modification. Then the theoretical differences between (nontruncated) GCRO and
full LGMRES are briefly described, followed by a comparison of the two truncated
algorithms GCROT and LGMRES(m, k).

The nested Krylov subspace methods GMRESR and GCRO consist of an outer
GCR method that invokes an inner GMRES method at each iteration to find an
approximation to the error. Generally a fixed number of GMRES steps are taken at
each inner iteration, say, m. GCR is a minimum residual method that maintains two
bases, Ui and Ci = AUi, where CT

i Ci = Ii. Typically Ui is an ATA-orthogonal basis
for the Krylov space Ki(A, r0). However, the implementation of GCR is such that Ui

can actually contain any vectors (i.e., range(Ui) �= Ki(A, r0)) [7]. In particular,
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in both the GMRESR and GCRO methods, range(Ui) contains all of the previous
approximations to the error from the inner GMRES method.

GMRESR is essentially performing two separate minimizations: one over the
inner GMRES approximation space to find a new error approximation and one over
the outer approximation space (consisting of the new error approximation and all
previous error approximations) to update the current global approximate solution.
The clever improvement of GCRO over GMRESR is that the GCRO minimization in
the inner iteration takes into account the outer approximation space. In other words,
the two methods are not mathematically equivalent, and GCRO solves the following
minimization problem at each inner iteration:

min‖b−Axi+1‖2 s.t. xi+1 ∈ range(Ui) ⊕ range(Wm),(13)

where Wm is an orthogonal basis for Km(AC , ri) generated by the inner GMRES
method and AC ≡ (I − CiC

T
i )A. The Krylov space Km(AC , ri) is a result of GCRO

maintaining orthogonality against Ci from the beginning of the Arnoldi iteration, and
Wm+1 satisfies Wm+1 ⊥ range(Ci). Thus, when ri is projected onto AWm resulting
in new residual ri+1, that new residual is also orthogonal to range(Ci) as desired. The
solution to the global minimization problem of (13) is then found.

Similarly to GCRO, full LGMRES finds a minimum residual solution in an ap-
proximation space consisting of all previous error approximations (zj) together with
a Krylov space built off the current residual:

min‖b−Axi+1‖2 s.t. xi+1 ∈ range(Zi) ⊕ range(Vm),

where Vm is an orthogonal basis for Km(A, ri) and Zi ≡ [z1 . . . zi]. In the case of
LGMRES, the Arnoldi iteration does not maintain orthogonality against the previous
error approximations. Instead, the error approximations are simply appended onto
the generated Krylov subspace, which leads to a greater number of orthogonalizations
than for GCRO if k is large.

The difference in generation of the Krylov subspaces is a subtle difference be-
tween GCRO and LGMRES. Matrices AC and A do not generate equivalent residual
spaces (ACKm(AC , ri) and AKm(A, ri), respectively). See [16] for more on matri-
ces that generate equivalent Krylov residual spaces. Therefore, the residual pro-
jected onto these spaces is not the same unless the unlikely situation occurs where
range(Vm) ⊥ range(Ci). Finally we remark that as with GCRO, LGMRES is also
not equivalent to GMRESR since the error approximation vectors are determined by
a single minimization over the global space consisting of previous approximations to
the error as well as a Krylov space built on the current residual.

GCROT [8] is a more practical truncated version of GCRO. GCROT truncates
the outer approximation space by examining angles between subspaces and deter-
mining which subspaces (not vectors) are important for convergence. It is assumed
that if a subspace was important for past convergence, then it will be important for
future convergence and should be retained. Similarly, vectors from the inner GMRES
iteration may also be kept. The implementation of GCROT(m, kmax, knew, s, p1, p2)
requires specification of six different parameters that affect the truncation.

LGMRES(m, k), on the other hand, is truncated in a more obvious manner,
retaining only the most recent k error approximation vectors. For ORTHOMIN, it
has been observed that truncating the recursion such that only one or two previ-
ous direction vectors are retained is quite effective when A is nearly symmetric [31].
Therefore, we attribute the effectiveness of the LGMRES method’s naive truncation
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strategy, particularly when A is nearly symmetric in some sense, to the relation of
LGMRES to the ORTHOMIN algorithm, which was mentioned in section 3.3. In fact,
in our experiments we find that LGMRES performs best when k is much smaller than
m (typically k ≤ 3), whereas GCROT often prefers k > m. Additionally, as previously
mentioned, the LGMRES(m, k) truncation strategy results in a more straightforward
implementation that lends itself to a block method.

4. Experimental results. We demonstrate the potential of LGMRES by pre-
senting experimental results from a variety of problems using implementations of
LGMRES in both MATLAB and a locally modified version of PETSc (Argonne Na-
tional Laboratory’s Portable, Extensible Toolkit for Scientific Computation) [3, 4].
We tested problems from various sources, including the Matrix Market Collection [23]
and the University of Florida Sparse Matrix Collection [6]. In sections 4.1 and 4.2,
we compare MATLAB implementations of LGMRES(m, k), GMRES(m), GCRO [7],
and GCROT [8] for problems without preconditioning. In section 4.3, we demonstrate
the usefulness of LGMRES for larger problems with preconditioning with a PETSc
implementation of LGMRES.

4.1. Comparison to GMRES(m). In this section, we demonstrate that LGM-
RES can significantly accelerate the convergence of restarted GMRES. To compare
the performance of LGMRES(m, k) and GMRES(m), we implemented each in MAT-
LAB. Our purpose with these implementations is to gauge the acceleration potential
of LGMRES as well as its range of applicability on a variety of problems. Therefore,
in this section and section 4.2, we do not use preconditioning for the MATLAB tests,
allowing iteration counts to be large. A zero initial guess is used for all problems.

We look at a test set of 18 problems, 15 from the Matrix Market Collection
and 3 convection-diffusion (CD) problems. The Matrix Market problems include the
following: add20, orsreg 1, orsirr 1, cdde1, pde900, sherman1, sherman4, rdbl1250,
cavity05, nos3, watt 2, fs 760 1, e05r0000, steam2, and cavity10. If a right-hand
side is not provided, we generate a random right-hand side. The three CD problems
are taken from [18] and are variations of the PDE uxx + uyy + Dux = −(41)2 with
increasing degree of nonsymmetry: D = 1, D = 41, and D = 412, which we refer to
as morgan 1, morgan 41, and morgan 1681, respectively. These PDEs are discretized
by central finite differences on the unit square with zero boundary conditions and
step-size h = 1/41. We stop the iteration when the relative residual norm is less than
the convergence tolerance ζ, i.e., when ‖ri‖2/‖r0‖2 ≤ ζ. We use ζ = 10−5 for all
problems in this comparison. Several restart parameters are chosen for each problem,
resulting in a total of 53 test cases. In particular, for the first 11 Matrix Market
problems (in the preceding list) and the three CD problems, we use m = 10, 20, and
30. We use m = 10, 20 for problem fs 760 1 and m = 20, 30, and 40 for the last three
Matrix Market problems.

For each of these 53 test cases, we compare the performances of GMRES(m)
and LGMRES with equal-sized approximation spaces. Figure 3 shows the number of
matrix-vector multiplies required for convergence for GMRES(m) and LGMRES(m−
k, k) with k = 1 : 5. In both the top and bottom plots, the y-axis is the number
of matrix-vector multiplies required for convergence by GMRES(m) divided by the
number required by LGMRES(m − k, k). Note that the log of this ratio is plotted
on the y-axis of Figure 3. The x-axis corresponds to the 15 Matrix Market problems
followed by the three CD problems in the order given in the previous paragraph,
and results for the same problem with increasing m are adjacent. For example,
test case 1 corresponds to problem add20 with m = 10, for which GMRES(m) re-
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Fig. 3. A comparison of the number of matrix-vector multiplies required for convergence by
GMRES(m) and LGMRES(m − k, k) for 53 test cases. The top panel compares GMRES(m) to
the “best” LGMRES(m, k). The bottom panel displays results for LGMRES(m − k, k) versus
GMRES(m) for five different values of k (k = 1 : 5).

quires approximately four times as many matrix-vector multiplies as does LGMRES
(m− k, k).

In the top panel of Figure 3, the result of the “best” LGMRES(m − k, k) for
k = 1 : 5 is compared to GMRES(m). The bars extending above the x-axis favor
LGMRES(m − k, k) (51 cases)—in these cases GMRES(m) requires more matrix-
vector multiplies than does LGMRES(m − k, k). The bars below the x-axis favor
GMRES(m) (two cases: pde900 with m = 20 and morgan 41 with m = 10). Ratios of
improvement (as opposed to iteration counts) are given to demonstrate the potential
improvement with LGMRES, though we note that the number of iterations required
by LGMRES(m − k, k) is less than n (where n is the matrix order) in 46 of the 53
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Table 2

Results for LGMRES(29, 1). Problem size, iterations required for ‖ri‖2/‖r0‖2 ≤ 10−9, median
skip angle, and median sequential angle are listed for each problem.

Iterations Median seq. angle Median skip angle
Problem Size (n) (matrix-vector multiplies) ∠(ri, ri−1) ∠(ri+1, ri−1)

add20 2395 606 (587) 63.0 79.0
orsirr 1 1030 2190 (2118) 41.0 55.4
orsreg 1 2205 515 (499) 72.2 84.6
sherman 1 1000 757 (733) 61.7 76.4

test cases. In the remaining seven cases (steam2 with m = 20 and both e05r0000 and
orsirr 1 with m = 10, 20, and 30), the number of iterations is less than 2.25n. The
number of iterations required by GMRES(m), on the other hand, is much greater
than n for a number of these test cases, as reflected by several large ratios in the top
panel of Figure 3.

The plot in the bottom panel of Figure 3 shows the variance in results for
LGMRES(m−k, k) with k = 1 : 5. Generally k ≤ 3 is best for LGMRES(m−k, k), and
in our experiments, returns are diminishing for larger k, especially when m is small.

Furthermore, as with the majority of these test problems in Figure 3, we typically
observe that the percentage improvement of LGMRES over GMRES decreases with
increasing m. This trend is likely related to smaller values of m resulting in larger
iteration counts and more noticeable alternating behavior.

Experimentally, we observe that LGMRES nearly always has a larger median
skip angle than does GMRES(m). For example, in Table 2 we list the LGMRES(29,
1) results for the same four problems for which GMRES(30) results were provided
in Table 1 in section 3.1. Again, the number of iterations required for convergence
(‖ri‖2/‖r0‖2 ≤ 10−9) as well as the median sequential and median skip angle values
are listed.

Consider two consecutive approximation spaces Si and Si+1. As compared to
standard GMRES(m), LGMRES(m, k) does not necessarily affect how much of Si+1

can be found in Si. However, it does typically “improve orthogonality” quite signifi-
cantly between the current approximation space and the space generated two restart
cycles ago: Si+1 and Si−1. This action accelerates the convergence over that of
GMRES(m) in many cases. Recall from Theorem 4 that the size of the sequential
angles is directly related to the reduction in residual at each cycle. Therefore, if
increasing the skip angles occurs at the expense of reducing the average sequential
angle, then LGMRES augmenting slows convergence. Intuitively, the method that
“wins” generally has large skip angles and large sequential angles.

Our experiments seem to indicate that the LGMRES augmenting scheme signifi-
cantly improves GMRES(m) convergence under the following conditions: GMRES(m)
skip angles are small and continue to decrease as the iteration progresses; GMRES(m)
sequential angles are relatively small and converging to the same angle as the iteration
progresses; or the average skip angle increases significantly after LGMRES augment-
ing. All of these conditions are typically met for problems that display alternating
behavior, although some or all are evident in other problems as well. On the other
hand, LGMRES is not as helpful when one of the following occurs: GMRES(m) skip
angles are not small; GMRES(m) sequential angles vary greatly from cycle to cycle;
GMRES(m) converges in a small number of iterations; or GMRES(m) skip angles
and sequential angles are near zero, indicating stalling. We believe that the LGM-
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Table 3

A comparison of matrix-vector multiplies required for convergence (‖ri‖2/‖r0‖2 ≤ 10−9) for
uxx + uyy + Dux = −(41)2, discretized by centered finite differences on the unit square with zero
boundary conditions and step-size h = 1/41.

Matrix D
‖A−AT ‖2

‖A‖2
m GMRES(m) LGMRES(m,1) Adaptive

morgan 1 1 .005 10 735 245 245
20 415 260 260
30 272 199 199

morgan 41 41 .22 10 168 252 169
20 200 301 301
30 236 296 236

morgan 1681 412 .99 10 496 475 464
20 486 453 469
30 488 482 477

RES augmenting scheme most benefits problems that are close to symmetric in some
sense as these are the problems for which alternating is most easily explained, but we
have seen the algorithm perform well for a variety of problems.

Though we have found that scalar measurements of symmetry generally do not
correlate with LGMRES performance, a close look at the three aforementioned CD
problems with increasing degree of nonsymmetry does provide some insight into LGM-
RES convergence behavior. In Table 3, results similar to those presented in Figure 3
are listed. However, now we compare GMRES(m) with LGMRES(m, 1) to better
examine the effect of appending one error approximation to the Krylov subspace.
Whereas previously presented results compared methods with equal-sized approxima-
tion spaces or equal storage requirements, here the methods have equal-sized Krylov
subspaces at each cycle.

For morgan 1, the coefficient matrix A is nearly symmetric. LGMRES(m, 1) is ef-
fective for this problem, particularly for the m = 10 case where the GMRES(m) resid-
ual vectors alternate noticeably. (The median skip angles in degrees for GMRES(m)
are .6, 2.4, and 23.4 for m = 10, 20, and 30, respectively.) On the other hand,
morgan 41 with D = 41 is an excellent example of the type of problem for which
LGMRES performs very poorly. Because this problem converges fairly quickly with
GMRES(m) and is far from symmetric, we did not expect LGMRES(m, 1) to be very
helpful. But the fact that LGMRES(m, 1) actually slows convergence considerably
was unanticipated. However, we have since observed that LGMRES generally per-
forms poorly on problems for which the GMRES(m) iteration count increases with
increasing m, such as morgan 41. Finally, morgan 1681 is nearly skew-symmetric and
benefits only slightly from the augmenting scheme of LGMRES(m, 1). In general, we
find in our experiments that nearly skew-symmetric problems do not benefit as much
from LGMRES as do nearly symmetric problems.

The morgan 41 problem highlights the need for a potential improvement to the
LGMRES algorithm; in particular, an adaptive version that determines whether or
not to augment would be beneficial. Designing a simple adaptive LGMRES algorithm
effective for all test cases and for all values of m has proved difficult. Our most promis-
ing effort to date is described at the end of section 3.3. Results for this algorithm are
given in the right column of Table 3 and are decidedly mixed. While this adaptive
method usually mitigates the extent to which LGMRES fails on tricky problems, it
can be less effective than standard LGMRES on others. Deciding whether or not to
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Fig. 4. A comparison of the numbers of matrix-vector multiplies required for convergence by
nontruncated GCRO and full LGMRES. Test cases 1–20 correspond to results for m = 5 followed
by m = 10 for morgan 1, morgan 41, morgan 1681, sherman1, sherman4, add20, cavity05, orsirr 1,
orsreg 1, and pores 3.

augment within a given restart cycle is difficult. We find that analysis within a single
restart cycle is not sufficient as augmenting has a cumulative effect. An analysis of
convergence across cycles (for both GMRES and LGMRES) would provide a better
understanding of the behavior of LGMRES and enable us to design a more effective
adaptive strategy.

The effectiveness of LGMRES depends upon the matrix problem and the restart
parameter m, but the savings in matrix-vector multiplies are quite substantial in many
cases. Though many of the test problems presented in this section would benefit from
preconditioning, results for problems such as cavity10 that are difficult to precondition
[23] are encouraging. And, in our experience, we find that LGMRES typically does
not require more iterations than does restarted GMRES.

4.2. Comparison to GCRO and GCROT. In section 3.4, we discuss the
similarities (and differences) between LGMRES(m, k) and GCROT. Here we com-
pare the performance of the two truncated methods, first briefly examining their less
practical nontruncated counterparts, full GCRO and full LGMRES (LGMRES(m)).

We evaluate MATLAB implementations of LGMRES(m) and GCRO in the same
manner as in section 4.1. That is, we compare the number of matrix-vector multiplies
required for the relative residual norm to be less than the convergence tolerance ζ.
For these nontruncated methods, we use small values of m, m = 5 and m = 10, since
storage increases with each iteration. We again test the three related CD problems
(morgan 1, morgan 41, and morgan 1681) with ζ = 10−9, as these problems were
also used in [8]. In addition, we compare results for a subset of the Matrix Market
problems from the previous section with ζ = 10−5 as well as one new Matrix Market
problem, pores 3, that stalls for both GMRES(10) and GMRES(5).

Figure 4 compares the two methods and indicates that the performance of the
two methods, in terms of matrix-vector multiplies, is often similar. In terms of con-
vergence, our experiments seem to indicate that appending vectors to the end of the
standard Krylov subspace (as LGMRES does) is not necessarily inferior to orthogo-
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Fig. 5. A comparison of the minimum to maximum number of matrix-vector multiplies required
for convergence by LGMRES(m, k) and GCROT(m, k, k, s, p1, p2) for constant-sized approxima-
tion spaces. GMRES(m+k) is also indicated. Test cases 1–27 correspond to m+k = 10, m+k = 20,
and m+ k = 30, respectively, for morgan 1, morgan 41, morgan 1681, sherman1, sherman4, add20,
cavity05, orsirr 1, and orsreg 1.

nalizing against them at the start of the cycle, and our experience does not clearly
indicate which approach is to be preferred in a given situation. Even in the case where
GMRES(m) stalls (and intuitively LGMRES(m) would not be helpful), one can find
counterexamples such as pores 3 (cases 19 and 20) where slow initial convergence is
eventually overcome.

As mentioned in section 3.3, though interesting from a theoretical point of view,
nontruncated methods are often impractical due to increasing storage requirements.
For example, Figure 4 indicates that both orsirr 1 and pores 3 require storing more
than n vectors. Additionally, for LGMRES(m), an increasing number of orthogo-
nalizations are required in each cycle. Therefore, we do not further investigate the
convergence behavior of LGMRES(m) but instead focus on a comparison of the more
practical versions of the two algorithms: LGMRES(m, k) and GCROT(m, k, k, s,
p1, p2).

For each of these truncated algorithms, the size of the approximation space is
m + k. We use a MATLAB implementation of GCROT supplied by Oliver Ernst.
The test problems are the same as in Figure 4 with approximation spaces of size 10,
20, and 30, although the pores 3 test cases have been dropped since neither truncated
algorithm converges for that problem.

For each of the 20 test cases, we ran LGMRES(m, k) with k = 1 : 3, as this
range was recommended in the previous section. Additionally, ten permutations of
GCROT(m, k, k, s, p1, p2), where m + k is constant, were chosen to reflect the
choices in [8] (e.g., m ≤ k, s ≤ �m

2 �). Figure 5 compares the two methods for all
27 test cases. The bars indicate the range (minimum to maximum) of matrix-vector
multiplies required. The circles represent restarted GMRES for each problem with
the corresponding approximation space size. Vertical dotted lines separate test cases
corresponding to the same matrix problem. The missing circle for test case 19 in-
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dicates that GMRES(m + k) required more than 10,000 iterations. Some of these
iteration counts are unrealistically large, but recall that we are not considering pre-
conditioning and are simply evaluating the relative performance of the two algorithms.

Results for the two algorithms are relatively similar in most of the test cases. We
again notice that LGMRES(m, k) has particular difficulty with morgan 41 (GCROT
has difficulty only for m + k = 10). Problem morgan 1681 is somewhat resistant to
improvement by both methods, and problem orsirr 1 is highly sensitive to the choice
of input parameters with GCROT. It is not clear in our experience or from results
presented in [8] how to choose the optimal parameters for GCROT. For the ten of
the many possible permutations we chose for GCROT for each fixed m + k, there
was no observable trend as to which of the ten permutations were most (or least)
effective across this set of test problems. In addition, we have found that occasionally
m > k can be more effective than the recommended k > m for GCROT (in test cases
for problems add20 and orsirr 1, for example). Ernst also found that choosing the
parameters for GCROT can be problematic [14]. However, for LGMRES, k ≤ 3 is
nearly always the best choice and the variation in results for k = 1 : 3 is generally
reasonable.

4.3. Effectiveness for larger preconditioned problems. In this section, we
demonstrate that LGMRES can be a helpful addition to preconditioning. We im-
plemented LGMRES in C using a locally modified version of PETSc 2.1.5 [3, 4] in
order to easily access preconditioners, test larger problems, and obtain reliable timing
results (instead of counting matrix-vector multiplies). Our PETSc implementation is
available in PETSc 2.1.6. First, we look at cumulative results for 15 different matrix
problems. Then we more closely examine a few of those problems.

We chose a variety of test problems from the Matrix Market Collection [23],
the University of Florida (UF) Sparse Matrix Collection [6], and the PETSc [3, 4]
collection of test matrices. We use the ILU(p) preconditioner, where p indicates the
level of fill (see, e.g., [25]). If a right-hand side is not provided, we generate a random
right-hand side. For reference, the test problems are listed in Table 4.

Table 4

List of test problems together with the matrix order (n), number of nonzeros (nnz), precondi-
tioner, source, and description of the application area (if known). Source indicates Matrix Market
Collection (MM), UF Sparse Matrix Collection (UF), or PETSc test collection (PC), along with a
set or directory name if applicable.

Problem n nnz ILU(p) Source Application area

1 fidapm11 22294 623554 ILU(0) MM: Sparskit fluid flow
2 memplus 17758 126150 ILU(0) MM: Hamm digital circuit simulation
3 arco3 38194 241066 ILU(0) PC multiphase flow: oil reservoir
4 arco5 35388 154166 ILU(0) PC multiphase flow: oil reservoir
5 arco6 108009 2204937 ILU(0) PC multiphase flow: oil reservoir
6 ex40 7740 458012 ILU(0) UF: FIDAP fluid flow
7 garon2 13535 390607 ILU(1) UF: Garon fluid flow
8 bcircuit 68902 375558 ILU(1) UF: Hamm digital circuit simulation
9 xenon1 48600 1181120 ILU(2) UF: Ronis crystalline compound analysis

10 pesa 11738 79566 ILU(0) UF: Gaertner
11 aft01 8202 125567 ILU(0) UF: Okunbor acoustic radiation
12 venkat50 62424 1717792 ILU(0) UF: Simon fluid dynamics
13 epb3 84617 463625 ILU(0) UF: Averous heat exchanger simulation
14 big 13209 91465 ILU(1) UF: Gaertner
15 zhao2 33861 166453 ILU(0) UF: Zhao electromagnetic systems
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GMRES(30) and LGMRES(30 − k, k), k = 1 : 3. All methods use an approximation space of
dimension 30.

We compare the performance of restarted GMRES to that of LGMRES(m, k)
with the same approximation space size and then the same storage requirements. For
LGMRES, we report results for k = 1 : 3, as we find that choosing k in this range
typically results in the most improvement with the least risk of increasing execution
time. All tests are run until the relative residual norm is less than the convergence
tolerance ζ = 10−9. Recall that GMRES with left preconditioning minimizes the
preconditioned residual norm (‖M−1r‖2), and, therefore, the determination of con-
vergence is based on this preconditioned residual norm as usual. The initial guess is
a zero vector in all cases. Unless otherwise noted, results provided were run on a Sun
UltraSPARC 10 with 256M RAM, a clock-rate of 360 MHz, a 16KB L1 cache, and
a 2MB L2 cache. For each problem we report wall clock time for the linear solve.
All timings are averages from five runs and have standard deviations of at most two
percent, although most are less than one percent. If a method does not converge in
30000 iterations, the execution time reported reflects the time to 30000 iterations, and
we say that the method does not converge. Note that iteration counts for problems
that converge are well below 30000. We did not compare LGMRES(m, k) to GCROT
for these problems because no PETSc implementation of GCROT is available.

In Figure 6, we compare GMRES(30) to LGMRES(29, 1), LGMRES(28, 2), and
LGMRES(27, 3). All four of these methods generate an approximation space of
dimension 30 during each restart cycle. Similar to the plots seen previously, the y-
axis indicates the log of the ratio of the time to converge for GMRES(30) to the time
to converge for both the best and worst performing cases of LGMRES(30 − k, k) for
k = 1 : 3, and the x-axis corresponds to the 15 test problems in Table 4. Points above
the x-axis favor LGMRES and points below favor GMRES. Note that GMRES(30)
does not converge (in 30000 iterations) for problems 10, 14, and 15, and LGMRES(27,
3) does not converge for problem 15.

For larger problems in particular, comparing restarted GMRES to an LGM-
RES method that requires an equal amount of storage is also of interest. Both
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Fig. 7. A comparison of the time required for convergence for 15 different problems with
GMRES(30) and LGMRES(30− 3k, k) with k = 1 : 3. All methods require storage for 33 vectors of
length n.

GMRES(30) and LGMRES(30 − 3k, k) have the same 33 vector storage require-
ment (see section 3.2). Similar to the previous figure, Figure 7 compares GMRES(30)
to LGMRES(27, 1), LGMRES(24, 2), and LGMRES(21, 3). In this comparison, one
augmentation vector must be more helpful than three standard Krylov vectors for
LGMRES to win. This requirement is fairly stringent for some of the larger problems
given that we allow only 33 vectors of storage. Nevertheless, the majority of the
problems still show improvement with LGMRES.

Now we examine problems bcircuit, fidapm11, and big from our test set (in Ta-
ble 4) in more detail, additionally providing timing results for full GMRES. The
results in Tables 5–7 for these three problems demonstrate different possible relations
in convergence behavior among LGMRES(m, k), GMRES(m), and full GMRES.

First consider the timing results for problem bcircuit in Table 5. For this problem,
full GMRES requires memory resources beyond the physical memory limit of our

Table 5

Results for matrix bcircuit and its corresponding right-hand side, with n = 68902, nnz =
375558, and ILU(1) preconditioning. Times are in seconds and include mean and standard devia-
tions of times for five runs.

Approx. space # vectors Matrix-vector
Method dimension stored multiplies Time

Full GMRES 1013 1016 1013 2880.364 ± 9.24
GMRES(30) 30 33 5602 1135.38 ± 12.58

LGMRES(29,1) 30 35 2959 615.28 ± 5.61
LGMRES(28,2) 30 37 1730 365.16 ± 2.47
LGMRES(27,3) 30 39 1707 369.70 ± 2.48

LGMRES(27,1) 28 33 2631 533.42 ± 4.54
LGMRES(24,2) 26 33 2467 503.71 ± 3.54
LGMRES(21,3) 24 33 1672 339.42 ± 2.21
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Table 6

Results for matrix fidapm11 and its corresponding right-hand side, with n = 22294, nnz =
623554, and ILU(0) preconditioning. Times are in seconds and include mean and standard devia-
tions of times for five runs.

Approx. space # vectors Matrix-vector Execution
Method dimension stored multiplies time

Full GMRES 952 955 952 854.02 ± 6.27
GMRES(30) 30 33 16482 2100.23 ± 8.40

LGMRES(29,1) 30 35 5511 704.65 ± 0.18
LGMRES(28,2) 30 37 2915 376.64 ± 0.10
LGMRES(27,3) 30 39 2733 357.19 ± 0.78

LGMRES(27,1) 28 33 5239 664.84 ± 1.89
LGMRES(24,2) 26 33 3399 431.39 ± 1.00
LGMRES(21,3) 24 33 2941 373.96 ± 0.41

Table 7

Results for matrix big with a random right-hand side, with n = 13209, nnz = 91465, and
ILU(1) preconditioning. Times are in seconds and include mean and standard deviations of times
for five runs.

Approx. space # vectors Matrix-vector Execution
Method dimension stored multiplies time

Full GMRES 188 191 188 21.70 ± 0.03
GMRES(30) 30 33 > 30000 1231.54 ± 1.08

LGMRES(29,1) 30 35 8500 358.07 ± 0.15
LGMRES(28,2) 30 37 6997 300.18 ± 0.32
LGMRES(27,3) 30 39 6546 281.79 ± 0.70

LGMRES(27,1) 28 33 7654 315.7 ± 0.37
LGMRES(24,2) 26 33 7971 327.96 ± 0.20
LGMRES(21,3) 24 33 8259 332.56 ± 0.09

machine. For this reason, we had to rerun the bcircuit problem on a similar machine
with four times as much memory (a Sun UltraSPARC 10 with 1024M RAM, a clock-
rate of 440 MHz, a 16KB L1 cache, and a 2MB L2 cache) to obtain timing results
for full GMRES. Therefore, for Table 5 only, all results presented for bcircuit were
obtained on this second machine. Even with the extra memory provided by the
second machine, we see that restarted GMRES(30) is more than twice as fast as full
GMRES, and LGMRES is even faster. Conversely, for problem fidapm11 given in
Table 6, full GMRES is faster than GMRES(30) on our machine, although LGMRES
still has the faster execution time of the three methods on this problem. Finally,
results for problem big are given in Table 7. This third problem is interesting because
GMRES(30) converges very slowly. In fact, the relative residual norm is still ≈ .002
after 30000 iterations. Both LGMRES(30 − 3k, k) and LGMRES(30 − k, k), on the
other hand, improve convergence dramatically over that of GMRES(30). However,
for this moderately sized problem, full GMRES requires only 188 iterations and wins
by a landslide.

Most of the problems presented here require a restarted method given the re-
sources of the machine chosen for the experiments. On a more powerful machine
(more memory and faster processor), full GMRES might be faster for many of these
problems. At the same time, because every machine has a limit as to the size prob-
lems it can reasonably solve with a full method, restarted methods and acceleration
methods provide a great advantage.
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Finally, we note that because LGMRES is an accelerator, it is not, in general,
a substitute for an effective preconditioner. Although we did encounter a number of
test problems for which the ILU preconditioner is not a viable option and LGMRES
is a dramatic improvement over GMRES(m), we expect that in those cases an appro-
priate preconditioner would be even more effective. Nevertheless, LGMRES can be
an effective addition to preconditioning for a range of problems. Although LGMRES
improvements with preconditioning tend not to be as spectacular as the improvements
seen for the nonpreconditioned problems of section 4.1, even moderate acceleration
for large problems can translate into significant time savings.

5. Concluding remarks. In this paper, we have described a method that ac-
celerates the convergence of GMRES(m). We have also discussed some interesting
observed properties of the convergence of GMRES(m) that motivated the algorithm’s
development. Experimental results demonstrate that the LGMRES augmentation
scheme is an effective accelerator for GMRES(m) with or without preconditioning.
Furthermore, the algorithm is straightforward and easy to implement. However,
LGMRES is not typically a substitute for preconditioning and does not help when
a problem stalls for a given restart parameter. Possible improvements to the algo-
rithm include a robust adaptive variant. In future work, we will describe a more
memory-efficient block implementation of the LGMRES algorithm.

Acknowledgments. We thank Oliver Ernst for providing us with his MATLAB
implementation of GCROT and the referees for their many helpful suggestions.
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Abstract. In this paper we study numerical stability of the parallel Jacobi method for computing
the singular values and singular subspaces of an invertible upper triangular matrix that is obtained
from QR decomposition with column pivoting. We show that in this case the parallel Jacobi method
locates singular values and singular subspaces to full machine accuracy.
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1. Introduction. Mathias [5] has observed that the reduction of a rectangular
matrix of full column rank to a smaller invertible upper triangular matrix R using
QR decomposition is stable. In this paper we study numerical stability of the parallel
Jacobi method for computing the singular values and singular subspaces of an invert-
ible upper triangular matrix obtained from QR decomposition with column pivoting.
It turns out that in this case the parallel Jacobi method locates singular values and
singular subspaces to full machine accuracy. This means that the error introduced is
dominated by error from the QR part of the process. This paper is organized as fol-
lows. In section 2 we recall some perturbation theory of singular values and singular
subspaces. In section 3 we present stable angle formulas for SVD of upper triangular
matrices based on [1]. In section 4 we describe the mobile parallel Jacobi method
(MPJM). In section 5 roundoff error for this method is analyzed. Finally in section 6
we give some numerical results. In this paper, we use MATLAB notation freely.

2. Perturbation theory. In this section we present two basic theorems which
will be used to prove the stability of the parallel Jacobi method. We first state a
perturbation theorem [2] for singular values.

Theorem 1. Let G and G̃ = G+�G be n× n real invertible matrices such that
η ≡ ‖G−1(�G)‖2 < 1. Then

|σ̃i − σi|
σi

≤ η,

where σi and σ̃i are the ith largest singular values of G and G̃, respectively.
Now we state a theorem which can be used to find a perturbation bound for left

singular subspaces of invertible square matrices.
Theorem 2. Let G and G̃ = G+�G be n× n real invertible matrices such that

η ≡ ‖G−1(�G)‖2 < 1/3. Let G = UΣV T and G̃ = Ũ Σ̃Ṽ T be singular value decom-
positions where σi and σ̃i are the ith largest singular values of G and G̃, respectively,
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and also the ith diagonal entries of Σ and Σ̃. If S = UT Ũ , then

|sij | ≤
3η√

1 − 3η

σi σ̃j∣∣σ2
i − σ̃2

j

∣∣ ,
provided σi �= σ̃j.

Proof. Let H = GGT and H̃ = G̃G̃T . If we write H̃ = H + �H, then �H =
G(�G)T + (�G)GT + (�G)(�G)T . Note that η = ‖Σ−1UT (�G)‖2. Since H−1/2 =
UΣ−1UT , it follows that∣∣∣∣∣∣H−1/2(�H)H−1/2

∣∣∣∣∣∣
2
≤ 2η + η2 ≤ 3η < 1.

Since σ2
i , U and σ̃2

i , Ũ are the eigenvalues and eigenvector matrices of positive definite
matrices H and H̃, respectively, the theorem follows from Theorem 1 of [4].

Remark 1. To see how we can use Theorem 2, recall that if U and Ũ are n × n
orthogonal matrices, and we partition U = [Ua Ub] and Ũ = [Ũa Ũb], where Ua, Ũa

and Ub, Ũb are n × k and n × (n − k) matrices, respectively, then the sines of the
principal angles between the column spaces of Ua and Ũa are the singular values of
the matrix UT

a Ũb. So we let s(Ua, Ũa) ≡ ‖UT
a Ũb‖2, which is the maximum sine of the

principal angles between the column spaces of Ua and Ũa.
Since

s(Ua, Ũa) =
∣∣∣∣∣∣UT

a Ũb

∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣UT
a Ũb

∣∣∣∣∣∣
F
≤

√
k(n− k) max

1≤i≤k, k+1≤j≤n
|sij | ,

it follows from Theorem 2 and the fact that
√
k(n− k) ≤ n/2 that

s(Ua, Ũa) ≤ 1.5n
η√

1 − 3η
max

1≤i≤k, k+1≤j≤n

σi σ̃j∣∣σ2
i − σ̃2

j

∣∣ .
Because of Theorem 1, the above inequality can be written

s(Ua, Ũa) ≤ 1.5n
η

sep(Σa,Σb)
+ O(η2),(1)

where

sep(Σa,Σb) ≡ min
1≤i≤k, k+1≤j≤n

∣∣σ2
i − σ2

j

∣∣
σi σj

.(2)

Remark 2. Note that the estimate for s(Ua, Ũa) holds for the SVD of the form
G = (UP )(PTΣP )(V P )T , where P is any permutation. So, if P is chosen in such a
way that Ua corresponds to (simple, multiple, or clustered) σi, the result (1) gives an
estimate of how much the left singular subspace belonging to σi is perturbed. In this
case sep(Σa,Σb) becomes the relative gap for σi in the set of singular values.

3. Stable angle formulas. In this section we present a set of angle formulas
which is crucial for the stability of our parallel Jacobi method for upper triangular
matrices. We also present some lemmas that will be used for error analysis.

The basic problem is the accurate calculation of the SVD of a 2×2 diagonal block

C =

[
a b
0 d

]
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of the given n× n invertible upper triangular matrix R. We use 2 × 2 reflectors

Hl =

[
cl sl
sl −cl

]
and Hr =

[
cr sr
sr −cr

]
.

In particular, we want HT
l CHr = C+ to be diagonal. In fact, the following stable

angle formulas are given according to those in [1], although the authors of [1] use[
s c
−c s

]
instead of

[
c s
s −c

]
for diagonalization, which yields slight variations for r, ζl, tr, and r, ζr, tl in the
following formulas.

Case 1. |a| ≥ |d|. We compute cl, sl, cr, and sr as follows:

1. r = (a+d)(a−d)
b ,

2. ζl = r+b
2d ,

3. tl = 1

ζl+sign(ζl)
√

1+ζ2
l

,

4. cl = 1√
1+t2

l

, sl = tlcl,

5. tr = dtl+b
a ,

6. cr = 1√
1+t2r

, sr = trcr.

Case 2. |a| < |d|. We compute cr, sr, cl, and sl as follows:

1. r = (a+d)(a−d)
b ,

2. ζr = r−b
2a ,

3. tr = 1

ζr+sign(ζr)
√

1+ζ2
r

,

4. cr = 1√
1+t2r

, sr = trcr,

5. tl = atr−b
d ,

6. cl = 1√
1+t2

l

, sl = tlcl.

We update the diagonal matrix C+ = diag(a+, d+) by

a+ =
cl
cr
a, d+ =

cr
cl
d.(3)

We use the model of floating point number arithmetic with machine precision εM :

fl(x ∗ y) = x ∗ y(1 + ε1),

where “∗” denotes addition, subtraction, multiplication, or division, and

fl(
√
x) =

√
x(1 + ε2),

where |εi| ≤ εM for i = 1, 2.
We state, without proof, two lemmas which will be used in obtaining bounds for

errors in computed versions of cl, cr, sl, and sr.
Lemma 3. If x and y have the same sign,

x(1 + α1) + y(1 + α2) = (x + y)(1 + α),

where |α| ≤ max{|α1| , |α2|}.
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Lemma 4. In floating point number arithmetic with machine precision εM

fl(
√

1 + x2) =
√

1 + x2(1 + 2ε) + O(ε2
M ),

where |ε| ≤ εM .
In the rest of the paper we denote the computed version of x by x̃. The next four

bounds also follow from [1], but we provide the proof of the first bound.
Lemma 5. If we use the above angle formulas, then

c̃l = cl(1 + 16ε1) + O(ε2
M ),

c̃r = cr(1 + 16ε2) + O(ε2
M ),

s̃l = sl(1 + 30ε3) + O(ε2
M ),

s̃r = sr(1 + 30ε4) + O(ε2
M ),

where |εi| ≤ εM for i = 1, 2, 3, 4 and εM is the machine precision.
Proof. We go for the case where |a| < |d| because this case gives a bigger bound

for c̃l. In the following, all |ξi| ≤ εM . First, using our model of floating point number
arithmetic,

r̃ = fl

(
(a + d)(a− d)

b

)
=

(a + d)(a− d)

b
(1 + 4ξ1) + O(ε2

M )

= r(1 + 4ξ1) + O(ε2
M ).(4)

Using the model of floating point number arithmetic, (4), and the fact that r and
−b have the same sign (and hence using Lemma 3), we have

ζ̃r = fl

(
r̃ − b

2a

)
=

r̃ − b

2a
(1 + 2ξ2) + O(ε2

M )

=
r(1 + 4ξ1) − b

2a
(1 + 2ξ2) + O(ε2

M )

=
r(1 + 6ξ3) − b(1 + 2ξ2)

2a
+ O(ε2

M )

=
(r − b)(1 + 6ξ4)

2a
+ O(ε2

M )

= ζr(1 + 6ξ4) + O(ε2
M ).(5)

Using the model of floating point number arithmetic, Lemmas 4 and 3, and (5),

t̃r = fl

⎛⎝ 1

ζ̃r + sign(ζ̃r)
√

1 + ζ̃2
r

⎞⎠
=

1

ζ̃r + sign(ζ̃r)
√

1 + ζ̃2
r

(1 + 4ξ5) + O(ε2
M )

=
1

ζr + sign(ζr)
√

1 + ζ2
r

(1 + 10ξ6) + O(ε2
M )

= tr(1 + 10ξ6) + O(ε2
M ).(6)
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Using the model of floating point number arithmetic, (6), and the fact that atr
and −b have the same sign (and hence using Lemma 3),

t̃l = fl

(
at̃r − b

d

)
=

at̃r(1 + 3ξ7) − b(1 + 2ξ8)

d
+ O(ε2

M )

=
atr(1 + 13ξ9) − b(1 + 2ξ8)

d
+ O(ε2

M )

=
(atr − b)(1 + 13ξ10)

d
+ O(ε2

M )

= tl(1 + 13ξ10) + O(ε2
M ).(7)

Finally, using the model of floating point number arithmetic, Lemma 4, and (7),

c̃l = fl

⎛⎝ 1√
1 + t̃2l

⎞⎠
=

1√
1 + t̃2l

(1 + 3ξ11) + O(ε2
M )

=
1√

1 + t2l
(1 + 16ξ12) + O(ε2

M )

= cl(1 + 16ξ12) + O(ε2
M ).

The following lemma is easily proven from Lemma 2.2 in [5].
Lemma 6. Let

A =

[
x z
z y

]
be positive definite and z �= 0. Suppose

H =

[
c s
s −c

]
diagonalizes A. Then

|c| |s|max

{√
x

√
y
,

√
y√
x

}
≤ 1.

Since Hl diagonalizes the positive definite matrix

CCT =

[
a2 + b2 bd

bd d2

]
,

applying Lemma 6 to CCT gives

|cl| |sl|max

{√
a2 + b2

|d| ,
|d|√

a2 + b2

}
≤ 1.(8)
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4. Parallel Jacobi method. Let R be an n×n upper triangular matrix. By a
left (right) reflector Ĥl (Ĥr) for the pair (i, i+ 1) of the matrix R (1 ≤ i ≤ n− 1) we
mean an n× n identity matrix except that Ĥl(i : i+ 1, i : i+ 1) = Hl (Ĥr(i : i+ 1, i :
i + 1) = Hr). We call R → ĤT

l RĤr a transformation using the pair (i, i + 1). Note

that this transformation annihilates the (i, i+ 1) entry of R and that ĤT
l RĤr is still

upper triangular.
The parallel Jacobi method is based on the fact that we can annihilate about n/2

elements of an n×n matrix simultaneously. We use the mobile parallel Jacobi method
(MPJM) [6, pp. 349–369]. In the MPJM we consider two pairings, called pairing A
and pairing B. We group the indices 1, 2, . . . , n into the pairs

pairing A (1, 2), (3, 4), . . . , (l − 1, l),

where l = n if n is even and l = n− 1 if n is odd, and

pairing B (2, 3), (4, 5), . . . , (m− 1,m),

where m = n − 1 if n is even and m = n if n is odd. We will refer to a set of
independent transformations performed simultaneously based on pairing A or pairing
B as a batch. The MPJM is described in two sentences:

1. Perform batches of transformations using pairings A and B alternately.
2. After each transformation, interchange the participating rows and columns.

It takes n batches to annihilate all the off-diagonal entries once, that is, to perform
one sweep. Note that the upper triangular structure of R is preserved throughout the
process.

5. Error analysis. In this section we prove a bound on the roundoff error in-
volved in any batch of the MPJM. We use this bound to show the method’s accuracy
in computing singular values and singular subspaces. We use ≈ (�) when an equality
(inequality) holds up to the first order in machine precision or perturbation.

Theorem 7. Let R be an n×n invertible upper triangular matrix. We employ a
batch of transformations according to MPJM as described in section 4. Let Jl (Jr) be
the product of all the left (right) reflectors used in the batch, and R̃+ be the computed
version of R+ = JT

l RJr using the formulas in section 3.
Then

R̃+ = R+ + �R+

with

∣∣∣∣R−1
+ (�R+)

∣∣∣∣
2

�

⎧⎨⎩
34εM if n = 2,

26 n

[
1+1.6ω

σmin(D−1R) + 1.5
σmin(D̃−1

+
R̃+)

]
εM if n ≥ 3.

Here D (D̃+) is a diagonal matrix whose ith diagonal entry is the 2-norm of the ith
row of R (R̃+), and

ω ≡ max
i

ωi,i+1,

where

ωi,i+1 ≡ max

(
max

i+2≤j≤n

|R(i, j)|
|R(i, i)| , max

i+2≤j≤n

|R(i + 1, j)|
|R(i + 1, i + 1)|

)
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and (i, i + 1) belongs to pairing A or pairing B, depending on the current batch.
Remark 3. If R is obtained from QR decomposition with column pivoting (for

example, see [3, pp. 248–250]), then ω is bounded by 1 for R.
Proof. If n = 2, the matrix �R+ accounts for errors arising from our update

formulas (3) for R. Since both R+ and R̃+ are diagonal matrices, �R+ is a diagonal
matrix. Note that using Lemma 5 the diagonal elements ã+ and d̃+ of R̃+ are

ã+ = fl

(
c̃l
c̃r
a

)
≈ cl

cr
a(1 + 34ξ1) = a+(1 + 34ξ1)

and

d̃+ = fl

(
c̃r
c̃l
d

)
≈ cr

cl
d(1 + 34ξ2) = d+(1 + 34ξ2),

where |ξ1| , |ξ2| ≤ εM . Since the diagonal entries of R+ are a+ and d+, respectively,
it follows that ∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

� 34εM .

If n ≥ 3, we write R1 = JT
l (R + �R1) and R2 = [R1 + �R2]Jr. Here �R1

(�R2) represents the backward error from left (right) transformations, excepting
the error in the diagonal blocks. Hence these two matrices are strictly block upper
triangular. Since we update diagonal blocks by the formulas given in (3), we need
another perturbation term �R3. Then we have

R̃+ = [JT
l (R + �R1) + �R2]Jr + �R3

= JT
l RJr + JT

l (�R1)Jr + (�R2)Jr + �R3

≡ R+ + �R+,

where �R+ = JT
l (�R1)Jr + (�R2)Jr + �R3. We bound

η =
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

by η1 + η2 + η3, where η1 = ‖R−1
+ JT

l (�R1)Jr‖2, η2 = ‖R−1
+ (�R2)Jr‖2, and η3 =

‖R−1
+ (�R3)‖2.
Note that

η1 =
∣∣∣∣R−1

+ JT
l (�R1)Jr

∣∣∣∣
2

=
∣∣∣∣JT

r R−1JlJ
T
l (�R1)Jr

∣∣∣∣
2

=
∣∣∣∣R−1(�R1)

∣∣∣∣
2

≤
∣∣∣∣D−1(�R1)

∣∣∣∣
2

σmin(D−1R)
.

Now we bound ‖D−1(�R1)‖2. Each individual left reflector affects two rows of R
only. Suppose a particular reflector affects the rows i and i+1. Then we need only to
consider elements in positions (i : i+1, i+2 : n), because the diagonal block is updated
separately. In particular, denote the elements of R in the positions (i : i + 1, j) by[

g
h

]
, where i + 2 ≤ j ≤ n. Using Lemma 5, note that

fl

(
H̃T

l

[
g
h

])
≈ HT

l

[
g
h

]
+

[
18ξ3gcl + 32ξ4hsl
32ξ5gsl + 18ξ6hcl

]
,
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where |ξ3| , |ξ4| , |ξ5| , |ξ6| ≤ εM . For backward error we set

fl

(
H̃T

l

[
g
h

])
= HT

l

[
g + �g
h + �h

]
.

Then [
�g
�h

]
≈

[
cl sl
sl −cl

] [
18ξ3gcl + 32ξ4hsl
32ξ5gsl + 18ξ6hcl

]
.

So

|�g| ≈
∣∣18ξ3gc

2
l + 32ξ4hclsl + 32ξ5gs

2
l + 18ξ6hclsl

∣∣ .
Hence it follows that

|�g| � 32εM

(
|g| + 25

16
|cl| |sl| |h|

)
.

Thus, writing

R(i : i + 1, i : i + 1) =

[
a b
0 d

]
and using (8), the row-norm-scaled backward error for g satisfies

|�g|
||R(i, :)||2

� 32εM

(
|g|

||R(i, :)||2
+

25

16
|cl| |sl|

|h|
||R(i, :)||2

)
≤ 32εM

(
1 +

25

16
|cl| |sl|

|d|√
a2 + b2

|h|
|d|

)
≤ 32εM

(
1 +

25

16

|h|
|d|

)
.

Similarly,

|�h| � 32εM

(
|h| + 25

16
|cl| |sl| |g|

)
,

and again using (8), the row-norm-scaled backward error for h is bounded by

|�h|
||R(i + 1, :)||2

� 32 εM

(
|h|

||R(i + 1, :)||2
+

25

16
|cl| |sl|

|g|
||R(i + 1, :)||2

)
≤ 32 εM

(
1 +

25

16
|cl| |sl|

√
a2 + b2

|d|
|g|√

a2 + b2

)

≤ 32 εM

(
1 +

25

16

|g|√
a2 + b2

)
≤ 32 εM

(
1 +

25

16

|g|
|a|

)
.

By the definition of ωi,i+1, it follows that after the corresponding row vector-norm-
scaling every element of �R1 in the positions (i : i + 1, i + 2 : n) is bounded to the
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first order of εM by 32εM (1 + 25
16ωi,i+1). Now it follows that∣∣∣∣D−1(�R1)

∣∣∣∣
2
≤

∣∣∣∣D−1(�R1)
∣∣∣∣
F

� 16
√

2 n εM

(
1 +

25

16
ω

)
≤ 23 n εM (1 + 1.6ω),

and hence

η1 � 23 n
1 + 1.6ω

σmin(D−1R)
εM .(9)

Since R+ = R̃+ −�R+ = R̃+(I − R̃−1
+ (�R+)),

R−1
+ = (I − R̃−1

+ (�R+))−1R̃−1
+ =

[ ∞∑
l=0

(R̃−1
+ (�R+))l

]
R̃−1

+ .

Hence

R−1
+ (�R2) =

[ ∞∑
l=0

(R̃−1
+ (�R+))l

]
R̃−1

+ (�R2) ≈ R̃−1
+ (�R2).

Thus

η2 =
∣∣∣∣R−1

+ (�R2)Jr
∣∣∣∣
2

=
∣∣∣∣R−1

+ (�R2)
∣∣∣∣
2
≈

∣∣∣∣∣∣R̃−1
+ (�R2)

∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣D̃−1
+ (�R2)

∣∣∣∣∣∣
2

σmin(D̃−1
+ R̃+)

.

Now we bound ‖D̃−1
+ (�R2)‖2. Each individual right reflector affects two columns

of R1 only. Suppose a particular reflector affects the columns j and j + 1. Then we
need only to consider elements in positions (1 : j − 1, j : j + 1), because the diagonal
block is updated separately. In particular, denote the elements of R1 in the positions
(i, j : j + 1) by [g h], where 1 ≤ i ≤ j − 1. Note that using Lemma 5

fl
([

g h
]
H̃r

)
≈

[
g h

]
Hr +

[
18ξ7gcr + 32ξ8hsr 32ξ9gsr + 18ξ10hcr

]
,

where |ξ7| , |ξ8| , |ξ9| , |ξ10| ≤ εM . For backward error we set

fl
([

g h
]
H̃r

)
=

[
g + �g h + �h

]
Hr.

Then[
�g �h

]
≈

[
18ξ7gcr + 32ξ8hsr 32ξ9gsr + 18ξ10hcr

] [ cr sr
sr −cr

]
.

Using the Cauchy–Schwarz inequality twice, we obtain

|�g| ≈
∣∣18ξ7gc

2
r + 32ξ8hcrsr + 32ξ9gs

2
r + 18ξ10hcrsr

∣∣
≤

√
182 + 322 εM

√
g2 + h2.

Similarly, |�h| �
√

182 + 322 εM
√
g2 + h2. Note that ||R1(i, :)||2 ≥

√
g2 + h2. Since

right multiplication by an orthogonal matrix does not change row norms, ||R2(i, :)||2 �
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g2 + h2. Since R2 and R̃+ differ only in diagonal blocks and g and h are not in

a diagonal block, we also have ‖R̃+(i, :)‖2 �
√
g2 + h2. So to the first order in εM ,

every element of D̃−1
+ (�R2) is bounded by

√
182 + 322 εM . Now it follows that∣∣∣∣∣∣D̃−1

+ (�R2)
∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣D̃−1
+ (�R2)

∣∣∣∣∣∣
F

�
√

182 + 322

2
n εM ≤ 26 n εM ,

and hence

η2 � 26 n

σmin(D̃−1
+ R̃+)

εM .(10)

Finally, as before,

η3 =
∣∣∣∣R−1

+ (�R3)
∣∣∣∣
2
≈

∣∣∣∣∣∣R̃−1
+ (�R3)

∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣D̃−1
+ (�R3)

∣∣∣∣∣∣
2

σmin(D̃−1
+ R̃+)

.

Now we bound ‖D̃−1
+ (�R3)‖2. The matrix �R3 accounts for errors arising from

our update formulas (3) for the diagonal blocks. Actually there will only be errors in
diagonal elements; that is, �R3 is a diagonal matrix. Note that using Lemma 5 the
diagonal elements ã+ and d̃+ of a typical diagonal block (i : i+ 1, i : i+ 1) of R̃+ are

ã+ = fl

(
c̃l
c̃r
a

)
≈ cl

cr
a(1 + 34ξ11)

and

d̃+ = fl

(
c̃r
c̃l
d

)
≈ cr

cl
d(1 + 34ξ12),

where |ξ11| , |ξ12| ≤ εM . The (i, i) and (i + 1, i + 1) entries of �R3 are 34ξ11a(cl/cr)
and 34ξ12d(cr/cl) to the first order in εM , respectively, and hence∣∣∣∣∣∣D̃−1

+ (�R3)
∣∣∣∣∣∣
2

� 34εM .

So

η3 � 34

σmin(D̃−1
+ R̃+)

εM .(11)

The result of the theorem follows from (9), (10), and (11), using the fact that, if
n ≥ 3, we have 26n + 34 ≤ (1.5)(26n).

Since the case when n = 2 is trivial, we will assume that n ≥ 3 in what follows.
Let R+ = UΣV T and R̃+ = R+ + �R+ = Ũ Σ̃Ṽ T be the SVDs of R+ and R̃+,
respectively. From Theorems 1 and 7 we obtain the following singular value relative
perturbation bound:

|σ̃i − σi|
σi

� 26 n

[
1 + 1.6ω

σmin(D−1R)
+

1.5

σmin(D̃−1
+ R̃+)

]
εM .(12)

We can also easily find a perturbation bound for the left singular subspace. From
(1) and Theorem 7

s(Ua, Ũa) � 39n2

[
1 + 1.6ω

σmin(D−1R)
+

1.5

σmin(D̃−1
+ R̃+)

]
1

sep(Σa,Σb)
εM .(13)



NUMERICAL STABILITY OF THE PARALLEL JACOBI METHOD 995

To get an upper bound on s(Va, Ṽa) we need more work. Write Ũ = U +�U, Σ̃ =
Σ + �Σ and Ṽ = V + �V . Then

R+(�V ) + (�R+)V ≈ U(�Σ) + (�U)Σ

by postmultiplying the SVD of R+ + �R+ by V + �V and using the SVD of R+.
Premultiplication by R−1

+ = V Σ−1UT gives us

�V ≈ V Σ−1UT (�U)Σ + V Σ−1(�Σ) −R−1
+ (�R+)V.

Since s(Va, Ṽa) = ‖V T
a Ṽb‖2, we find the expression of V T

a Ṽb. Note that

V T
a Ṽb = V T

a (Vb + �Vb) = V T
a (�Vb) = V T

a (�V )

[
O

In−k

]
,

so

V T
a Ṽb ≈ V T

a

[
V Σ−1UT (�U)Σ + V Σ−1(�Σ) −R−1

+ (�R+)V
] [ O

In−k

]
.

Since V T
a V =

[
Ik O

]
, by writing

UT (�U) =

[
UT
a

UT
b

] [
�Ua �Ub

]
=

[
UT
a (�Ua) UT

a (�Ub)
UT
b (�Ua) UT

b (�Ub)

]
,

we obtain

V T
a Ṽb ≈ Σ−1

a UT
a (�Ub)Σb + Y,

where

Y =
[
Ik O

]
Σ−1(�Σ)

[
O

In−k

]
− V T

a R−1
+ (�R+)Vb = −V T

a R−1
+ (�R+)Vb.

Define T = V T Ṽ = V T (V +�V ), whose (1,2) block is V T
a Ṽb. Then for 1 ≤ i ≤ k and

k + 1 ≤ j ≤ n,

|tij | � σj

σi
|sij | + |yi,j−k| ,

where sij is the (i, j) entry of S = UT Ũ , whose (1,2) block is UT
a Ũb = UT

a (�Ub).
From Theorem 2, for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n,

|sij | � 3
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

σiσj∣∣σ2
i − σ2

j

∣∣ ,
and note that

||Y ||2 =
∣∣∣∣−V T

a R−1
+ (�R+)Vb

∣∣∣∣
2
≤

∣∣∣∣R−1
+ (�R+)

∣∣∣∣
2
.

So for 1 ≤ i ≤ k and k + 1 ≤ j ≤ n,

|tij | � 3
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

σj

σi

σiσj∣∣σ2
i − σ2

j

∣∣ +
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

=
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

(
3

σ2
j∣∣σ2

i − σ2
j

∣∣ + 1

)
.
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Since Va corresponds to the k largest singular values,

3
σ2
j∣∣σ2

i − σ2
j

∣∣ + 1 ≤ 3
σiσj∣∣σ2
i − σ2

j

∣∣ + 1 ≤ 3

sep(Σa,Σb)
+ 1,

and hence

|tij | �
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

[
3

sep(Σa,Σb)
+ 1

]
.(14)

To provide an estimate for s(Va, Ṽa) even when Va corresponds to any simple,
multiple, or clustered σi (see Remark 2), we consider the two cases, σj ≤ ασi and
σj > ασi, with

α =
sep(Σa,Σb) +

√
sep2(Σa,Σb) + 4

2
.

Then in both cases one can verify that

3
σ2
j∣∣σ2

i − σ2
j

∣∣ + 1 ≤ 3

sep(Σa,Σb)
+ 4

for 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, and hence

|tij | �
∣∣∣∣R−1

+ (�R+)
∣∣∣∣
2

[
3

sep(Σa,Σb)
+ 4

]
.(15)

Note that there is no essential difference between (14) and (15). Since the bound in
(15) is bigger than that in (14), using (15) and Theorem 7 it follows that

s(Va, Ṽa) � 52n2

[
1 + 1.6ω

σmin(D−1R)
+

1.5

σmin(D̃−1
+ R̃+)

] [
1

sep(Σa,Σb)
+ 1

]
εM .(16)

Remark 4. Note that the estimates for s(Ua, Ũa) in (13) and s(Va, Ṽa) in (16)
hold for the SVD of the form R = (UP )(PTΣP )(V P )T , where P is any permutation.
So, if P is chosen in such a way that Ua and Va correspond to (simple, multiple, or
clustered) σi, the results (13) and (16) give estimates of how much the left and right
singular subspaces belonging to σi are perturbed within one parallel batch. In this
case sep(Σa,Σb) becomes the relative gap for σi in the set of singular values.

6. Numerical results. In this section we consider two numerical examples. We
used MATLAB for all our computations. For each example we obtained approximate
singular values and singular vectors in two different ways—first by applying MAT-
LAB built-in function “svd” (MSVD) and then by applying the MPJM. Based on
Theorem 1 and (1), we stopped the MPJM when∣∣∣∣D−1

s (Rs −Ds)
∣∣∣∣
2
≤ 10−14,

where Rs is the upper triangular matrix obtained from R after s sweeps and Ds is the
diagonal part of Rs. The results are summarized in Tables 1 through 8. In Tables 1
and 5, κs denotes the maximum value of

1 + 1.6ω

σmin(D−1R)
+

1.5

σmin(D̃−1
+ R̃+)
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Table 1

General information for MPJM of Example 1.

Sweep ‖D−1
s (Rs −Ds)‖2 κs

s = 0 3.07 × 100

s = 1 2.87 × 100 3.07 × 101

s = 2 3.36 × 10−2 1.90 × 101

s = 3 1.14 × 10−5 2.53 × 100

s = 4 5.52 × 10−16 2.50 × 100

Table 2

Relative accuracy of singular values for Example 1.

Singular values Rel. accuracy of MSVD Rel. accuracy of MPJM

1.0000 × 100 0 2.22 × 10−16

1.0000 × 100 2.22 × 10−16 2.22 × 10−16

1.0000 × 100 0 6.66 × 10−16

1.0000 × 100 1.11 × 10−16 6.66 × 10−16

1.0000 × 10−4 4.54 × 10−14 1.36 × 10−16

1.0000 × 10−4 2.97 × 10−13 5.42 × 10−16

1.0000 × 10−4 2.01 × 10−13 2.71 × 10−16

1.0000 × 10−4 4.79 × 10−13 4.07 × 10−18

1.0000 × 10−8 3.71 × 10−9 1.65 × 10−16

1.0000 × 10−8 2.67 × 10−10 1.65 × 10−16

1.0000 × 10−8 2.03 × 10−9 0

1.0000 × 10−8 4.07 × 10−9 3.31 × 10−16

1.0000 × 10−12 3.61 × 10−7 2.02 × 10−16

1.0000 × 10−12 4.36 × 10−6 0

1.0000 × 10−12 3.54 × 10−6 2.02 × 10−16

9.9999 × 10−13 8.06 × 10−6 4.04 × 10−16

1.3786 × 10−16 2.38 × 10−6 5.36 × 10−16

1.0727 × 10−16 1.11 × 10−5 3.45 × 10−16

8.0030 × 10−17 4.52 × 10−6 0

6.1551 × 10−17 5.62 × 10−6 0

Table 3

Accuracy of left singular subspaces for Example 1.

s(Ua, Ũa) from MSVD s(Ua, Ũa) from MPJM

1.01 × 10−15 1.09 × 10−19

6.32 × 10−13 1.45 × 10−19

1.66 × 10−9 2.09 × 10−19

4.16 × 10−9 1.55 × 10−19

3.98 × 10−9 1.77 × 10−19

during the sth sweep. Note that κs measures to what extent errors within a sweep
influence the accuracy of computed singular values and singular subspaces.

In order to check the accuracy of our computations (recall that the default preci-
sion of MATLAB is double precision), we computed the reference values in quadruple
precision using Symbolic Math Toolbox (which is an extension of MATLAB).

Example 1. In this example a 20 × 20 nonsingular upper triangular matrix R is
generated in the following way. First, we make the 20 × 20 diagonal matrix D whose
diagonal entries are d(1 : 4) = 1, d(5 : 8) = 10−4, d(9 : 12) = 10−8, d(13 : 16) = 10−12,
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Table 4

Accuracy of right singular subspaces for Example 1.

s(Va, Ṽa) from MSVD s(Va, Ṽa) from MPJM

4.26 × 10−16 9.14 × 10−16

1.03 × 10−12 1.03 × 10−15

8.36 × 10−9 1.25 × 10−15

3.50 × 10−5 1.11 × 10−15

3.50 × 10−5 9.25 × 10−16

Table 5

General information for MPJM of Example 2.

Sweep ‖D−1
s (Rs −Ds)‖2 κs

s = 0 1.60 × 100

s = 1 1.01 × 100 1.52 × 101

s = 2 6.58 × 10−5 5.57 × 100

s = 3 2.96 × 10−6 2.50 × 100

s = 4 1.18 × 10−10 2.50 × 100

s = 5 1.17 × 10−11 2.50 × 100

s = 6 6.73 × 10−14 2.50 × 100

s = 7 5.85 × 10−20 2.50 × 100

Table 6

Relative accuracy of singular values for Example 2.

Singular values Rel. accuracy of MSVD Rel. accuracy of MPJM

1.0001 × 10−4 2.71 × 10−16 4.07 × 10−16

1.0001 × 10−4 1.36 × 10−16 4.07 × 10−16

1.0001 × 10−4 2.71 × 10−16 5.42 × 10−16

1.0001 × 10−4 4.07 × 10−16 5.42 × 10−16

1.0000 × 10−4 4.07 × 10−16 1.22 × 10−15

1.0000 × 10−4 1.36 × 10−16 1.36 × 10−16

1.0000 × 10−4 1.36 × 10−16 0

1.0000 × 10−4 0 1.36 × 10−16

9.9990 × 10−5 1.36 × 10−16 2.71 × 10−16

9.9990 × 10−5 0 0

9.9990 × 10−5 2.71 × 10−16 9.49 × 10−16

9.9990 × 10−5 1.08 × 10−15 1.36 × 10−15

1.0001 × 10−8 2.65 × 10−13 3.31 × 10−16

1.0001 × 10−8 2.25 × 10−13 1.65 × 10−16

1.0001 × 10−8 2.70 × 10−13 1.65 × 10−16

1.0001 × 10−8 1.02 × 10−13 1.65 × 10−16

1.0000 × 10−8 4.96 × 10−13 8.27 × 10−16

1.0000 × 10−8 4.28 × 10−13 1.65 × 10−16

1.0000 × 10−8 7.99 × 10−13 6.62 × 10−16

1.0000 × 10−8 2.81 × 10−13 1.65 × 10−16

and d(17 : 20) = 10−16. Then we let A = UDV T , where U and V are 20× 20 random
orthogonal matrices. Finally, R is obtained from A after QR decomposition with
column pivoting.

Table 1 shows that κs remains on the order of 1 for each sweep. Thus we expect
the computed singular values and singular subspaces are accurate up to machine
capacity.



NUMERICAL STABILITY OF THE PARALLEL JACOBI METHOD 999

Table 7

Accuracy of left singular subspaces for Example 2.

s(Ua, Ũa) from MSVD s(Ua, Ũa) from MPJM

3.88 × 10−12 3.84 × 10−12

4.27 × 10−12 4.46 × 10−12

3.69 × 10−12 3.66 × 10−12

1.56 × 10−8 8.44 × 10−12

1.56 × 10−8 8.44 × 10−12

Table 8

Accuracy of right singular subspaces for Example 2.

s(Va, Ṽa) from MSVD s(Va, Ṽa) from MPJM

3.88 × 10−12 3.84 × 10−12

4.27 × 10−12 4.46 × 10−12

3.69 × 10−12 3.67 × 10−12

1.56 × 10−8 8.44 × 10−12

1.56 × 10−8 8.44 × 10−12

For singular values, the inequality (12) predicts relative accuracy on the order of
machine precision. Indeed, Table 2 shows that the MPJM gives full relative accuracy
for all singular values, while MSVD increasingly loses relative accuracy as singular
values become smaller.

Notice that in this example there are five well-separated groups of multiple singu-
lar values, even though roundoff errors changes them into well-separated clusters. We
check the accuracy of the singular subspace corresponding to each cluster of singular
values.

For left singular subspaces, (13) predicts a bound of machine precision times an
extra factor 1/sep(Σa,Σb), which is about 10−4 for each group. This is confirmed in
Table 3, which displays the information according to decreasing size of associated sin-
gular values. We used permutation matrices to extract the needed singular subspace
information (see Remark 4). Note that MSVD loses accuracy for subspaces associated
with smaller singular values.

For right singular subspaces, (16) predicts a bound of machine precision times
an extra factor 1/sep(Σa,Σb) + 1, which is on the order of 1. This is confirmed in
Table 4, while MSVD loses accuracy for subspaces associated with smaller singular
values.

Example 2. In this example a 20 × 20 nonsingular upper triangular matrix R is
generated as in Example 1, but starting with the 20 × 20 diagonal matrix D whose
diagonal entries are d(1 : 4) = 1.0001 × 10−4, d(5 : 8) = 10−4, d(9 : 12) = 0.9999 ×
10−4, d(13 : 16) = 1.0001 × 10−8, and d(17 : 20) = 10−8.

Table 5 shows that κs remains on the order of 1 for each sweep. Thus (12) predicts
relative accuracy of singular values on the order of machine precision. Indeed, Table 6
shows that the MPJM gives full relative accuracy for all singular values, while MSVD
loses relative accuracy for smaller singular values.

Notice that in this example there are five relatively poorly separated clusters of
singular values. We check the accuracy of singular subspaces corresponding to each
cluster of singular values, and we display the results as in Example 1.

For left singular subspaces, (13) predicts a bound of machine precision times an
extra factor 1/sep(Σa,Σb), which is about 104 for this example. This is confirmed in
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Table 7, while MSVD loses accuracy for subspaces associated with smaller singular
values.

For right singular subspaces, (16) predicts a bound of machine precision times an
extra factor 1/sep(Σa,Σb) + 1, which is on the order of 104 in this example. This
is confirmed in Table 8, while MSVD loses accuracy for subspaces associated with
smaller singular values.

Acknowledgments. The authors acknowledge the anonymous referees’ sugges-
tions, which greatly improved the presentation of the paper.
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BREAKDOWN-FREE GMRES FOR SINGULAR SYSTEMS∗
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Abstract. GMRES is a popular iterative method for the solution of large linear systems of
equations with a square nonsingular matrix. When the matrix is singular, GMRES may break down
before an acceptable approximate solution has been determined. This paper discusses properties of
GMRES solutions at breakdown and presents a modification of GMRES to overcome the breakdown.
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1. Introduction. GMRES by Saad and Schultz [17] is one of the most popular
methods for the iterative solution of large nonsymmetric linear systems of equations

Ax = b, A ∈ R
n×n, x, b ∈ R

n.(1.1)

The performance of the method is well understood when A is nonsingular, but the
method also can be applied when A is singular. This paper focuses on the latter case.
For notational simplicity, we choose the initial approximate solution of (1.1) to be
x0 := 0 and assume that the right-hand side vector b in (1.1) is normalized so that
‖b‖ = 1. Here and throughout this paper ‖ · ‖ denotes the Euclidean vector norm or
the associated induced matrix norm.

The standard implementation of GMRES is based on the Arnoldi process. Ap-
plication of k steps of the Arnoldi process to the matrix A with initial vector b yields
the Arnoldi decomposition

AVk = VkHk + fke
T
k ,(1.2)

where Hk ∈ R
k×k is an upper Hessenberg matrix, Vk ∈ R

n×k, Vke1 = b, V T
k Vk = Ik,

V T
k fk = 0, Ik denotes the identity matrix of order k, and ek is the kth axis vector.

When fk �= 0, it is convenient to define the matrices

Vk+1 :=

[
Vk,

fk
‖fk‖

]
∈ R

n×(k+1), Ĥk :=

[
Hk

‖fk‖ eTk

]
∈ R

(k+1)×k(1.3)

and express (1.2) in the form

AVk = Vk+1Ĥk.(1.4)

Note that V T
k+1Vk+1 = Ik+1. We assume that k is small enough so that at least one

of the Arnoldi decompositions (1.2) or (1.4) exists. We will comment on the size of k
below.

∗Received by the editors November 16, 2003; accepted for publication (in revised form) by D. B.
Szyld August 18, 2004; published electronically May 6, 2005.

http://www.siam.org/journals/simax/26-4/43780.html
†Department of Mathematical Sciences, Kent State University, Kent, OH 44242 (reichel@

math.kent.edu). The work of this author was supported in part by National Science Foundation
grant DMS-0107858.

‡Department of Mathematics, University of Kentucky, Lexington, KY 40506 (qye@ms.uky.edu).
The work of this author was supported in part by National Science Foundation grant CCR-0098133.

1001



1002 LOTHAR REICHEL AND QIANG YE

It follows from (1.2) and the orthonormality of the columns of Vk that the latter
form an orthonormal basis of the Krylov subspace

Kk(A, b) := span{b, Ab, . . . , Ak−1b}.

We will write Kk instead of Kk(A, b) when there is no ambiguity.
The kth iterate, xk, determined by GMRES satisfies

‖b−Axk‖ = min
z∈Kk

‖b−Az‖, xk ∈ Kk.

Assuming that fk �= 0, the iterate xk is computed by first solving the minimization
problem in the right-hand side of

min
z∈Kk

‖b−Az‖ = min
y∈Rk

‖b−AVky‖ = min
y∈Rk

‖e1 − Ĥky‖(1.5)

for yk ∈ R
k. Then xk is given by

xk := Vkyk.(1.6)

Since the subdiagonal entries of Ĥk are nonvanishing, the matrix Ĥk is of full rank,
and therefore yk is uniquely determined. We refer to Saad [16] and Saad and Schultz
[17] for implementation details.

We say that the Arnoldi process (1.2) breaks down at step k if fk = 0. Then the
minimization problem (1.5) can be expressed as

min
z∈Kk

‖b−Az‖ = min
y∈Rk

‖b−AVky‖ = min
y∈Rk

‖e1 −Hky‖,(1.7)

and the solution yk of the minimization problem in the right-hand side yields the
solution x := Vkyk of (1.1). In this case, it is easy to show that if A is nonsingular,
then Hk is nonsingular and yk is uniquely determined.

When the matrix A is singular, the Arnoldi process may break down at step k
with the upper Hessenberg matrix Hk in the decomposition (1.2) being singular. Let
yk denote the least-squares solution of minimal Euclidean norm of the minimization
problem on the right-hand side of (1.7). The vector xk := Vkyk is not guaranteed to
solve the linear system of equations (1.1). The investigations [4, 5, 8] shed light on the
properties of xk, specifically on the question of whether xk is a least-squares solution
of (1.1). Related results also can be found in the review [14]. Several Krylov subspace
methods for nonsymmetric singular systems are described in [1, 10, 11, 12, 18]. The
present paper focuses on GMRES. Singular systems, several generalized inverses, and
their applications are discussed in [2, 9].

We say that GMRES breaks down at step k if the Arnoldi process breaks down
at step k. In this paper, we first discuss various properties of GMRES at breakdown,
such as whether a solution is contained in the Krylov subspace and hence found
by GMRES, and if not, what subspace contains a solution. Both consistent and
inconsistent systems are considered. We then introduce a generalization of the Arnoldi
decomposition that can be used when the (standard) Arnoldi process breaks down.
We refer to GMRES based on the generalized Arnoldi decomposition as breakdown-free
GMRES or simply BFGMRES. We also describe a breakdown-free variant of range
restricted GMRES, which we refer to as BFRRGMRES. The (standard) RRGMRES
method was introduced in [5]. Our interest in RRGMRES stems from the fact that
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the method can determine more accurate approximations of the desired solution of
large-scale discrete ill-posed problems than GMRES can; see [6] for illustrations. We
remark that our approach to overcome breakdown of the Arnoldi process is related
to but quite different from the technique described in [19] for avoiding breakdown of
the nonsymmetric Lanczos process.

This paper is organized as follows. Section 2 discusses properties of approximate
solutions determined by GMRES at breakdown when applied to the solution of con-
sistent and inconsistent linear systems of equations with a singular matrix. Section 3
presents an algorithm for BFGMRES and discusses the minor modification required
to obtain an algorithm for BFRRGMRES. Some properties of (BF)RRGMRES are
also discussed. A few numerical examples are presented in section 4.

We remark that linear systems of equations with a numerically singular matrix
arise, for instance, in the context of ill-posed problems (see [6, 7]) and when computing
the steady state distribution of finite Markov chains; see, e.g., [15]. Furthermore,
overdetermined systems of equations with n rows and m columns, where n > m, can
be brought into the form (1.1) by appending n−m zero columns to the matrix. The
matrix A so obtained is singular, and the linear system of equations can be solved
by BFGMRES or BFRRGMRES. A comparison of this approach with application
of the conjugate gradient method to the normal equations is presented in section 4.
Underdetermined linear systems of equations can also be solved by BFGMRES or
BFRRGMRES by first appending an appropriate number of zero rows to the matrix.

2. Breakdown of GMRES. We first discuss breakdown of the (standard)
Arnoldi process in some detail and introduce the notions of benign and hard break-
downs. There is a positive integer N , such that

dim (Kk) =

{
k, 1 ≤ k ≤ N,
N, k ≥ N + 1.

This easily can be seen by using the Jordan form of A. Clearly, N ≤ n.
For k ≤ N , the Arnoldi decomposition (1.2) exists. We distinguish two cases:
1. If Avk /∈ Kk, then fk �= 0 in (1.2). It follows that the decomposition (1.4)

exists, and the columns of the matrix Vk+1 form an orthonormal basis of
Kk+1, the matrix Ĥk is of full rank, and the minimization problem in the
right-hand side of (1.5) has a unique solution yk, which by (1.6) determines
xk, the kth iterate generated by GMRES. It follows from dim (Kk+1) = k+1
that Axk �= b.

2. If Avk ∈ Kk, then fk = 0 in the Arnoldi decomposition (1.2). We have
dim (Kk+1) = k, and therefore k = N . The Arnoldi process and GMRES
break down. Again, we distinguish two cases:
(a) If dim (AKN ) = N , then rank(HN ) = N , and the Nth iterate, xN ,

generated by GMRES is determined by first solving the minimization
problem in the right-hand side of (1.7), with k replaced by N , for yN ,
and then computing xN from (1.6) with k replaced by N . Since

span{b} + AKN = KN+1, dim (KN+1) = N,

we have that b ∈ AKN . Thus, AxN = b. Therefore, this is referred to as
a benign breakdown; the solution has been found when the breakdown
occurs, just like when the matrix A is nonsingular.

(b) If dim (AKN ) < N , then rank(HN ) < N . Let yN be the solution of
minimal norm of the least-squares problem in the right-hand side of
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(1.7), and determine the iterate xN by (1.6) with k replaced by N . Note
that AxN �= b because b /∈ AKN . We refer to this as a hard breakdown.

We remark that our classification of breakdowns is slightly different from that of
Brown and Walker [4].

Next, we characterize the approximate solutions of (1.1) that can be determined
by GMRES when a hard breakdown occurs. Throughout this paper N (M) denotes
the null space and R(M) denotes the range of the matrix M . We consider consistent
and inconsistent systems separately.

2.1. Consistent systems. Ipsen and Meyer [14] showed that Krylov subspace
iterative methods, such as GMRES, are able to determine a solution of the linear
system of equations (1.1) if and only if b ∈ R(AD), where AD denotes the Drazin
inverse of A; see (2.10) below for a definition. The following theorem complements
this result; it discusses the form of the solution when the right-hand side b is a general
vector in R(A).

Theorem 2.1. Let the matrix A be singular and assume that the linear system of
equations (1.1) is consistent. Apply GMRES with initial approximate solution x0 := 0
to the solution of (1.1) and assume that a hard breakdown occurs at step N . If ANb �=
0, then any solution x of (1.1) can be expressed as

x = x̂ + u,(2.1)

where x̂ ∈ KN−1 and u ∈ N (A�)\{0} for some integer � with 2 ≤ � ≤ N . If instead
ANb = 0, then any solution of (1.1) belongs to N (AN+1).

Proof. We first consider the case when ANb �= 0. Since dim (KN ) = N and
dim (AKN ) < N , the vector ANb is a linear combination of the vectors {Ajb}N−1

j=1 .
Let � be the largest integer with 2 ≤ � ≤ N , such that

α�−1A
�−1b + α�A

�b + · · · + αN−1A
N−1b + ANb = 0(2.2)

for some coefficients α�−1, α�, . . . , αN−1. Clearly, α�−1 �= 0.
Let x be a solution of (1.1). Then (2.2) yields

A�x +
α�

α�−1
A�b + · · · + αN−1

α�−1
AN−1b +

1

α�−1
ANb = 0

or, equivalently,

A�

(
x +

α�

α�−1
b + · · · + αN−1

α�−1
AN−�−1b +

1

α�−1
AN−�b

)
= 0.(2.3)

Let

x̂ := − α�

α�−1
b− · · · − αN−1

α�−1
AN−�−1b− 1

α�−1
AN−�b, u := x− x̂.

Clearly, x̂ ∈ KN−�+1 ⊂ KN−1, and it follows from (2.3) that u ∈ N (A�). Since
Ax̂ �= b, we have u �= 0.

We turn to the case when ANb = 0. With b = Ax, we have AN+1x = 0, which
shows that x ∈ N (AN+1).

The matrix A is said to have index p if its largest Jordan block associated with the
eigenvalue zero is of order p. It follows that if A has index p, then N (Aj) = N (Ap)
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for all integers j ≥ p. Then by Theorem 2.1 any solution x belongs to a subspace
extended from the Krylov subspace, i.e.,

x ∈ KN−1 + N (Ap).(2.4)

We note that only the Krylov subspace KN−1 is needed. This is different from the
situation of benign breakdown, where the solution of (1.1) belongs to KN . This fact
will be used in our extension of GMRES described in section 3.

Brown and Walker [4, Theorem 2.6] show that if the linear system of equations
(1.1) is consistent and

N (A) ∩R(A) = {0},(2.5)

then GMRES applied to (1.1) with initial approximate solution x0 := 0 determines a
solution. This result is a corollary to the theorem above. Note that condition (2.5) is
equivalent to A having index one.

Corollary 2.2. Let A be a singular matrix of index one, and assume that the
linear system of equations (1.1) is consistent. Then hard breakdown cannot occur.

Proof. We use the notation of Theorem 2.1 and its proof. Assume that a hard
breakdown occurs at step N of GMRES. First consider the situation when ANb �= 0.
Theorem 2.1 shows that x̂ = x − u with u ∈ N (A�) = N (A). Therefore, Ax̂ =
Ax−Au = b, which is a contradiction.

We turn to the case when ANb = 0 and b �= 0. Then x ∈ N (AN+1) = N (A).
Hence, Ax = 0, which is a contradiction.

We consider an application of Corollary 2.2.
Example 2.1. Let Ã ∈ R

n×�, with � < n, and assume that the leading �×� principal
submatrix of Ã is nonsingular. Let b ∈ R(Ã). We are interested in computing the
solution of the consistent linear system of equations

Ãx̃ = b.(2.6)

Assume that a function for the evaluation of matrix-vector products with the matrix
Ã is available, but that the entries of the matrix are not explicitly known. It then may
be attractive to solve (2.6) by an iterative method. The standard iterative method for
this task is the conjugate gradient method applied to the normal equations associated
with (2.6), using the CGLS or LSQR algorithms; see, e.g., [3]. These algorithms
require the evaluation of matrix-vector products with both the matrices Ã and ÃT . If
only a function for the evaluation of matrix-vector products with Ã is available, but
not with ÃT , then we may consider using GMRES, which does not require ÃT . We
note that the cost per iteration for GMRES increases rapidly with the iteration and
restarts are needed in practical implementations. The fact that the matrix Ã is not
square can be overcome by padding Ã with n − � trailing zero columns. This yields
an n × n matrix, which we denote by A, and we obtain a linear system of equations
of the form (1.1). GMRES then is applied to compute an approximate solution of
this system. Note that zero is an eigenvalue of A of algebraic multiplicity n− �; this
can be seen from the Schur form. Moreover, the axis vectors e�+1, e�+2, . . . , en are in
N (A). It follows that A has index one, and by Corollary 2.2, GMRES cannot suffer
from a hard breakdown.

Let xk ∈ R
n denote the kth iterate determined by GMRES. The first � entries of

xk yield an approximate solution of (2.6). The zero columns of A, of course, do not
have to be stored.



1006 LOTHAR REICHEL AND QIANG YE

We remark that the requirement that Ã have a nonsingular �×� leading principal
submatrix secures that the matrix is of full rank. Conversely, if Ã is of full rank,
then there is a row-permutation such that the leading principal � × � submatrix is
nonsingular. We also observe that different row permutations could lead to a very
different performance of GMRES, because the spectrum of A may change as the
rows are interchanged. A comparison of the convergence behavior of CGLS and
GMRES when applied to the solution of linear systems of equations of the form (2.6)
is presented in section 4.

We also consider the special case when a breakdown occurs when the dimension
of the Krylov subspace N is equal to the rank of A. This should be compared with
Theorem 2.7 below where interestingly a much stronger result exists for inconsistent
systems.

Theorem 2.3. Let the matrix A ∈ R
n×n be of rank N < n and assume that the

linear system of equations (1.1) is consistent. Apply GMRES with initial approximate
solution x0 := 0 to the solution of (1.1). Assume that GMRES breaks down at step
N . If dim (AKN ) = N , then GMRES determines a solution of (1.1) at breakdown.
If, instead, dim (AKN ) < N , then (1.1) has a solution in KN + R(AT ).

Proof. The Arnoldi process breaks down at step N and yields the decomposition

AVN = VNHN , VNe1 = b.(2.7)

If dim (AKN ) = N , then the breakdown is benign and GMRES determines a solution
of (1.1).

We turn to the case when dim (AKN ) < N . Then the upper Hessenberg matrix
HN in the decomposition (2.7) is singular. Since HN has positive subdiagonal entries,
rank(HN ) = N − 1. Let u ∈ N (HT

N ) be of unit length and introduce v := A†VNu,
where A† denotes the Moore–Penrose pseudoinverse of A. Note that v ∈ R(AT ).
Since b ∈ R(A), we have that R(VN ) ⊂ R(A). Therefore, Av = VNu and it follows
that V T

N Av = u. We seek a solution of (1.1) of the form

x = VNy + vη, y ∈ R
N , η ∈ R.

Substituting this expression into (1.1) yields the equation AVNy + Avη = b, which,
using (2.7), can be seen to be equivalent to

[HN , u]

[
y
η

]
= e1.(2.8)

Since the matrix [HN , u] ∈ R
N×(N+1) is of full rank, (2.8) has a solution {ŷ, η̂}, which

gives the solution x̂ := VN ŷ + vη̂ of (1.1).
In the second case of the theorem, i.e., when dim (AKN ) < N , a solution of (1.1)

can be determined by a modification of GMRES that minimizes the residual error
over KN + R(AT ).

2.2. Inconsistent systems. First, we note that, for inconsistent systems, HN

in the Arnoldi decomposition determined at breakdown must be singular, because
otherwise a solution to (1.1) would be obtained. Therefore, only hard breakdown can
occur. We consider the computation of a least-squares solution of (1.1) and formulate
our results in terms of the Drazin inverse of A. Let A have the representation

A = C

[
J0 0
0 J1

]
C−1,(2.9)
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where the matrix C ∈ C
n×n is invertible, the matrix J0 consists of all Jordan blocks

associated with the eigenvalue zero, and the matrix J1 consists of all Jordan blocks
associated with nonvanishing eigenvalues. The Drazin inverse of A is given by

AD := C

[
0 0
0 J−1

1

]
C−1.(2.10)

See [9, Chapter 7] for properties of this generalized inverse. We note that if A has
index p, then

N (Ap) = N (AD).

Theorem 2.4. Let the singular matrix A have index p. Assume that a hard
breakdown occurs at step N when GMRES is applied to (1.1) with initial approximate
solution x0 := 0, and that ANb �= 0. Then any least-squares solution x of (1.1) can
be written in the form

x = x̂ + u−ADr,(2.11)

where x̂ ∈ KN−1, u ∈ N (AD) = N (Ap), and r := b − Ax ∈ N (AT ) is the residual
vector associated with x.

Proof. Similarly as in the proof of Theorem 2.1, let � be the largest integer with
2 ≤ � ≤ N , such that (2.2) holds. It follows that

A�−1

(
b +

α�

α�−1
Ab + · · · + αN−1

α�−1
AN−�b +

1

α�−1
AN−�+1b

)
= 0.

Since N (A�−1) ⊂ N (Ap), we also have

Ap

(
b +

α�

α�−1
Ab + · · · + αN−1

α�−1
AN−�b +

1

α�−1
AN−�+1b

)
= 0.(2.12)

Let x be a least-squares solution of (1.1) and introduce the associated residual vector
r := b−Ax. Substituting b = r + Ax into (2.12) yields

Ap

(
Ax +

α�

α�−1
Ab + · · · + αN−1

α�−1
AN−�b +

1

α�−1
AN−�+1b

)
= −Apr,

and, therefore,

Ap+1

(
x +

α�

α�−1
b + · · · + αN−1

α�−1
AN−�−1b +

1

α�−1
AN−�b

)
= −Apr.(2.13)

Let

x̂ := − α�

α�−1
b− · · · − αN−1

α�−1
AN−�−1b− 1

α�−1
AN−�b, w := x− x̂.

Then x̂ ∈ KN−�+1 ⊂ KN−1 and

Ap+1w = −Apr.(2.14)

The linear system of equations (2.14) is consistent, and any solution can be expressed
as w = −ADr + u, where AD denotes the Drazin inverse of A and u ∈ N (Ap). We
remark that R(AD) + N (AD) makes up all of the n-space.
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The following corollary considers the situation when, in addition to the conditions
of Theorem 2.4,

N (AT ) ⊂ N (AD).(2.15)

In this case, the following result, which is similar to our result for the consistent case,
holds.

Corollary 2.5. Let the singular matrix A have index p and assume that a hard
breakdown occurs at step N when GMRES is applied to (1.1) with initial approximate
solution x0 := 0. Let x be a least-squares solution of (1.1) and assume that (2.15)
holds. If ANb �= 0, then x can be written in the form

x = x̂ + u,(2.16)

where x̂ ∈ KN−1 and u ∈ N (AD) = N (Ap). If, instead, ANb = 0, then x ∈ N (AD).

Proof. First assume that ANb �= 0. Let r := b − Ax denote the residual vector
associated with the least-squares solution x of (1.1). Then r ∈ N (AT ) and (2.15)
yields ADr = 0. Equation (2.16) now follows from (2.11).

If ANb = 0, then Apb = 0. Therefore,

0 = Apb = Ap(r + Ax) = Apr + Ap+1x = Ap+1x,

and x ∈ N (AD) follows from N (Ap+1) = N (AD).

Let

A = QSQ∗(2.17)

be a Schur decomposition; i.e., S ∈ C
n×n is upper triangular, Q ∈ C

n×n is unitary,
and the superscript ∗ denotes transposition and complex conjugation. Order the
eigenvalues and partition

S =

[
S11 S12

0 S22

]
(2.18)

so that all diagonal entries of S11 are zero and the diagonal entries of S22 are nonva-
nishing. Using N (Ap) = N (An) and Sn

11 = 0, we can show that S11 J1 in Sp
11 = 0.

N (AT ) ⊂ N (Ap) is equivalent to N (ST
11) ⊂ N (ST

12).

The following result by Brown and Walker [4, Theorem 2.4] can be shown in a
similar manner as Theorem 2.4 above. We include a proof for completeness.

Corollary 2.6. Let A be a singular matrix, such that N (A) = N (AT ). Apply
GMRES to (1.1) with initial approximate solution x0 := 0. Then GMRES determines
a least-squares solution at breakdown.

Proof. Using the Schur decomposition (2.17) of A and the partitioning (2.18), it
can be shown that the condition N (AT ) = N (A) implies that S11 = 0 and S12 = 0.
Hence, A has index p = 1. Thus, (2.15) holds, and therefore the conditions of Corollary
2.5 are satisfied. Assume that GMRES breaks down at step N . If ANb �= 0, then
Corollary 2.5 shows that a least-squares solution x can be expressed as x = x̂+u, where
x̂ ∈ KN−1 and u ∈ N (Ap) = N (A). It follows that b−Ax̂ = b−Ax and, therefore, x̂
is a least-squares solution of (1.1). Since GMRES minimizes the Euclidean norm of
the residual error over KN , GMRES will determine a least-squares solution.
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If, instead, ANb = 0, then Ab = 0, and therefore AT b = 0. Hence, x = 0 is a
least-squares solution and so is any multiple of b. GMRES breaks down at step one
and yields the least-squares problem

min
y∈R

|H1y − 1|(2.19)

with H1 = 0, where we have used that ‖b‖ = 1. The minimal-norm least-squares
solution y := 0 gives the least-squares solution x := 0 of (1.1). A least-squares
solution y �= 0 of (2.19) yields the least-squares solution x := yb of (1.1).

Corollary 2.6 holds for any right-hand side vector b in (1.1) but requires that
N (A) = N (AT ). We remark that GMRES often can find a least-squares solution
even when this condition does not hold (see Example 4.1 below). The following
result, first stated in [5, Theorem 2.2], explains this observed behavior. It deals with
the most typical situation of breakdown, i.e., a breakdown at step rank(A)+1, which
is the upper bound of the dimension of the Krylov subspace as Kk+1 = span{b}+AKk

and b /∈ R(A).
Theorem 2.7. Let the matrix A ∈ R

n×n be of rank N < n and apply GMRES
with initial approximate solution x0 := 0 to the solution of (1.1). If GMRES breaks
down at step N + 1, then GMRES determines a least-squares solution.

Proof. An index is incorrect in the proof in [5]; the index is not consistent with
the definition of breakdown in [5], which is different from the definition in the present
paper. We therefore provide a proof here.

The Arnoldi process generates an orthonormal basis of the Krylov subspace
KN+1 = span{b}+AKN before breakdown. It follows that dim (AKN ) = N . Suppose
that GMRES does not determine a least-squares solution of (1.1); i.e., there is no
x ∈ KN+1 that satisfies the normal equations ATAx = AT b. In other words,

AT b �∈ ATAKN+1.(2.20)

By Lemma 2.1 in [5], or by [4, pp. 40–41], dim (ATAKN+1) = dim (AKN+1), and
since dim (AKN+1) ≥ dim (AKN ) = N , we obtain that dim (ATAKN+1) ≥ N . It now
follows from (2.20) that ATKN+2 = span{AT b} + ATAKN+1 is of dimension at least
N + 1. However, rank(AT ) = rank(A) = N . Therefore, dim (ATKN+2) ≤ N . This
contradiction shows that KN+1 does contain a least-squares solution of the normal
equation. Hence, GMRES determines a least-squares solution.

The conditions of Theorem 2.7 hold if p(A)b �= 0 for any polynomial p of de-
gree less than or equal to N . This is the case, for example, when A has distinct
nonzero eigenvalues, at most one zero eigenvalue with a nontrivial Jordan block, and
each eigenvector and its associated Jordan chain have a nonzero component in b. We
also note that the conditions can be satisfied only if the linear system (1.1) is incon-
sistent, because otherwise R(VN+1) ⊂ R(A). But this inclusion cannot hold since
dim (R(A)) = N .

Example 2.2. Let Ã be a matrix of the same kind as in Example 2.1, and assume
that b ∈ R

n is not in R(A). We are interested in computing the solution of the
least-squares problem

min
x̃∈R�

‖Ãx̃− b‖.(2.21)

Similarly as in Example 2.1, we define the matrix A ∈ R
n×n by padding Ã with n− �

trailing zero columns. We obtain a linear system of equations of the form (1.1). If
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GMRES applied to this system with initial approximate solution x0 := 0 does not
break down until step � + 1, then according to Theorem 2.7 a least-squares solution
of (1.1) has been determined. The first � components of the computed solution make
up a least-squares solution of (1.1).

This example illustrates that it may be possible to determine a solution of (2.21)
by (standard) GMRES. The breakdown-free GMRES method of the following section
is useful when (standard) GMRES breaks down before step � + 1.

3. Breakdown-free GMRES. This section presents an extension of GMRES
to overcome breakdown. We comment on a breakdown-free variant of RRGMRES at
the end of the section.

From our discussions in section 2, when GMRES suffers a hard breakdown at step
N , the Krylov subspace KN does not contain a solution of the linear system (1.1);
however, as Theorem 2.1 shows, any solution belongs to KN−1+N (Ap). This suggests
that, to compute a solution, the Krylov subspace KN−1 has to be extended to capture
the component of the solution in N (Ap), which is an eigenvector of Ap corresponding
to the eigenvalue zero. This eigenvector can be approximated from a Krylov subspace
generated by a new vector. Therefore, at every breakdown of the Arnoldi process, we
generate a new Krylov subspace and add it to the available one(s). Then we seek an
approximation from the extended subspace. An implementation is presented below.

We remark that our approach for avoiding breakdown is related to but different
from the technique for the nonsymmetric Lanczos algorithm presented in [19]. In [19]
a new Krylov subspace is appended to the existing Krylov subspace KN and both
subspaces are expanded after breakdown. In the present paper, we instead append
a new Krylov subspace to KN−1 without further expanding KN−1 as follows. Let vj
denote the jth column of the matrix Vk in (1.2); i.e., Vk = [v1, v2, . . . , vk]. It follows
from (1.3) that if fk �= 0, then vk+1 = fk/‖fk‖. Moreover, let hi,j denote the entry

in position (i, j) of the matrices Hk in (1.2) or Ĥk in (1.4). It follows from (1.3) that
hk+1,k = ‖fk‖. Identifying the kth column of the right-hand and left-hand sides of
(1.4) yields

Avk = h1,kv1 + · · · + hk,kvk + hk+1,kvk+1.(3.1)

Assume that GMRES breaks down at step N . Then the Arnoldi decomposition
(1.2) holds with k = N and fN = 0. If HN is nonsingular, then GMRES finds the
solution of (1.1) at this step. On the other hand, if HN is singular, then GMRES
cannot determine the solution of (1.1).

We remark that an exact breakdown is rare in actual computations in floating-
point arithmetic. However, we have to be concerned about near-breakdown when
the orthogonal projection of the vector AvN into the complement of KN is nonvan-
ishing but “tiny.” In this situation, we can still determine the last column vN+1 =
fN+1/‖fN+1‖ of the matrix VN+1 in the Arnoldi decomposition (1.4), but the entry
hN+1,N of ĤN is tiny. If the matrix ĤN is well conditioned, then this is a benign
near-breakdown, and the computations can be continued with (standard) GMRES.
On the other hand, if ĤN is severely ill conditioned, then we are suffering from a
hard near-breakdown, and standard GMRES will have difficulties finding a solution.
Theorem 2.1 shows that in case of a hard breakdown at step N , with ANb �= 0, a
component of the solution belongs to span{v1, v2, . . . , vN−1} = KN−1, but the column
vN of VN is not required to represent the solution. We therefore replace this column
by a unit vector, say, v̂, which is orthogonal to the columns v1, v2, . . . , vN of VN . Such
a vector can be generated, for example, by orthogonalizing a random vector against
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v1, v2, . . . , vN . We also report numerical experiments in which we determine the vec-
tor v̂ by orthogonalizing AT rN−1 against v1, v2, . . . , vN , where rN−1 := b − AxN−1

denotes the residual vector associated with the approximate solution xN−1 of (1.1).
There are two reasons for the latter choice of v̂. The vector AT rN−1 is parallel to the
steepest descent direction for the functional

z → ‖Az − rN−1‖2,

and, therefore, we expect v̂ to give rapid decrease of the norm of the residual error.
Moreover, AT rN−1 is the residual error for the normal equations associated with (1.1).
It may be pertinent to evaluate the residual error for the normal equations regularly
when the linear system of equations (1.1) is inconsistent, because when this error is
small, an acceptable approximate solution of (1.1) may have been found. The main
disadvantage of this choice of v̂ is that it requires a matrix-vector product evaluation
with AT . We therefore also present numerical examples when v̂ is determined by
orthogonalization of a random vector.

When we replace the last column of VN by v̂, i.e., vN := v̂, we create a new matrix
U1 and put the old vN there. Specifically, we let vN be the first column, denoted by
u1, of the matrix U1, i.e., U1 = [u1]. Thus, analogously to (3.1), we obtain

AvN−1 = h1,N−1v1 + · · · + hN−1,N−1vN−1 + hN,N−1u1.

We can now compute a generalized Arnoldi decomposition, where, for k := N,N +
1, N + 2, . . ., until the next breakdown occurs, we require the columns Vk to be or-
thonormal, as well as orthogonal to U1. Thus, we obtain, for k := N,N +1, N +2, . . .,
until another breakdown occurs,

Avk − Vk(V
T
k Avk) − U1(U

T
1 Avk) = fk.

If a new near-breakdown occurs, say, if the entry hk+1,k = ‖fk‖ of Ĥk is tiny, then
the vector vk is appended to the matrix U1; i.e., we define U2 := [U1, vk], and a
new unit vector, denoted by v̂, which is orthogonal to all the columns of Vk−1 and
U2, is generated. We replace the last column of Vk by v̂, and the computations
are continued in a similar fashion as after the first near-breakdown. The following
algorithm implements this process. The right-hand side vector b of (1.1) is not required
to be of unit length in the algorithm. The vector hk denotes the last column of the
upper Hessenberg matrix Hk in (1.2). Further, Ĥk−1(k, :) denotes the kth row of the

matrix Ĥk−1. The function cond(Ĥk) evaluates the condition number ‖Ĥk‖‖Ĥ†
k‖ of

the matrix Ĥk. The condition number is defined to be infinite if Ĥk is not of full rank.
Algorithm 1 (Breakdown-Free GMRES (BFGMRES)).
1 Input: A ∈ R

n×n, b ∈ R
n (b �= 0); tol (threshold for breakdown)

2 Initialize: v1 := b/‖b‖; p := 0; V1 := [v1]; U0 := [ ]; Ĥ0 := [ ]; G0 := [ ];
3 for k := 1, 2, · · · until convergence
4 w := Avk;
5 hk := V T

k w; gk := UT
p w;

6 w := w − Vkhk − Upgk;
7 hk+1,k := ‖w‖;

8 Ĥk :=

[
Ĥk−1 hk

0 hk+1,k

]
;

9 if cond(Ĥk) > 1/tol then
10 Up+1 := [Up, vk];



1012 LOTHAR REICHEL AND QIANG YE

11 Gk−1 :=

[
Gk−1

Ĥk−1(k, :)

]
; Ĥk−1(k, :) := 0;

12 Let v̂ be a unit vector, such that V T
k−1v̂ = 0, UT

p+1v̂ = 0;
13 Replace the last column vk of Vk by v̂, i.e., let vk := v̂;
14 w := Avk;
15 hk := V T

k w; gk := UT
p+1w;

16 w := w − Vkhk − Up+1gk;
17 hk+1,k := ‖w‖;

18 Ĥk :=

[
Ĥk−1 hk

0 hk+1,k

]
;

19 if cond(Ĥk) > 1/tol then goto line 12;
20 p := p + 1;
21 endif
22 vk+1 := w/hk+1,k;
23 Vk+1 := [Vk, vk+1];
24 if p > 0 then Gk := [Gk−1, gk] else Gk := Gk−1 endif

25 Solve min
y∈Rk

∥∥∥∥[ Ĥk

Gk

]
y − ‖b‖e1

∥∥∥∥ for yk;

26 xk := Vkyk;
27 endfor
The following remarks provide some detailed explanations of the algorithm:
• Lines 4–7 and 22 describe the generalized Arnoldi process for generating the

vector vk+1. We orthogonalize w against the columns of Vk and, when the
matrix Up is not empty, against the columns of Up as well. Lines 5–6 describe
classical Gram–Schmidt orthogonalization; however, our implementation em-
ploys the modified Gram–Schmidt procedure. When a hard near-breakdown
is detected in line 9, vk, the last column of Vk, is appended to the matrix Up

to yield Up+1. The matrices Ĥk−1 and Gk−1 are updated in line 11 to yield
the generalized Arnoldi decomposition

AVk−1 = VkĤk−1 + Up+1Gk−1.

A new vector v̂, which replaces the column vk of Vk, is generated in line 12.
After one step of the generalized Arnoldi process (lines 14–18), we check in
line 19 whether the vector v̂ yields a hard near-breakdown, in which case it is
replaced. Otherwise, lines 22–24 yield the generalized Arnoldi decomposition

AVk = Vk+1Ĥk + UpGk = [Vk+1, Up]H̃k,

where

H̃k :=

[
Ĥk

Gk

]
.

It is clear that the matrix [Vk+1, Up] has orthogonal columns.
• Lines 25–26 determine a solution that minimizes the residual error from
R(Vk), analogously as in standard GMRES. Writing x = Vky, we have

‖Ax− b‖ = ‖[Vk+1, Up]H̃ky − β0[Vk+1, Up]e1‖
= ‖Ĥky − β0e1‖,
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where β0 := ‖b‖. Thus,

min
x∈R(Vk)

‖Ax− b‖ = min
y∈Rk

‖Ĥky − β0e1‖.

• Line 9 shows a simple criterion for a hard near-breakdown. We consider
having reached a hard near-breakdown when the condition number cond(Ĥk)
is larger than the threshold 1/tol. Since Ĥk−1 is a submatrix of Ĥk, the
condition number is an increasing function of k. This criterion works well
when cond(Ĥk) increases slowly for small values of k and then for some larger
values of k increases rapidly. However, it is not always suitable when the
condition number increases steadily to a large value as k increases, because
then when cond(Ĥk) > 1/tol, also cond(Ĥj) ≈ 1/tol for j ≈ k, and this
can result in several consecutive near-breakdowns. To avoid this undesirable
situation, we propose to reduce tol by a factor, say, 10−2, when a near-
breakdown is encountered; i.e., we replace line 9 by

if cond(Ĥk) > 102p/tol then,(3.2)

where p is the number of hard near-breakdowns encountered so far during the
computations. A further modification of line 9 is discussed below.

• What we have presented is a version of full GMRES in which the memory
and computational cost increase quickly with the iteration. In practice, a
restarted version, where the algorithm is restarted after a certain number of
iterations, should be used.

Algorithm 1 searches for a solution outside the Krylov subspace KN−1 by intro-
ducing a new vector v̂ when a hard near-breakdown is detected. For singular matrices
A with a null space of small dimension, hard near-breakdowns often do not occur until
N ≈ n steps of the generalized Arnoldi process have been carried out. However, the
component of the solution x of (1.1) in the Krylov subspace KN−1 (i.e., x̂ in Theorem
2.1) sometimes can be approximated well by a vector xk in a Krylov subspace Kk of
dimension k � N − 1, and then it would be desirable to introduce the new vector
v̂ already after k steps of the generalized Arnoldi process. This situation may be
difficult to detect, because the residual vector rk := b−Axk associated with xk might
not be of small norm. We have found that it can be advantageous to generate a new
vector v̂ when the iterates xk converge very slowly. This can be achieved by replacing
line 9 of Algorithm 1 by

if (cond(Ĥk) > 102p/tol) or (‖xk − xk−1‖ ≤ η‖xk‖) then,(3.3)

where η is a small positive constant of the order of the stopping tolerance and p is
the number of hard near-breakdowns encountered during the computations so far; cf.
(3.2).

We conclude this section with some comments on RRGMRES. The kth iterate,
xk, determined by RRGMRES, satisfies

‖b−Axk‖ = min
z∈AKk

‖b−Az‖, xk ∈ AKk.

Thus, the iterate belongs to the range of A. Computed examples in [6] illustrate
that RRGMRES sometimes can yield computed solutions of higher quality than GM-
RES. We are therefore interested in an algorithm for BFRRGMRES, a breakdown-free
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variant of RRGMRES. Such an algorithm can be obtained by a very minor modifi-
cation of Algorithm 1: The initialization v1 := b/‖b‖ in line 2 should be replaced by
v1 := Ab/‖Ab‖ and the vector ‖b‖e1 in line 25 has to be replaced by [Vk+1, Up]

T b.
The following theorem discusses the behavior of RRGMRES. We remark that the

formulation of Theorem 3.3 in [5], which discusses related results, is incomplete. This
has recently been pointed out by Cao and Wang [8].

Theorem 3.1. Let the matrix A ∈ R
n×n be of rank N < n and apply RRGM-

RES with initial approximate solution x0 := 0 to the solution of (1.1). Assume that
RRGMRES breaks down at step N . If dim (A2KN ) = N , then RRGMRES deter-
mines a least-squares solution of (1.1). If, instead, dim (A2KN ) < N , then (1.1) has
a solution in AKN + R(AT ).

Proof. Assume that dim (A2KN ) = N . This case is discussed by Cao and Wang
[8]. Our proof is similar to the proof of Theorem 2.3 of section 2 and we use the same
notation.

The Arnoldi process applied by RRGMRES breaks down at step N and yields
the decomposition

AVN = VNHN , VNe1 = Ab/‖Ab‖.(3.4)

It follows from (3.4) and dim (A2KN ) = N that the matrix AVN is of full rank and,
therefore, that HN is nonsingular. Moreover, R(VN ) ⊂ R(A), and since rank(VN ) =
rank(A), it follows that R(VN ) = R(A). The vector x̂ ∈ R

n is a least-squares solution
of (1.1) if and only if the associated residual error is orthogonal to R(A), i.e., if and
only if

0 = V T
N (Ax̂− b).(3.5)

The linear system of equations

HNy = V T
N b(3.6)

has a unique solution ŷ. It follows from (3.4) that x̂ := VN ŷ satisfies (3.5). Thus,
x̂ is a least-squares solution of (1.1). RRGMRES determines this solution. This is a
benign breakdown.

We turn to the case when dim (A2KN ) < N . It follows from this inequality and
(3.4) that the upper Hessenberg HN is singular. Similarly as above, R(VN ) = R(A)
and, therefore, x̂ ∈ R

n is a least-squares solution of (1.1) if and only if x̂ satisfies (3.5).
However, differently from the situation above, the system of equations (3.6) might not
have a solution, since HN is singular. We circumvent this problem by appending a
column to HN as follows. Since HN has positive subdiagonal entries, rank(HN ) =
N − 1. Let u ∈ N (HT

N ) be of unit length and define v := A†VNu ∈ R(AT ). It
follows from R(VN ) = R(A) that Av = VNu and, therefore, V T

N Av = u. We seek a
least-squares solution of the form

x = VNy + vη, y ∈ R
N , η ∈ R.(3.7)

Substituting this expression into (3.5) yields

0 = V T
N (AVNy + Avη − b) = HNy + uη − V T

N b = [HN , u]

[
y
η

]
− e1.(3.8)

Since the matrix [HN , u] ∈ R
N×(N+1) is of full rank, (3.8) has a solution {ŷ, η̂}.

Substituting y := ŷ and η := η̂ into (3.7) yields a least-squares solution of (1.1).
Theorem 3.1 implies that RRGMRES can be applied to solve inconsistent linear

least-squares problems of the form (2.21).
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4. Numerical examples. This section presents a few computed examples. All
computations were carried out on an HP UNIX workstation using MATLAB with
about 15 significant decimal digits. The initial approximate solution in all examples
is chosen to be x0 := 0.

Example 4.1. Consider a rectangular matrix of the form

Ã =

[
Ã11 0

Ã21 Ã22

]
∈ R

n×�,(4.1)

where Ã11 ∈ R
(n−k)×(�−k) is the sum of a random lower triangular matrix and 10I,

and Ã21 ∈ R
k×(�−k) and Ã22 ∈ R

k×k are random matrices generated by the MATLAB
function rand.

We use GMRES and BFGMRES to solve the column-padded linear system of
equations

Ax = b, A := [Ã, 0] ∈ R
n×n, x :=

[
x̃
0

]
∈ R

n,(4.2)

where Ã is defined by (4.1). It is easy to see that if Ã22 is nonsingular and n− � ≥ k,
then A has k zero eigenvalues associated with Jordan blocks of size at least 2. We
also apply the conjugate gradient method, using the CGLS implementation, to solve
the normal equations,

ATAx = AT b,(4.3)

associated with (1.1).
For ease of notation we use the matrix A in (4.2) instead of Ã. Let xk ∈ R

n

denote the kth iterate determined by any one of the iterative methods considered.
For consistent linear systems of equations (1.1), we plot the norm of the residual
vectors,

rk := b−Axk,(4.4)

relative to the norm of r0 for increasing values of k. When the linear system (1.1) is
inconsistent, we instead plot the norm of the residual error associated with the normal
equations (4.3),

r̂k := AT b−ATAxk,(4.5)

relative to the norm of AT r̂0, because ‖r̂k‖ vanishes when xk is a least-squares solution
of (1.1), while ‖rk‖ does not.

We first consider a consistent linear system of equations (1.1) with A defined by
(4.1) and n := 1000, � := 700, k := 3. Let the solution x̃ ∈ R

� be a vector with
random entries and define the right-hand side by b := Ãx̃.

We use the criterion (3.2) with tol := 10−8 for detecting hard near-breakdowns
in BFGMRES. The vector v̂ chosen in line 12 of Algorithm 1 at every hard near-
breakdown is determined by orthogonalizing a random vector against the columns
of the available matrices Vk−1 and Up+1. Here and throughout, the iterations are
terminated when the relative residual ‖rk‖/‖r0‖ drops below 10−14 (or ‖r̂k‖/‖r̂0‖ <
10−14 for inconsistent systems).

The left-hand side graphs of Figure 4.1 show BFGMRES (solid curve) to reduce
the norm of the residual error (4.4) faster than GMRES (dashed curve). We mark the
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Fig. 4.1. Example 4.1: Convergence histories for overdetermined linear system for BFGMRES
(solid curves with near-breakdowns marked by x), GMRES (dashed curves), and CGLS (dotted
curves).

BFGMRES convergence curve by “x” where hard near-breakdowns occur. Here as well
as in later examples, we see that there is typically significant reduction of the residual
error a few iterations after a new vector is introduced. The nonmonotonic decrease of
the norm of the residual error for BFGMRES near convergence is due to large round-
off errors incurred when solving the reduced least-squares problem in line 25 of the
algorithm. (Note that cond(Ĥk) steadily increases and may become very large at that
stage of iterations.) We also display the norm of the residual errors associated with
iterates determined by CGLS (dotted curve). The latter method is seen to require
more iterations than BFGMRES and GMRES to reduce the relative residual to 10−14,
but CGLS is implemented without reorthogonalization, and therefore requires less
memory and fewer vector operations per iteration. On the other hand, note that
CGLS needs the evaluation of two matrix-vector products in each iteration, one with
A and one with AT , while each iteration of BFGMRES or GMRES requires only the
evaluation of one matrix-vector product with A.

We next illustrate the performance of BFGMRES, GMRES, and CGLS when
applied to the solution of an inconsistent overdetermined linear system of equa-
tions. Such a system of equations is obtained by perturbing the right-hand side
in (4.2). Specifically, we generate the right-hand side with the Matlab instruction
b=A*x+1e-6*rand(n,1), where xT := [x̃T , 0T ] and x̃ ∈ R

� is the same random vector
as above. The right-hand side graphs of Figure 4.1 show the norm of the residual er-
rors (4.5) for the iterates xk determined by GMRES, BFGMRES, and CGLS. GMRES
and BFGMRES reduce the norm of the residual (4.5) by about a factor 10−11, but
thereafter the norm of the residual does not decrease further. BFGMRES converges
somewhat faster than GMRES and gives a smoother reduction of the norm of the
residual error. CGLS converges slower but is able to reduce the norm of the residual
(4.5) by a factor 10−14.

We turn to an underdetermined linear system of equations, obtained by using the
transpose of the matrix A employed in the computations above. Thus, we would like
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Fig. 4.2. Example 4.1: Convergence histories for underdetermined linear system for BFGMRES
(solid curve with near-breakdowns marked by x), GMRES (dashed curve), and CGLS (dotted curve).

to solve

ÃT y = c̃,

where y ∈ R
n is a random vector and the right-hand side is defined by c̃ := ÃT y.

BFGMRES and GMRES are applied to the associated row-padded system

AT y =

[
c̃
0

]
.(4.6)

Figure 4.2 displays the norm of the residual error (4.4) for iterates computed by
BFGMRES (solid curve), GMRES (dashed curve), and CGLS (dotted curve). Due to
the structure of the linear system of equations (4.6), the last n−m components of all
vectors vi determined by GMRES vanish. Therefore, GMRES cannot reduce the norm
of the relative residual error below 5 · 10−4. On the other hand, BFGMRES expands
the subspace in which the computed solution is being sought, and the computed
iterates converge to a solution of the linear system. Figure 4.2 shows BFGMRES
to reduce the norm of the residual error (4.4) faster than any of the other methods
considered.

Finally, we illustrate the finite termination property of Theorem 2.7 by solving
an inconsistent overdetermined linear system of equations of the same form, but of
smaller size, than the overdetermined system considered above. Thus, we solve an
inconsistent system (4.2) with A of the form (4.1) with n := 100, � := 70, k := 1.
The diagonal elements of A11 are 1, 2, . . . , 69. We compare the three methods both
with and without reorthogonalization (for CGLS the residual vectors of the normal
equations (4.5) are reorthogonalized). The graphs on the left-hand side of Figure
4.3 show the norm of the residual error for the normal equations converge for all
three methods when reorthogonalization is carried out. The graphs show the relative
residual norm to drop to 10−15 at step 71 (which is N+1) for GMRES and BFGMRES,
but at step 70 for CGLS. This is consistent with the theory (Theorem 2.7). The graphs
on the right-hand side of Figure 4.3 show the performance of the methods when no
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Fig. 4.3. Example 4.1: Convergence histories for overdetermined linear system for BFGMRES
(solid curves with near-breakdowns marked by x), GMRES (dashed curves), and CGLS (dotted
curves).

reorthogonalization has been carried out. GMRES and BFGMRES can be seen to
behave similarly as with reorthogonalization, while iterates determined by CGLS do
not appear to converge.

The next two examples are taken from Brown and Walker [4].

Example 4.2. Consider the nonsymmetric tridiagonal matrix

A :=

⎡⎢⎢⎢⎢⎣
0 1

−1
. . .

. . .

. . .
. . . 1
−1 0

⎤⎥⎥⎥⎥⎦ ∈ R
n×n.(4.7)

For odd values of n, A is singular with index one. In particular, N (A) = N (AT ). Let
n := 49 and b := [1, 0, . . . , 0, 1]T as in [4]. This yields an inconsistent linear system of
equations (1.1). GMRES applied to this system computes a sequence of approximate
solutions. At step 24 a hard near-breakdown is detected. Nevertheless, GMRES is
able to determine a least-squares solution of the linear system of equations. The
criterion used for detecting a near-breakdown is the same as in Example 4.1.

Now replace the right-hand side vector by b := [1, 0, . . . , 0, 1 + 10−10]T . GMRES
applied to (1.1) with this new right-hand side vector decreases the norm of the residual
error of the associated normal equations (4.5) to 10−10 at step 24. However, in the
next step the norm of the residual error increases by about a factor 104 due to high
sensitivity to round-off errors. The residual error stays at this level for the next 25
iterations until it quickly drops to 10−14. Figure 4.4 displays the convergence histories
of the residual errors (4.5) for BFGMRES (solid curve) and GMRES (dashed curve).
We see that BFGMRES yields a smoother decrease of the residual error than GMRES.
The plateau in convergence of BFGMRES after step 24 appears to be due to the matrix
itself as different choices of v̂ result in similar convergence curves.
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Fig. 4.4. Example 4.2: Convergence histories for BFGMRES (solid curve with near-breakdowns
marked by x) and GMRES (dashed curve).
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Fig. 4.5. Example 4.3: Convergence histories for BFGMRES (solid curves with near-
breakdowns marked by x) and GMRES (dashed curves).

Example 4.3. We discretize the partial differential equation

Δu + d
∂u

∂z1
= f, z := [z1, z2] ∈ [0, 1]2,

with Neumann boundary condition using centered finite differences on an m × m
regular mesh; see [4, Experiment 4.3] for a description of the matrix so obtained. We
used m := 63, d := 10, and

f(z) := z1 + z2 + sin(10z1) cos(10z2) + exp(10z1z2).

This yields an inconsistent linear system of equations which is fairly difficult to solve;
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Fig. 4.6. Example 4.4: Convergence histories for BFRRGMRES (solid curves with near-
breakdowns marked by x) and RRGMRES (dashed curves).

in particular, N (AT ) �= N (A). We use the criterion (3.3) with tol := 10−8 and
η := 10−6. The vector v̂ chosen in line 12 of Algorithm 1 at every hard near-breakdown
is determined by orthogonalizing AT rk against the columns of the available matrices
Vk−1 and Up+1, where rk denotes the residual vector (4.4) associated with the present
iterate.

The convergence histories for GMRES and BFGMRES are shown in Figure 4.5.
The condition numbers of the matrices Ĥk determined by GMRES increase steadily
to about 1015 as k increases, while the condition numbers of the analogous matrices
computed by BFGMRES are bounded by about 109. The smaller condition numbers
associated with BFGMRES may help this method to achieve better convergence than
GMRES.

Example 4.4. Our last example is generated by the Matlab function parallax in
Regularization Tools by Hansen [13]. We used parallax to determine a rank-deficient
matrix Ã ∈ R

26×5000 and an associated right-hand side vector b ∈ R
26. According to

the Matlab function rank, the matrix Ã has rank 24.

We apply RRGMRES and BFRRGMRES with full reorthogonalization to solve
the underdetermined least-squares problem after row-padding of Ã. The graphs in
the left-hand side of Figure 4.6 show the convergence histories of the norm of residual
errors (4.4), and the graphs in the right-hand side of the figure display the convergence
histories of the norm of residual errors of the normal equations (4.5) for BFRRGMRES
(solid curves) and RRGMRES (dotted curves). The curves for BFRRGMRES vary
less erratically than the curves for RRGMRES. Moreover, BFRRGMRES reduces the
residual errors to a smaller value than RRGMRES.

In summary, our numerical examples demonstrate BFGMRES and BFRRGM-
RES to have more desirable convergence behavior than GMRES and RRGMRES,
respectively, when applied to the solution of singular systems.

Acknowledgment. We would like to thank Bryan Lewis for discussions and
comments.
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1. Setting the scene. The first task is to provide a perspective from which both
relative perturbation theory and hyperbolic singular values, described in the next
section, are of interest. The underlying goal is the rapid and accurate calculation
of the eigenvalues and eigenvectors of a real symmetric matrix. When the full set
of eigenpairs is wanted, the computation is done in three phases: (1) reduction to
real symmetric tridiagonal form T, (2) calculation of T’s eigenpairs, and (3) the
transformation of T’s eigenvectors back to the given matrix. This paper is concerned
entirely with the second phase.

Since the 1960s the QR algorithm has been used with excellent results for this
phase. Its only defect is that QR always takes O(n3) arithmetic operations for an
n × n matrix and, in principle, the job can be done with only O(n2) operations.
One alternative to QR uses bisection for the eigenvalues and inverse iteration for
the eigenvectors. This usually requires O(n2) effort but, sometimes, when there are
large clusters of close eigenvalues that agree to three or more leading decimals, the
LAPACK code DSTEIN, based on inverse iteration, slowed down significantly. An
alternative LAPACK code DSBDC, based on the divide and conquer principle, takes
between O(n2) and O(n3) operations, depending on the eigenvalue distribution, and
does not adapt naturally to parallel implementation.

Even more recent is a method that can execute phase 2 in O(n2) operations
even in the worst case. See [4], [5], and [6] for details. The key innovation in this
approach is to replace T by several factorizations of the form T − σI = LΩLt, with
L lower bidiagonal and Ω = diag(±1); each factorization represents a translate of T
and hence has the same eigenvectors. When working in finite precision arithmetic
it is essential that each factorization should determine its tiny eigenvalues to high
relative accuracy. We say more about relative accuracy below but note here that for
most symmetric matrices, including tridiagonal matrices, small relative changes in the
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matrix entries can provoke large relative changes in the eigenvalues near 0. It was
this basic limitation that inspired us to look for a better representation for T and
discover the virtues of LΩLt. The hyperbolic singular values of L are just the square
roots of the absolute values of the eigenvalues of LΩLt. If these quantities are robust,
then so are the eigenvalues themselves. In addition, our algorithm requires that the
eigenvectors belonging to the tiny eigenvalues should also be accurately determined
by L and Ω. That narrow investigation takes us into new territory and is the focus
of this paper. We provide a bound, in Theorem 10.1, that reveals which eigenvectors
of a possibly very ill-conditioned L are robust in the appropriate sense.

Before plunging into details we would like to make explicit two misgivings, or
subliminal doubts, that can bother a specialist when initially exposed to relative
perturbation theory for LΩLt. The first reservation is that it is too much to expect
small relative changes in tiny eigenvalues. There are 2 × 2 matrices for which tiny
relative changes in an entry change the sign of the small eigenvalue. More generally,
if there are several tiny eigenvalues that are close to each other it seems too good
to be true that each of them would suffer only small relative changes. Backward
stable algorithms, for symmetric matrices, give us eigenvalues with tiny errors, but
tiny compared to the norm, not to the eigenvalue. Our response is that bidiagonal
matrices are indeed special and L may determine each of LΩLt’s tiny eigenvalues to
this extreme accuracy, even when L is ill conditioned. When Ω = I, then all the
eigenvalues are robust in a relative sense. See the next paragraph for more on this
topic. Moreover, when LΩLt is unreduced, then all its eigenvalues are simple and
the eigenvectors may well be robust even when the eigenvalues are very close. The
second reservation is that eigenvalue differences and eigenvectors are invariant under
translation, and good taste demands that perturbation theory involve only quantities
that are invariant (under translation). Our response is that, in contrast to T , LΩLt

changes in a complicated way when it undergoes translation and it is this feature which
makes relative perturbation theory not just reasonable but essential. In particular 0
eigenvalues are invariant even under large relative changes in L’s entries. Here ends
the big picture and we narrow the focus.

The primary concern of this paper is to determine how well L determines the
spectral decomposition of LΩLt. We begin with a little history. The celebrated result
of Kahan (see [3]) says that when Ω = I, then small relative changes in L’s entries
make only a small relative change in each eigenvalue even when L is ill conditioned.
Later on, Deift, Demmel, Li, and Tomei [2] showed that the sensitivity of the eigen-
vectors is governed by the relative, not absolute, separation of the eigenvalues. Still
later, simple proofs were found for both results; see [7], [8], and [11], [12], [10], re-
spectively. This paper analyzes the problem in the case Ω �= I. It turns out that the
same general scenario holds, but now the sensitivity of each eigenvalue is given by an
amplification factor that may exceed 1 and the change in its eigenvector is amplified
by a linear combination of the reciprocals of its relative separations from each of the
other eigenvalues.

The hyperbolic singular value decomposition (HSVD) is not essential for present-
ing our analysis, but it is the most natural formulation of the extension of the earlier
results to the case Ω �= I. The nice features of the standard SVD of a bidiagonal ma-
trix extend, in many cases, to the hyperbolic singular values for arbitrary signature
matrices Ω. One example is when the bidiagonal is well conditioned for inversion.
The difficulty, in the ill-conditioned case, is that some of these singular values may
be relatively robust while others are not. Even worse is the fact that the sensitivity
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of the Ω singular vectors depends on the sensitivity of all the other Ω singular values.
This raises the fear that the presence of some highly sensitive values could destabilize
the Ω singular vectors of the robust values. In practice this fear appears to be unwar-
ranted. What is needed are bounds that discriminate between robust and sensitive
Ω singular triples, showing exactly how each relative gap contributes to the changes
in a singular vector. The paper [14] anticipates the results given here but provides
asymptotic estimates only, not bounds.

This paper presents discriminating bounds in Theorem 10.1. These bounds are
needed in [6], [5] to justify claims for the numerical method mentioned above.

Related work. There has been a flowering of relative perturbation theory since
the mid 1990s, helped by the biennial International Workshops on Accurate Solutions
to Eigenvalue Problems (IWASEP). Papers [20], [16], [17], and [15] focus on our
problem, namely, the precise way that the sensitivity of each eigenvalue affects the
other eignvectors, and it would have been a great relief to have quoted the needed
bounds from the literature and not written this paper. We suspect that, with their
techniques, the authors of [16] and [17] could have obtained results close to our bounds
had they been interested. However, the thrust of relative perturbation theory, until
now, has been to obtain analogues of the big theorems in classical perturbation theory.
In particular, the focus seems to be on conditions which ensure that all eigenvalues are
determined to high relative accuracy by the data. In the four papers mentioned above
all the results are of this type, and consequently the results on invariant subspaces
depend only on the relative gap between the spectrum of the invariant subspace and
its complement, as in the case of Ω = I.

In contrast, in our applications the shifts are as close as possible to eigenvalue
clusters, the L matrices are usually ill conditioned, and some eigenpairs are extremely
sensitive. What to us is the most subtle and interesting aspect of these indefinite
factorizations, as described above, is never even mentioned in [15], [17], and [20], as
we now explain. While our singular value bound is no surprise and is implicit in the
work of several authors (see [4], [16], and [17]), our eigenvector bound in Theorem 10.1
is realistic and new and explains how the destabilizing effect of extremely sensitive
unwanted eigenvalues can be neutralized by the reciprocals of very large relative gaps,
like (1− 10−8)/10−8, to produce robust eigenvectors for eigenvalues of LΩLt that are
close to 0. The price to be paid for the realism is the detailed analysis of sections 7, 8,
and 9.

Structure of paper. The analysis has two distinct phases. The first part, in sec-
tions 3 and 4, is well known and shows that for an unreduced, invertible, bidiagonal
matrix L, small relative changes in the entries may be written in matrix form as
L −→ DlLDr, where Dl and Dr are diagonal matrices close to I. The second part
is new and, under mild conditions involving relative gaps, presents bounds on the
changes in a singular triple (σ, u,Ωv) for any invertible matrix K under perturbations
K −→ DlKDr with Dl and Dr close to I and independent of K. When replacing
bidiagonal L by general K, one must explicitly require that KΩKt have simple eigen-
values. The two-sided scaling is replaced by a diagonal congruence on a nonnormal
matix of twice the size.

The analysis proper begins in section 5, which also contains a synopsis of the whole
analysis, while section 6 gives the wanted error bounds but in terms of a matrix Z
that solves a generalized Riccati equation derived in section 5. The rest of the paper
is devoted to Z. Section 7 presents a slate of Sylvester operators on 2 × 2 matrices
and the norms of their inverses. Section 8 contains the main theorem that includes
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two bounds on ‖Z‖. The first one is used to determine bounds on submatrices of Z
which then combine to give the desired refined bound on ‖Z‖. The first bound lurks
only in higher order terms. Section 9 establishes the existence of Z under the same
conditions needed in section 8. Section 10 inserts bounds from section 8 into those of
section 6 to give our results and reveals the appropriate (relative) condition numbers.
Section 11 shows how much the second bound on ‖Z‖ improves on the first for certain
extreme matrices.

Standard Householder notational conventions are used, including := for a defi-
nition and vt for the transpose of v, ‖v‖ :=

√
vtv for the Euclidean norm, ‖M‖ :=√

λmax(M tM) for the spectral norm, and ‖M‖F :=
√

trace(M tM) for the Frobenius
norm, ‖v‖1 :=

∑
i |v(i)|.

2. The hyperbolic SVD. A diagonal matrix Ω whose diagonal entries are ±1
is called a signature matrix. Given such a matrix Ω, the Ω-SVD (Ω-singular value
decomposition) of a real invertible matrix K is a decomposition

K = UΣV t(2.1)

where U is orthogonal, Σ is diagonal and positive definite, and V is Ω-orthogonal,
and

V tΩV = Ω̂, Ω̂ is another signature matrix.(2.2)

When Ω is indefinite, the Ω-SVD is said to be hyperbolic.
The decomposition (2.1)–(2.2) was introduced in [13] and extended in [1] to the

case of rectangular matrices K, where delicate issues arise when KΩKt is rank defi-
cient, but these issues do not arise in our invertible case. In [13] and [1] V is called
hypernormal, but we prefer the term Ω-orthogonal. Some authors use K = UΣV −1

instead of (2.1).
By (2.2),

Ω̂V tΩV = Ω̂(V tΩV ) = Ω̂2 = I

and so

(ΩV )−1 = Ω̂V t.(2.3)

Invoking (2.1) and (2.2) reveals that

KΩKt = UΣ(V tΩV )ΣU t

= U(Σ2Ω̂)U t.(2.4)

So U is an orthogonal eigenvector matrix of the real symmetric matrix KΩKt with
eigenvalue matrix Λ = Σ2Ω̂. The associated matrix

ΩKtK = ΩV Σ2V t

= (ΩV )Σ2Ω̂(Ω̂V t)

= (ΩV )Λ(ΩV )−1 by (2.3).(2.5)

Thus ΩV is an eigenvector matrix of the unsymmetric matrix ΩKtK that is similar
to KΩKt. Since (ΩV )−1 = Ω̂V t, the similarity in (2.5) equalizes the spectral norms
of the column and row eigenvector matrices of ΩKtK. For a robust algorithm based
on (2.1) and (2.4) see [15].
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Note that for any conformable permutation matrix Π the transformation U −→
UΠ, V −→ V Π makes the simple reordering of (2.1)

K = (UΠ)(ΠtΩΠ)(V Π)t,

whereas (2.2) becomes

(ΠtV t)Ω(V Π) = ΠtΩ̂Π.

So we may always order the eigenvalues in Λ so that Ω̂ = Ω, and this is what we
do.

We make no use of the convention σ1 ≥ σ2 ≥ · · · ≥ σn often invoked for standard
singular values. Even when Ω is indefinite, KtK is positive definite, and so the pair
(KtK,Ω) is definite and its spectrum is real although ΩKtK is not even normal.

Our results in section 10 involve ‖V ‖F so we now relate it to K.
Lemma 2.1. Let the Ω-SVD of invertible K be UΣV t. Then

‖V −1‖F = ‖V ‖F ≤
√

condF (K) :=
√

‖K‖F ‖K−1‖F .(2.6)

Proof. Use V tΩV = Ω and U t = U−1 to derive

KtU = V Σ,(2.7)

K−1U = V −tΣ−1 = (ΩV Ω)Σ−1.(2.8)

From (2.7),

U tKKtU = ΣV tV Σ,

trace [KKt] =

n∑
i=1

‖vi‖2σ2
i .(2.9)

From (2.8),

U tK−tK−1U = Σ−1(ΩV Ω)t(ΩV Ω)Σ−1,

trace [K−tK−1] =

n∑
i=1

‖vi‖2σ−2
i .(2.10)

Finally,

‖V ‖2
F =

n∑
i=1

‖vi‖2

=

n∑
i=1

(‖vi‖σi)(‖vi‖σ−1
i )

≤
(

n∑
i=1

‖vi‖2σ2
i

)1/2( n∑
i=1

‖vi‖2σ−2
i

)1/2

, Cauchy–Schwarz,

= trace [KKt]1/2 · trace [K−tK−1]1/2 by (2.9) and (2.10),

= ‖K‖F ‖K−1‖F = condF (K).

A stronger result for the spectral norm was proved in [18]: ‖V −1‖ = ‖V ‖ ≤√
min cond(KS), the minimum over invertible S such that SΩ = ΩS.
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3. Relative perturbations for bidiagonals. Let L be lower bidiagonal and
n× n:

L = bidiag

(
δ1 δ2 . . δn

l1 l2 . ln−1

)
.

Next we consider small relative perturbations to the (2n− 1) nontrivial entries of L:
li −→ li(1 + ηi), δi −→ δi(1 + εi), where |ηi| ≤ ε, |εi| ≤ ε, and ε � 1 is called the
level of perturbation. These changes may be represented in matrix form as

L −→ DlLDr(3.1)

using diagonal scaling matrices Dl and Dr. These scaling matrices are not unique.
In order to avoid trivial cases we make two assumptions about L.

(H1) L is unreduced, no li vanishes, i = 1, 2, . . . , n− 1.
(H2) L is invertible, no δi vanishes, i = 1, 2, . . . , n.

We call such L proper bidiagonals. Essentially there are two solutions for Dl and Dr:

Top Down: Dl(1) = 1, Dr(1) = (1 + ε1),

Dl(k) =

k−1∏
i=1

1 + ηi
1 + εi

, k = 2, . . . , n,

Dr(k) = (1 + εk)/Dl(k),

Bottom Up: Dr(n) = 1, Dl(n) = (1 + εn),

Dr(k) =

n−1∏
i=k

1 + ηi
1 + εi+1

, k = n− 1, . . . , 1,

Dl(k) = (1 + εk)/Dr(k).

Top Down: ‖Dl − I‖ ≤ (1 + ε)2n−2 − 1, ‖Dr − I‖ ≤ (1 + ε)2n−1 − 1,

Bottom Up: ‖Dl − I‖ ≤ (1 + ε)2n−1 − 1, ‖Dr − I‖ ≤ (1 + ε)2n−2 − 1.

For later use we simplify these bounds by

‖Dl − I‖ ≤ εd, ‖D−1
l − I‖ ≤ εd, ‖Dr − I‖ ≤ εd, ‖D−1

r − I‖ ≤ εd,(3.2)

εd := (1 + ε)2n−1 − 1.

We emphasize that Dl and Dr are independent of the entries of L.
Let the Ω-SVD of proper n × n L be L = UΣV t, with V satisfying (2.2). Note

that Ltuj = vjσj , whereas L(Ωvj) = (ujωj)σj , and we say the Ω singular triples of
L or Lt are (σj ,uj ,Ωvj), not (σj ,uj ,vj), in order to keep Ω in view.

Let

DlLDr = Ũ Σ̃Ṽ t(3.3)

be the Ω-SVD of the perturbed matrix.
This study gives bounds on |σj−σ̃j |/σj , on | sin ∠(uj , ũj)|, and on | sin ∠(Ωvj ,Ωṽj)|

for a typical j, 1 ≤ j ≤ n. These bounds, given in Theorem 10.1, section 10, involve
‖vj‖ and all the relative gaps |σj − σk|/σj , k �= j.
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4. The double matrix B. Bidiagonal form is essential for the bound (3.2) on
Dl and Dr, but our bounds on the changes to the HSVD when L is perturbed to
DlLDr make no use of bidiagonal form. So we now replace L by any invertible K
satisfying

ωjσ
2
j �= ωkσ

2
k, k �= j.(4.1)

We follow the lead of Golub and Kahan [9] and others by turning an SVD problem
into an eigenvalue problem of twice the size. If square K has Ω-SVD K = UΣV t, let

B :=

(
O K

ΩKt O

)
.(4.2)

B is normal if and only if Ω = ±I. The case Ω = I was treated in the seminal paper
[3]. In general, from (4.2) and (2.3),

B =

(
U O
O ΩV

)(
O Σ
Σ O

)(
U t O
O V t

)
=

(
U O
O ΩV

)(
O ΣΩ
Σ O

)(
U−1 O
O (ΩV )−1

)
.(4.3)

We use the following notation:

U = [u1, . . . ,un], V = [v1, . . . ,vn],

Ω = diag(ω1, . . . , ωn), ωi = ±1.

It is convenient to work with a real (block) spectral decomposition of B, so we intro-
duce the quantities that dominate the rest of the paper:

X := [X1, . . . , Xn], Xi =

[
ui o
o Ωvi

]
,

Y := [Y1, . . . , Yn], Yi =

[
ui o
o viωi

]
.(4.4)

Both X and Y are orthogonal with respect to I ⊕ Ω. Note the subtle difference
between Yi and Xi. Using (2.3), (2.4), and (2.5), we list elementary properties used
below:

Y t
i Xi = diag(1, ωiv

t
iΩvi) = diag(1, ω2

i ) = I2,

Y t
i Xk = O, k �= i.

So

Y tX = I2n(4.5)

and, in addition,

Y t
i Yi = Xt

iXi = diag(1, ‖vi‖2).(4.6)

Because |vt
iΩvi| = |ωi| = 1,

‖vi‖2 ≥ 1, i = 1, . . . , n.(4.7)
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Since Y t = X−1, I2n = XY t =
∑n

i=1 XiY
t
i .

By a suitable internal permutation of (4.3),

B =
n∑

i=1

σiXiΦiY
t
i(4.8)

with

Φi =

(
o ωi

1 o

)
, Φ2

i = ωiI2.(4.9)

Thus Φi distinguishes the real eigenvalues of B from the pure imaginary. From sec-
tion 3 the assumption that L is proper guarantees

σi > 0, σi �= σj , i �= j, i = 1, . . . , n.(4.10)

We will work with the real spectral resolution of B given by (4.8). In the indefinite
case, X and Y are not orthogonal and, using (4.5),

‖XiY
t
i ‖2 = λmax[XiY

t
i YiX

t
i ]

= λmax[Y t
i YiX

t
iXi]

= λmax[diag(1, ‖vi‖4)] = ‖vi‖4.(4.11)

By (4.5) the larger canonical angle αi = ∠(rangeXi, rangeYi) satisfies

cosαi = ‖vi‖−2.(4.12)

The smaller canonical angle is zero because ui belongs to both spaces.
In the following sections we use (4.8) repeatedly in the form

BXi = XiΦiσi, i = 1, 2, . . . , n.(4.13)

In addition we will focus on a specific Ω singular triple (σj ,uj ,Ωvj) of Kt and we need
a notation for those parts of matrices that do not involve j. We use the subscript 〈j〉 to
denote this exclusion. Thus we redefine the X, Y of (4.4) by a harmless permutation

X = [Xj , X〈j〉], Y = [Yj , Y〈j〉],

Φ = Φj ⊕ Φ〈j〉, Σ = diag(σj ,Σ〈j〉).
(4.14)

In the later sections we also need

Σ̂〈j〉 = Σ〈j〉 ⊗ I2 = diag(σ1, σ1, σ2, σ2, . . . , σn, σn),

with the omission of σj .

5. Perturbation by diagonal congruence: The framework for the en-
tire analysis. Observe that the perturbation K −→ DlKDr described in section 2
corresponds to the perturbation B −→ B̃, where B is given in (4.2) and

B̃ =

(
O DlKDr

Ω(DlKDr)
t O

)
,

=

(
Dl O
O Dr

)(
O K

ΩKt O

)(
Dl O
O Dr

)
,
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because Ω and Dr commute. Thus we write

B̃ = EBE with E = Dl ⊕Dr.(5.1)

This simple diagonal congruence on B combined with (4.14) suggests that E−1Xj

and E−1Yj will yield small residuals since

Rj := (EBE)(E−1Xj) − (E−1Xj)Φjσj = (E − E−1)XjΦjσj

and similarly for E−1Yj . Unfortunately, in the nonnormal case, small row and col-
umn residuals are not enough to bound the change in eigenvectors. We need global
information. So we turn to other approaches.

Synopsis of proof. Although the details are complicated, the approach is standard
and can be found in [19]. The framework is given in Lemma 5.1 below, the matrix
N that block diagonalizes the perturbed matrix is given in (5.7), and the essential
(n− 2)× 2 submatrix Z has to satisfy the Riccati equation (5.11). Given Z, the new
ũj , Ωṽ vectors are given by (5.13) and Lemma 6.4. The new values σ̃j come from
the Rayleigh quotient in (6.10). The proof of Lemma 6.3 is long because we want to
get the higher order terms exactly. Sections 7, 8, and 9 are devoted to Z which is
a column of (n-1) 2 × 2 diagonal matrices Zkj , k �= j. The Riccati equation (5.13)
breaks down into (n−1) Riccati equations, one for each Zkj , k �= j, given in (7.5). We

solve this nonlinear equation by iteration and bound the mth iterate Z
(m)
kj in (8.6).

This result (8.6) is vital to our realistic bound on the change in uj because it
contains the quotient ‖vk‖2/(|σk−σj |/σj) in which a huge numerator can be neutral-
ized by a huge relative separation to give a small contribution to the perturbation.
This was the reward for bounding each Zkj carefully. Section 9 gives the conditions
for convergence of the iteration, and section 10 substitutes the bound for Z into the
results of section 6. The vector mj in (10.7) and the eigenvector condition number
(10.28) are the main original contributions of this paper.

Analysis. Write the spectral decomposition of B̃ as B̃ =
∑n

i=1 σ̃iX̃iΦiỸ
t
i .

The way we obtain tight bounds on the sensitivity of an eigenvector uj and a
singular vector Ωvj is by using a standard approach for a perturbed invariant subspace.
So we rewrite (5.1) as an additive perturbation

B̃ = E2(E−1BE)

= (I2n + E2)E
−1BE,(5.2)

with

E2 := diag(D2
l − I,D2

r − I).

The alternative formulation

B̃ = B + E1B + BE1 + E1BE1,

for E1 := E − I, has three added terms, and the analysis is much more complicated
than what follows.

Lemma 5.1. The perturbed matrix B̃ = EBE may be written in terms of the
basis E−1X, with inverse (EY )t, as ⊕n

i=1Φiσi + F = C + F , using the notation of
section 4. To focus on Φjσj this representation is written

C̃ =

(
Φjσj O

O Φ〈j〉Σ̂〈j〉

)
+

(
F11 F12

F21 F22

)
,
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(
F11 F12

F21 F22

)
=

(
G11Φjσj G12Φ〈j〉Σ̂〈j〉
G21Φjσj G22Φ〈j〉Σ̂〈j〉

)
.(5.3)

Each G matrix is an array of 2 × 2 diagonal matrices,

gik = diag(guik, ωig
v
ik)

:= diag(ut
i(D

2
l − I)uk, ωiv

t
i(D

2
r − I)Ωvk),(5.4)

and guik = guki, g
v
ik = gvki, i = 1, 2, . . . , n, k = 1, 2, . . . , n.

Proof. From (4.8)

B = XCY t,

E−1BE = E−1XCY tE,

EBE = E2(E−1BE)

= E−1BE + E2E
−1BE

= (E−1X)(C + F )(EY )t,

where

F := Y tEE2E
−1XC = Y tE2XC,

since E and E2 commute. To see the form of F , use the definitions

G11 = Y t
j E2Xj , G12 = Y t

j E2X〈j〉,

G21 = Y t
〈j〉E2Xj , G22 = Y t

〈j〉E2X〈j〉.

The special form of Xi and Yi is given in (4.4), and E2 is given in (5.2). The typical
block in a G matrix is

gik = Y t
i E2Xk

=

(
ui o
o viωi

)t(
D2

l − I O
O D2

r − I

)(
uk o
o Ωvk

)
= diag(ut

i(D
2
l − I)uk, ωiv

t
i(D

2
r − I)Ωvk)

= diag(guik, ωig
v
ik)

defining the symmetric perturbation quantities guik and gvik.
Note that

G21 =

⎛⎜⎝ g1j

...
gnj

⎞⎟⎠ , G12 = (gj1, . . . , gjn),(5.5)

but with the gjj term omitted. We chose the notation G22 rather than G〈j〉〈j〉 despite
the loss of precision. For application in the bounds to be developed in later sections,
(5.4) and (4.7) yield

|guik| ≤ ‖D2
l − I‖, |gvik| ≤ ‖vi‖ ‖vk‖ ‖D2

r − I‖.(5.6)

To obtain an invariant subspace of EBE that is close to rangeXj we need to

find a similarity transform of C̃ = C + F that annihilates the (2, 1) block. However,
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we need to do more than that. The definition of Xj and Yj in (4.4) shows that Xj

determines Yj . In the same way the new X̃j determines the new Ỹj . So we must find
a similarity transform that annihilates both the (2, 1) and (1, 2) blocks. A convenient
notation is C + F −→ N−1(C + F )N with

N =

(
I2 −Z̃t

Z I

)(
Q1 O
O Q2

)
, N−1 =

(
Q1 O
O Q2

)(
I2 Z̃t

−Z I

)
,(5.7)

Q1 = (I2 + Z̃tZ)−1/2, Q2 = (I + ZZ̃t)−1/2,(5.8)

where Z and Z̃ are to be chosen appropriately. Note that if(
I2 Z̃t

−Z I

)(
C + F

)( I2 −Z̃t

Z I

)
(5.9)

is block diagonal, then so is N−1(C + F )N and therefore we may ignore Q1 and Q2

until later. Using C̃ as given in (5.3), the matrix in (5.9) is[
Φjσj + Z̃tΦ〈j〉Σ̂〈j〉Z, −ΦjσjZ̃

t + Z̃tΦ〈j〉Σ̂〈j〉

−ZΦjσj + Φ〈j〉Σ̂〈j〉Z, Φ〈j〉Σ̂〈j〉 + ZΦ〈j〉Σ̂〈j〉Z̃
t

]
+(5.10)

[
F11 + F12Z + Z̃t(F21 + F22Z), F12 − F11Z̃

t + Z̃tF22 − Z̃tF21Z̃
t

F21 − ZF11 + F22Z − ZF12Z, F22 − F21Z̃
t − Z(F12 − F11Z̃

t)

]
.

Note that the (2, 1) block is a function of Z alone and the (1, 2) block is a function of
Z̃ alone. It turns out that we do not need expressions for Z̃ because we can determine
the perturbed eigenvalue σ̃ using a Rayleigh quotient instead of the (1, 1) block of
(5.10).

From (5.10) Z ∈ R
(2n−2)×2 must satisfy

ZΦjσj − Φ〈j〉Σ̂〈j〉Z = F21 − ZF11 + F22Z − ZF12Z.(5.11)

This is called a generalized Riccati equation. In later sections we develop
• conditions for the existence of Z,
• the structure of Z,
• bounds on ‖Z‖,
• bounds on each 2 × 2 block of Z.

A similar (long) analysis could be carried out for the generalized Riccati equation
that corresponds to the (1, 2) block and determines Z̃. Fortunately we can replace
this labor with Lemma 6.1 below because Xj and Yj differ so little. Next we suppose

that Z and Z̃ are in hand and so we have the similarity transformation by N that
block diagonalizes C + F . From the proof of the lemma above we have

B̃ = EBE = (E−1XN)[N−1(C + F )N ][N−1(EY )t].(5.12)

From the proof of Lemma 5.1 and from N in (5.7), the invariant subspace range

(X̃j) corresponding to range(Xj) has a basis E−1X
(
I2
Z

)
Q1. For small enough Z and

Z̃ the 2× 2 matrix Q1 is invertible and so we may ignore it in choosing a simple basis
given by the columns of

X̃j := E−1Xj + E−1X〈j〉Z.(5.13)
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We note that X̃j is not normalized in the same way as Xj . In section 8 we show that
Z has the structure shown in (6.1), and so (5.13) splits into

ũj = D−1
l (uj + U〈j〉zu),

(5.14)

Ωṽj = D−1
r (Ωvj + ΩV〈j〉zv),

where zu comes from the odd indices of column 1 of Z, zv comes from the even indices
of column 2 of Z, and both are used heavily in the next section.

6. Error bounds in terms of Z. This section exhibits the perturbed triple
(σ̃j , ũj ,Ωṽj) when Z is known. We will show in Lemma 7.2 under mild conditions on
the relative gaps among the {σi} that a solution Z of (5.11) exists and is a tower of
(n− 1) diagonal 2 × 2 matrices Z1j , Z2j , . . . , Znj , with Zjj omitted. In symbols,

Z = Z〈j〉 =

⎛⎜⎝ Z1j

...
Znj

⎞⎟⎠ , Zij diagonal.(6.1)

By definition ‖Z‖2
F =

∑
k �=j ‖Zkj‖2

F , but, in general, ‖Z‖2 �=
∑

k �=j ‖Zkj‖2 for the
spectral norm. However, when the Zkj are diagonal (or antidiagonal), there is a
relation.

Lemma 6.1. If Z = [z1,z2] has the structure given in (6.1), then

‖Z‖2 ≤
∑
k �=j

‖Zkj‖2.

Proof. The two columns of Z have disjoint support and thus

ZtZ = diag(‖z1‖2, ‖z2‖2),

Zt
kjZkj = diag(|z1(2k − 1)|2, |z2(2k)|2).

So

‖Z‖2 = λmax(ZtZ)

= max

⎧⎨⎩∑
k �=j

|z1(2k − 1)|2,
∑
k �=j

|z2(2k)|2
⎫⎬⎭

≤
∑
k �=j

max
{
|z1(2k − 1)|2, |z2(2k)|2

}
=
∑
k �=j

‖Zkj‖2.

In the first draft of this paper we used the Frobenius norm. Now, with Lemma 6.1,
we obtain tighter bounds.

Definition (5.13) shows how Z governs the relation of Xj to X̃j . We also need the

connection between Yj and Ỹj , which is messier than (5.13) but only through entry
exchanges and sign changes. See Lemma 6.2.

Representation of Ỹj. We need the following notation. Let R := ( 0 1
1 0 ) and

R+ = R⊕ · · · ⊕R, with n− 1 terms.
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Lemma 6.2. With the notation developed in the previous section we have X̃j =

E−1(Xj + X〈j〉Z). In addition Ỹj may be represented by E−1(Yj + Y〈j〉Z̄) with

Z̄ = R+Φ〈j〉ZRΦj .(6.2)

Note that R+Φ〈j〉 = diag(1, ω1, 1, ω2, . . . , 1, ωn), with RΦj = diag (1, ωj) omitted.

Proof. Premultiply (5.14) by Ω and postmultiply by ωj . Since Dr
−1 and Ω

commute,

ṽjωj = Dr
−1(vjωj + V〈j〉zvωj)

= Dr
−1(vjωj + V〈j〉Ω〈j〉Ω〈j〉zvωj).(6.3)

Whereas block k of Z is diag(zu(k), zv(k)), the line above shows that block k of Z̄
must be diag(zu(k), ωkzv(k)ωj). Now combine (6.3) with the expression for ũj in
(5.14) to obtain

Ỹj =

(
ũj 0
0 ṽjωj

)
= E−1(Yj + Y〈j〉R+Φ〈j〉ZRΦj).

An alternative representation of Ỹj , coming from (5.7), is

Ỹj = E(Yj + Y〈j〉Z̃),

but we do not have a simple relation between Z̃ and Z, so we use Lemma 6.2 and Z̄
instead. We apologize for the difficulty in distinguishing Z̃ from Z̄, but from now on
Z̃ drops out of the picture.

Our bounds involve the 2 × 2 matrix Ỹ t
j X̃j . Although range(X̃j) and range(Ỹj)

are the invariant subspaces of EBE associated with σ̃j close to σj , nevertheless X̃j

and Ỹj are not properly normalized (i.e., they are not dual bases):

Ỹ t
j X̃j =

(
I2 Z̄t

)
(Y tE−2X)

(
I2
Z

)
(6.4)

=
(
I2 Z̄t

)
(I + Ḡ)

(
I2
Z

)
.(6.5)

By (5.13) and (3.2), the bounds for the 2 × 2 blocks of Ḡ are identical to those of G
since

Ḡ = Y t(E−2 − I)X and G = Y t(E2 − I)X.

Change in σj . The long proof of Lemma 6.3 below reveals that Z only enters
into the higher order terms of the bound. The dominant coefficient is ‖vj‖2 + 1. The

Rayleigh quotient (matrix) of X̃j and Ỹj is the 2 × 2 antidiagonal matrix

Ỹ t
j EBEX̃j(Ỹ

t
j X̃j)

−1,

and so its eigenvalues are a ± pair. It represents the action of EBE on range(X̃j),

and its eigenvalues must be ±
√
ωj σ̃

2
j = ±

√
λ̃j . To describe the higher order terms

in the change to σj we need two new quantities,

Υj :=
√

(n− 1) + ‖vj‖2 ‖V〈j〉‖2
F ≤

√
2‖vj‖ ‖V〈j〉‖F ,(6.6)

κ〈j〉 := σ−1
j

∑
i �=j

ωiσi det[Zij ].(6.7)
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It is more natural to state the bounds in Lemma 6.3 in terms of λ̃j and λj . Note that

|λ̃j − λj |
|λj |

=
|σ̃j − σj |

σj
· (σ̃j + σj)

σj
>

|σ̃j − σj |
σj

.

In (3.2) we introduced εd, which bounds max(‖E− I‖, ‖E−1 − I‖, but in the analysis
that follows the natural measure of the perturbation level is not εd but

ε̄d = max(‖E2 − I‖, ‖E−2 − I‖) = ‖E2‖

from (5.2). Reference to (3.2) shows that ε̄d = εd(2 + εd).
Lemma 6.3. Provided that ‖Z‖2

F ≤ ε̄d,

|λ̃j − λj |
|λj |

≤ ε̄d(‖vj‖2 + 1) + β2

1 − ε̄d(‖vj‖2 + 1) − β2
,(6.8)

β2 := (ε̄dΥj + ‖Z‖F )2 + 2κ〈j〉.(6.9)

Proof. We now begin a long and intricate calculation. By the properties of the
Rayleigh quotient described above,

λ̃j = −det[Φj σ̃j ] = −det[Ỹ t
j EBEX̃j(Ỹ

t
j X̃j)

−1].

Use Lemma 6.2 and (5.13) to write

Ỹ t
j EBEX̃j =

(
I2 Z̄t

)
Y tE−1(EBE)E−1X

(
I2
Z

)
=
(
I2 Z̄t

)
ΦΣ̂

(
I2
Z

)
.

Invoke (6.5) for the inverse of Ỹ t
j X̃j to find

λ̃j = −
det[Φjσj + Z̄tΦ〈j〉Σ̂〈j〉Z]

det

[(
I2 Z̄t

)
(I + Ḡ)

(
I2
Z

)] .(6.10)

Consider the numerator in (6.10) first. Note that Φt
〈j〉R+ = R+Φ〈j〉 and Φ2

〈j〉 = Ω̂〈j〉 =

Ω〈j〉
⊗

I2. At the end of the following calculation we use the fact that Zij is diagonal

to verify that Zij
tRZij = Rdet[Zij ]. Lemma 6.2 gives Z̄ and hence

Z̄tΦ〈j〉Σ̂〈j〉Z = Φt
jRZtΦt

〈j〉R+Φ〈j〉Σ̂〈j〉Z

= Φt
jR(ZtR+Ω̂〈j〉Σ̂〈j〉Z)

= Φt
jR
∑
i �=j

ωiσiZ
t
ijRZij

= Φt
jR
∑
i �=j

ωiσiRdet[Zij ]

= Φt
〈j〉κ〈j〉σj ,(6.11)

using (6.7). The denominator in (6.10) has more parts:(
I2 Z̄t

)
(I + Ḡ)

(
I2
Z

)
= I2 + Z̄tZ + (Ḡ11 + Ḡ12Z + Z̄tḠ21 + Z̄tḠ22Z),



1036 BERESFORD N. PARLETT

and we bound each term separately. Use Lemma 6.2 again and

Z̄t
ij = diag(zu(i), ωizv(i)ωj), Zij = diag(zu(i),zv(i)),

to find that

Z̄tZ =
∑
i �=j

Z̄t
ijZij

= diag

⎛⎝∑
i �=j

zu(i)2, ωj

∑
i �=j

ωizv(i)
2

⎞⎠
= diag

(
‖zu‖2, ωjz

t
vΩ〈j〉zv

)
.

Now we turn to the four terms in parentheses in the denominator of (6.10) that involve
G. By the sentence after (6.5), the bounds on the blocks in Ḡ are the same as those
in G. In order to understand the rest of the proof it is necessary to revisit (5.4), (5.5),
and (5.6), where the 2 × 2 diagonal matrices gik are revealed. The structure of Z is
exhibited in (6.1) and Lemma 6.1. Finally, ε̄d is given in (3.2):

|Ḡ11| ≤ diag(ε̄d‖uj‖2, ε̄d‖vj‖2), the dominant term, from (5.6),

Ḡ12Z =
∑
i �=j

ḠjiZij ,

|Ḡ12Z| =

∣∣∣∣∣∣
∑
i �=j

diag(ḡuji, wj ḡ
v
ji) diag(zu(i),zv(i))

∣∣∣∣∣∣
≤ ε̄ddiag

⎛⎝‖zu‖1, ‖vj‖
∑
i �=j

‖vi‖ |zv(i)|

⎞⎠
≤ ε̄ddiag(‖zu‖1, ‖vj‖ ‖V〈j〉‖F ‖zv‖), by Cauchy–Schwarz.

Use (5.6) to see that the same bound holds for |Z̄tḠ21|. The quadratic term is

|Z̄tḠ22Z| = |diag(zt
uḠ

u
22zu, ωjz

t
vΩ〈j〉Ḡ

v
22zv)|.

For the (i, k) block of Ḡ22 we have

|(Ḡu
22)ik| = |ut

i(D
−2
l − I)uk| ≤ ε̄d,

|(Ḡv
22)ik| = |ωiv

t
i(D

−2
r − I)Ωvk| ≤ ε̄d‖vi‖ ‖vk‖.

So both matrices |Ḡu
22| and |Ḡv

22| are bounded, block by block, by rank-one matrices:
the first has every entry ε̄d, and the second has (i, k) entry ε̄d‖vi‖‖vk‖. For the (2, 2)
entry of |Z̄tḠ22Z|, by Cauchy–Schwarz,

|zt
vΩ〈j〉Ḡ

v
22zv| ≤ ε̄d

⎛⎝∑
i �=j

‖vi‖ |zv(i)|

⎞⎠2

≤ ε̄d(‖V〈j〉‖F ‖zv‖)2,

and for the (1, 1) entry use |x| for the vector with absolute values to find

|zu
tG22

uzu| ≤ ε̄d[(1, . . . , 1)|zu|]2 = ε̄d‖zu‖2
1.
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Thus, entry by entry,

|Z̄tḠ22Z| ≤ ε̄ddiag(‖zu‖2
1, ‖V〈j〉‖2

F ‖zv‖2).

Next assemble the six individual terms in the (1, 1) and (2, 2) entries of the 2 × 2
diagonal matrix

(
I2 Z̄t

)
(I + Ḡ)

(
I2
Z

)
to find

det

[(
I2 Z̄t

)
(I + Ḡ)

(
I2
Z

)]
≥ [1 − ε̄d − 2ε̄d‖zu‖1 − ‖zu‖2 − ε̄d‖zu‖2

1]

· [1 − ε̄d‖vj‖2 − 2ε̄d‖vj‖‖V〈j〉‖F ‖zv‖ − ‖zv‖2 − ε̄d(‖V〈j〉‖‖zv‖)2]

= 1 − ε̄d(‖vj‖2 + 1) − 2ε̄d(‖zu‖1 + ‖vj‖ ‖V〈j〉‖F ‖zv‖)

−‖Z‖2
F − ε̄d(‖zu‖2

1 + ‖zv‖2 ‖V〈j〉‖2
F ),(6.12)

ignoring positive products. By the Cauchy–Schwarz inequality,

‖zu‖1 + ‖vj‖ ‖V〈j〉‖F ‖zv‖ ≤ Υj‖Z‖F ,

with

Υ2
j := (n− 1) + ‖vj‖2 ‖V〈j〉‖2

F ≤ 2‖vj‖2 ‖V〈j〉‖2
F .

By subtracting and adding (ε̄dΥj)
2 we can absorb the last term in (6.12),

det

[(
I2 Z̄t

)
(I + Ḡ)

(
I2
Z

)]
≥ 1 − ε̄d(‖vj‖2 + 1) − (ε̄dΥj + ‖Z‖F )2

+ ε̄2
dΥ

2
j − ε̄dΥ

2
j‖Z‖2

F

≥ 1 − ε̄d(‖vj‖2 + 1) − (ε̄dΥj + ‖Z‖F )2,(6.13)

invoking the hypothesis that ‖Z‖2
F ≤ ε̄d. Insert (6.11) and (6.13) into (6.10) to find

|λ̃j | ≤
|ωjσj(1 + ωjκ〈j〉)σj(1 + ωjκ〈j〉)

1 − ε̄d(‖vj‖2 + 1) − (ε̄dΥj + ‖Z‖F )2

=
|λj(1 + ωjκ〈j〉)

2|
1 − α− β2

,

defining α and β appropriately. Thus

|λ̃j − λj |
|λj |

≤ 2κ + κ2 + α + β2

1 − α− β2
.

Now κ = κ〈j〉 is quadratic in ε̄d since it involves det[Zij ]. To eliminate the fourth-

order term κ2 we modify the quadratic term in the denominator and write

2κ + κ2 + α + β2

1 − α− β2
≤ α + β2 + 2κ

1 − (α + β2 + 2κ)
,

and this yields the lemma with β2 := β2 + 2κ.
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In section 10 we obtain bounds, under mild conditions, on ‖Z‖ and ‖Zij‖ and
hence on |κ〈j〉|. It turns out that both ‖Z‖2

F and |κ〈j〉| are O
(
(ε̄d‖vj‖)2

)
, and hence

the condition in Lemma 6.3, ‖Z‖2
F ≤ ε̄d, is not restrictive. It follows that

|λ̃j − λj |
|λj |

≤ 1 + 2(‖vj‖2 + 1)ε̄d + O(ε̄2
d),

and ‖Z‖ affects only the constant hidden by O but given in the lemma.

Change in uj. Recall that X̃j =
(

ũj o
o Ωṽj

)
.

Lemma 6.4. If Z satisfies (5.11) and (6.1), then the unnormalized left Ω singular
vector ũj belonging to σ̃j satisfies

| sin ∠(ũj ,uj)| ≤ [‖zu‖ + ‖D−1
l − I‖(1 + ‖zu‖)](1 + εd)

≤ ‖zu‖ + εd
(1 − εd)2

.(6.14)

Proof. From (5.13), X̃j = E−1Xj +E−1X〈j〉Z, and (6.1) guarantees that X̃j has
the same form as Xj except that ‖ũj‖ need not be 1. The first column of (5.13) yields

ũj = D−1
l [uj + U〈j〉zu].(6.15)

Since U is orthogonal,

U t
〈j〉ũj = U t

〈j〉[uj + (D−1
l − I)uj + U〈j〉zu + (D−1

l − I)U〈j〉zu]

= 0 + U t
〈j〉(D

−1
l − I)uj + zu + U t

〈j〉(D
−1
l − I)U〈j〉zu,

and

1 ≤ ‖uj + U〈j〉zu‖ ≤ ‖Dl‖ ‖ũj‖.

Take norms and use the orthogonality of U to find

‖U t
〈j〉ũj‖ ≤ ‖D−1

l − I‖ + ‖zu‖(1 + ‖D−1
l − I‖),

‖ũj‖ ≥ (1 + εd)
−1 ≥ 1 − εd,

and (6.14) follows since | sin ∠(ũj ,uj)| is the quotient of the left-hand sides above.
The second line in (6.14) absorbs the quadratic term by using an extra factor of
(1 − εd) in the denominator.

Change in Ωvj . ΩV is not orthogonal, so the bound on the change in Ωvj is more
complicated than the bound on the change in uj . The quantity κj defined below
is not related to the κ〈j〉 defined in (6.7); both are abbreviations for complicated
expressions involving natural ingredients of the theory.

Lemma 6.5. If Z satisfies (5.11) and (6.1), then the right Ω singular vector Ωṽj

for σ̃j satisfies

| sin ∠(Ωṽj ,Ωvj)| ≤
[
κj + ‖D−1

r − I‖(1 + κj)
]
(1 + εdβ̄j),(6.16)

κj := ‖V〈j〉‖‖zv‖β̄j ,
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where βj is defined in (6.23) below and satisfies

βj ≤ β̄j :=

(
‖vj‖ −

√
‖vj‖4 − 1 ‖V〈j〉‖‖zv‖

)−1

.

Proof. From (5.13), X̃j = E−1Xj +E−1X〈j〉Z, and (6.1) guarantees that X̃j has

the same form as Xj . The second column of X̃j has the form

Ωṽj = D−1
r [Ωvj + ΩV〈j〉zv].(6.17)

The proof now follows the pattern used by Stewart in [19, p. 260]: If the columns of
A1 and A2 are orthonormal bases for the spaces to be compared, then he completes
them to (A1, B1), (A2, B2) so that B2 is orthogonal to A1 and B1 is orthogonal to

A2. For us, A1 is Ωvj and A2 is vjωj . Let
o
vj= vj/‖vj‖. In our case the natural

complement to Ωvj is Y〈j〉 = V〈j〉Ω〈j〉 after normalization since V t
〈j〉Ωvj = 0. Define

Q〈j〉 := V〈j〉Ω〈j〉(Ω〈j〉V
t
〈j〉V〈j〉Ω〈j〉)

−1/2(6.18)

= V〈j〉Ω〈j〉K〈j〉, defining K〈j〉.

The matrices (Ωvj ,ΩV〈j〉) and (vjωj , V〈j〉Ω〈j〉) are dual, i.e., (V Ω)t(ΩV ) = ΩV tΩV =

Ω2 = I. Now we follow Stewart to determine the relations between
o
vj ωj , Q〈j〉

and ΩV . We renormalize these matrices to preserve the ranges and duality, and

incorporate Ω
o
vj and Q〈j〉; thus

(Ω
o
vj ,ΩV〈j〉K

−1
〈j〉 ) and (

o
vj ωj‖vj‖2, Q〈j〉)

are still dual. By [19, Theorem 1.8] there is a unique vector q such that

o
vj ωj‖vj‖2 = Ω

o
vj −Q〈j〉q,(6.19)

ΩV〈j〉K
−1
〈j〉 = Q〈j〉 + Ω

o
vj qt.(6.20)

From (6.19), since ‖Ω o
vj ‖ = 1,

‖q‖ = tan∠(
o
vj ωj ,Ω

o
vj) =

√
‖vj‖4 − 1,(6.21)

and, after postmultiplying (6.20) by K〈j〉 and taking norms,

‖K〈j〉‖ =
√
‖ΩV〈j〉‖2 − ‖qtK〈j〉‖2 ≤ ‖V〈j〉‖.(6.22)

With (6.21) and (6.22) in hand, use (6.20) in (6.17) to find

Ωṽj = D−1
r [Ω

o
vj ‖vj‖ + (Q〈j〉K〈j〉 + Ω

o
vj qtK〈j〉)zv]

= D−1
r [Ω

o
vj β

−1
j + Q〈j〉K〈j〉zv],

with

βj := (‖vj‖ + qtK〈j〉zv)
−1.(6.23)
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Multiply through by βj to obtain a replacement for (6.17):

Ωṽjβj = D−1
r [Ω

o
vj +Q〈j〉K〈j〉zvβj ].(6.24)

Form the two components

Qt
〈j〉Ωṽjβj = 0 + Qt

〈j〉(D
−1
r − I)Ω

o
vj +K〈j〉zvβj

+Qt
〈j〉(D

−1
r − I)Q〈j〉K〈j〉zvβj ,

1 ≤ ‖Ω o
vj +Q〈j〉K〈j〉zvβj‖ ≤ ‖Dr‖ ‖Ωṽjβj‖.

Take norms and divide to get

sin ∠(Ωṽj ,Ωvj) ≤
[
‖K〈j〉zv‖βj + ‖D−1

r − I‖(1 + ‖K〈j〉zv‖βj)
]
(1 + εdβj).(6.25)

Use (6.21) and (6.22) in (6.23) and (6.25) and then (6.16) follows.

7. The Sylvester operator Sjk. In the course of analyzing the generalized
Riccati equation (5.11) we shall need some properties of the linear operator on R

2×2

defined, for k �= j, by

SjkM := MΦjσj − ΦkσkM

=

(
m12 m11ωj

m22 m21ωj

)
σj −

(
m21ωk m22ωk

m11 m12

)
σk

=

(
0 (ωjσj ,−ωkσk)(m11,m22)

t

(−σk, σj)(m11,m22)
t 0

)
+

(
(σj ,−ωkσk)(m12,m21)

t 0
0 (−σk, ωjσj)(m12,m21)

t

)
.(7.1)

The last equation shows that Sjk is a direct sum. The next result introduces the
important quantities δjk.

Lemma 7.1. The operator Sjk is a direct sum of a mapping from diagonal ma-
trices to antidiagonal matrices and another from antidiagonals to diagonals. By as-
sumption (4.1), ωkσ

2
k �= ωjσ

2
j and Sjk is invertible,

S−1
jk

(
0 a
b 0

)
=

1

ωjσ2
j − ωkσ2

k

[
(σj , ωkσk)(a, b)

t 0
0 (σk, ωjσj)(a, b)

t

]
,(7.2)

S−1
jk

(
c 0
0 d

)
=

1

ωjσ2
j − ωkσ2

k

[
0 (ωjσj , ωkσk)(c, d)

t

(σk, σj)(c, d)
t

]
,(7.3)

and

δ−1
jk := ‖S−1

jk ‖ =

⎧⎪⎨⎪⎩
|σj − σk|−1 if ωk = ωj ,

σj+σk

σ2
j+σ2

k
if ωk �= ωj .

(7.4)

Proof. From (7.1) we may write Sjk = S
\
jk ⊕ S

/
jk. We consider S

\
jk acting on

diagonal 2 × 2 matrices. In the appropriate coordinates(
a
b

)
= S

\
jk

(
c
d

)
=

(
ωjσj −ωkσk

−σk σj

)(
c
d

)
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so that (
c
d

)
=
(
S
\
jk

)−1
(

a
b

)
=

1

ωjσ2
j − ωkσ2

k

(
σj ωkσk

σk ωjσj

)(
a
b

)
.

This gives (7.2). Moreover,∥∥∥∥( σj ωkσk

σk ωjσj

)∥∥∥∥
∞

= σj + σk.

Finally, since
(
S
\
jk

)−1

maps

(
0 a
b 0

)
into

(
c 0
0 d

)
,

∥∥∥∥(S\
jk

)−1
∥∥∥∥ = max

(a,b)

∥∥∥∥( c 0
0 d

)∥∥∥∥/∥∥∥∥( 0 a
b 0

)∥∥∥∥
= max

(a,b)

∥∥∥∥( c
d

)∥∥∥∥
∞

/∥∥∥∥( a
b

)∥∥∥∥
∞

=

⎧⎨⎩
σj+σk

|σ2
j−σ2

k|
if ωk = ωj ,

σj+σk

σ2
j+σ2

k
if ωk �= ωj ,

which yields (7.4).

The formula for
(
S
/
jk

)−1
is readily derived from (7.1), and

∥∥(S/
jk

)−1∥∥ is the same
as (7.4).

In our applications of Lemma 7.1 we use only
(
S
\
jk

)−1
and, with little danger of

confusion, we denote it by (Sjk)
−1

with the appropriate restriction coming from the
context. The quantities δ−1

jk play a key role in the analysis that follows.
To see how Sjk comes into play, we write

Z = Z〈j〉 =

⎛⎜⎝ Z1j

...
Znj

⎞⎟⎠
as in (6.1) but with no claims that Zkj is diagonal. The kth (block) row of the Riccati
equation (5.11) is SjkZjk = Rk(Z) with

SjkZkj := ZkjΦjσj − ΦkσkZkj ,

Rk(Z) = gkjΦjσj − ZkjgjjΦjσj +
∑
i �=j

gkiΦiσiZij

−Zkj

∑
i �=j

gjiΦiσiZij .(7.5)

The 2 × 2 diagonal matrices gik are given in (5.4).
We will derive the structure of Z by using an iterative form of (7.5). Set Z(0) = O

and, for each k �= j, let

SjkZ
(m+1)
kj = Rk(Z

(m)), m = 0, 1, 2, . . . .(7.6)
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Set m = 0 in (7.6) to find that, for k �= j,

SjkZ
(1)
kj = gkjΦjσj .

From (5.4), gkjΦj is antidiagonal and so, by Lemma 7.1,

Z
(1)
kj is diagonal, k �= j.(7.7)

Moreover, by Lemma 7.1, ∥∥∥Z(1)
kj

∥∥∥ =
∥∥Sjk

−1gkjΦjσj

∥∥
≤ σj

δjk
‖gkjΦj‖(7.8)

=
σj

δjk
‖gkj‖ ,(7.9)

and, by (5.4),

∥∥∥Z(1)
∥∥∥2 ≤ σ2

j max

⎧⎨⎩∑
k �=j

(
gukj
δjk

)2

,
∑
k �=j

(
gvkj
δjk

)2
⎫⎬⎭ .(7.10)

Although Z is much more complicated than Z(1), we shall find that ‖Zkj‖ δjk/σj is
bounded by something close to ‖gkj‖ = max{|gukj |, |gvkj |}.

Lemma 7.2. For m = 1, 2, . . . the solutions Z(m) to (7.6) satisfy, for all k �= j,

Z
(m)
kj is diagonal.(7.11)

Proof. We proceed by induction. If each Z
(m)
kj is diagonal, then each of the four

terms in Rk(Z
(m)) is antidiagonal: from (7.5), ignoring scalars σj ,

gkjΦj is (diag) (antidiag),

Z
(m)
kj gjjΦj is (diag) (diag) (antidiag),∑

i �=j

gkiΦiZ
(m)
ij is a sum of (diag) (antidiag) (diag),

Z
(m)
kj

∑
i �=j

gjiΦiZ
(m)
ij is diag

∑
(diag) (antidiag) (diag).

Since Sjk
−1 maps antidiagonals into diagonals,

Z
(m+1)
kj = Sjk

−1Rk(Z
(m))

must be diagonal.

By (7.7), Z
(1)
kj is diagonal for all k �= j. Thus, by the finite induction principle,

Z
(m)
kj is diagonal for all positive integers m.



HYPERBOLIC SINGULAR VALUE DECOMPOSITION 1043

8. A bound for ‖Z(m)‖ and ‖Z
(m)
kj ‖. First we obtain a simple bound on

‖Z(m)‖ and then use it to find a bound on ‖Z(m)
kj ‖, which then gives rise to a better

bound on ‖Z(m)‖. We regard (8.6)–(8.7) below as the principal technical contribution
of this paper.

We shall need the following quantities:

rgap := rgapj = min
k �=j

δjk/σj , δjk given in Lemma 7.1,

Δ〈j〉 := diag(δj1, δj1, δj2, δj2, . . . , δjn, δjn), δjj omitted,

fl :=

⎛⎝∑
i �=j

(‖gli‖σi/δji)
2

⎞⎠1/2

.(8.1)

In order to explain the new quantities introduced in this section we invoke the diagonal
form of each gik and Lemma 6.1 to obtain

‖G21‖ ≤ ‖γ(1)‖ :=

⎡⎣∑
i �=j

‖gij‖2

⎤⎦1/2

,

‖G12Φ〈j〉Σ̂〈j〉Δ
−1
〈j〉‖ ≤ fj ,

‖G22Φ〈j〉Σ̂〈j〉Δ
−1
〈j〉‖

2 ≤
∑
i �=j

f2
i .

The last matrix on the left may be permuted into a direct sum of two (n− 1) × (n− 1)
submatrices, and the right side

∑
i �=j f

2
i bounds the Frobenius norm of each submatrix.

Consider the sequence {Z(m)} defined by (7.6).
Theorem 8.1. Assume that εd is small enough that the G matrices from (5.3)

and (5.4) satisfy

‖G11‖/rgap ≤ 1

4
,(8.2)

∑
i �=j

f2
l ≤ 1

16
,(8.3)

fj(‖γ(1)‖/rgap) ≤ 1

32
;(8.4)

then, for all m ≥ 1,

‖Z(m)‖ ≤ 3‖γ(1)‖
rgap

,(8.5)

and, for k �= j,

‖Z(m)
kj ‖ ≤ σj

δjk
τkj ,(8.6)

τkj :=
‖gkj‖ + 3fk‖γ(1)‖

1 − (‖G11‖ + 3fj‖γ(1)‖)/rgapj

,(8.7)
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so that

‖Z(m)‖2 ≤
∑
k �=j

(
σjτkj
δjk

)2

.(8.8)

Proof. Recall (7.6):

SjkZ
(m+1)
kj = gkjΦjσj − Z

(m)
kj G11Φjσj +

∑
i �=j

gkiΦiσiZ
(m)
ij

−Z
(m)
kj G12Φ〈j〉Σ̂〈j〉Z

(m).

Premultiply by S−1
jk and take norms

‖Z(m+1)
kj ‖ ≤ δ−1

jk

[
‖gkj‖σj + ‖Z(m)

kj ‖‖G11‖σj +
∑
i �=j

‖gki‖σi‖Z(m)
ij ‖

+ ‖Z(m)
kj ‖‖G12Φ〈j〉Σ̂〈j〉Z

(m)‖
]
.(8.9)

Now define γi
(m), hiding its dependence on j, by

‖Z(m)
ij ‖ =

σj

δji
γi

(m), i �= j,(8.10)

γ(m) := (γ
(m)
1 , . . . , γ(m)

n )t, γ
(m)
i omitted.

Insert (8.10) into (8.9) to find

‖Z(m+1)
kj ‖ ≤ σj

δjk

⎡⎣‖gkj‖ +
σj

δjk
γk

(m)‖G11‖ +
∑
i �=j

‖gki‖σi
γi

(m)

δji

+
σj

δjk
γk

(m)
∑
i �=j

‖gji‖σi
γi

(m)

δji

⎤⎦ .(8.11)

Apply Cauchy–Schwarz to each sum in (8.11) to isolate the γi
(m). Divide (8.11)

through by σj/δjk to find an inequality for γk
(m+1) with the help of (8.1):

γk
(m+1) ≤ ‖gkj‖ +

‖G11‖
rgap

γk
(m) + fk‖γ(m)‖ +

fj
rgap

γk
(m)‖γ(m)‖.(8.12)

Square (8.12) and invoke (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) to obtain(
γk

(m+1)
)2

≤ 4

[
‖gkj‖2 +

(
‖G11‖
rgap

)2 (
γk

(m)
)2

+ f2
k‖γ(m)‖2

+

(
fj

rgap

)2 (
γk

(m)
)2

‖γ(m)‖2

]
.

Next sum over k �= j, to find

1

4

∥∥∥γ(m+1)
∥∥∥2 ≤ ‖γ(1)‖2 +

⎡⎣(‖G11‖
rgap

)2

+
∑
k �=j

f2
k

⎤⎦ ‖γ(m)‖2

+

(
fj

rgap

)2

‖γ(m)‖4.(8.13)
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Define the associated quadratic equation

1

4
ξ2 = ‖γ(1)‖2 +

⎡⎣(‖G11‖
rgap

)2

+
∑
k �=j

f2
k

⎤⎦ ξ2 +

(
fj

rgap

)2

ξ4(8.14)

= Q(ξ2).

From (8.1) we can see that the f ’s depend on complementary relative gaps δjk/σk,
not δjk/σj . The hypotheses (8.2)–(8.4) guarantee that the smaller solution ξ2

j of

ξ2 = 4Q(ξ2) is positive and satisfies

ξ2
j =

2‖γ(1)‖2

A +
√
A2 − (2‖γ(1)‖fj/rgap)2

,

where

A :=
1

4
−
(
‖G11‖
rgap

)2

−
∑
k �=j

f2
k

≥ 1

8
by (8.2) and (8.3).(8.15)

Hypothesis (8.4) was chosen so that

A2 − (2‖γ(1)‖fj/rgap)2 ≥
(

1

8

)2

−
(

2

32

)2

=
3

162
.

Thus

4‖γ(1)‖2 ≤ ξ2
j ≤ 32

2 +
√

3
‖γ(1)‖2,

and

2‖γ(1)‖ ≤ ξj ≤ 3‖γ(1)‖.(8.16)

Next we show, by induction, that ‖γ(m)‖ < ξj . By (8.16), ‖γ(1)‖ ≤ ξj . In general if
‖γ(m)‖ < ξj , then, by (8.13) and (8.14),

‖γ(m+1)‖2 ≤ 4Q(‖γ(m)‖2) < 4Q(ξ2
j ) = ξ2

j .(8.17)

The second inequality uses the fact that all of Q’s coefficients are positive. Thus (8.17)
holds for all m. Now (8.16) and (8.17) yield the bound (8.5). Since Z(m)’s columns
are orthogonal, (8.10) yields

‖Z(m)‖2 ≤
∑
k �=j

(
σj

δjk
γk

(m)

)2

≤
(
‖γ(m)‖
rgap

)2

≤
(

ξj
rgap

)2

≤
(

3‖γ(1)‖
rgap

)2

.

Next take the bounds (8.16) and (8.17) on ‖γ(m)‖ and insert them into (8.12) to

obtain the desired bound on ‖Z(m)
kj ‖, k �= j,

γk
(m+1) ≤ ‖gkj‖ +

‖G11‖
rgapj

γk
(m) + fk · 3‖γ(1)‖ +

fj
rgapj

γk
(m) · 3‖γ(1)‖.(8.18)
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The right-hand side of (8.18) is linear in γk
(m), and we consider the related equality

τ = Lk(τ) := ‖gkj‖ + 3fk‖γ(1)‖ + (‖G11‖ + ‖γ(1)‖)τ/rgapj .(8.19)

The single positive root τkj of (8.19) is positive and given in (8.7). Again proceed by
induction on m. All coefficients in Lk are positive. If γk

(m) ≤ τkj , then, by (8.18),

γk
(m+1) ≤ Lk(γk

(m)) ≤ Lk(τkj) = τkj .

Since γk
(1) = ‖gkj‖ ≤ τkj , we have, for all m ≥ 1 and k �= j,

γk
(m) ≤ τkj .(8.20)

Equations (8.7) and (8.20) establish (8.6).
Finally, by Lemma 6.1,

‖Z(m)‖2 ≤
∑
k �=j

‖Z(m)
kj ‖2 =

∑
k �=j

(
σjγk

(m)

δjk

)2

≤
∑
k �=j

(
σjτkj
δjk

)2

.

9. Existence of Z. The generalized Riccati equation (5.11) that defines Z is
equivalent to the (n − 1) equations (7.5), with k �= j, and they are quadratic in the
unknowns. The technique for proving existence of a solution is known, and we follow
Stewart [19]. The sequence {Zm} was defined in (7.6). R

(2n−2)×2 has finite dimension
and thus is compact. The conditions invoked in Theorem 8.1 to provide a bound ξj
on ‖Z(m)‖ are sufficient to show that {Zm} is a Cauchy sequence and hence converges
to a solution Z of (5.11). These conditions are far from necessary for the existence of
Z. Familiarity with section 8 is assumed, including definition of rgap and Δ〈j〉.

Theorem 9.1. Assume that εd is small enough that the G matrices defined in
(5.3) and (5.4) satisfy the same conditions as in Theorem 8.1. Then {Z(m)} converges,
as m −→ ∞, to a matrix Z that satisfies the generalized Riccati equation (5.11) as
well as the bounds on ‖Z(m)‖ given in Theorem 8.1.

Proof. By Theorem 8.1, ‖Z(m)‖ ≤ ξj = 3‖γ(1)‖/rgap. To prove that {Zm} is a
Cauchy sequence take (7.6) for both m and m− 1 and subtract to obtain

Sjk

(
Z

(m+1)
kj − Z

(m)
kj

)
= −
(
Z

(m)
kj − Z

(m−1)
kj

)
F11

+
∑
i �=j

gkiΦiσi

(
Z

(m)
ij − Z

(m−1)
ij

)
−Z

(m)
kj F12Z

(m) + Z
(m−1)
kj F12Z

(m−1).(9.1)

As in Theorem 8.1 we must analyze Z(m) at the block level Z
(m)
kj , k �= j, in order to

derive the dependence on relative gaps among the {σi} instead of absolute gaps. To

this end define β
(m)
i , i �= j, by

‖Z(m)
ij − Z

(m−1)
ij ‖ =

σj

δji
β

(m)
i , i �= j,(9.2)

β(m) = (β
(m)
1 , . . . , β(m)

n )t, β
(m)
j omitted.

Compare (9.2) with (8.10), namely,

‖Z(m)
ij ‖ =

σj

δji
γi

(m), i �= j.



HYPERBOLIC SINGULAR VALUE DECOMPOSITION 1047

Use Lemma 6.1 to sum the squares of (9.2) to obtain

‖Z(m) − Z(m−1)‖ ≤ ‖β(m)‖
rgap,

and it remains to show that ‖β(m)‖ −→ 0 as m −→ ∞.
We rewrite the two quadratic terms in (9.1):

Z
(m)
kj F12Z

(m) − Z
(m−1)
kj F12Z

(m−1) =
(
Z

(m)
kj − Z

(m−1)
kj

)
F12Z

(m)

+Z
(m−1)
kj F12

(
Z(m) − Z(m−1)

)
.(9.3)

Next we substitute (9.3) into (9.1) and take norms and invoke (9.2). Recall that each
F has the form GΦΣ so that

‖Z(m+1)
kj − Z

(m)
kj ‖ ≤ σj

δjk

[
‖Z(m)

kj − Z
(m−1)
kj ‖ ‖G11‖

+
∑
i �=j

‖gki‖σi
β

(m)
i

δji

+ ‖Z(m)
kj − Z

(m−1)
kj ‖

∑
i �=j

‖gji‖σi
γ

(m)
i

δji

+ ‖Z(m−1)
kj ‖

∑
i �=j

‖gji‖σi
β

(m)
i

δji

]
.(9.4)

We can simplify (9.4) by using fl from (8.1) and removing the factor σj/δjk to find,
after using Cauchy–Schwarz on the sums,

β
(m+1)
k ≤ σj

δjk
‖G11‖β(m)

k + fk‖β(m)‖ +
σj

δjk
β

(m)
k fj‖γ(m)‖

+
σj

δjk
γ

(m−1)
k fj‖β(m)‖.(9.5)

Next, square (9.5) and sum over k �= j:

1

4
‖β(m+1)‖2 ≤

(
‖G11‖
rgap

)2

‖β(m)‖2 +

⎛⎝∑
k �=j

f2
k

⎞⎠ ‖β(m)‖2

+

(
fj‖γ(m)‖

rgap

)2

‖β(m)‖2 +

(
fj‖β(m)‖

rgap

)2

‖γ(m−1)‖2.(9.6)

So, recall ‖γ(m)‖ ≤ 3‖γ(1)‖ from (8.16) and (8.17) and invoke (8.3):

‖β(m+1)‖ ≤ 2

[(
‖G11‖
rgap

)2

+
∑
k �=j

f2
k

+ 2

(
3‖γ(1)‖fj

rgap

)2
]1/2

‖β(m)‖.(9.7)
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Invoke the hypotheses of Theorem 8.1 to find

‖β(m+1)‖ ≤ 2

[
1

16
+

1

16
+ 2

(
3

32

)2
]
‖β(m)‖

<
4

5
‖β(m)‖.

Thus ‖β(m)‖ −→ 0 as m −→ ∞ and hence {Z(m)} is bounded, by Theorem 8.1, and
Cauchy and so converges, in R

2(n−1)×2, to a matrix Z that satisfies (5.11) and the
bounds on ‖Z(m)‖ established in Theorem 8.1.

10. The combined bounds. Recall from section 5 that Z is the solution of the
generalized Riccati equation (5.11) and determines the similarity N that diagonalizes
the perturbed double matrix C +F in (5.3). All that remains is to insert the bounds
on ‖Z‖ from section 8 into the earlier results of section 6. We take the opportunity
to recapitulate earlier definitions so that this section is somewhat independent of the
preceding analysis.

An n × n invertible matrix K has Ω-SVD K = UΣV t, and our interest is the
Ω-SVD of a scaled matrix DlKDr.

For the scaling matrices Dl and Dr, the perturbation parameter (see (3.2)) is
εd, d for diagonal scaling. The bounds in Theorem 10.1 contain no explicit factors of
n, but when they are applied to a bidiagonal matrix, then εd = (1 + ε)2n−1 − 1, with
ε the roundoff unit (see (3.2)),

ε̄d = εd(2 + εd) (bounds ‖D2
l − I‖ etc. from Lemma 6.3),

rgap = rgapj := min
k �=j

δjk
σj

,

δjk =

⎧⎨⎩ |σj − σk| if ωk = ωj ,

σ2
j+σ

2
k

σj+σk
if ωk �= ωj .

⎫⎬⎭ from (7.4).

Note that

|σj − σk| <
σ2
j + σ2

k

σj + σk
< σj + σk.

Next we introduce new quantities needed to express our bounds. The conditions
in Theorems 8.1 and 9.1 (they are the same) are constraints on the G matrices of
Lemma 5.1. The 2 × 2 blocks of these matrices were bounded in (5.6), which we
repeat here, and then use immediately. With ‖Dl − I‖ ≤ εd and ‖Dr − I‖ ≤ εd,

‖gik‖ ≤ ε̄d max{1, ‖vi‖ ‖vk‖} = ε̄d‖vi‖ ‖vk‖,(10.1)

since

‖vi‖ ≥ 1, i = 1, . . . , n.

Recall that the subscript 〈j〉 denotes that the jth item is omitted. In section 8 we
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introduced fk, k = 1, . . . , n, which we now bound:

fk =

⎛⎝∑
i �=j

(‖gki‖σi/δji)
2

⎞⎠1/2

≤ ε̄d‖vk‖‖m〈j〉‖,(10.2)

with

m〈j〉 := (m〈j〉(1), . . . ,m〈j〉(n))t, m〈j〉(j) omitted,

m〈j〉(i) := ‖vi‖σi/δji.

Now we can bound the left-hand sides in conditions (8.2)–(8.4) of Theorem 8.1.
Condition (8.2):

‖G11‖ = ‖gjj‖ ≤ ε̄d‖vj‖2.(10.3)

Condition (8.3): ⎛⎝∑
i �=j

f2
i

⎞⎠1/2

≤ ε̄d‖m〈j〉‖ ‖V〈j〉‖F .(10.4)

Condition (8.4):

fj‖γ(1)‖ ≤ (ε̄d‖vj‖ ‖m〈j〉‖)(ε̄d‖vj‖ ‖V〈j〉‖F )

= (ε̄d‖vj‖)2‖m〈j〉‖ ‖V〈j〉‖F ,(10.5)

since

‖G21‖ ≤ ‖γ(1)‖ :=

⎡⎣∑
i �=j

‖gij‖2

⎤⎦1/2

.

The dominant term in Z is Z(1), and

‖Z(1)‖ =

⎛⎝∑
k �=j

(‖gkj‖σj/δjk)
2

⎞⎠1/2

≤ ε̄d‖mj‖ ‖vj‖,(10.6)

with

mj = (mj(1), . . . ,mj(n))t, mj(j) omitted,(10.7)

mj(i) = ‖vi‖σj/δji.

Note the important difference between mj and m〈j〉 in (10.2) and (10.7). It is easy
to see that ‖mj‖ ≤ ‖V〈j〉‖F /rgapj , but the example in section 11 has ‖mj‖ �
‖V〈j〉‖F /rgapj , and this discrepancy led us to the detailed analysis that yielded (10.6).
The term ‖mj‖ is the reward for the detailed analysis begun in section 7. The
important bounds in Theorem 10.1 are (10.14) and (10.15).
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One more definition simplifies the statement of Theorem 10.1, a messy quantity
close to 1:

Γj :=
1 + 3ε̄d‖m〈j〉‖ ‖V〈j〉‖F

1 − ε̄d‖vj‖2(1 + 3ε̄d‖m〈j〉‖ ‖V〈j〉‖F )/rgapj

.(10.8)

Theorem 10.1. Consider a signature matrix Ω = diag(ω1, . . . , ωn), ωi = ±1
and an n× n invertible matrix K with Ω-SVD

K = UΣV t, U t = U−1, V tΩV = Ω,

U = [u1, . . . ,un], V = [v1, . . . ,vn],

Σ = diag(σ1, . . . , σn), σi > 0,

and with all {ωiσ
2
i } distinct from each other. Let Dl and Dr be diagonal scaling

matrices satisfying

‖D2
l − I‖ ≤ ε̄d, ‖D2

r − I‖ ≤ ε̄d, ‖D−2
l − I‖ ≤ ε̄d, ‖D−2

r − I‖ ≤ ε̄d.

If the perturbation parameter ε̄d is small enough that the following conditions invoking
(10.3)–(10.5),

8ε̄d‖vj‖2 ≤ rgapj ,(10.9)

4ε̄d‖m〈j〉‖ ‖V〈j〉‖F ≤ 1,(10.10)

hold, then

‖Z‖ ≤ ε̄d‖vj‖ ‖mj‖Γj ≤ 2ε̄d‖vj‖ ‖mj‖,(10.11)

and there is an Ω singular triple (σ̃j , ũj ,Ωṽj) of DlKDr that satisfies

|σ̃2
j − σ2

j |
σ2
j

≤ ε̄d(‖vj‖2 + 1) + β2

1 − ε̄d(‖vj‖2 + 1) − β2
,(10.12)

β2 ≤ 2(ε̄d‖vj‖)2
[
(‖V〈j〉‖F + 2‖mj‖)2 + 4‖mj‖ ‖m〈j〉‖

]
(10.13)

so that

|σ̃2
j − σ2

j |
σ2
j

≤ ε̄d(‖vj‖2 + 1) + O
(
(ε̄d‖vj‖ ‖V〈j〉‖F )2

)
,(10.14)

| sin ∠(ũj ,uj)| ≤
‖Z‖ + εd
(1 − εd)2

≤
ε̄d(2‖vj‖‖mj‖ + 1

2 )

1 − ε̄d
.(10.15)

If, in addition,

β̄j :=

(
‖vj‖ −

√
‖vj‖4 − 1‖V〈j〉‖ ‖Z‖

)−1

> 0,(10.16)
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then

| sin ∠(Ωṽj ,Ωvj)| ≤
(κj + εd)(1 + εdβ̄j)

1 − εd
,

κj := ‖V〈j〉‖ ‖Z‖β̄j .(10.17)

If ε̄d is small enough that β̄j ≤ 2/‖vj‖, then

| sin ∠(Ωṽj ,Ωvj)| ≤
ε̄d(4‖V〈j〉‖ ‖mj‖ + 1

2 )

(1 − ε̄d)3/2
.(10.18)

Proof. Conditions (10.9) and (10.10) and their product guarantee conditions
(8.2)–(8.4) in Theorem 8.1, which in turn guarantee the existence of Z = limm→∞ Z(m)

by Theorem 9.1, and hence the validity of the bounds in Theorems 8.1 on ‖Z‖ and
‖Zkj‖.

First we derive a bound on ‖Z‖. From Theorems 8.1 and 9.1,

‖Z‖2 ≤
∑
k �=j

(
σjτkj
δjk

)2

,(10.19)

τkj =
‖gkj‖ + 3fk‖γ(1)‖

1 − (‖G11‖ + 3fj‖γ(1)‖)/rgapj

.(10.20)

Use (10.3)–(10.5) in (10.20) to obtain

τkj ≤
ε̄d‖vj‖ ‖vk‖(1 + 3ε̄d‖m〈j〉‖ ‖V〈j〉‖F )

1 − ε̄d‖vj‖2(1 + 3ε̄d‖m〈j〉‖ ‖V〈j〉‖F )/rgapj

= ε̄d‖vj‖ ‖vk‖Γj ,(10.21)

with Γj defined in (10.8).
Insert (10.21) into (10.19) to find

‖Z‖ ≤ ε̄d‖vj‖ ‖mj‖Γj ,

which is (10.11).
Conditions (10.9) and (10.10) imply that Γj , generally close to 1, is bounded by

2. From (10.8),

Γj ≤
1 + 3(1/4)

1 − (1/8)(3/4)
=

56

29
< 2.

This completes (10.11).
Next we bound the change in angles. Lemma 6.4 in section 6 gives

| sin ∠(ũj ,uj)| ≤
‖Z‖ + εd
(1 − εd)2

≤ 2ε̄d‖vj‖ ‖mj‖ + εd
(1 − εd)2

≤
ε̄d(2‖vj‖ ‖mj‖ + 1

2 )

1 − ε̄d
,
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which is (10.15).
Lemma 6.5 in section 6 gives

| sin ∠(Ωṽj ,Ωvj)| ≤ [κj + εd(1 + κj)](1 + εdβ̄j),

κj := ‖V〈j〉‖ ‖zv‖β̄j ,

with

β̄j :=
(
‖vj‖ −

√
‖vj‖2 − 1‖V〈j〉‖ ‖zv‖

)−1

.

Use ‖zv‖ ≤ ‖Z‖ and observe that [κj +εd(1+κj)] ≤ (κj +εd)/(1−εd) to get (10.17).
Finally if β̄j ≤ 2/‖vj‖, then we have

κj ≤ ‖V〈j〉‖2ε̄d‖vj‖ ‖mj‖(2/‖vj‖).

Use

1 + εdβ̄j ≤ 1 +
2εd
‖vj‖

≤ 1 + ε̄d ≤ (1 − ε̄d)
−1(10.22)

to establish (10.18).
Now consider σ̃j and Lemma 6.3. It is only necessary to bound β2:

β2 = (ε̄dΥj + ‖Z‖F )2 + 2|κ〈j〉|,(10.23)

|κ〈j〉| = σ−1
j

∣∣∣∣∣∣
∑
i �=j

ωiσidet[Zij ]

∣∣∣∣∣∣ , from Lemma 6.1,

≤ σ−1
j

∑
i �=j

σi‖Zij‖2

≤ σ−1
j

∑
i �=j

σi

(
2ε̄d‖vj‖ ‖vi‖

σj

δji

)2

, by (10.21),

≤ (2ε̄d‖vj‖)2
∑
i �=j

(
‖vi‖σi

δji

)(
‖vi‖σj

δji

)
≤ (2ε̄d‖vj‖)2 ‖mj‖ ‖m〈j〉‖, by Cauchy–Schwarz,(10.24)

Υ2
j := (n− 1) + ‖vj‖2 ‖V〈j〉‖2

F ≤ 2(‖vj‖ ‖V〈j〉‖F )2,(10.25)

‖Z‖2
F = ‖zu‖2 + ‖zv‖2 ≤ 2 max{‖zu‖2, ‖zv‖2} = 2‖Z‖2.(10.26)

Hence, inserting (10.11), (10.24), (10.25), and (10.26) into (10.23),

β2 ≤ 2(ε̄d‖vj‖)2
[
(‖V〈j〉‖F + 2‖mj‖)2 + 4‖mj‖ ‖m〈j〉‖

]
,

which gives (10.13) and, by Lemma 6.1, (10.14).
Note that ‖m〈j〉‖ and ‖mj‖ involve all the ‖vi‖. When ‖vj‖ is close to 1, but

‖V〈j〉‖F is huge, there is a natural concern that ‖mj‖ might also be large, thus
degrading the bound on | sin ∠(ũj ,uj)|. However, the relative gaps δjk/σj can also
be huge (take σj = 10−8, σk = 1) and can neutralize large values of ‖vk‖.
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The quantity ‖m〈j〉‖ ‖V〈j〉‖F occurs in the second order (O(ε̄2
d)) terms. Now

‖m〈j〉‖ ≤ ‖V〈j〉‖F /mink(δjk/σk), and consequently the stability of the Ω singular
triple (σj ,uj ,Ωvj) depends on ‖V ‖F and the relative separations among the {σi}.
Finally, recall from Lemma 2.1 that ‖V〈j〉‖F < ‖V ‖F ≤

√
condF (K). Nevertheless for

Ω = I, V is orthogonal whatever the value of condF (K), and, in general, the coupling
between them is weak.

When Ω = I, then all ‖vi‖ = 1 and

‖mj‖ =

⎡⎣∑
k �=j

(
σj

δjk

)2
⎤⎦1/2

, ‖m〈j〉‖ =

⎡⎣∑
k �=j

(
σk

δjk

)2
⎤⎦1/2

.

The conclusions, to the first order, are

|σ̃2
j − σ2

j |
σ2
j

≤ 4ε̄d,

| sin ∠(ũj ,uj)| ≤
(

2‖mj‖ +
1

2

)
ε̄d,

| sin ∠(ṽj ,vj)| ≤
(

4‖mj‖ +
1

2

)
ε̄d, since ‖V〈j〉‖ = 1.

These results are worse than the Demmel–Kahan results in [3] by a factor of about
4.

The bounds in Theorem 10.1 are quite realistic and suggest the following defi-
nitions for condition numbers relating to the effect of small relative changes in L’s
entries on an eigenpair (λj ,uj) of LΩLt:

relcond(λj) := ‖vj‖2 + 1,(10.27)

relcond(uj) := 2‖vj‖ ‖mj‖ +
1

2
,(10.28)

with ‖mj‖ given in (10.7).

We emphasize that only the eigenvalues with the same sign as λj bring true
relative gaps to ‖mj‖. When ωi �= ωj , then

σi

δji
+

σj

δji
≤ 2,

and the ith entries of mj and m〈j〉 sum to 2‖vi‖.

11. An example. In another article [14] we presented, in detail, a 4 × 4 sym-
metric matrix T = T (η) that depends on a small parameter η. T is indefinite but
permits triangular factorization T = LΩLt with huge element growth, like 1/η, in
the multipliers. This ill-conditioned L has Ω-SVD L = UΣV t, with ‖V ‖2

F = 1/η.
The two small σ’s are close, 1.15η and 1.65η, while the other σ’s are almost 1 but
have differing ω values. The large singular values are extremely sensitive (condition
number 1/η), but the two small σ’s are robust and the associated singular vectors are
also robust, their ‖m‖ values showing the neutralizing of each large ‖v‖ by an equally
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large relative gap:

T = T (η) :=

⎡⎢⎢⎢⎢⎢⎣
η 1√

2
0 0

1√
2

−2η 1√
2

0

0 1√
2

3η η

0 0 η 2η

⎤⎥⎥⎥⎥⎥⎦ ,

T = LΩLt = U(Σ2Ω)U t,

Ω = diag(1,−1, 1, 1), L = UΣV t.

We present only the leading terms in the quantities shown below. The eigenvalues
ωσ2 are not presented in monotonic order because of the constraint that V tΩV = Ω:

Λ = Σ2Ω = diag

(
4 −

√
2

2
η,−1,

4 +
√

2

2
η,+1

)
,

Σ = diag(
√
η μ−, 1,

√
η μ+, 1), μ2

− :=
4 −

√
2

2
, μ2

+ :=
4 +

√
2

2
,

V =

⎡⎢⎢⎢⎢⎢⎣
1 − 1

2 1 1
2

1 − 1+2η
2 1 1−2η

2

−1 η
(
1 − 9

4η
)

−1 η
(
1 + 9

4η
)

√
14

4−
√

2
−

√
7

4 η2 −
√

14
4+

√
2

√
7

4 η2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1
2μ− 0 0

0 1√
η 0 0

0 0 1
2μ+ 0

0 0 0 1√
η .

⎤⎥⎥⎥⎥⎥⎦ ,

‖vi‖2 = 2 −
√

2
4 , 1

2η , 2 +
√

2
4 , 1

2η .

For σ1 =
√
η μ− = 1.14

√
η,

rgap1 =
μ+ − μ−

μ−
=

4

9
,

‖V<1>‖F =
1
√
η

[
1 + η

(
2 +

√
2

4

)]1/2
,

Δ<1> =

(
•,

1 +
√
ημ−

(1 + ημ2
−)1/2

,
√
η(μ+ − μ−), 1 −√

ημ−

)
.

The second entry in Δ<1> is a quotient, not a difference, because ω1 �= ω2, but
the denominator is 1 + O(η) and contributes only higher order effects. Observe the
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neutralizing effect in ‖m1‖ below:

‖m1‖ =

⎡⎣∑
i �=1

‖vi‖2 (σ1/δ1i)
2

⎤⎦1/2

=

[
1

2η

( √
ημ−

1 +
√
ημ−

)2

+

(
2 +

√
2

4

)( √
ημ−√

η(μ+ − μ−)

)2

+
1

2η

( √
ημ−

1 −√
ημ−

)2
]1/2

=

[
1

2
μ2
− +

(
2 +

√
2

4

)(
μ−

μ+ − μ−

)2

+
1

2
μ2
−

]1/2

= (μ−)
[
1 + (8 +

√
2)
]1/2

≈ 17

4
.

On the other hand,

‖m<1>‖ =

⎡⎣∑
i �=1

‖vi‖2 (σi/δ1i)
2

⎤⎦1/2

=
1
√
η

[
1 + η

(
2 +

√
2

4

)(
μ+

μ+ − μ−

)2
]1/2

.

Observe that ‖m1‖ ≤ ‖V<1>‖F /rgap1 ≈ 9/(4
√
η) is true but excessively pessimistic.

The conditions of Theorem 10.1 for (σ1,u1,Ωv1) are

8ε̄d(1.65) ≤ rgap1 =
4

9
,

4ε̄dη
−1/2η−1/2 ≤ 1,

and the conclusions are

|σ̃2
1 − σ2

1|
σ2

1

≤ (‖v1‖2 + 1)ε̄d = 2.65ε̄d,

| sin ∠(ũ1,u1)| ≤ (2‖m1‖‖v1‖ + 1/2)ε̄d = 11.5ε̄d,

| sin ∠(Ωṽ1,Ωv1)| ≤ (4‖m1‖‖V<1>‖ + 1/2)εd = 17(ε̄d/
√
η).

For σ2 = 1, with ω2 = −1,

rgap2 =
σ2 + σ4

σ2
2 + σ2

4

= 1,

‖V<2>‖F =
1√
2η

,

Δ<2> =

(
1 +

√
ημ−

1 + ημ2
−

, •,
1 +

√
ημ+

1 + ημ2
+

,
1 + 1

1 + 1

)
,
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‖m2‖ =

[(
2 −

√
2

4

)(
1

1 +
√
ημ−

)2

+

(
2 +

√
2

4

)(
1

1 +
√
ημ+

)2

+
1

2η
(1)2

]1/2

≈ 1√
2η

(1 + 8η)
1/2

,

‖m<2>‖ =

[(
2 −

√
2

4

)( √
ημ−

1 +
√
ημ−

)2

+

(
2 +

√
2

4

)( √
ημ+

1 +
√
ημ+

)2

+
1

2η
(1)2

]1/2

≈ 1√
2η

[
1 + O(η2)

]1/2
.

The conditions of Theorem 10.1 for (σ2,u2,Ωv2) are

8ε̄d

(
1

2η

)
≤ rgap2 = 1,

4ε̄d

(
1

2η

)
≤ 1,

and the conclusions are

|σ̃2
2 − σ2

2|
σ2

2

≤ (1/(2η) + 1)ε̄d,

| sin ∠(ũ2,u2)| ≤ (1/η + 1/2)ε̄d,

| sin ∠(Ωṽ2,Ωv2)| ≤ (2/η + 1/2)ε̄d.

The results for σ3 (respectively, σ4) are similar to those for σ1 (respectively, σ2).
Thus if η =

√
ε, then σ2 and σ4 and their vectors are only defined to half working

precision.
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[16] I. Slapničar and N. Truhar, Relative perturbation theory for hyperbolic eigenvalue problem,
Linear Algebra Appl., 309 (2000), pp. 57–72.
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Abstract. We present a numerical method for computing the SVD-like decomposition B =
QDS−1, where Q is orthogonal, S is symplectic, and D is a permuted diagonal matrix. The method
can be applied directly to compute the canonical form of the Hamiltonian matrices of the form
JBTB, where J = [ 0

−I
I
0
]. It can also be applied to solve the related application problems such as

the gyroscopic systems and linear Hamiltonian systems. Error analysis and numerical examples show
that the eigenvalues of JBTB computed by this method are more accurate than those computed by
the methods working on the explicit product JBTB or BJBT .

Key words. skew-symmetric matrix, Hamiltonian matrix, symplectic matrix, orthogonal sym-
plectic matrix, eigenvalue problem, SVD, SVD-like decomposition, Schur form, Jordan canonical
form, QR algorithm, Jacobi algorithm

AMS subject classification. 65F15

DOI. 10.1137/S0895479802410529

1. Introduction. It is shown in [18] that every real matrix B ∈ R
n×2m has an

SVD-like decomposition

QTBS =

⎛⎜⎜⎝
p q m− p− q p q m− p− q

p Σ 0 0 0 0 0
q 0 I 0 0 0 0
p 0 0 0 Σ 0 0
n− 2p− q 0 0 0 0 0 0

⎞⎟⎟⎠,(1.1)

where matrix Q is real orthogonal, S is real symplectic, and Σ is positive diagonal.

Definition 1.1. Let J = [ 0
−Im

Im
0 ].

1. A matrix S ∈ R
2m×2m is called symplectic if SJST = J .

2. A matrix U ∈ R
2m×2m is called orthogonal symplectic if UTU = I and

UJUT = J .

3. A matrix A ∈ R
2m×2m is called Hamiltonian if JA = (JA)T .

The SVD-like decomposition (1.1) is closely related to the canonical forms of the
real skew-symmetric matrix BJBT and the real Hamiltonian matrix JBTB. By (1.1)
and the symplectic property of S, we have the Schur-like form for BJBT ,

BJBT = Q

⎡⎢⎢⎣
0 0 Σ2 0
0 0 0 0

− Σ2 0 0 0
0 0 0 0

⎤⎥⎥⎦QT ,(1.2)
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and the structured canonical form for JBTB,

JBTB = S

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 Σ2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− Σ2 0 0 0 0 0
0 −I 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦S−1 =: SΓS−1.(1.3)

(Note that the condensed matrix Γ is still Hamiltonian.) In fact, let Σ = diag(σ1, . . . , σp).
With appropriate permutations, (1.2) can be transformed to the real Schur form of
BJBT ,

diag

([
0 σ2

1

−σ2
1 0

]
, . . . ,

[
0 σ2

p

−σ2
p 0

]
, 0, . . . , 0︸ ︷︷ ︸

n−2p

)
,

and (1.3) can be transformed to the real Jordan canonical form of JBTB,

diag

⎛⎜⎜⎜⎝
[

0 σ2
1

−σ2
1 0

]
, . . . ,

[
0 σ2

p

−σ2
p 0

]
,

[
0 0
−1 0

]
, . . .

[
0 0
−1 0

]
︸ ︷︷ ︸

q

, 0, . . . , 0︸ ︷︷ ︸
2(m−p−q)

⎞⎟⎟⎟⎠ .

In this paper we will develop a numerical method to compute the SVD-like de-
composition (1.1). Our main goal is to use it to compute the structured canonical
form (1.3) of the Hamiltonian matrices JBTB.

The eigenvalue problem of such Hamiltonian matrices has a variety of applications.
One example is the linear Hamiltonian system [19]

ẋ(t) = JAx(t), x(0) = x0,

where A ∈ R
2m×2m is real symmetric positive definite. The solution of such a Hamil-

tonian system satisfies

xT (t)Ax(t) = xT
0 Ax0 ∀t ≥ 0.(1.4)

This shows one fundamental principle of the Hamiltonian system, the conservation
law. The solution x(t) can be computed by using the structured canonical form
of the Hamiltonian matrix JA. Since A is positive definite, one can compute the
factorization A = BTB, say, the Cholesky factorization. After having computed the
SVD-like decomposition of B, one has

JA = S

[
0 Σ2

−Σ2 0

]
S−1 =: SΓS−1.

(Note that Γ is slightly different from that in (1.3), because here A is nonsingular.)
The solution can be computed by the following formula:

x(t) = SeΓtS−1x0.

It is easily verified that for any t, eΓt is symplectic. If S is exactly symplectic, then
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one can verify that

xT (t)Ax(t) = xT (t)J−1(JA)x(t) = (SeΓtS−1x0)
TJ−1(SΓS−1)SeΓtS−1x0 = xT

0 Ax0.

Numerically, for the solution x(t) to obey the conservation law (1.4), one needs to
compute the eigenvalues of JA and the symplectic matrix S accurately.

Another example involves the gyroscopic system [8, 13, 17]

q̈ + Cq̇ + Gq = 0, q(0) = q0, q̇(0) = q1.

where G ∈ R
m×m is symmetric and C ∈ R

m×m is skew-symmetric. This system is
related to the eigenvalue problem of the matrix

F =

[
−C −G
I 0

]
=

[
−C −I
I 0

] [
I 0
0 G

]
.

When G is positive semidefinite it has a full rank factorization G = LLT . By using
the equality

[
−C −I
I 0

]
=

⎡⎣ −1

2
C I

I 0

⎤⎦J

⎡⎣ 1

2
C I

I 0

⎤⎦ ,

F is similar to the Hamiltonian matrix

J

⎡⎣ 1

2
C I

I 0

⎤⎦[
I 0
0 LLT

]⎡⎣ −1

2
C I

I 0

⎤⎦ = J

⎡⎣ −1

2
C I

LT 0

⎤⎦T ⎡⎣ −1

2
C I

LT 0

⎤⎦ .

Then the eigenvalue problem of F can be solved by computing the SVD-like decom-

position of [
− 1

2C

LT

I
0 ].

The eigenvalues of JBTB can be computed in many ways. For example, one
can use the structure preserving method [2, 3]. Since the eigenvalues of JBTB and
BJBT are the same, a more efficient and reliable way is to use the QR method or
the Jacobi method (e.g., [15, 11]) to compute the eigenvalues of the skew-symmetric
matrix BJBT . A common problem of these methods is that they cannot compute
the symplectic matrix S simultaneously. Another problem is that the methods work
on the explicit matrix product JBTB or BJBT . The method that will be developed
in this paper computes the SVD-like decomposition of B. So it computes both the
eigenvalues of JBTB and the matrix S simultaneously. Moreover, since it works only
on the factor B, the eigenvalues of JBTB can be computed more accurately. This
trick is not new; see, e.g., [9, 14]. It has been also used to develop other singular value
and eigenvalue methods [5, 12, 1, 10].

The basic idea of the method is introduced in section 2, and the reduction and
iteration processes are described in section 3. In these two sections we focus on a
matrix B with BJBT nonsingular. A detail reduction process for a general matrix B
is presented in section 4. The first order error bound for the computed eigenvalues is
provided in section 5. Numerical examples are given in section 6. The conclusion is
given in section 7.

In this paper ‖ · ‖ denotes the spectral norm.
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2. The basic idea. We use the following procedure to compute an SVD-like
decomposition. First compute a condensed form of B by using only orthogonal trans-
formations. Then use the condensed form to construct the SVD-like decomposition.
The method for computing the condensed form is actually the implicit version of the
QR-like method for the real skew-symmetric matrix BJBT . In order to describe the
method in a simple way, in this and the next sections for a matrix B under consid-
eration we assume that BJBT is nonsingular. With this assumption B is necessarily
of full row rank and has an even number of rows. A detailed process for a general
matrix B will be presented in section 4.

For a nonsingular skew-symmetric matrix K ∈ R
2p×2p one can apply the QR-like

algorithm to compute its Schur form. The algorithm consists of two steps. First apply
a reduction procedure (see section 3) to K to obtain a bidiagonal-like form

QT
1 KQ1 =

[
0 T

−TT 0

]
,(2.1)

where Q1 is real orthogonal and T ∈ R
p×p is upper bidiagonal. Then apply the

QR-like SVD iteration to T to compute the SVD

T = Z1ΔZT
2 ,

where Z1, Z2 are real orthogonal and Δ is positive diagonal. Let Q = Q1[
Z1

0
0
Z2

].
Then we have the Schur-like form

QTKQ =

[
0 Δ

−Δ 0

]
.

When K = BJBT , we will develop an implicit version of the method by operating
only on the factor B. Since (QTBU)J(QTBU)T = QT (BJBT )Q for any orthogonal
symplectic matrix U , we intend to determine an orthogonal matrix Q and an orthog-
onal symplectic matrix U such that R = QTBU is block upper triangular and the
product RJRT has the Schur-like form. Similarly we need two steps to compute such
a decomposition. We first determine an orthogonal matrix Q1 and an orthogonal
symplectic matrix U1 such that

QT
1 BU1 =

[
B1 B2

0 B3

]
,

where B1, B2, B3 ∈ R
p×m, and

QT
1 BJBTQ1 =

[
B1B

T
2 −B2B

T
1 B1B

T
3

−B3B
T
1 0

]
=

[
0 B1B

T
3

−B3B
T
1 0

]
(2.2)

has the bidiagonal-like form (2.1). (This implies that B1B
T
2 = B2B

T
1 and B1B

T
3 is

upper bidiagonal.) We then apply an implicit version of the QR-like SVD iteration
to B1B

T
3 , to obtain

R1 = ZT
1 B1W, R3 = ZT

2 B3W,(2.3)

where Z1, Z2,W are orthogonal and R1R
T
3 = Δ is positive diagonal. Let Q =

Q1[
Z1

0
0
Z2

] and U = U1[
W
0

0
W ] (which is orthogonal symplectic). Then

R = QTBU =

[
R1 R2

0 R3

]
, R2 = ZT

1 B2W.
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By (2.2) and (2.3), we have QT (BJBT )Q = RJRT = [ 0
−Δ

Δ
0 ].

The most condensed form that we can compute for B is

R = QTBU =

[
R11 R12 R13 R14

0 0 R23 0

]
=:

[
R1 R2

0 R3

]
,(2.4)

where R11, R23 ∈ R
p×p, R11 is upper triangular, R23 is lower triangular, and R11R

T
23 =:

Δ is positive diagonal. The detailed procedure will be presented in the next section.
Let Δ = diag(δ1, . . . , δp). After having obtained such a decomposition the eigenvalues

of BJBT and JBTB are simply ±iδ1, . . . ,±iδp. Define Σ =
√

Δ. The symplectic
matrix S in the SVD-like decomposition can be computed by the formula

U

⎡⎢⎢⎣
RT

23Σ
−1 −(RT

23Σ
−1)(RT

12Σ
−1)T −RT

13Σ
−1 −(RT

23Σ
−1)(RT

14Σ
−1)T

0 I −RT
14Σ

−1 0

0 0 RT
11Σ

−1 0
0 0 RT

12Σ
−1 I

⎤⎥⎥⎦ ,(2.5)

and the SVD-like decomposition of B is

QTBS =

( p m− p p m− p

p Σ 0 0 0
p 0 0 Σ 0

)
.(2.6)

Note this is the decomposition only in the case that BJBT is nonsingular.
The method is summarized by the following algorithm.
Algorithm. Given a real matrix B ∈ R

2p×2m with BJBT nonsingular, the algo-
rithm computes the eigenvalues of JBTB and BJBT or the SVD-like decomposition
(2.6).
Step 1. Determine the orthogonal matrix Q1 and the orthogonal symplectic matrix

U1 such that

QT
1 BU1 =

[
B11 B12 B13 B14

0 0 B23 0

]
=:

[
B1 B2

0 B3

]
,(2.7)

where B11, B23 ∈ R
p×p, B11 is upper triangular, B23 is lower triangular,

B11B
T
23 is upper bidiagonal, and B1B

T
2 = B2B

T
1 .

Step 2. Determine the orthogonal matrices Z1, Z2,W such that

R11 = ZT
1 B11W, R23 = ZT

2 B23W,(2.8)

where R11 is upper triangular, R23 is lower triangular, and

R11R
T
23 = diag(δ1, . . . , δp) =: Δ

is positive diagonal.
Step 3. If only the eigenvalues of JBTB or BJBT are required, compute the nonzero

eigenvalues ±iδ1, . . . ,±iδp and stop. If the decomposition (2.6) is required,
go to Step 4.

Step 4.
(a) Update Q = Q1[

Z1

0
0
Z2

], U = U1 diag(W, I,W, I), and

R =

[
R11 R12 R13 R14

0 0 R23 0

]
,

where R12 = ZT
1 B12, R13 = ZT

1 B13W , and R14 = ZT
1 B14.

(b) Compute Σ =
√

Δ.
(c) Use the formula (2.5) to compute S.
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3. Reduction and iteration. We need the following elementary matrices in
our algorithm.

1. Set of Householder matrices:

H(I) = {H = In − 2uuT /uTu | u ∈ R
n, uj = 0, ∀j �∈ I},

where I is a subset of {1, . . . , n} giving the range of the columns and rows that H
operates on.

2. Set of Givens matrices:

G(i, j) = {G | G = In − (1 − α)(eie
T
i + eje

T
j ) + β(eie

T
j − eje

T
i ), α2 + β2 = 1}.

3. Set of symplectic Householder matrices:

Hs(I) =

{
Hs | Hs :=

[
H 0
0 H

]
, H ∈ H(I)

}
.

4. Sets of symplectic Givens matrices:
(a) Gs

1(k) = {Gs | Gs ∈ G(k, n + k) ⊂ R
2n×2n}.

(b) Gs
2(i, j) = {Gs = [G0

0
G ] | G ∈ G(i, j)}.

(c) Gs
3(i, j) =

{
Gs

∣∣∣∣Gs = I2n − (1 − α)(eie
T
i + eje

T
j + en+ie

T
n+i + en+je

T
n+j)

+β(eie
T
n+j + eje

T
n+i − en+je

T
i − en+ie

T
j ), α2 + β2 = 1

}
,

where 1 ≤ i < j ≤ n.
5. Sets of symplectic permutations:

(a) Ps
1 = {[P0

0
P ] | P is a permutation}.

(b) Ps
2(k) = {Ps | Ps = I2n − (eke

T
k + en+ke

T
n+k) + (eke

T
n+k − en+ke

T
k )}.

In the algorithm Steps 3 and 4 are simple. So we consider only the implementations
for Step 1 and 2.

3.1. Implicit bidiagonal-like reduction. We use the following displays with
a 6 × 8 matrix B to illustrate the reduction process. In the displays, “0” and “x”
denote a zero and an arbitrary element, respectively. Note that our goal is to reduce B
to a condensed form (2.7) such that the explicit product BJBT has a bidiagonal-like
form (2.1).

At the first stage we reduce the columns and rows 1 and 4 of BJBT implicitly.
For this we first perform three orthogonal symplectic transformations U1,1, V1, U1,2

successively, where U1,1, U1,2 ∈ Hs(1 : 4) and V1 ∈ Gs
1(1), on the columns of B to

annihilate B(4, 2 : 4), B(4, 1), and B(4, 6 : 8):1⎡⎢⎢⎢⎢⎢⎢⎣
x x x x x x x x
x x x x x x x x
x x x x x x x x
0 0 0 0 x 0 0 0
x x x x x x x x
x x x x x x x x

⎤⎥⎥⎥⎥⎥⎥⎦ .

We then perform a Householder transformation H1,1 ∈ H(1 : 3, 5 : 6) on the rows of

1Here we use the MATLAB forms to denote the entries, rows, and columns of a matrix.
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B to annihilate B(2 : 3, 1) and B(5 : 6, 1):⎡⎢⎢⎢⎢⎢⎢⎣
x x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 0 0 0 x 0 0 0
0 x x x x x x x
0 x x x x x x x

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now the product B(JBT ) has the form

⎡⎢⎢⎢⎢⎢⎢⎣
x x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 0 0 0 x 0 0 0
0 x x x x x x x
0 x x x x x x x

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x
x x x 0 x x
x x x 0 x x
x x x 0 x x
x 0 0 0 0 0
x x x 0 x x
x x x 0 x x
x x x 0 x x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 x x x x x
x 0 x 0 x x
x x 0 0 x x
x 0 0 0 0 0
x x x 0 0 x
x x x 0 x 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

(Since BJBT is skew-symmetric, its diagonal elements are zero.) We still need to
reduce the first column and row of BJBT . For this we have to form the first column
(but not the whole product) of BJBT explicitly, which has the pattern

y1 =
[

0 x x x x x
]T

.

Determine a Householder matrix H1,2 ∈ H(2 : 3, 5 : 6) such that

H1,2y1 =
[

0 0 0 x x 0
]T

.

Premultiply B by H1,2. Since H1,2 does not work on rows 1 and 4, it does not change
the pattern of B. After this transformation

B =

⎡⎢⎢⎢⎢⎢⎢⎣
x x x x x x x x
0 x x x x x x x
0 x x x x x x x
0 0 0 0 x 0 0 0
0 x x x x x x x
0 x x x x x x x

⎤⎥⎥⎥⎥⎥⎥⎦ , BJBT =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 x x 0
0 0 x 0 x x
0 x 0 0 x x
x 0 0 0 0 0
x x x 0 0 x
0 x x 0 x 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The second stage is similar. We reduce the columns and rows 2 and 5 of BJBT .
We first perform transformations U2,1, V2, U2,2, where U2,1, U2,2 ∈ Hs(2 : 4) and
V2 ∈ Gs

1(2), on the columns of B to annihilate B(5, 3 : 4), B(5, 2), and B(5, 7 : 8).
Then perform a Householder transformation H2,1 ∈ H(2 : 3, 6) on the rows of B
to annihilate B(3, 2) and B(6, 2). Next we determine a Householder transformation
H2,2 ∈ H(3, 6) from the vector

y2 = (BJBT )(:, 2) =
[

0 0 x 0 x x
]T

,

such that

H2,2y2 =
[

0 0 0 0 x x
]T

.
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Premultiplying B by H2,2,

B =

⎡⎢⎢⎢⎢⎢⎢⎣
x x x x x x x x
0 x x x x x x x
0 0 x x x x x x
0 0 0 0 x 0 0 0
0 0 0 0 x x 0 0
0 0 x x x x x x

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

BJBT =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 x x 0
0 0 0 0 x x
0 0 0 0 0 x
x 0 0 0 0 0
x x 0 0 0 0
0 x x 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now the product BJBT is in the bidiagonal-like form.
At the third stage we perform transformations U3,1, V3, U3,2, where U3,1, U3,2 ∈

Hs(3 : 4) and V3 ∈ Gs
1(3), on the columns of B to annihilate B(6, 4), B(6, 3), and

B(6, 8):

B =

⎡⎢⎢⎢⎢⎢⎢⎣
x x x x x x x x
0 x x x x x x x
0 0 x x x x x x
0 0 0 0 x 0 0 0
0 0 0 0 x x 0 0
0 0 0 0 x x x 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

We have got the form (2.7). Note that the symplectic transformations performed at
the last stage do not change the bidiagonal-like form of BJBT .

3.2. Implicit QR-like SVD iteration. We will give the implicit version of the
implicit shift QR-like SVD iteration [11, sect. 8.6] on B11B

T
23. For a technical rea-

son related to decoupling and deflation, before iteration we transform B23 to a lower
Hessenberg form such that B11B

T
23 is lower bidiagonal. The transformations can be

performed as follows. For j = 1, . . . , p−1, we construct a sequence of Givens matrices
Gj ∈ G(j, j + 1) such that (B11B

T
23)G1 · · ·Gp−1 becomes lower bidiagonal. (To con-

struct Gj we need to compute (B11B
T
23)(j, j : j+1).) Update B23 := GT

p−1 · · ·GT
1 B23.

Then B23 becomes lower Hessenberg. B11 is still upper triangular, but now B11B
T
23

is lower bidiagonal.
When some diagonal or subdiagonal elements of B11B

T
23 are zero we can decouple

it into smaller unreduced lower bidiagonal blocks. With the assumption that BJBT

is nonsingular all diagonal elements of B11B
T
23 are nonzero. This is obvious from the

factorization BJBT = Q1[
0

−BT
23B11

B11B
T
23

0 ]QT
1 . Moreover, B11 is nonsingular. Hence

its diagonal elements are nonzero. The jth subdiagonal element of B11B
T
23 has the

form2 B11(j+1, j+1)B23(j, j+1). Because B11(j+1, j+1) �= 0, the jth subdiagonal

2This is why we transform B23 to a lower Hessenberg form. In the upper bidiagonal case the
jth superdiagonal element of B11BT

23 is in a dot product form B11(j, j)B23(j + 1, j) + B11(j, j +
1)B23(j +1, j +1). It may happen that this dot product is small but all four elements are not small.
When this happens, we have the difficulty of doing the decoupling or deflation.



1066 HONGGUO XU

element of B11B
T
23 is zero if and only if the jth superdiagonal element of B23 is zero.

With this observation, in practice when some superdiagonal elements of B23 are zero
or suitably small we set them to be zero and decouple B11B

T
23 into smaller unreduced

lower bidiagonal blocks. We then perform the following implicit version of the QR-like
SVD iterations to each pair of small diagonal blocks from B11 and B23 corresponding
to each unreduced block in B11B

T
23 to compute (2.8). The criterion for decoupling or

deflation that we use is

|B23(j, j + 1)| ≤ ε(|B23(j, j)| + |B23(j + 1, j)| + |B23(j + 1, j + 1)|),(3.1)

where ε is the machine precision. With this criterion decoupling or deflation will cause
an error in B of order ε‖B‖.

We use the matrices B11, B23 with size 4 × 4 to illustrate one step of iteration.
Initially B11 is upper triangular, B23 is lower Hessenberg, and B11B

T
23 is lower bidi-

agonal. Without loss of generality we assume that B11B
T
23 is unreduced. Let δ > 0

be a shift.3 Let A be the leading 2 × 2 principal submatrix of B11B
T
23B23B

T
11. We

first determine a Givens matrix G1 ∈ G(1, 2), in which the leading 2 × 2 principal
submatrix is a Givens rotation that transforms A − δI to an upper triangular form.
Perform G1 on the rows of B11:

B11 =

⎡⎢⎢⎣
x x x x
⊗ x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ ,

where “⊗” denotes an unwanted nonzero element. Now the product becomes

B11B
T
23 =

⎡⎢⎢⎣
x ⊗ 0 0
x x 0 0
0 x x 0
0 0 x x

⎤⎥⎥⎦ .

Perform a Givens transformation W1 ∈ G(1, 2) on the columns of B11 to annihilate
B11(2, 1) and perform it also on the columns of B23:

B11 =

⎡⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ , B23 =

⎡⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦ .

This transformation does not change the pattern of B11B
T
23. Next we determine a

Givens matrix S1 ∈ G(1, 2) to annihilate (B11B
T
23)(1, 2). (Again, in order to construct

S1 we need to compute (B11B
T
23)(1, 1 : 2).) Perform S1 on the rows of B23:

B23 =

⎡⎢⎢⎣
x x ⊗ 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦ ,

3We actually use the Wilkinson shift, one of the eigenvalues of the tailing 2 × 2 principal sub-
matrix of B11BT

23B23BT
11.
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and now

B11B
T
23 =

⎡⎢⎢⎣
x 0 0 0
x x 0 0
⊗ x x 0
0 0 x x

⎤⎥⎥⎦ .

To annihilate (B11B
T
23)(3, 1) we first perform a Givens transformation W2 ∈ G(2, 3)

on the columns of B23 to annihilate B23(1, 3). Perform W2 also on the columns of B11:

B11 =

⎡⎢⎢⎣
x x x x
0 x x x
0 ⊗ x x
0 0 0 x

⎤⎥⎥⎦ , B23 =

⎡⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦ .

Then we perform a Givens transformation G2 ∈ G(2, 3) on the rows of B11 to annihi-
late B11(3, 2):

B11 =

⎡⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ .

At this stage

B11B
T
23 =

⎡⎢⎢⎣
x 0 0 0
x x ⊗ 0
0 x x 0
0 0 x x

⎤⎥⎥⎦ .

So (B11B
T
23)(3, 1) has been annihilated and the bulge has been chased to the (2, 3)

place. In a similar way we can chase the bulge down-rightwards until it disappears.
The rest of the reductions are illustrated by the following displays, where B11 and
B23 are displayed simultaneously, the Givens transformation Gj ∈ G(j, j+1) operates
only on the rows of B11, Sj ∈ G(j, j + 1) operates only on the rows of B23, and
Wj ∈ G(j, j + 1) operates on the columns of both B11 and B23.⎡⎢⎢⎣

x x x x
0 x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦ S2−→

⎡⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x x 0 0
x x x ⊗
x x x x
x x x x

⎤⎥⎥⎦
W3−→

⎡⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 ⊗ x

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦ G3−→

⎡⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦
S3−→

⎡⎢⎢⎣
x x x x
0 x x x
0 0 x x
0 0 0 x

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x x 0 0
x x x 0
x x x x
x x x x

⎤⎥⎥⎦ .

We have finished one step of iteration.
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We now check the superdiagonal elements of B23. If some of them satisfy (3.1),
we replace them by zero and decouple or deflate B11B

T
23. We then run another step of

iteration on B11 and B23 or a pair of diagonal blocks from them. Repeat the iterations
and finally B23 becomes lower triangular and we have (2.8).

The algorithm costs about two to three times as much as the QR-like algorithm
applied to the explicit product BJBT .

4. General case. For a general matrix B ∈ R
n×2m additional work needs to be

done. If rankB < n, initially we need to compute a factorization

B = Q0

[
B0

0

]
,(4.1)

where Q0 is orthogonal and B0 is of full row rank. This can be done by the QR
factorization with the column pivoting method (see [6]), the rank-revealing QR (see
[7]), or the SVD algorithm (see [11, sect. 8.6]).

Next we apply the reduction process to B0. But now we have to modify the
above reduction process slightly. The reason is that even if B0 is of full row rank,
the product B0JB

T
0 may be singular. In this case at certain stages of reductions

some diagonal elements of block B11 or B23 will be zero and we need to deflate the
zero eigenvalues of B0JB

T
0 . Because of this, we have to reduce matrix B0 to a more

generalized condensed form

QT
2 B0U2 =

⎛⎝
p q m− p− q p q m− p− q

p B11 B12 B13 B14 B15 B16

q 0 B22 0 B24 0 0
p 0 0 0 B34 0 0

⎞⎠,(4.2)

where Q2 is orthogonal, U2 is orthogonal symplectic, B11, B22 are nonsingular and
upper triangular, B34 is nonsingular and lower triangular, B11B

T
34 is upper bidiagonal,

and

QT
2 B0JB0Q2 =

⎛⎝
p q p

p 0 0 B11B
T
34

q 0 0 0
p −B34B

T
11 0 0

⎞⎠.(4.3)

The reduction procedure will be illustrated below. We then apply the same iteration
procedure described in subsection 3.2 to B11, B34 to compute

R11 = ZT
1 B11W, R34 = ZT

2 B34W,

where Z1, Z2,W are orthogonal, R11 is upper triangular, R34 is lower triangular, and
Δ := R11R

T
34 is positive diagonal. Similarly, combining them with (4.2) and (4.1) we

can determine the orthogonal matrix Q and the orthogonal symplectic matrix U to
obtain the generalized version of (2.4),

QTBU =

⎛⎜⎜⎝
p q m− p− q p q m− p− q

p R11 R12 R13 R14 R15 R16

q 0 R22 0 R24 0 0
p 0 0 0 R34 0 0
n− 2p− q 0 0 0 0 0 0

⎞⎟⎟⎠.
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Let Σ =
√

Δ. The symplectic matrix S can be computed by the formula

U

⎡⎢⎢⎢⎢⎢⎣
X −X(RT

12Σ
−1)T −X(RT

13Σ
−1)T −RT

14Σ
−1 −X(RT

15Σ
−1)T −X(RT

16Σ
−1)T

0 I 0 −RT
15Σ

−1 0 0
0 0 I −RT

16Σ
−1 0 0

0 0 0 RT
11Σ

−1 0 0

0 0 0 RT
12Σ

−1 I 0
0 0 0 RT

13Σ
−1 0 I

⎤⎥⎥⎥⎥⎥⎦ ,

where X = RT
34Σ

−1. Finally we have the SVD-like decomposition

QTBS =

⎛⎜⎜⎝
p q m− p− q p q m− p− q

p Σ 0 0 0 0 0
q 0 R22 0 0 0 0
p 0 0 0 Σ 0 0
n− 2p− q 0 0 0 0 0 0

⎞⎟⎟⎠.

(If necessary one can multiply the symplectic matrix diag(I,R−1
22 , I; I,R

T
22, I) from

the right to replace R22 by I.)

In the following we will show the reduction procedure for computing the condensed
form (4.2). The procedure consists of two steps. In step 1 we will reduce B0 to

QT
2 B0Ũ2 =

⎛⎝
p m− p− q q p m− p− q q

p B11 B12 B13 B14 B15 0
q 0 0 B23 0 0 0
p 0 0 B33 B34 0 0

⎞⎠,(4.4)

where Q2 is orthogonal, Ũ2 is orthogonal symplectic, B11, B23 are nonsingular and up-
per triangular, and B34 is nonsingular and lower triangular, such that QT

2 (B0JB
T
0 )Q2

has the bidiagonal-like form (4.3). In step 2 we will perform only orthogonal sym-
plectic transformations on the columns to transform (4.4) to (4.2). Note that step 2
does not change the bidiagonal-like form of QT

2 (B0JB
T
0 )Q2.

Let us describe step 1 in an inductive way. Suppose that at a certain stage we
have reduced B0 to

B0 =

⎛⎝
j m− j − q q j m− j − q q

p B11 B12 B13 B14 B15 0
q 0 0 B23 0 0 0
r 0 B32 B33 B34 B35 0

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j m− j − q q j m− j − q q

j � 0

p− j 0 0

q 0 0 � 0 0 0

j 0 0 � 0 0

r − j 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(4.5)



1070 HONGGUO XU

and

B0JB0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j p− j q j r − j

j 0 0 0 �� *

p− j 0 0 0

q 0 0 0 0 0

j �� 0 0 0 0

r − j * 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(4.6)

where r = p or p + 1, j ≤ p. (Initially we partition B0 to the block form with
j = q = 0, and r = p if B0 has 2p (even) rows or r = p + 1 if B0 has 2p + 1 (odd)
rows.) Note that in (4.5) when j = p = r it is just (4.4) and we are done.

If j ≤ p, we continue the reduction process. We first perform orthogonal symplec-
tic transformations on the columns of B0 to annihilate B0(p+ q+ j +1, j +1 : m− q)
and B0(p+q+j+1,m+j+2 : 2m−q), and then perform a Householder transformation
on the rows of B0 to annihilate B0(j+2 : p, j+1) and B0(p+q+j+2 : p+q+r, j+1).
After this step we have two cases.

(a) B0(j+1, j+1) �= 0. We determine another Householder matrix to annihilate
the elements from j + 2 to p and from p + q + j + 3 to p + q + r on the (j + 1)th
column/row of B0JB

T
0 . Premultiply B0 by this Householder matrix. Then B0 and

B0JB
T
0 again have the block forms (4.5) and (4.6), respectively, but j := j + 1. We

have done one step of regular reduction as in subsection 3.1.
(b) B0(j + 1, j + 1) = 0. We need to deflate the zero eigenvalue of B0JB

T
0 . We

have two subcases:
(b1) r = p + 1 and
(b2) r = p.

For the first subcase the deflation is illustrated by a matrix with j = 2, p = 4, r = 5,
q = 2, and m = 8:

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x 0 0
0 x x x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

B0JB
T
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 x x 0 0 0
0 0 0 0 0 0 0 x x 0 0
0 0 0 x 0 0 0 0 0 x x
0 0 x 0 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 x 0 0 0 0 0 0 0 0 0
0 0 x x 0 0 0 0 0 0 x
0 0 x x 0 0 0 0 0 x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the explicit product we can perform a sequence of Givens transformations G1 ∈
G(8, 9) and G2 ∈ G(7, 8) on both the columns and rows to annihilate (B0JB

T
0 )(2, 8),

(B0JB
T
0 )(1, 7) and (B0JB

T
0 )(8, 2), (B0JB

T
0 )(7, 1). With repartitioning we again have

the form (4.6) but with q = 3:

B0JB
T
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 x x 0 0
0 0 0 0 0 0 0 0 x 0 0
0 0 0 x 0 0 0 0 0 x x
0 0 x 0 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 0 x x 0 0 0 0 0 0 x
0 0 x x 0 0 0 0 0 x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(4.7)

The corresponding implicit version is as follows. We first perform a sequence of the
symplectic Givens transformations U1 ∈ Gs

2(2, 3), U2 ∈ Gs
2(1, 2) on the columns of B0

to annihilate B0(2, 2) and B0(1, 1):

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x ⊗ 0 0 0 0 0 0
0 0 0 0 0 0 x x x x ⊗ 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then perform Givens transformations G1 ∈ G(8, 9) and G2 ∈ G(7, 8) on the rows of
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B0 to annihilate the unwanted elements B0(8, 11) and B0(7, 10):

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x 0 0
0 0 0 x x x x x x x x x x x 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now by using the pattern of B0 one can see that B0JB
T
0 has the form (4.7). To

transform B0 back to the block form (4.5) next we perform a symplectic permutation
P1 ∈ Ps

1 to move the columns 1 and 9 of B0 to columns 6 and 14, respectively. Then
we perform a symplectic permutation P2 ∈ Ps

2(6) to interchange the columns 6 and 14.
With repartitioning,

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x 0 0 0
0 x x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 x x x 0 0 0 0 0 0 0 0
0 0 0 0 0 x x x x 0 0 0 0 0 0 0
0 0 0 0 0 x x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that these permutations do not change the form of B0JB
T
0 . To maintain the

block B23 in upper triangular form we perform a row permutation to move row 7 to
row 5:

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x 0 0 0
0 x x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 0 0 0 x x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 x x x x 0 0 0 0 0 0 0
0 0 0 0 0 x x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x 0 0 0
0 0 x x x x x x x x x x x 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then B0 and B0JB
T
0 again have the forms (4.5) and (4.6), respectively, but now

r := r − 1 and q := q + 1.
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For the second subcase the reduction procedure is illustrated by a matrix with
j = 2, p = 5, r = 5, q = 1, and m = 8:

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x x 0
0 x x x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x x x x x x x x 0
0 0 0 x x x x x x x x x x x x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

B0JB
T
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 x x 0 0 0
0 0 0 0 0 0 0 x x 0 0
0 0 0 x x 0 0 0 0 x x
0 0 x 0 x 0 0 0 0 x x
0 0 x x 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 x 0 0 0 0 0 0 0 0 0
0 0 x x x 0 0 0 0 0 x
0 0 x x x 0 0 0 0 x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proceeding with the analogous transformations as in the first subcase, until the row
permutation step, we can obtain

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x 0 0
0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

B0JB
T
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 x x 0 0
0 0 0 0 0 0 0 0 x 0 0
0 0 0 x x 0 0 0 0 x x
0 0 x 0 x 0 0 0 0 x x
0 0 x x 0 0 0 0 0 x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 0 x x x 0 0 0 0 0 x
0 0 x x x 0 0 0 0 x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To maintain the block B23 in upper triangular form and to maintain the condition
r ≥ p we first perform a permutation to move the 5th row of B0 to the bottom and
then perform another permutation to move row 6 to row 5:

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x x x 0 0
0 x x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 0 0 0 0 x x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 x x x x 0 0 0 0 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0
0 0 x x x x x x x x x x x x 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

B0JB
T
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 x x 0 0 0
0 0 0 0 0 0 0 x 0 0 0
0 0 0 x 0 0 0 0 x x x
0 0 x 0 0 0 0 0 x x x
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0 0
0 0 x x 0 0 0 0 0 x x
0 0 x x 0 0 0 0 x 0 x
0 0 x x 0 0 0 0 x x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now B0 and B0JB
T
0 have the forms (4.5) and (4.6), respectively, but p := p− 1 and

q := q + 1.
Because B0 is of full row rank, the submatrix consisting of the third and fourth

block rows in (4.5) must be of full row rank. Then both B23 and the (1, 1) block
of B34 (in lower triangular form) must be nonsingular. Hence during the reductions
no diagonal element in B34 will be zero, and for deflation we need only to check the
diagonal elements of B11. In practice if B11(j, j) satisfies

|B11(j, j)| < ε‖B‖,
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we set it to zero and perform the deflation step described in case b.
Repeating the above reduction process, we will get (4.4).
We now perform a sequence of orthogonal symplectic transformations to transform

(4.4) to (4.2). This is illustrated in the case when p = 2, q = 3, and m = 6:

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x 0 0 0
0 x x x x x x x x 0 0 0
0 0 0 x x x 0 0 0 0 0 0
0 0 0 0 x x 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 x x x x 0 0 0 0 0
0 0 0 x x x x x 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Perform the symplectic Givens transformations G1 ∈ Gs
3(1, 4), G2 ∈ Gs

3(2, 4) on the
columns of B0 to annihilate B0(6 : 7, 4):

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x 0 0
0 x x x x x x x x x 0 0
0 0 0 x x x x x 0 0 0 0
0 0 0 0 x x 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 0 x x x 0 0 0 0 0
0 0 0 0 x x x x 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the same way we can annihilate B0(6 : 7, 5) and B0(6 : 7, 6):

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x
0 x x x x x x x x x x x
0 0 0 x x x x x 0 0 0 0
0 0 0 0 x x x x 0 0 0 0
0 0 0 0 0 x x x 0 0 0 0
0 0 0 0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally perform a symplectic permutation P ∈ Ps
1 to move columns 3 and 9 to columns

6 and 12, respectively. We have the form (4.2),

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x x x x x x x x x x
0 x x x x x x x x x x x
0 0 x x x 0 x x 0 0 0 0
0 0 0 x x 0 x x 0 0 0 0
0 0 0 0 x 0 x x 0 0 0 0
0 0 0 0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 x x 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5. Error analysis. We only give an error analysis about the eigenvalues. We
will provide the first order perturbation bound for a simple nonzero eigenvalue of
JBTB or BTJB. We will then use the perturbation bound to give the relative error
bound for the computed eigenvalues.



1076 HONGGUO XU

5.1. Perturbation about eigenvalues. All nonzero eigenvalues of BJBT and
JBBT are purely imaginary and they are in conjugate pairs. For real perturbations
the perturbation results for both eigenvalues in a conjugate pair are the same. For
this reason in the following we consider only the eigenvalues iλ with λ > 0.

Suppose that iλ is a simple nonzero eigenvalue of BJBT and x is a corresponding
unit norm eigenvector. Define another unit norm vector

y =
JBTx

β

with β = ‖JBTx‖. Premultiplying the equation by JBTB, we have

JBTBy = iλy.

Hence y is a unit norm eigenvector of JBTB corresponding to iλ. By using the
conjugate transpose of the above equation we have

(Jy)∗(JBTB) = iλ(Jy)∗.

So Jy is a unit norm left-eigenvector of JBTB. The relation between x, y is summa-
rized as follows:

By = iαx, JBTx = βy,(5.1)

where α = λ
β . Taking the conjugate transpose of the second equation in (5.1) and

postmultiplying it by Jy,

βy∗Jy = x∗By.

Premultiplying the first equation in (5.1) by x∗,

x∗By = iα.

The reciprocal of the condition number of iλ corresponding to the matrix JBTB is
κ = |(Jy)∗y| = |y∗Jy|. Combining the above two equations,

κ =
α

β
.(5.2)

Since κ ≤ 1 we have α ≤ β. Because λ = αβ and β = ‖JBTx‖ ≤ ‖B‖, we have

λ

‖B‖ < α ≤
√
λ ≤ β ≤ ‖B‖.(5.3)

The first order perturbation bound is given in the following lemma.
Lemma 5.1. Suppose that iλ (λ > 0) is a simple eigenvalue of BJBT and

JBTB, and x, y are the corresponding unit norm eigenvectors with respect to BJBT

and JBTB, respectively, satisfying (5.1). Let E be a real perturbation matrix and let
B̂ = B + E. When ‖E‖ is sufficiently small both matrices B̂JB̂T and JB̂T B̂ have a

purely imaginary eigenvalue iλ̂ such that∣∣∣∣∣ iλ̂− iλ

iλ

∣∣∣∣∣ =

∣∣∣∣2Im (y∗Ex)

α

∣∣∣∣ + O(‖E‖2) ≤ 2‖E‖
α

+ O(‖E‖2).

Proof. The proof follows from the result in [4] for a formal matrix product.
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5.2. Error analysis. Again we consider only the case that BJBT is nonsingular.
The general case can be analyzed in the same way. Because of rounding error, the
algorithm in section 2 actually computes a block upper triangular matrix R satisfying

R =

[
R1 R2

0 R3

]
=

[
R11 R12 R13 R14

0 0 R23 0

]
= QT (B + E)U,

where Q is orthogonal, U is orthogonal symplectic, and E is an error matrix satisfying
‖E‖ ≤ cε‖B‖ for some constant c. Suppose that iλ (λ > 0) is a simple eigenvalue
of BJBT and JBTB with unit norm eigenvectors x, y satisfying (5.1). When ‖E‖ is

sufficiently small by Lemma 5.1 there is an eigenvalue iλ̂ of RJRT and JRTR such that∣∣∣∣∣ iλ̂− iλ

iλ

∣∣∣∣∣ =
2|Im (y∗Ex)|

α
+ O(‖E‖2) ≤ 2cε

‖B‖
α

+ O(ε2).(5.4)

However, the eigenvalues computed by the algorithm are ±iδ1, . . . ,±iδp, where
δ1, . . . , δp are the diagonal elements of R11R

T
23. Because of rounding error the product

RJRT is not exactly in the Schur-like form. By a straightforward analysis it satisfies

RJRT =

[
0 Δ

−Δ 0

]
+

[
F11 F12

−FT
12 0

]
=: Γ + F,(5.5)

where Δ = diag(δ1, . . . , δp), F12 is strictly upper triangular, F11 = −FT
11, and ‖F‖ ≤

dε‖B‖2 for some constant d. So the computed eigenvalues are the exact ones of Γ and

iλ̂ in (5.4) is an eigenvalue of Γ + F . When ‖F‖ is sufficiently small and we apply

the perturbation result [16, sect. 4.2.2], [11, sect. 7.2.2] to Γ + F for iλ̂ there exists a
corresponding eigenvalue of Γ, say iδk, such that

|iλ̂− iδk| = |z∗Fz| + O(‖F‖2),

where z =
√

2
2 (ek + iep+k) is the unit norm eigenvector of iδk (which is obvious from

the structure of Γ). Because F11 is real skew-symmetric and F12 is strictly upper
triangular,

z∗Fz =
1

2
(e∗kF11ek + 2ie∗kF12ek) = 0.

Hence |iλ̂− iδk| = O(ε2). Combining it with (5.4) we have the error bound for iδk,∣∣∣∣ iδk − iλ

iλ

∣∣∣∣ =
2|Im (y∗Ex)|

α
+ O(ε2) ≤ 2cε

‖B‖
α

+ O(ε2).(5.6)

For comparison we also give the error bounds for the eigenvalues computed by
the numerically backward stable methods working on the explicit product BJBT or
JBTB. For both matrices explicitly forming the product will introduce an error ma-
trix of order ε‖B‖2. During the computations another error matrix will be introduced.
Here for both matrices JBTB and BJBT we assume that the error matrix is of order
ε‖B‖2. (This is true for matrix JBTB. But for matrix BJBT the order is ε‖BJBT ‖,
which can be much smaller than ε‖B‖2.) With standard perturbation analysis [16,
sect. 4.2.2], [11, sect. 7.2.2] and by using the equality λ = αβ and (5.2), for the simple

eigenvalue iλ, the methods working on BJBT give an eigenvalue iλ̂s satisfying∣∣∣∣∣ iλ̂s − iλ

iλ

∣∣∣∣∣ ≤ csε
‖B‖2

λ
+ O(ε2) =

(
csε

‖B‖
α

)
‖B‖
β

+ O(ε2)(5.7)
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for some constant cs. The methods working on JBTB give an eigenvalue iλ̂h satisfying∣∣∣∣∣ iλ̂h − iλ

iλ

∣∣∣∣∣ ≤ chε
‖B‖2

λκ
+ O(ε2) =

(
chε

‖B‖
α

)
‖B‖
α

+ O(ε2)(5.8)

for some constant ch. By (5.3),

‖B‖
α

≥ ‖B‖
β

≥ 1.

So in general among three bounds (5.6) is the smallest and (5.8) is the biggest. When
α or β is small, ‖B‖/α or ‖B‖/β can be much bigger than 1. Since λ = αβ, this
means that our method can compute tiny eigenvalues more accurately.

6. Numerical examples. We tested and compared the following numerical
methods for computing the eigenvalues of the matrices BJBT and JBTB.
SSVD. The SVD-like method presented in this paper;
CSVD. The SVD-like method applied to the matrix LT , where L is the Cholesky

factor computed from the explicitly formed matrix A := BTB;
SQR. QR method (bidiagonal-like reduction plus SVD) for BJBT ;
JAC. Jacobi method [15] for BJBT ;
HAM. Hamiltonian method [2, 3] for JBTB.
All tests were done on a Dell PC with a Pentium 4 processor. All computations were
performed in MATLAB version 6.1 with machine precision ε ≈ 2.22 × 10−16.

Example 6.1.

B = Q

[
T 5 0
0 T 5

]
,

where

T =

⎡⎢⎢⎢⎢⎣
2 1
1 2 1

1 2 1
1 2 1

1 2

⎤⎥⎥⎥⎥⎦ ,

and Q = 5I10 − eeT with e = [1 . . . 1]T . (Q/5 is a Householder matrix.) ‖B‖ =
3.62 × 103, ‖BJBT ‖ = ‖JBTB‖ = ‖B‖2 = 1.31 × 107.

This example is supposed to test the numerical behavior when no cancellation
occurs in forming the product BJBT . Note that

BJBT = Q

[
0 T 10

−T 10 0

]
QT , JBTB = 25

[
0 T 10

−T 10 0

]
.

Both matrices have exact eigenvalues ±i25[2 cos(kπ/12)]20 (k = 1, . . . , 5). Since all
elements of B are integers, no rounding error is introduced in forming the products
BJBT and JBTB.

The exact eigenvalues and the relative errors of computed eigenvalues are reported
in Table 6.1.

In this example for each eigenvalue iλ, α = β =
√
λ and κ = 1. From Table 6.1

it is clear that SSVD gives eigenvalues with relative errors about ‖B‖√
λ

times smaller
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Table 6.1

Example 6.1: Exact eigenvalues and relative errors.

Eigenvalue relSSV D relCSV D relSQR relJAC relHAM

±i4.77 × 10−5 4.0 × 10−12 4.7 × 10−7 2.9 × 10−6 1.2 × 10−6 6.0 × 10−6

±i2.50 × 101 3.8 × 10−15 4.2 × 10−12 6.0 × 10−12 2.9 × 10−12 4.6 × 10−12

±i2.56 × 104 2.0 × 10−15 2.0 × 10−15 9.2 × 10−15 3.6 × 10−15 5.7 × 10−15

±i1.48 × 106 1.1 × 10−15 1.4 × 10−15 1.6 × 10−15 1.6 × 10−15 1.7 × 10−15

±i1.31 × 107 7.1 × 10−16 0 1.4 × 10−16 8.5 × 10−16 5.7 × 10−16

Table 6.2

Example 6.1: Residuals and errors.

SSV D CSV D SQR JAC

errS 4.6 × 10−13 4.0 × 10−13 2.9 × 10−6 1.2 × 10−6

resB 1.3 × 10−15 − 2.8 × 10−16 8.9 × 10−16

resJA 1.6 × 10−15 1.3 × 10−15 1.7 × 10−16 3.2 × 10−16

resSCF 2.1 × 10−13 1.9 × 10−13 3.5 × 10−11 9.1 × 10−11

than other methods. CSVD is basically the same as other methods. This is because
computing the Cholesky factorization already introduced an error of order O(ε‖B‖2)
to A.

We also computed the following quantities:

errS = max{‖SJST − J‖, ‖STJS − J‖}, resB =
‖QDS−1 −B‖

‖B‖ ,

resJA =
‖S(JDTD)S−1 − JBTB‖

‖JBTB‖ , resSCF =
‖JDTD − S−1(JBTB)S‖

‖JDTD‖ ,

where QDS−1 is the SVD-like decomposition of B. These quantities are used to
measure the accuracy of the symplectic matrix S, the residual of the SVD-like de-
composition of B, the residual of the canonical form of JBTB, and the accuracy of
the eigenvectors, respectively. The matrices S and D are computed as follows. With
SSVD and CSVD, S is computed by using (2.5) and D = diag(Σ,Σ). With SQR and
JAC, after obtaining the Schur-like form

BJBT = Q

[
0 Δ

−Δ 0

]
QT ,

we set D = diag(
√

Δ,
√

Δ). Let Z := D−1QTB. Then B = QDZ and

ZJZT = D−1QTBJBTQD−1 = D−1

[
0 Δ

−Δ 0

]
D−1 = J.

So we take Z−1 as S. Since Z is symplectic, Z−1 = JZTJT . In practice we use
the formula S = JBTQD−1JT to compute S. The computed results are reported
in Table 6.2. Both SQR and JAC give slightly smaller residuals resB and resJA.
But both SSVD and CSVD give much smaller errS , indicating that the matrix S
computed by SSVD and CSVD is more “symplectic.”

Example 6.2.

B = Q

[
Σ 0
0 Σ

]([
X X
0 X−1

]
V T

)
,
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Table 6.3

Example 6.2: Exact eigenvalues and relative errors.

Eigenvalue relSSV D relCSV D relSQR relJAC relHAM

±i 6.9 × 10−15 1.1 × 10−10 2.7 × 10−14 2.8 × 10−14 5.8 × 10−10

±4i 1.2 × 10−13 6.6 × 10−9 8.0 × 10−14 8.1 × 10−14 1.5 × 10−8

±9i 5.3 × 10−15 1.2 × 10−13 2.0 × 10−15 9.9 × 10−16 2.2 × 10−13

±16i 2.8 × 10−14 6.4 × 10−13 3.4 × 10−14 3.4 × 10−14 4.9 × 10−12

±25i 1.6 × 10−15 5.5 × 10−12 1.3 × 10−15 8.5 × 10−16 1.5 × 10−10

Table 6.4

Example 6.2: Relative error bounds.

Eigenvalue 2ε
‖B‖
α

ε
‖B‖2

λ
ε
‖B‖2

α2

±i 2.2 × 10−11 1.1 × 10−10 5.6 × 10−7

±4i 1.1 × 10−12 2.8 × 10−11 5.6 × 10−9

±9i 1.3 × 10−13 1.2 × 10−12 1.7 × 10−10

±16i 7.8 × 10−13 6.9 × 10−12 1.1 × 10−8

±25i 6.3 × 10−12 4.4 × 10−12 1.1 × 10−6

where Σ = diag(5, 4, 3, 2, 1) and X = diag(100, 10, 1, 0.1, 0.01), Q is a random orthog-
onal matrix, and V is a random orthogonal symplectic matrix. ‖B‖ = 7.07 × 102,
‖B‖2 = 5.00 × 105.

This example is supposed to test the numerical behavior when big cancellation
takes place in forming the product BJBT (‖BJBT ‖ = 25). The exact eigenvalues
and the relative errors of the computed eigenvalues are reported in Table 6.3. For
each eigenvalue iλ the relative error bounds (5.6)–(5.8) are given in Table 6.4. (Here
we set c = cs = ch = 1.)

Because for the Hamiltonian matrix JBTB its eigenvalues have relatively big
condition numbers, HAM gives less accurate eigenvalues. Again, CSVD also gives less
accurate eigenvalues because of the Cholesky factorization. The other three methods
compute the eigenvalues with the same accuracy, as predicted by the error bounds.
The residuals of the decompositions and errS , resSCF are reported in Table 6.5. In
this example all these methods basically give the same results.

Example 6.3.

B = Q

⎡⎣ Σ 0 0 0 0 0
0 I2 0 0 0 0
0 0 0 Σ 0 0

⎤⎦UT ,

where Σ = diag(10−4, 10−2, 1, 102), Q is a random orthogonal matrix, and U is a
14 × 14 random orthogonal symplectic matrix. ‖B‖ = 102 and ‖B‖2 = 104.

This example is supposed to test the numerical behavior when BJBT has (two)
zero eigenvalues. The exact eigenvalues, the absolute errors for zero eigenvalues, and
the relative errors for nonzero eigenvalues are reported in Table 6.6.

In this example for zero eigenvalues SSVD gives the eigenvalues of order ε, while
SQR, JAC, and HAM give answers about ‖B‖ times bigger than SSVD.4 For nonzero

eigenvalues, as in Example 6.1, SSVD gives the results with relative errors about ‖B‖√
λ

times smaller than those of the other methods.

4The matrix JBTB actually has two additional 2× 2 Jordan blocks corresponding to zero eigen-
values. The corresponding eigenvalues computed by HAM are ±8.37 × 10−8 ± 2.64 × 10−7i.
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Table 6.5

Example 6.2: Residuals and errors.

SSV D CSV D SQR JAC

errS 8.8 × 10−12 3.4 × 10−11 3.2 × 10−12 5.5 × 10−13

resB 1.2 × 10−15 − 3.8 × 10−16 1.6 × 10−15

resJA 1.3 × 10−15 1.8 × 10−15 2.1 × 10−16 1.0 × 10−15

resSCF 3.1 × 10−9 6.5 × 10−10 3.1 × 10−9 3.1 × 10−9

Table 6.6

Exact eigenvalues and errors for Example 6.3.

Eigenvalue relSSV D relSQR relJAC relHAM

0(double) 1.7 × 10−15 1.1 × 10−14 5.7 × 10−14 1.5 × 10−13

±i10−8 1.9 × 10−11 8.9 × 10−6 1.3 × 10−5 5.9 × 10−6

±i10−4 5.7 × 10−13 1.7 × 10−9 4.1 × 10−11 7.5 × 10−10

±i 1.3 × 10−15 1.1 × 10−13 1.1 × 10−14 2.1 × 10−13

±i104 1.8 × 10−16 1.8 × 10−16 1.3 × 10−15 3.6 × 10−16

In this example we did not test CSVD. Because in this case it is more complicated
to compute the matrix S by SQR and JAC, we did not compare the residuals and
errS , resSCF .

7. Conclusion. We have developed a numerical method to compute the SVD-
like decomposition of a real matrix B. The method can be simply applied to compute
the eigenvalues and canonical forms of the skew-symmetric matrix BJBT and the
Hamiltonian matrix JBTB. Unlike other numerical methods this method works only
on the factor B. In this way the eigenvalues (particularly the small eigenvalues) of
BJBT and JBTB can be computed more accurately. This has been demonstrated by
the error bound and several numerical examples. The numerical examples also show
that the symplectic matrix S computed by the proposed method is more accurate.

Acknowledgment. The author gratefully acknowledges the anonymous review-
ers for their valuable comments and suggestions on the first version of this paper.
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1. Introduction. The total least squares (TLS) problem

min
ΔA,ΔB,X

∥∥[ΔA ΔB
]∥∥2

F
subject to (A− ΔA)X = B − ΔB,(1.1)

where A ∈ R
m×n, B ∈ R

m×d, C := [A B] is the data matrix, and X ∈ R
n×d

is the parameter of interest, proved to be a useful parameter estimation technique.
It became especially popular since the early eighties due to the development [8] of
reliable solution methods based on singular value decomposition. The same technique
is known in the system identification literature as the Koopmans–Levin method [12]
and in the statistical literature as orthogonal regression [7]. For a comprehensive
introduction to the theory, algorithms, and applications of the TLS method, see [25].

With the increased interest in the TLS technique, more and more researchers
started to apply it in various applications. In some cases, however, important assump-
tions of the method are not satisfied, which resulted in the development of appropri-
ate extensions of the original TLS method. We mention the mixed LS-TLS method
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[25, sect. 3.5], where some of the columns of A are exact (noise free), and the so-
called generalized total least squares method [24], where the cost function of TLS
problem (1.1) is generalized to ‖

[
ΔA ΔB

]
V ‖2

F, with V ≥ 0. The latest develop-
ments in the field are collected in the proceedings books [22, 23].

In the early nineties, a powerful generalization of the TLS method was put for-
ward [1, 4, 20]. The so-called structured total least squares (STLS) problem,

min
ΔA,ΔB,X

∥∥[ΔA ΔB
]∥∥2

F
subject to (A− ΔA)X = B − ΔB and[

ΔA ΔB
]

has the same structure as
[
A B

]
,

defined in the same way as the TLS problem (1.1) but with the additional structure
constraint, includes as special cases many of the presently known TLS variations. The
structure occurs naturally in, e.g., applications dealing with discrete-time dynamic
phenomena [6], where the Hankel and Toeplitz matrices are fundamental.

Although the STLS problem is very general, it is still not widely accepted due
to the lack of reliable solution methods for its computation, the main difficulty being
that, as an optimization problem, it is nonconvex and there is no guarantee that a
global minimum point will be found. Still, under certain conditions [10] for highly
overdetermined systems (m � nd) the solution of the problem is unique and the main
difficulty—the presence of multiple local minima—tends to disappear for large sample
sizes (i.e., for m → ∞). In addition, due to the consistency results of [10], such an
assumption guarantees accurate estimation and makes the problem meaningful from
a statistical point of view.

However, the currently used numerical algorithms for solving the STLS problem
can hardly deal with large sample sizes. The original methods of [1, 4, 20] have
computational costs that increase quadratically or even cubically as a function of m.
In [11, 17], methods with computational cost linear in m are developed using the
generalized Schur algorithm. These methods, however, are developed for a particular
structure of the data matrix C (in [11] C is Hankel, and in [17] A ∈ R

m×n is Toeplitz
and B ∈ R

m×1 is unstructured) and modifications for other structures are nontrivial.
In [13], based on the insight from [10], we have proposed a new approach with

computational cost linear in m and dealing with a flexible structure specification. The
data matrix C can be partitioned into blocks C =

[
C(1) · · · C(q)

]
, where each of the

blocks C(l), for l = 1, . . . , q, is Hankel, Toeplitz, unstructured, or exact.
In this paper, we consider an extension of the results of [13] to the case of block-

Hankel and block-Toeplitz structured matrices. Thus the data matrix is now a block
matrix, of which the blocks are themselves structured with one of the four possible
structures: block-Hankel, block-Toeplitz, unstructured, or exact. The need for such
an extension comes from applications dealing with multi-input and/or multi-output
dynamical systems. The proposed algorithms are implemented in C (see [15]), and
the software is available.

Standard notation used in the paper is as follows: R for the set of the real
numbers, N for the set of the natural numbers, ‖ · ‖ for the Euclidean norm, and ‖ · ‖F

for the Frobenius norm. The operator that vectorizes columnwise a matrix is denoted
by vec(·), the expectation operator by E , and the covariance matrix of a random
vector by cov(·). The pseudoinverse of a matrix A is denoted by A†.

2. The STLS problem. In this section, we define the STLS problem, con-
sidered in the paper, and derive an equivalent optimization problem. Consider a
function S : R

np → R
m×(n+d) that defines the structure of the data as follows: a ma-

trix C ∈ R
m×(n+d) is said to have the structure defined by S if there exists a p ∈ R

np ,
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such that C = S(p). The vector p is called a parameter vector for the structured
matrix C.

Problem 2.1 (STLS problem). Given a data vector p ∈ R
np and a structure

specification S : R
np → R

m×(n+d), solve the optimization problem

min
X,Δp

∥∥Δp
∥∥2

subject to S(p− Δp)

[
X
−Id

]
= 0.(2.1)

The interpretation of (2.1) is the following: Find the smallest correction Δp,
measured in 2-norm, that makes the structured matrix S(p−Δp) rank deficient with
rank at most n. Define

Xext :=

[
X
−Id

]
, and

[
A B

]
:= C := S(p), where A ∈ R

m×n and B ∈ R
m×d.

CXext = 0 is shorthand notation for the structured system of equations AX = B.
The STLS problem is said to be affine structured if the function S is affine, i.e.,

S(p) = S0 +

np∑
i=1

Sipi for all p ∈ R
np and for some Si, i = 1, . . . , np.(2.2)

In an affine STLS problem, the constraint S(p−Δp)Xext = 0 becomes bilinear in the
decision variables X and Δp.

Lemma 2.2. Let S : R
np → R

m×(n+d) be an affine function. Then

S(p− Δp)Xext = 0 ⇐⇒ G(X)Δp = r(X),

where

G(X) :=
[
vec

(
(S1Xext)

�) · · · vec
(
(Snp

Xext)
�)] ∈ R

md×np(2.3)

and

r(X) := vec
((
S(p)Xext

)�) ∈ R
md.

Proof.

S(p− Δp)Xext = 0 ⇐⇒
np∑
i=1

SiΔpiXext = S(p)Xext

⇐⇒
np∑
i=1

vec
(
(SiXext)

�)Δpi = vec
((
S(p)Xext

)�)
⇐⇒ G(X)Δp = r(X).

Using Lemma 2.2, we rewrite the affine STLS problem as follows:

min
X

(
min
Δp

∥∥Δp
∥∥2

subject to G(X)Δp = r(X)
)
.(2.4)

The inner minimization problem has an analytic solution, which allows us to derive
an equivalent optimization problem.
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Theorem 2.3 (equivalent optimization problem for affine STLS). Assuming that
np ≥ md, the affine STLS problem (2.4) is equivalent to

min
X

f0(X), where f0(X) := r�(X)Γ†(X)r(X) and Γ(X) := G(X)G�(X).(2.5)

Proof. Under the assumption np ≥ md, the inner minimization problem of (2.4)
is a least norm problem. Its minimum point (as a function of X) is

Δpmin(X) = G�(X)
(
G(X)G�(X)

)†
r(X),

so that

f0(X) = Δp�min(X)Δpmin(X) = r�(X)
(
G(X)G�(X)

)†
r(X) = r�(X)Γ†(X)r(X).

The significance of Theorem 2.3 is that the constraint and the decision variable Δp
in problem (2.4) are eliminated. Note that typically the number of elements nd in X
is much smaller than the number of elements np in the correction Δp. Thus the
reduction in the complexity is significant.

The equivalent optimization problem (2.5) is a nonlinear least squares problem,
so that classical optimization methods can be used for its solution. The optimization
methods require a cost function and first derivative evaluation. In order to evaluate
the cost function f0 for a given value of the argument X, we need to form the weight
matrix Γ(X) and to solve the system of equations Γ(X)y(X) = r(X). This straight-
forward implementation requires O(m3) floating point operation (flops). For large m
(the applications that we aim at) this computational complexity becomes prohibitive.

It turns out, however, that for a special case of affine structures S, the weight
matrix Γ(X) is nonsingular and has a block-Toeplitz and block-banded structure,
which can be exploited for efficient cost function and first derivative evaluations. The
set of structures of S, for which we establish the special properties of Γ(X), is

S(p) =
[
C(1) · · · C(q)

]
for all p ∈ R

np , where C(l), for l = 1, . . . , q, is

block-Toeplitz, block-Hankel, exact, or unstructured
and all block-Toeplitz/Hankel structured blocks C(l)

have equal row dimension K of the blocks.

(2.6)

Assumption (2.6) says that S(p) is composed of blocks, each of which is block-Toeplitz,
block-Hankel, exact, or unstructured. A block C(l) that is exact is not modified in the
solution Ĉ := S(p− Δp), i.e., Ĉ(l) = C(l). Assumption 2.6 is the essential structural
assumption that we impose on problem (2.1). As shown in section 6, it is fairly general
and covers many applications.

Example 1. Consider the block-Toeplitz matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
6

3
4

1
2

7
8

5
6

3
4

9
10

7
8

5
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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with row dimension of the block K = 2. Next we specify the matrices Si that define
via (2.2) an affine function S, such that C = S(p) for a certain parameter vector p.
Let == be an elementwise comparison operator. Acting on matrices of the same
size, it gives as a result a matrix with the same size as the arguments, of which the
(i, j)th element is 1 if the corresponding elements of the arguments are equal, and 0
otherwise. (Think of Matlab’s == operator.) Let E be the 6 × 3 matrix with all
elements equal to 1 and define S0 := 06×3 and Si := (C == iE) for i = 1, . . . , 10. We
have

C =

10∑
i=1

Sii = S0 +

10∑
i=1

Sipi =: S(p), with p =
[
1 2 · · · 10

]�
.

The matrix C considered in the example is special; it allowed us to easily write down
a corresponding affine function S. Clearly with the constructed S, any 6 × 3 block-
Toeplitz matrix C with row dimension of the block K = 2 can be written as C = S(p)
for certain p ∈ R

10.

We will use the notation nl for the number of block columns of the block C(l).
For unstructured and exact blocks, nl := 1.

3. Properties of the weight matrix Γ. For the evaluation of the cost func-
tion f0 of the equivalent optimization problem (2.5), we have to solve the system of
equations Γ(X)y(X) = r(X), where Γ(X) ∈ R

md×np with both m and np large. In
this section, we investigate the structure of the matrix Γ(X). Occasionally we drop
the explicit dependence of r and Γ on X.

Theorem 3.1 (structure of the weight matrix Γ). Consider the equivalent op-
timization problem (2.5) from Theorem 2.3. If, in addition to the assumptions of
Theorem 2.3, the structure S is such that (2.6) holds, then the weight matrix Γ(X)
has the block-banded Toeplitz structure

Γ(X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 Γ�
1 · · · Γ�

s 0

Γ1
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . Γ�

s

Γs
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . Γ�

1

0 Γs · · · Γ1 Γ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

md×md,(3.1)

where Γk ∈ R
dK×dK , for k = 0, 1, . . . , s, and s = maxl=1,...,q(nl − 1), where nl is the

number of block columns in the block C(l) of the data matrix S(p).

The proof is developed in a series of lemmas. First we reduce the original problem
with multiple blocks C(l) (see (2.6)) to three independent problems—one for the
unstructured case, one for the block-Hankel case, and one for the block-Toeplitz case.

Lemma 3.2. Consider a structure specification of the form

S(p) =
[
S(1)(p(1)) · · · S(q)(p(q))

]
, p(l) ∈ R

n(l)
p ,

q∑
l=1

n(l)
p =: np,

where p� =:
[
p(1)� · · · p(q)�] and S(p(l)) := S

(l)
0 +

∑n(l)
p

i=1 S
(l)
i p

(l)
i for all p(l) ∈ R

n(l)
p ,
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l = 1, . . . , q. Then

Γ(X) =

q∑
l=1

Γ(l)(X),(3.2)

where Γ(l) := G(l)G(l)�, G(l) := [vec((S
(l)
1 X

(l)
ext)

�) · · · vec((S
(l)

n
(l)
p

X
(l)
ext)

�)], and

Xext =:

⎡⎢⎢⎣
X

(1)
ext
...

X
(q)
ext

⎤⎥⎥⎦ , with X
(l)
ext ∈ R

nl×d, nl := coldim(C(l)),

q∑
l=1

nl = n + d.

Proof. The result is a refinement of Lemma 2.2. Let Δp� =:
[
Δp(1)� · · · Δp(q)�],

where Δp(l) ∈ R
n(l)
p for l = 1, . . . , q. We have

S(p− Δp)Xext = 0 ⇐⇒
q∑

l=1

S(l)(p(l) − Δp(l))X
(l)
ext = 0

⇐⇒
q∑

l=1

np∑
i=1

S
(l)
i Δp

(l)
i X

(l)
ext = S(p)Xext

⇐⇒
q∑

l=1

G(l)Δp(l) = r(X)

⇐⇒
[
G(1) · · · G(q)

]︸ ︷︷ ︸
G(X)

Δp = r(X),

so that Γ = GG� =
∑q

l=1 G
(l)G(l)� =

∑q
l=1 Γ(l).

Next we establish the structure of Γ for an STLS problem with an unstructured
data matrix.

Lemma 3.3. Let

S(p) :=

⎡⎢⎢⎢⎣
p1 p2 · · · pn+d

pn+d+1 pn+d+2 · · · p2(n+d)

...
...

...
p(m−1)(n+d)+1 p(m−1)(n+d)+2 · · · pm(n+d)

⎤⎥⎥⎥⎦ ∈ R
m×(n+d);

then

Γ = Im ⊗ (X�
extXext);(3.3)

i.e., the matrix Γ has the structure (3.1) with s = 0 and Γ0 = IK ⊗ (X�
extXext).

Proof. We have

S(p− Δp)Xext = 0 ⇐⇒ vec
(
X�

extS�(Δp)
)

= vec
((
S(p)Xext

)�)
⇐⇒ (Im ⊗X�

ext)︸ ︷︷ ︸
G(X)

vec
(
S�(Δp)

)︸ ︷︷ ︸
Δp

= r(X).

Therefore, Γ = GG� = (Im ⊗X�
ext)(Im ⊗X�

ext)
� = Im ⊗ (X�

extXext).
Next we establish the structure of Γ for an STLS problem with a block-Hankel

data matrix.
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Lemma 3.4. Let

S(p) :=

⎡⎢⎢⎢⎣
C1 C2 · · · Cn

C2 C3 · · · Cn+1

...
...

...
Cm Cm+1 · · · Cm+n−1

⎤⎥⎥⎥⎦ ∈ R
m×(n+d),

n :=
n + d

L
,

m :=
m

K
,

where Ci are K × L unstructured blocks, parameterized by p(i) ∈ R
KL as follows:

Ci :=

⎡⎢⎢⎢⎢⎣
p
(i)
1 p

(i)
2 · · · p

(i)
L

p
(i)
L+1 p

(i)
L+2 · · · p

(i)
2L

...
...

...

p
(i)
(K−1)L+1 p

(i)
(K−1)L+2 · · · p

(i)
KL

⎤⎥⎥⎥⎥⎦ ∈ R
K×L.

Define a partitioning of Xext as follows: X�
ext =:

[
X1 · · · Xn

]
, where Xj ∈ R

d×L.
Then Γ has the block-banded Toeplitz structure (3.1) with s = n − 1 and with

Γk =

n−k∑
j=1

XjX
�
j+k, where Xk := IK ⊗Xk.(3.4)

Proof. Define the residual R :=S(Δp)Xext and the partitioning R�=:
[
R1 · · ·Rm

]
,

where R1 ∈ R
d×K . Let ΔC := S(Δp), with blocks ΔCi. We have

S(p− Δp)Xext = 0 ⇐⇒ S(Δp)Xext = S(p)Xext

⇐⇒

⎡⎢⎢⎢⎣
X1 X2 · · · Xn

X1 X2 · · · Xn

. . .
. . .

. . .

X1 X2 · · · Xn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ΔC�
1

ΔC�
2

...
ΔC�

m+n−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
R�

1

R�
2
...

R�
m

⎤⎥⎥⎥⎦

⇐⇒

⎡⎢⎢⎢⎣
X1 X2 · · · Xn

X1 X2 · · · Xn

. . .
. . .

. . .

X1 X2 · · · Xn

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

G(X)

⎡⎢⎢⎢⎣
vec(ΔC�

1 )
vec(ΔC�

2 )
...

vec(ΔC�
m+n−1)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Δp

=

⎡⎢⎢⎢⎣
vec(R�

1 )
vec(R�

2 )
...

vec(R�
m)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

r(X)

.

Therefore, Γ = GG� has the structure (3.1), with Γk’s given by (3.4).
The derivation of the Γ matrix for an STLS problem with block-Toeplitz data

matrix is analogous to the one for an STLS problem with block-Hankel data matrix.
We state the result in the next lemma.

Lemma 3.5. Let

S(p) :=

⎡⎢⎢⎢⎣
Cn Cn−1 · · · C1

Cn+1 Cn · · · C2

...
...

...
Cm+n−1 Cm+n−2 · · · Cm

⎤⎥⎥⎥⎦ ∈ R
m×(n+d),
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with the blocks Ci defined as in Lemma 3.4. Then Γ has the block-banded Toeplitz
structure (3.1) with s = n − 1 and with

Γk =

n∑
j=k+1

XjX
�
j−k.(3.5)

Proof. Following the same derivation as in the proof of Lemma 3.4, we find that

G =

⎡⎢⎢⎢⎣
Xn Xn−1 · · · X1

Xn Xn−1 · · · X1

. . .
. . .

. . .

Xn Xn−1 · · · X1

⎤⎥⎥⎥⎦.
Therefore, Γ = GG� has the structure (3.1), with Γk’s given by (3.5).

Proof of Theorem 3.1. Lemmas 3.2–3.5 show that the weight matrix Γ for the origi-
nal problem has the block-banded Toeplitz structure (3.1) with s = maxl=1,...,q(nl−1),
where nl is the number of block columns in the lth block of the data matrix.

Apart from revealing the structure of Γ, the proof of Theorem 3.1 gives an algo-
rithm for the construction of the blocks Γ0, . . . , Γs that define Γ:

Γk =

q∑
l=1

Γ
(l)
k , where Γ

(l)
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑nl

j=k+1 X
(l)
j X

(l)�
j−k if C(l) is block-Toeplitz,∑nl−k

j=1 X
(l)
j X

(l)�
j+k if C(l) is block-Hankel,

0dK if C(l) is exact, or

δkIK ⊗ (X
(l)�
ext X

(l)
ext) if C(l) is unstructured,

(3.6)

where δ is the Kronecker delta function: δ0 = 1 and δk = 0 for k �= 0.
Corollary 3.6 (positive definiteness of the weight matrix Γ). Assume that the

structure of S is given by (2.6) with the block C(q) being block-Toeplitz, block-Hankel,
or unstructured and having at least d columns. Then the matrix Γ(X) is positive
definite for all X ∈ R

n×d.
Proof. We will show that Γ(q)(X) > 0 for all X ∈ R

n×d. From (3.2), it follows
that Γ has the same property. By the assumption col dim(C(q)) ≥ d, it follows that

X
(q)
ext = [ ∗

−Id ], where the ∗ denotes a block (possibly empty) depending on X. In the

unstructured case, Γ(q) = Im ⊗ (X
(q)�
ext X

(q)
ext); see (3.6). But rank(X

(q)�
ext X

(q)
ext) = d,

so that Γ(q) is nonsingular. In the block-Hankel/Toeplitz case, G(q) is block-Toeplitz
and block-banded; see Lemmas 3.4 and 3.5. One can verify by inspection that in-
dependent of X, G(q)(X) has full row rank due to its row echelon form. Then
Γ(q) = G(q)G(q)� > 0.

The positive definiteness of Γ is studied in a statistical setting in [10, sect. 4],
where more general conditions are given. The restriction of (2.6) that ensures Γ > 0
is fairly minor, so that in what follows we will consider STLS problems of this type
and replace the pseudoinverse in (2.5) with the inverse.

In the next section, we give an interpretation of Theorem 3.1 from a statistical
point of view, and in section 5 we consider in more detail the algorithmic side of the
problem.

4. Stochastic interpretation. Our work on the STLS problem has its origin in
the field of estimation theory. A linear multivariate errors-in-variables (EIV) model
is defined as follows:

AX ≈ B, where A = Ā + Ã, B = B̄ + B̃, and ĀX̄ = B̄.(4.1)



BLOCK-TOEPLITZ/HANKEL TOTAL LEAST SQUARES 1091

The observations A and B are obtained from (nonstochastic) true values Ā and B̄
with measurement errors Ã and B̃ that are zero mean random matrices. Define the
extended matrix C̃ :=

[
Ã B̃

]
and the vector c̃ := vec(C̃�) of the measurement

errors. It is well known (see [25, Chap. 8]) that the TLS problem (1.1) provides a
consistent estimator for the true value of the parameter X̄ in the EIV model (4.1)
if cov(c̃) = σ2I (and additional technical conditions are satisfied). If, in addition to
cov(c̃) = σ2I, c̃ is normally distributed, i.e., c̃ ∼ N(0, σ2I), then the solution X̂tls of
the TLS problem is the maximum likelihood estimate of X̄.

The EIV model (4.1) is called the structured errors-in-variables model if the ob-
served data C and the true value C̄ :=

[
Ā B̄

]
have a structure defined by a func-

tion S. Therefore,

C = S(p) and C̄ = S(p̄),

where p̄ ∈ R
np is a (nonstochastic) true value of the parameter p. As a consequence

the matrix of measurement errors is also structured. Let S be affine (2.2). Then

C̃ =

np∑
i=1

Sip̃i and p = p̄ + p̃,

where the random vector p̃ represents the measurement error on the structure pa-
rameter p̄. In [10], it is proven that the STLS problem (2.1) provides a consistent
estimator for the true value of the parameter X̄ if cov(p̃) = σ2I (and additional
technical conditions are satisfied). If p̃ ∼ N(0, σ2I), then a solution X̂ of the STLS
problem is a maximum likelihood estimate of X̄.

Let r̃(X) := vec
(
S(p̃)Xext

)
be the random part of the residual r. In the stochastic

setting, the weight matrix Γ is up to the scale factor σ2 equal to the covariance
matrix Vr̃ := cov(r̃). Indeed, r̃ = Gp̃, so that

Vr̃ := E r̃r̃� = GE (p̃p̃�)G� = σ2GG� = σ2Γ.

Next we show that the structure of Γ is in a one-to-one correspondence with
the structure of Vc̃ := cov(c̃). Let Γij ∈ R

dK×dK be the (i, j)th block of Γ and
let Vc̃,ij ∈ R

(n+d)K×(n+d)K be the (i, j)th block of Vc̃. Define also the following
partitionings of the vectors r̃ and c̃:

r̃ =:

⎡⎢⎣ r̃1

...
r̃m

⎤⎥⎦ , r̃i ∈ R
dK and c̃ =:

⎡⎢⎣ c̃1

...
c̃m

⎤⎥⎦ , c̃i ∈ R
(n+d)K ,

where m := m/K. Using ri = Xextci, where Xext := (IK ⊗X�
ext), we have

σ2Γij = E r̃ir̃
�
j = XextE (c̃ic̃

�
j )X�

ext = XextVc̃,ijX
�
ext.(4.2)

The one-to-one relation between the structures of Γ and Vc̃ allows us to relate the
structural properties of Γ, established in Theorem 3.1, with statistical properties of
the measurement errors. Define stationarity and s-dependence of a centered sequence
of random vectors c̃ := {c̃1, c̃2, . . . }, c̃i ∈ R

(n+d)K as follows:
• c̃ is stationary if the covariance matrix Vc̃ is block-Toeplitz with block size

(n + d)K × (n + d)K.
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• c̃ is s-dependent if the covariance matrix Vc̃ is block-banded with block size
(n + d)K × (n + d)K and block bandwidth 2s + 1.

The sequence of measurement errors c̃ being stationary and s-dependent corresponds
to Γ being block-Toeplitz and block-banded.

The statistical setting gives an insight into the relation between the structure
of the weight matrix Γ and the structure of the data matrix C. It can be verified
that the structure specification (2.6) implies stationarity and s-dependence for c̃. This
indicates an alternative (statistical) proof of Theorem 3.1; see the technical report [14].

The blocks of Γ are quadratic functions of X, Γij(X) = XextWc̃,ijX
�
ext, where

Wc̃,ij := Vc̃,ij/σ
2; see (4.2). Moreover, by Theorem 3.1, we have that under assump-

tion (2.6), Wc̃,ij = Wc̃,|i−j| for certain matrices Wc̃,k, k = 1, . . . ,m, and Wc̃,ij = 0 for
|i− j| > s, where s is defined in Theorem 3.1. Therefore,

Γk(X) = XextWc̃,kX
�
ext for k = 0, 1, . . . , s, where Wc̃,k :=

1

σ2
Vc̃,k.

In (3.6) we show how the matrices {Γk}sk=0 can be determined from the structure
specification (2.6). Similar expressions can be written for the matrices {Wc̃,k}sk=0.

In the computational algorithm described in section 5, we use the partitioning of
the matrix Γ into blocks of size d × d. Let Γij ∈ R

d×d be the (i, j)th block of Γ and
let Vc̃,ij ∈ R

(n+d)×(n+d) be the (i, j)th block of Vc̃. Define the following partitionings
of the vectors r̃ and c̃:

r̃ =:

⎡⎢⎣ r̃1
...
r̃m

⎤⎥⎦ , ri ∈ R
d and c̃ =:

⎡⎢⎣ c̃1
...
c̃m

⎤⎥⎦ , ci ∈ R
n+d.

Using ri = X�
extci, we have

Γij =
1

σ2
E r̃ir̃

�
j =

1

σ2
X�

extE (c̃ic̃
�
j )Xext =

1

σ2
X�

extVc̃,ijXext =: X�
extWc̃,ijXext.

5. Efficient cost function and first derivative evaluation. We consider an
efficient numerical method for solving the STLS problem (2.1) by applying standard
local optimization algorithms to the equivalent problem (2.5). With this approach,
the main computational effort is in the cost function and its first derivative evaluation.

First, we describe the evaluation of the cost function: given X, compute f0(X).
For given X, and with {Γk}sk=0 constructed as described in the proof of Theo-
rem 3.1, the weight matrix Γ(X) is specified. Then from the solution of the sys-
tem Γ(X)yr(X) = r(X), the cost function is found as f0(X) = r�(X)yr(X).

The properties of Γ(X) can be exploited in the solution of the system Γyr = r.
The subroutine MB02GD from the SLICOT library [2] exploits both the block-Toeplitz
and the banded structure to compute a Cholesky factor of Γ in O((dK)2sm) flops.
In combination with the LAPACK subroutine DPBTRS that solves block-banded tri-
angular systems of equations, the cost function is evaluated in O(m) flops. Thus an
algorithm for local optimization that uses only cost function evaluations has com-
putational complexity O(m) flops per iteration, because the computations needed
internally for the optimization algorithm do not depend on m.

Next, we describe the evaluation of the derivative. The derivative of the cost
function f0 is (see the appendix)

f ′
0(X) = 2

m∑
i,j=1

ajr
�
i (X)Mij(X) − 2

m∑
i,j=1

[
I 0

]
Wc̃,ij

[
X
−I

]
Nji(X),(5.1)
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where A� =:
[
a1 · · · am

]
, with ai ∈ R

n,

M(X) := Γ−1(X), N(X) := Γ−1(X)r(X)r�(X)Γ−1(X),

and Mij ∈ R
d×d, Nij ∈ R

d×d are the (i, j)th blocks of M and N , respectively.
Consider the two partitionings of yr ∈ R

md,

yr =:

⎡⎢⎣ yr,1
...

yr,m

⎤⎥⎦ , yr,i ∈ R
d and yr =:

⎡⎢⎣yr,1

...
yr,m

⎤⎥⎦ , yr,i ∈ R
dK ,(5.2)

where m := m/K. The first sum in (5.1) becomes

m∑
i,j=1

ajr
�
i Mij = A�Yr, where Y �

r :=
[
yr,1 · · · yr,m

]
.(5.3)

Define the sequence of matrices

Nk :=

m−k∑
i=1

yr,i+ky
�
r,i, Nk = N�

−k, k = 0, . . . , s.

The second sum in (5.1) can be written as

m∑
i,j=1

[
I 0

]
Wc̃,ij

[
X
−I

]
Nji =

s∑
k=−s

K∑
i,j=1

(Wã,k,ijX −Wãb̃,k,ij)N
�
k,ij ,

where Wc̃,k,ij ∈ R
(n+d)×(n+d) is the (i, j)th block of Wc̃,k ∈ R

K(n+d)×K(n+d), Wã,k,ij ∈
R

n×n and Wãb̃,k,ij ∈ R
n×d are defined as blocks of Wc̃,k,ij as

Wc̃,k,ij =:

[
Wã,k,ij Wãb̃,k,ij

Wb̃ã,k,ij Wb̃,k,ij

]
,

and Nk,ij ∈ R
d×d is the (i, j)th block of Nk ∈ R

dK×dK .
Thus the evaluation of the derivative f ′

0(X) uses the solution of Γyr = r, already
computed for the cost function evaluation and additional operations of O(m) flops.
The steps described above are summarized in Algorithm 1.

Algorithm 1. Cost function and first derivative evaluation.

1: Input: A, B, X, {Wc̃,k}sk=0.
2: Γk = (IK ⊗X�

ext)Wc̃,k(IK ⊗X�
ext)

� for k = 0, 1, . . . , s,
3: r = vec

(
(AX −B)�

)
,

4: solve (via MB02GD and DPBTRS) Γyr = r, where Γ is given in (3.1),
5: f0 = r�yr.
6: If only the cost function evaluation is required, output f0 and stop.
7: Nk =

∑m−k
i=1 yr,i+ky

�
r,i for k = 0, 1, . . . , s, where yi is defined in (5.2).

8: f ′
0 = 2A�Yr − 2

∑s
k=−s

∑K
i,j=1(Wã,k,ijX − Wãb̃,k,ij)N

�
k,ij , where Yr is defined

in (5.3).
9: Output f0, f

′
0 and stop.
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The flops per step for Algorithm 1 are as follows:

2. (n + d)(n + 2d)dK3.
3. m(n + 1)d.
4. msd2K2.
5. md .
7. msd2K − s(s + 1)d2K2/2.
8. mnd + (2s + 1)(nd + n + 1)dK2.

Thus in total O(md(sdK2 + n) + n2dK3 + 3nd2K3 + 2d3K3 + 2snd2K2) flops are
required for cost function and first derivative evaluation. Note that the flop counts
depend on the structure through s.

Using the computation of the cost function and its first derivative, as outlined
above, we can apply the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-
Newton method. A more efficient alternative, however, is to apply a nonlinear least
squares optimization algorithm, such as the Levenberg–Marquardt algorithm. Let
Γ = U�U be the Cholesky factorization of Γ. Then f = F�F , with F := U−1r.
(Note that the evaluation of F (X) is cheaper than that of f(X).) We do not know
an analytic expression for the Jacobian matrix J(X) = [∂Fi/∂xj ], but instead we use
the so-called pseudo-Jacobian J+ proposed in [9]. The evaluation of J+ can be done
efficiently, using the approach described above for f ′(X).

Moreover, by using the nonlinear least squares approach and the pseudo-Jacobian
J+, we have as a byproduct of the optimization algorithm an estimate of the covariance
matrix Vx̂ = E

(
vec(X̂)vec�(X̂)

)
. As shown in [19, Chap. 17.4.7, eqns. (17)–(35)],

Vx̂ ≈
(
J�

+ (X̂)J+(X̂)
)−1

. Using Vx̂, we can compute statistical confidence bounds for

the estimate X̂.

6. Applications and simulation examples. Under assumption (2.6), the
specification of S is given by K and the array D ∈ {(T, H, U, E) × N × N}q that de-
scribes the structure of the blocks {C(l)}ql=1; Dl specifies the block C(l) by giving its
type Dl(1) (T = block-Toeplitz, H = block-Hankel, U = unstructured, and E = exact),
the number of columns nl = Dl(2), and, for block-Toeplitz/Hankel blocks, the column
dimension Dl(3) of the block. The following well-known problems are special cases of
the block-Toeplitz/Hankel STLS problem of this paper for particular choices of the
structure description D. (If not specified, K and the third element of Dl are equal
to one.)

1. Least squares problem: AX ≈ B, A ∈ R
m×n exact, B ∈ R

m×d noisy and
unstructured is achieved by D = [[E n], [U d]].

2. TLS problem: AX ≈ B, C = [A B] ∈ R
m×(n+d) noisy and unstructured is

achieved by D = [U n + d].
3. Data least squares problem [3]: AX ≈ B, A ∈ R

m×n noisy and unstructured,
and B ∈ R

m×d exact is achieved by D = [[U n], [E d]].
4. Mixed LS-TLS problem [25, sect. 3.5]: AX ≈ B, A = [Anoisy Aexact], Anoisy ∈

R
m×n1 and B ∈ R

m×d noisy and unstructured, Aexact ∈ R
m×n2 exact is achieved by

D = [[U n1], [E n2], [U d]].
5. Hankel low-rank approximation problem [4, sect. 4.5], [21]:

min
Δp

‖Δp‖2 subject to H(p− Δp) has given rank n,(6.1)

where H is a mapping from the parameter space R
np to the set of the m× (n + d)

block-Hankel matrices, with block size ny ×nu. If the rank constraint is expressed as
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H(p̂)
[

X
−I

]
= 0, with X ∈ R

n×d an additional variable, then (6.1) becomes an STLS
problem with K = ny and D = {[H n + d nu]}.

6. Deconvolution problem: For a description of the problem and its formulation
as an STLS problem, see [17]. In [17] a finite impulse response (FIR) filter identi-
fication problem is considered, which is an application of deconvolution for system
identification. The structure in this case is D = [[T n], [U 1]], where n is the number
of lags of the FIR filter.

7. Transfer function estimation: For a description of the problem and its for-
mulation as an STLS problem, see [4, sect. 4.6]. The structure arising in this problem
is D = [[H nb + 1], [H na + 1]], where nb is the order of the numerator and na is the
order of the denominator of the estimated transfer function.

The last three problems have system theoretic interpretation—the Hankel–low-
rank approximation problem is a noisy realization problem [5] or alternatively a model
reduction problem (see section 6.2), and the deconvolution and the transfer function
estimation problems are system identification problems (see section 6.1). For multi-
input, multi-output (MIMO) systems, these problems result in block-Toeplitz/Hankel
structured matrices.

Next we show simulation examples for the system identification and model reduc-
tion applications. They aim to illustrate the applicability of the derived algorithm for
real-life problems. More details on the application of STLS for these problems and
more realistic identification examples can be found in [16].

6.1. Improvement of the subspace identification estimate. Maximum
likelihood SISO transfer function identification from noisy input/output data can
be formulated as an STLS problem with a data matrix composed of two Hankel or
Toeplitz structured blocks next to each other; see [4, sect. 4.6]. The STLS method,
however, needs a good initial approximation. On the other hand, the popular subspace
identification methods [26] do not need initial approximation but do not minimize a
particular cost function. As a result, in general, they are statistically not as accurate
as the methods based on the maximum likelihood principle. A natural idea is to use
the subspace method estimate, on a second stage of the estimation problem, as an
initial approximation for the STLS method. The latter is expected to reduce the
estimation error.

We show a simulation example to illustrate the idea. Consider the linear time-
invariant (LTI) system with a transfer function

H̄(z) = 0.151 · 1 + 0.9z + 0.49z2 + 0.145z3

1 − 1.2z + 0.81z2 − 0.27z3
.

This is the “true model” that we aim to identify. Let (ū(t), ȳ(t))mt=1 be an input/output
trajectory of the system, where ū is a zero mean, white process with unit variance.
The data available for the identification are (u(t), y(t))mt=1, where u = ū+ ũ, y = ȳ+ ỹ,
and ũ, ỹ are zero mean, normal, white, measurement noise, with variance σ2 = 0.052.
Assuming that the exact system order is known, we apply the state space algorithm
N4SID [26]. The obtained estimate is used as an initial approximation for the STLS
algorithm.

Let vec par be an operator that stacks the parameters of a transfer function, i.e.,
the coefficients of the numerator and denominator, in a vector. We define the average
relative error of estimation by

ēpar =
1

N

N∑
k=1

‖vec par(H̄) − vec par(Ĥ(k))‖2

‖vec par(H̄)‖2
.
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Here Ĥ(k) denotes the identified transfer function in the kth repetition of the ex-
periment; N = 100 repetitions of the experiment with different measurement noise
realizations are performed. Figure 6.1 shows the average relative errors ēpar for the
subspace method and for the STLS-based maximum likelihood method as a function
of the time horizon m. The example shows that, for large sample sizes, the two ap-
proaches give close estimates and, for small sample sizes, the subspace estimate can
be improved by the STLS method.

40 50 60 70 80 90 100

0.1

0.2

0.3

 

 

m

ē p
a
r

subspace

STLS

Fig. 6.1. Results for the system identification example: Average relative error of estimation
for the subspace and STLS methods.

6.2. MIMO system model reduction. Finite horizon 2-norm optimal model
reduction can be formulated as an STLS problem with a block-Hankel structured data
matrix. On the other hand, balanced model reduction [18], like subspace identifica-
tion, does not require initial approximation but also does not minimize a particular
cost function. Again an improvement can be expected over the balanced model reduc-
tion method when the STLS method is used on a second stage of the approximation.

To illustrate the idea, consider the following example. A 10th order, 2-input,
1-output random system has to be approximated by an rth order system, where
r = 2, 4, 6, 8. First we apply balanced reduction. The obtained solution is used as
an initial approximation for the STLS method. Table 6.1 shows the average relative
H2-errors of approximation over N = 100 repetitions:

ēH2
=

1

N

N∑
k=1

‖H̄ − Ĥ(k)‖H2

‖H̄‖H2

.

The example confirms that the STLS method can be used to improve the result of
the balanced model reduction method.

Table 6.1

Results for the model reduction example: Average relative error of estimation ēH2 for balanced
model reduction (BMR) and STLS.

Method r = 2 r = 4 r = 6 r = 8

BMR 0.1062122 0.0288455 0.0012585 0.0000259
STLS 0.1034344 0.0276010 0.0012433 0.0000229
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7. Conclusions. We considered an STLS problem with the structure of the
data matrix, specified blockwise. Each of the blocks can be block-Toeplitz/Hankel
structured, unstructured, or exact. It was shown that such a formulation is flexible and
covers as special cases many previously studied structured and unstructured matrix
approximation problems.

The numerical solution method of [13] was extended to the block-Toeplitz/Hankel
case. The approach is based on an equivalent unconstrained optimization problem:
minX r�(X)Γ−1(X)r(X). We proved that under assumption (2.6) about the struc-
ture of the data matrix, the weight matrix Γ is block-Toeplitz and block-banded.
These properties were used for cost function and first derivative evaluation with com-
putational cost linear in the sample size.

The extension to block-Toeplitz/Hankel structured matrices is motivated by iden-
tification and model reduction problems for MIMO dynamical systems. Useful further
extensions are (i) to consider a weighted quadratic cost function Δp�V Δp, with V > 0
diagonal, and (ii) regularized STLS problems, where the cost function is augmented
with the regularization term vec�(X)Qvec(X). These extensions are still computable
in O(m) flops per iteration.

Appendix. Derivation of the first derivative of the cost function f0.
Denote by D the differential operator. It acts on a differentiable function f0 : U → R,
where U is an open set in R

n×d and gives as a result another function, the differential
of f0, D(f0) : U ×R

n×d → R. The differential D(f0) is linear in its second argument,
i.e.,

D(f0) := df0(X,H) = trace
(
f ′
0(X)H�),(A.1)

and has the property

f0(X + H) = f0(X) + df0(X,H) + o(‖H‖F)

for all X ∈ U and for all H ∈ R
n×d. (The notation o(‖H‖F) has the usual meaning:

g(H) = o(‖H‖F) if and only if lim‖H‖F→0 g(H)/‖H‖F = 0.) The function f ′
0 : U →

R
n×l is the derivative of f0. We compute it by deriving the differential D(f0) and

representing it in the form (A.1), from which f ′
0(X) is extracted.

The differential of the cost function f0(X) = r�(X)Γ−1(X)r(X) is (using the
rule for differentiation of an inverse matrix)

df0(X,H) = 2r�Γ−1

⎡⎢⎣H�a1

...
H�am

⎤⎥⎦− r�Γ−1
(
dΓ(X,H)

)
Γ−1r.

The differential of the weight matrix

Γ = Vr̃ = E r̃r̃� = E

⎡⎢⎣ X�ã1 − b̃1
...

X�ãm − b̃m

⎤⎥⎦ [
ã�1 X − b̃�1 · · · ã�mX − b̃�m

]
,

where Ã� =:
[
ã1 · · · am

]
, ãi ∈ R

n, and B̃� =:
[
b̃1 · · · bm

]
, b̃i ∈ R

d, is

dΓ(X,H) = E

⎡⎢⎣H�ã1

...
H�ãm

⎤⎥⎦ r̃� + E r̃
[
ã�1 H · · · ã�mH

]
.(A.2)
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With Mij ∈ R
d×d denoting the (i, j)th block of Γ−1,

1

2
df0(X,H) =

m∑
i,j=1

r�i MijH
�aj −

m∑
i,j,k,l=1

r�l MliH
�E ãic̃

�
j XextMjlrl

= trace
(( m∑

i,j=1

ajr
�
i Mij −

m∑
i,j,k,l=1

[
I 0

]
Vc̃,ijXextMjlrlr

�
l Mli

)
H�

)
,

so that

1

2
f ′
0(X) =

m∑
i,j=1

ajr
�
i Mij −

m∑
i,j=1

[
I 0

]
Vc̃,ijXextNji,

where Nji(X) :=
∑m

l=1 Mjlrl ·
∑m

l=1 r
�
l Mli.
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Abstract. In this paper, we first consider the existence of and the general expression for the
solution to the constrained inverse eigenproblem defined as follows: given a set of complex n-vectors
{xi}mi=1 and a set of complex numbers {λi}mi=1, and an s-by-s real matrix C0, find an n-by-n real
centrosymmetric matrix C such that the s-by-s leading principal submatrix of C is C0, and {xi}mi=1
and {λi}mi=1 are the eigenvectors and eigenvalues of C, respectively. We are then concerned with
the best approximation problem for the constrained inverse problem whose solution set is nonempty.
That is, given an arbitrary real n-by-n matrix C̃, find a matrix C which is the solution to the
constrained inverse problem such that the distance between C and C̃ is minimized in the Frobenius
norm. We give an explicit solution and a numerical algorithm to the best approximation problem.
Some illustrative experiments are also presented.
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1. Introduction. Let En be the n-by-n backward identity matrix, i.e., En has
1 on the antidiagonal and zeros elsewhere. An n-by-n real matrix C is said to be
centrosymmetric if C = EnCEn. The centrosymmetric matrices have practical ap-
plications in many areas such as pattern recognition [10], the numerical solution of
certain differential equations [1, 4], Markov processes [22], and various physical and
engineering problems [11, 12]. The symmetric Toeplitz matrices, an important sub-
class of the class of symmetric centrosymmetric matrices, appear naturally in digital
signal processing applications and other areas [13].

The inverse eigenproblems play an important role in many applications such as
control theory [23], the design of Hopfield neural networks [8, 16], vibration theory
[20], and structure mechanics and molecular spectroscopy [14]. For recent progress,
see, for instance, [7, 25]. The inverse eigenproblem for centrosymmetric matrices
has been discussed by Bai and R. Chan [2]. However, the inverse eigenproblem for
centrosymmetric matrices with a submatrix constraint has not been discussed. In this
paper, we will consider two related problems. The first problem is the constrained
inverse eigenproblem for centrosymmetric matrices.

Problem I. Given the eigenpairs X = [x1,x2, . . . ,xm] ∈ C
n×m, Λ = diag(λ1, . . . ,

λm) ∈ C
m×m, and a matrix C0 ∈ R

s×s, find a centrosymmetric matrix C in R
n×n

such that CX = XΛ and the s-by-s leading principal submatrix of C is C0.

The prototype of this problem initially arose in the design of Hopfield neural net-
works [8, 16]. It also occurs in the design of vibration in mechanism, civil engineering,
and aviation [5]. The problem has been studied for bisymmetric matrices in [18]. The

∗Received by the editors September 2, 2003; accepted for publication (in revised form) by P. Van
Dooren June 18, 2004; published electronically May 6, 2005. This research was partially supported
by the Hong Kong Research Grant Council grants CUHK4243/01P and CUHK DAG 2060220.

http://www.siam.org/journals/simax/26-4/43418.html
†Department of Mathematics, Chinese University of Hong Kong, Shatin, NT, Hong Kong, China

(zjbai@math.cuhk.edu.hk). Current address: Department of Mathematics, National University of
Singapore, 2 Science Drive 2, Singapore 117543 (matbzj@nus.edu.sg).

1100



THE INVERSE PROBLEM OF CENTROSYMMETRIC MATRICES 1101

second problem we consider in this paper is the problem of best approximation.

Problem II. Let LS be the solution set of Problem I. Given a matrix C̃ ∈ R
n×n,

find C∗ ∈ LS such that

‖C∗ − C̃‖ = min
C∈LS

‖C − C̃‖,

where ‖ · ‖ is the Frobenius norm.

The best approximation problem arises frequently in experimental design; see, for
instance, [17, p. 123]. Here the matrix C̃ may be a matrix obtained from experiments,
but it may not satisfy the structural requirement (centrosymmetric or the submatrix
constraint) and/or spectral requirement (having eigenpairs X and Λ). The best esti-
mate C∗ is the matrix that satisfies both requirements and is the best approximation
of C̃ in the Frobenius norm. In addition, because there are fast algorithms for solving
various kinds of centrosymmetric matrices [15], the best approximate C∗ of C̃ can
also be used as a preconditioner in the preconditioned conjugate gradient method for
solving linear systems with coefficient matrix C̃; see, for instance, [3].

We remark that when s = 0, Problem I is reduced to the inverse eigenproblem for
centrosymmetric matrices discussed by Bai and R. Chan [2]. When s = n, C∗ = C0

is the best approximation of the matrix C̃ to Problem II. In this paper, we consider
the general case when 0 < s < n.

In this paper, we use the following notations. We denote the identity matrix of
order n by In. Let rank(A) be the rank of a matrix A. Let A+ and A(1 : s) denote the
Moore–Penrose generalized inverse and the leading principal submatrix of a matrix
A, respectively. R(A) and N (A) denote the column space and the null space of A,
respectively.

The paper is organized as follows. In section 2 we first review the structure of
centrosymmetric matrices and give some useful lemmas. In section 3 we provide the
solvability conditions for and the general solutions of Problem I. In section 4 we show
the existence and uniqueness of the solution to Problem II when the solution set of
Problem I is nonempty, derive a formula for the best approximation of Problem II,
and then propose a numerical algorithm for computing the minimizer. In section 5 an
experiment is presented to illustrate our results. Finally, in section 6, we give some
conclusions.

2. Preliminary lemmas. In this section, we will recall the properties of cen-
trosymmetric matrices and give some preliminary lemmas.

Let k = [n/2] denote the largest integer number that is not greater than n/2.
When n = 2k, we define

K =
1√
2

(
Ik Ik
Ek −Ek

)
,

and when n = 2k + 1, let

K =
1√
2

⎛⎝ Ik 0 Ik
0

√
2 0

Ek 0 −Ek

⎞⎠ .

Clearly, K is orthogonal. Then we have the following splitting of centrosymmetric
matrices into smaller submatrices using K; see, for example, [9, 2].
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Lemma 1 (see [9]). Denote the set of all n-by-n real centrosymmetric matrices
by Cn. Then any C ∈ C2k can be written as

C =

(
A BEk

EkB EkAEk

)
= K

(
A + B 0

0 A−B

)
KT , A,B ∈ R

k×k.

Any C ∈ C2k+1 can be written as

C =

⎛⎝ A p BEk

qT c qTEk

EkB Ekp EkAEk

⎞⎠ = K

⎛⎝A + B
√

2p 0√
2qT c 0
0 0 A−B

⎞⎠KT ,

where A,B ∈ R
k×k, p,q ∈ R

k, c ∈ R. Moreover, for all n = 2k and 2k + 1, any
C ∈ Cn is of the form

C = K

(
F1 0
0 F2

)
KT , F1 ∈ R

(n−k)×(n−k), F2 ∈ R
k×k.(1)

Lemma 2. Suppose that C ∈ Cn and C0 = C(1 : s). If s < n− k, then

F1(1 : s) + F2(1 : s) = 2C0,(2)

where F1 and F2 are the same as (1), and if s ≥ n− k, then we obtain

C =

⎛⎝ C11 C12 HEn−s

C21 C22 E2s−nC21En−s

En−sH En−sC12E2s−n En−sA11En−s

⎞⎠ ,(3)

where H ∈ R
(n−s)×(n−s) and C0 = C(1 : s) = (C11

C21

C12

C22
) with C11 ∈ R

(n−s)×(n−s) and
C22 ∈ C2s−n.

Proof. If s < n− k, we get from Lemma 1 that

C(1 : s) = A(1 : s)

and

F1(1 : s) + F2(1 : s) = (A + B)(1 : s) + (A−B)(1 : s) = 2A(1 : s).

Thus (2) holds.
If s ≥ n−k, then since C(1 : s) = (C11

C21

C12

C22
), we can partition C into the following

form:

C =

⎛⎝C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞⎠ ,(4)

where C11 ∈ R
(n−s)×(n−s), C22 ∈ R

(2s−n)×(2s−n), C33 ∈ R
(n−s)×(n−s). By (4)

and comparing the two sides of C = EnCEn, we obtain C13 = En−sC31En−s,
C22 = E2s−nC22E2s−n, C23 = E2s−nC21En−s, C32 = En−sC12E2s−n, and C33 =
En−sC11En−s. Let H = C13En−s; we get C13 = HEn−s and C31 = En−sH. Substi-
tuting C13, C23, C31, C32, and C33 into (4) and noticing that C22 = E2s−nC22E2s−n,
we have (3).

In order to investigate the solvability of Problem I, we need the following lemmas.
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Lemma 3 (see [21, Lemma 1.3]). Given X,G ∈ R
n×m with rank(X) = l. Then

Y X = G has a solution Y ∈ R
n×n if and only if GX+X = G. In this case the general

solution is

Y = GX+ + ZUT
2 ,

where U2 ∈ R
n×(n−l), UT

2 U2 = In−l, R(U2) = N (XT ), and Z ∈ R
n×(n−l) is arbi-

trary.
Lemma 4 (see [24, Lemma 3.1]). Given any E,F ∈ R

n×n. Then there exists a
unique Y ∗ ∈ R

n×n such that

‖Y ∗ − E‖2 + ‖Y ∗ − F‖2 = min
Y ∈Rn×n

{‖Y − E‖2 + ‖Y − F‖2}

and

Y ∗ =
E + F

2
.

Lemma 5. Given any E,F ∈ R
u×v, D = diag(d1, . . . , dv) > 0 and Θ =

diag(θ1, . . . , θv), where θi = 1/(1 + d2
i ). Then there exists a unique Y ∗ ∈ R

u×v

such that

‖Y ∗ − E‖2 + ‖Y ∗D − F‖2 = min
Y ∈Ru×v

{‖Y − E‖2 + ‖Y D − F‖2}

and

Y ∗ = (E + FD)Θ.

Proof. Let Y = (yij), E = (eij), F = (fij). Since

‖Y − E‖2 + ‖Y D − F‖2 =

u∑
i=1

v∑
j=1

(yij − eij)
2 +

u∑
i=1

v∑
j=1

(yijdj − fij)
2

=

u∑
i=1

v∑
j=1

[y2
ij(1 + d2

j ) − 2yij(eij + fijdj) + e2
ij + f2

ij ]

=

u∑
i=1

v∑
j=1

(1 + d2
j )

⎡⎣(yij −
eij + fijdj

1 + d2
j

)2

+
e2
ij + f2

ij

1 + d2
j

− (eij + fijdj)
2

(1 + d2
j )

2

⎤⎦ .

Thus there exists Y ∈ R
u×v such that ‖Y −E‖2 + ‖Y D−F‖2 = min is equivalent to

yij = (eij + fijdj)/(1 + d2
j ); i.e., Y ∗ = (E + FD)Θ.

From Lemma 5, we can easily see that Lemma 4 is a special case of Lemma 5
where u = v = n, D = In, and Θ = 1/2In.

3. Solvability conditions and general solutions of Problem I. Before we
come to Problem I, we first note the following facts: For a real matrix C ∈ Cn, its
complex eigenvectors and eigenvalues are complex conjugate pairs. If a± b

√
−1 and

x ±
√
−1y are one of its eigenpairs, then we have Cx = ax − by and Cy = ay + bx,

i.e.,

C[x,y] = [x,y]

(
a b
−b a

)
.
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Therefore, without loss of generality, we can assume that X ∈ R
n×m and

Λ = diag(Ψ1,Ψ2, . . . ,Ψl, g1, . . . , gm−2l) ∈ R
m×m,(5)

where Ψi = ( ai

−bi

bi
ai

) with ai, bi, and gi as real numbers.

Theorem 1. Given X ∈ R
n×m and Λ as in (5), and C0 ∈ R

s×s, where s < n−k.
Partition KTX as

KTX =

(
X̃1

X̃2

)
, X̃2 ∈ R

k×m.(6)

Define

M1 = [Is, O1]U2, M2 = [Is, O2]V2,(7)

where U2 ∈ R
(n−k)×(n−k−l1) and V2 ∈ R

k×(k−l2) are column orthonormal, R(U2) =
N (X̃T

1 ), R(V2) = N (X̃T
2 ), l1 = rank(X̃1), l2 = rank(X̃2), and O1 ∈ R

s×(n−k−s)

and O2 ∈ R
s×(k−s) are zero matrices. Suppose that the generalized singular value

decomposition (GSVD) of the matrix pair MT
1 and MT

2 is

MT
1 = PΣ1S

T , MT
2 = QΣ2S

T ,(8)

where S is an s-by-s nonsingular matrix, P ∈ R
(n−k−l1)×(n−k−l1), Q ∈ R

(k−l2)×(k−l2)

are orthogonal, and

Σ1 =

⎛⎜⎝
r t h− r − t s− h

Ir

Γ1 O

O3

⎞⎟⎠, Σ2 =

⎛⎜⎝
r t h− r − t s− h

O4

Γ2 O

Ih−r−t

⎞⎟⎠(9)

with h = rank(M) = rank([M1,M2]), r = h−rank(M2), t = rank(M1)+rank(M2)−h,
O,O3, and O4 as zero matrices of size implied by context, and Γ1 = diag(γ1, γ2, . . . , γt),
Γ2 = diag(δ1, δ2, . . . , δt) with 1 ≥ γt ≥ · · · ≥ γ1 > 0, 0 < δ1 ≤ · · · ≤ δt, γ

2
i + δ2

i = 1
for i = 1, . . . , t. Let

G̃ = 2C0 − [Is, O1]X̃1ΛX̃
+
1 [Is, O1]

T − [Is, O2]X̃2ΛX̃
+
2 [Is, O2]

T(10)

and partition G̃S−T into the following form:

G̃S−T =

⎛⎜⎝
r t h− r − t s− h

r G11 G12 G13 G14

t G21 G22 G23 G24

s− r − t G31 G32 G33 G34

⎞⎟⎠.(11)

Then there exists a matrix C ∈ Cn such that CX = XΛ and C(1 : s) = C0 if and only
if

X̃1ΛX̃
+
1 X̃1 = X̃1Λ, X̃2ΛX̃

+
2 X̃2 = X̃2Λ, and [GT

14, G
T
24, G

T
34] = 0.(12)

In this case, the general solution is given by

C = K

(
X̃1ΛX̃

+
1 + Z1U

T
2 0

0 X̃2ΛX̃
+
2 + Z2V

T
2

)
KT(13)
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with

Z1 =

⎛⎜⎜⎝
r t n− k − l1 − r − t

r G11 X12 X13

t G21 X22 X23

s− r − t G31 X32 X33

n− k − s X41 X42 X43

⎞⎟⎟⎠PT ,

Z2 =

⎛⎜⎜⎝
k − l2 + r − h t h− r − t

r Y11 (G12 −X12Γ1)Γ
−1
2 G13

t Y21 (G22 −X22Γ1)Γ
−1
2 G23

s− r − t Y31 (G32 −X32Γ1)Γ
−1
2 G33

k − s Y41 Y42 Y43

⎞⎟⎟⎠QT ,

where X12, X13, X22, X23, X32, X33, X41, X42, X43, Y11, Y21, Y31, Y41, Y42, and
Y43 are arbitrary matrices.

Proof. By Lemmas 1 and 2, C ∈ Cn is a solution to Problem I if and only if there
exist F1 ∈ R

(n−k)×(n−k) and F2 ∈ R
k×k such that

C = K

(
F1 0
0 F2

)
KT , F1(1 : s) + F2(1 : s) = 2C0(14)

and

K

(
F1 0
0 F2

)
KTX = XΛ.(15)

Using (6), (15) is equivalent to

F1X̃1 = X̃1Λ and F2X̃2 = X̃2Λ.(16)

According to Lemma 3, (16) have solutions if and only if

X̃1ΛX̃
+
1 X̃1 = X̃1Λ, X̃2ΛX̃

+
2 X̃2 = X̃2Λ.

Moreover in this case, the general solution of (16) is given by

F1 = X̃1ΛX̃
+
1 + Z1U

T
2 ,(17)

F2 = X̃2ΛX̃
+
2 + Z2V

T
2 ,(18)

where Z1 ∈ R
(n−k)×(n−k−l1) and Z2 ∈ R

k×(k−l2) are both arbitrary. Putting (17) and
(18) into F1(1 : s) + F2(1 : s) = 2C0, and using the definition of M1,M2, G̃ and the
GSVD of the matrix pair MT

1 and MT
2 , it is easy to show that Z1 and Z2 must satisfy

[Is, O1]Z1PΣ1 + [Is, O2]Z2QΣ2 = G̃S−T .(19)

Partition Z1P and Z2Q into the following form:

Z1P =

⎛⎜⎜⎝
X11 X12 X13

X21 X22 X23

X31 X32 X33

X41 X42 X43

⎞⎟⎟⎠ , Z2Q =

⎛⎜⎜⎝
Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

Y41 Y42 Y43

⎞⎟⎟⎠ .(20)
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Substituting (9), (11), and (20) into (19) yields⎛⎝X11 X12Γ1 + Y12Γ2 Y13 0
X21 X22Γ1 + Y22Γ2 Y23 0
X31 X32Γ1 + Y32Γ2 Y33 0

⎞⎠ =

⎛⎝G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

⎞⎠ .(21)

Thus (21), and hence (19) holds if and only if

[GT
14, G

T
24, G

T
34] = 0,(22)

X11 = G11, X21 = G21, X31 = G31, Y13 = G13, Y23 = G23, Y33 = G33,
(23)

Y12 = (G12 −X12Γ1)Γ
−1
2 , Y22 = (G22 −X22Γ1)Γ

−1
2 , Y32 = (G32 −X32Γ1)Γ

−1
2 .

(24)

Therefore, the solvability conditions for Problem I and the general expression of the
solution of Problem I are obtained by (14), (16)–(18), (20), and (22)–(24).

Theorem 2. Given X ∈ R
n×m and Λ as in (5), and C0 ∈ R

s×s, where s ≥ n−k,
partition C0 and X as

C0 =

(
C11 C12

C21 C22

)
, X =

⎛⎝X1

X2

X3

⎞⎠ ,(25)

where C11 ∈ R
(n−s)×(n−s), C22 ∈ R

(2s−n)×(2s−n), X1, X3 ∈ R
(n−s)×m and X2 ∈

R
(2s−n)×m. Let

U = [X1, En−sX3](26)

and

V = [En−sX3Λ − C12E2s−nX2 − C11En−sX3, X1Λ − C11X1 − C12X2].(27)

Then Problem I is solvable if and only if

V U+U = V, C21X1 + C22X2 + E2s−nC21En−sX3 = X2Λ, C22 ∈ C2s−n.(28)

In this case, the general solution to Problem I can be expressed as

C =

⎛⎝ C11 C12 HEn−s

C21 C22 E2s−nC21En−s

En−sH En−sC12E2s−n En−sC11En−s

⎞⎠ ,(29)

where H = V U+ + WQT
2 , where Q2 ∈ R

(n−s)×(n−s−l3) is orthogonal, R(Q2) =
N (UT ), l3 = rank(U), and W ∈ R

(n−s)×(n−s−l3) is arbitrary.
Proof. By Lemma 2, there exists C ∈ Cn such that CX = XΛ and C0 = C(1 : s)

if and only if there exists H ∈ R
(n−s)×(n−s) such that

C =

⎛⎝ C11 C12 HEn−s

C21 C22 E2s−nC21En−s

En−sH En−sC12E2s−n En−sC11En−s

⎞⎠ , CX = XΛ.
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Equivalently,

C21X1 + C22X2 + E2s−nC21En−sX3 = X2Λ, C22 ∈ C2s−n,

and

HU = V.(30)

From Lemma 3, (30) holds if and only if

V U+U = V,(31)

and when (31) holds, H can be expressed as

H = V U+ + WQT
2 .

Thus Problem I is solvable if and only if the conditions in (28) hold, and the general
solution can be expressed as (29).

4. The solution of Problem II. In this section, we solve Problem II over LS

when LS is nonempty.
Theorem 3. Given X ∈ R

n×m and Λ as in (5), and C0 ∈ R
s×s, where s < n−k,

suppose the solution set LS of Problem I is nonempty. Let

KT C̃K =

(
C̃11 C̃12

C̃21 C̃22

)
,(32)

(C̃11 − X̃1ΛX̃
+
1 )U2P =

⎛⎜⎜⎝
E11 E12 E13

E21 E22 E23

E31 E32 E33

E41 E42 E43

⎞⎟⎟⎠ ,(33)

(C̃22 − X̃2ΛX̃
+
2 )V2Q =

⎛⎜⎜⎝
F11 F12 F13

F21 F22 F23

F31 F32 F33

F41 F42 F43

⎞⎟⎟⎠ ,(34)

where X̃1, X̃2 are the same as (6), the size of matrices C̃11 and C̃22 is the same as F1

and F2 in (14), respectively, and the partition form of (33) and (34) is the same as
(20). Then Problem II has a unique solution and the solution is given by

C∗ = K

(
X̃1ΛX̃

+
1 + Z1U

T
2 0

0 X̃2ΛX̃
+
2 + Z2V

T
2

)
KT ,(35)

where

Z1 =

⎛⎜⎜⎝
G11 X̂12 E13

G21 X̂22 E23

G31 X̂32 E33

E41 E42 E43

⎞⎟⎟⎠PT , Z2 =

⎛⎜⎜⎝
F11 (G12 − X̂12Γ1)Γ

−1
2 G13

F21 (G22 − X̂22Γ1)Γ
−1
2 G23

F31 (G32 − X̂32Γ1)Γ
−1
2 G33

F41 F42 F43

⎞⎟⎟⎠QT .

X̂12 = (G12Γ1Γ
−2
2 + E12 − F12Γ1Γ

−1
2 )Θ,
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X̂22 = (G22Γ1Γ
−2
2 + E22 − F22Γ1Γ

−1
2 )Θ,

X̂32 = (G32Γ1Γ
−2
2 + E32 − F32Γ1Γ

−1
2 )Θ,

Θ = diag(θ1, . . . , θt), θi =
δ2
i

δ2
i + γ2

i

.

Proof. When LS is nonempty, it is easy to verify from (13) that LS is a closed
convex set. Since R

n×n is a uniformly convex Banach space under the Frobenius
norm, there exists a unique solution for Problem II [6, p. 22]. Moreover, because the
Frobenius norm is unitary invariant, Problem II is equivalent to

min
C∈LS

‖KT C̃K −KTCK‖2.(36)

By (13) and (32)–(34), (36) is equivalent to

min
Z1∈R(n−k)×(n−k−l1)

‖X̃1ΛX̃
+
1 +Z1U

T
2 − C̃11‖2 + min

Z2∈Rk×(k−l2)
‖X̃2ΛX̃

+
2 +Z2V

T
2 − C̃22‖2.

Equivalently,

min
Z1∈R(n−k)×(n−k−l1)

‖Z1−(C̃11−X̃1ΛX̃
+
1 )U2‖2+ min

Z2∈Rk×(k−l2)
‖Z2−(C̃22−X̃2ΛX̃

+
2 )V2‖2.

Clearly, the solution is given by X12, X13, X22, X23, X32, X33, X41, X42, X43 and
Y11, Y21, Y31, Y41, Y42, Y43 such that

‖X13 − E13‖ = min, ‖X23 − E23‖ = min, ‖X33 − E33‖ = min,(37)

‖X41 − E41‖ = min, ‖X42 − E42‖ = min, ‖X43 − E43‖ = min,(38)

‖Y11 − F11‖ = min, ‖Y21 − F21‖ = min, ‖Y31 − F31‖ = min,(39)

‖Y41 − F41‖ = min, ‖Y42 − F42‖ = min, ‖Y43 − F43‖ = min,(40)

‖X12 − E12‖2 + ‖X12Γ1Γ
−1
2 − (G12Γ

−1
2 − F12)‖2 = min,(41)

‖X22 − E22‖2 + ‖X22Γ1Γ
−1
2 − (G22Γ

−1
2 − F22)‖2 = min,(42)

‖X32 − E32‖2 + ‖X32Γ1Γ
−1
2 − (G32Γ

−1
2 − F32)‖2 = min .(43)

By (37)–(40), we get

X13 = E13, X23 = E23, X33 = E33, X41 = E41, X42 = E42, X43 = E43,
(44)

Y11 = F11, Y21 = F21, Y31 = F31, Y41 = F41, Y42 = F42, Y42 = F42, Y43 = F43.
(45)
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Applying Lemma 5 to (41)–(43), we obtain

X12 = (G12Γ1Γ
−2
2 + E12 − F12Γ1Γ

−1
2 )Θ, X22 = (G22Γ1Γ

−2
2 + E22 − F22Γ1Γ

−1
2 )Θ,

(46)

and

X32 = (G32Γ1Γ
−2
2 + E32 − F32Γ1Γ

−1
2 )Θ.(47)

By (13) and (44)–(47), we have the unique solution of Problem II given by (35).
Theorem 4. Given X ∈ R

n×m and Λ as in (5), and C0 ∈ R
s×s, where s ≥ n−k.

Suppose the solution set LS of Problem I is nonempty. Let

C̃ =

⎛⎝W11 W12 W13

W21 W22 W23

W31 W32 W33

⎞⎠ ,(48)

where W11 ∈ R
(n−s)×(n−s), W22 ∈ R

(2s−n)×(2s−n), and W33 ∈ R
(n−s)×(n−s). Then

Problem II has a unique solution which can be expressed as

C∗ =

⎛⎝ C11 C12 ĤEn−s

C21 C22 E2s−nC21En−s

En−sĤ En−sC12E2s−n En−sC11En−s

⎞⎠ ,(49)

where

Ĥ = V U+ + ŴQT
2 , Ŵ =

1

2
(W13En−s + En−sW31)Q2.

Proof. As in the proof of Theorem 3, we can show that Problem II has a unique
solution in LS . By (29) and (48), we know that Problem II is equivalent to

min
H∈R(n−s)×(n−s)

(‖HEn−s −W13‖2 + ‖En−sH −W31‖2).

Equivalently,

min
H∈R(n−s)×(n−s)

(‖H −W13En−s‖2 + ‖H − En−sW31‖2).

By Lemma 4, it is in turn equivalent to

min
H∈R(n−s)×(n−s)

∥∥∥∥H − 1

2
(W13En−s + En−sW31)

∥∥∥∥ .
That is,

min
W∈R(n−s)×(n−k−l3)

‖V U+ + WQT
2 − 1

2
(W13En−s + En−sW31)‖.

Since Q2 is orthogonal and U+Q2 = 0, we have

W =
1

2
(W13En−s + En−sW31)Q2.

Therefore, the solution of Problem II can be expressed as (49).
Based on the above discussion, we give the following algorithm for solving Problem

II.
Algorithm I.

Given X = [x1,x2, . . . ,xm] ∈ R
n×m and Λ as in (5), C0 ∈ R

s×s, and C̃ ∈ R
n×n.
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1. Calculate k = [n/2].
2. If s < n− k, then

(a) Compute X̃1 and X̃2 by (6) and then compute X̃+
1 and X̃+

2 .
(b) If X̃1ΛX̃

+
1 X̃1 = X̃1Λ and X̃2ΛX̃

+
2 X̃2 = X̃2Λ, then we continue. Other-

wise we stop.
(c) Calculate M1 and M2 as in (7).
(d) Construct the GSVD of the matrix pair [MT

1 ,MT
2 ] by (8).

(e) Compute G̃ as in (10) and then calculate G̃S−T .
(f) Partition G̃S−T as in (11).
(g) If G14, G24, and G34 are zero matrices, then calculate C∗ as in (35).

Otherwise we stop.
3. Else

(a) Partition X and C0 as in (25), and calculate U and V as in (26) and
(27).

(b) If the conditions of (28) are satisfied, then compute C∗ as in (49). Oth-
erwise we stop.

Now we consider the computational complexity of our algorithm. We first consider
the cost of step 2. For substep (a), since K has only 2 nonzero entries per row,
it requires O(nm) operations to compute X̃1 and X̃2. Then using singular value
decomposition (SVD) to compute X̃+

1 and X̃+
2 requires O(n2m + m3) operations.

Substep (b) obviously requires O(n2m) operations. For substep (c), because U2 and
V2 can be obtained by SVD of X̃1 and X̃2 in substep (a), respectively, it requires
no operations to compute M1 and M2. For substep (d), if we use Paige’s algorithm
[19] to compute the GSVD of the matrix pair [MT

1 ,MT
2 ], then the cost will be of

O(s2(n− l1− l2−s/3)) operations if n− l1− l2 ≥ s (O((n− l1− l2)
2(s−(n− l1− l2)/3))

operations if n−l1−l2 ≤ s). Substep (e) requires O(n2m+s3) operations. Substep (f)
requires no operations. Finally, because of the sparsity of K again, step (g) requires
O(n2(n− k− l1)+n(n− k− l1)

2 +n2(k− l2)+n(k− l2)
2) operations. Thus the total

complexity of step 2 is O(n2(n − l1 − l2) + s2(n − l1 − l2 − s/3) + s3 + n2m + m3)
if n − l1 − l2 ≥ s (O(n2(n − l1 − l2) + s2(s − (n − l1 − l2)/3) + s3 + n2m + m3) if
n− l1 − l2 ≤ s).

Next, we consider the cost of step 3. For substep (a), since En is a backward
identity matrix, it requires O((n−s)2m+(n−s)(2s−n)m) operations to form U and V .
For substep (b), using SVD to compute U+ requires O((n−s)2m+m3) operations. If
we compute V U+U as [V (U+U)], then the cost will only be of O(m2(n−s)) operations.
Thus the cost for substep (b) is O((n− s)2m+m3 +m2(n− s)+ (n− s)3). Therefore,
the total cost of step 3 is O((n−s)3 +(n−s)2m+(n−s)(2s−n)m+m2(n−s)+m3).

From above, we know that the total cost of the algorithm is the cost required by
step 2 if s < n− k or by step 3 if s ≥ n− k. We remark that in practice m � n.

5. Numerical experiments. In this section, we will demonstrate the algorithm
using Matlab.

Example 1. We consider the following Hopfield neural network system:

du

dt
= T−1(−u + Ωf(u)),(50)

where T = diag(τ1, . . . , τn), Ω = [ωij ], and f = [f1(u1), . . . , fn(un)]T with fi(ui) as
squashing functions; see [8] for details.

In this example, we design a neural network such that u∗ is a stable equilibrium,
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with fi(u
∗
i ) = 1/(1 + e−u∗

i ) �= 0. It is known that u∗ is an equilibrium only if

u∗ = Ωf .(51)

It implies that

Ω = TCG−1
d + G−1

d ,(52)

where C satisfies that

CG−1
d f = T−1(u∗ −G−1

d f).(53)

Here, Gd = diag(f
(1)
1 (u∗

1), . . . , f
(1)
n (u∗

n)), where (·)(1) denotes the 1st derivatives.

For any given T , the design problem is reduced to finding a stable matrix C that
maps G−1

d f to T−1(u∗−G−1
d f). Moreover, we know that if T−1(u∗−G−1

d f) = λG−1
d f

for some real negative number λ, then there exists a stable matrix C such that (53)
holds; see [8, Theorem 4.1].

In practice, we may be interested that the matrix C is a centrosymmetric matrix
and its s-by-s leading principal submatrix is the given matrix C0. Moreover, we can
obtain an experimental matrix C̃ which may not satisfy the structural requirement
(centrosymmetric or the submatrix constraint) and/or spectral requirement (having
eigenpairs G−1

d f and λ). We want to find such structural stable matrix C∗ which
maps G−1

d f to T−1(u∗ − G−1
d f) = λG−1

d f (λ < 0) and is the best approximation of

C̃ in Frobenius norm. Therefore the design problem turns into Problems I and II
proposed in this paper.

For demonstration, we let n = 8, m = 1, s = 5 and are given u∗ = 0. Then

we have fi(u
∗
i ) = 1/2 and f

(1)
i (u∗

i ) = 1/4 for i = 1, . . . , n. Thus Gd = 1/4In and
f = 1/2e, where e denotes the n-vector of all ones. Therefore, the given eigenvector
G−1

d f = 2e. For this example, we chose T = 0.4938In so that one eigenvalue of C is
λ = −1/0.4938 = −2.0251.

Given X = G−1
d f = 2e, Λ = λ = −2.0251, and

C0 =

⎛⎜⎜⎜⎜⎝
1.0134 −0.6262 −0.6091 0.2024 0.8464
0.3118 0.1653 1.1857 0.8940 0.0265
0.1912 0.6515 −0.9667 1.0504 −0.5886
−0.7399 0.4515 −0.6165 −0.5674 −0.9952
−0.0169 −0.8830 −0.2698 −0.9952 −0.5674

⎞⎟⎟⎟⎟⎠ .

Assume that from the experiment we get the following matrix C̃ �∈ C8:

C̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.6448 −1.5739 0.5661 1.2763 0.5473 0.5312 0.2992 −1.2917
1.5866 0.1344 0.4095 1.1794 −0.9925 0.8905 0.5602 −1.1477
0.7641 0.6437 −2.0927 1.5228 0.0533 0.8970 0.1428 0.5543
−1.0982 1.4538 −2.1948 −1.4674 −0.7619 0.1669 0.1910 −1.4562
0.7249 −1.8998 −0.1476 −0.7729 0.5174 −2.3614 −0.3332 −0.3404
0.1476 0.8403 −0.3028 −0.4868 0.8683 0.4873 −0.0583 1.8999
2.2642 1.8592 1.4312 0.6824 0.5707 1.9692 1.3696 −0.6353
−0.0637 −0.4936 1.9980 1.9972 −0.1334 0.8525 −3.0381 0.5415

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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We can show that Problem I is solvable. Then following the steps in the algorithm
in section 4, we obtain the required matrix C∗ ∈ LS as follows:

C∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0134 −0.6262 −0.6091 0.2024 0.8464 0.1507 −1.2111 −1.7916
0.3118 0.1653 1.1857 0.8940 0.0265 −1.3515 −1.3027 −1.9541
0.1912 0.6515 −0.9667 1.0504 −0.5886 −0.8704 −0.6760 −0.8166
−0.7399 0.4515 −0.6165 −0.5674 −0.9952 −0.2698 −0.8830 −0.0169
−0.0169 −0.8830 −0.2698 −0.9952 −0.5674 −0.6165 0.4515 −0.7399
−0.8166 −0.6760 −0.8704 −0.5886 1.0504 −0.9667 0.6515 0.1912
−1.9541 −1.3027 −1.3515 0.0265 0.8940 1.1857 0.1653 0.3118
−1.7916 −1.2111 0.1507 0.8464 0.2024 −0.6091 −0.6262 1.0134

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which satisfies ‖C∗ − C̃‖ = minC∈LS
‖C − C̃‖. Finally, the following matrix Ω∗ =

TC∗G−1
d + G−1

d can be calculated:

Ω∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6.0016 −1.2368 −1.2031 0.3997 1.6719 0.2976 −2.3922 −3.5388
0.6158 4.3265 2.3420 1.7659 0.0523 −2.6695 −2.5731 −3.8598
0.3776 1.2868 2.0907 2.0748 −1.1625 −1.7192 −1.3352 −1.6129
−1.4615 0.8918 −1.2176 2.8793 −1.9657 −0.5329 −1.7441 −0.0333
−0.0333 −1.7441 −0.5329 −1.9657 2.8793 −1.2176 0.8918 −1.4615
−1.6129 −1.3352 −1.7192 −1.1625 2.0748 2.0907 1.2868 0.3776
−3.8598 −2.5731 −2.6695 0.0523 1.7659 2.3420 4.3265 0.6158
−3.5388 −2.3922 0.2976 1.6719 0.3997 −1.2031 −1.2368 6.0016

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Example 2. In this example, we demonstrate our algorithm in another way. For
simplicity, we consider n = 10, m = 3, s = 6. We first choose a random matrix
Ĉ ∈ C10:

Ĉ =⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.6405 −0.1078 −0.8875 0.3703 −0.2894 −0.6384 0.7080 0.2080 0.3988 0.8062
−0.4574 −0.8891 −0.1455 −0.0858 −0.2658 −1.3510 0.7036 −0.3054 0.4304 1.4557
0.1118 −0.1969 0.1812 −0.2555 1.1810 0.5378 0.4137 0.8233 −1.2063 1.3373
−0.7977 −0.0109 0.3346 −0.3387 0.3376 0.2088 −0.0052 0.0533 0.8645 −0.2588
0.1512 −0.5887 −0.3039 −0.0137 0.4058 0.1813 0.5433 −0.1110 0.4449 −0.0643
−0.0643 0.4449 −0.1110 0.5433 0.1813 0.4058 −0.0137 −0.3039 −0.5887 0.1512
−0.2588 0.8645 0.0533 −0.0052 0.2088 0.3376 −0.3387 0.3346 −0.0109 −0.7977
1.3373 −1.2063 0.8233 0.4137 0.5378 1.1810 −0.2555 0.1812 −0.1969 0.1118
1.4557 0.4304 −0.3054 0.7036 −1.3510 −0.2658 −0.0858 −0.1455 −0.8891 −0.4574
0.8062 0.3988 0.2080 0.7080 −0.6384 −0.2894 0.3703 −0.8875 −0.1078 1.6405

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we compute its eigenpairs: Three of the eigenvalues of Ĉ are 2.1176, 1.0359 ±
1.1570

√
−1. Let x1, x2 ±

√
−1x3 be the corresponding eigenvectors. We now take

X = [x2,x3,x1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0659 −0.2562 −0.5799
0.0678 0.0191 −0.2116
−0.6079 0 −0.2835
0.0422 0.0986 0.1571
0.0959 −0.1867 0.1181
0.0959 −0.1867 0.1181
0.0422 0.0986 0.1571
−0.6079 0.0000 −0.2835
0.0678 0.0191 −0.2116
−0.0659 −0.2562 −0.5799

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Λ =

⎛⎝ 1.0359 1.1570 0
−1.1570 1.0359 0

0 0 2.1176

⎞⎠ .
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Given such X, Λ, and

C0 =

⎛⎜⎜⎜⎜⎜⎜⎝
1.6405 −0.1078 −0.8875 0.3703 −0.2894 −0.6384
−0.4574 −0.8891 −0.1455 −0.0858 −0.2658 −1.3510
0.1118 −0.1969 0.1812 −0.2555 1.1810 0.5378
−0.7977 −0.0109 0.3346 −0.3387 0.3376 0.2088
0.1512 −0.5887 −0.3039 −0.0137 0.4058 0.1813
−0.0643 0.4449 −0.1110 0.5433 0.1813 0.4058

⎞⎟⎟⎟⎟⎟⎟⎠ ,

we can verify that Problem I is solvable. Hence LS is nonempty. We now perturb Ĉ
by a random matrix to obtain a matrix C̃ �∈ C10:

C̃ =⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.6510 −0.0907 −0.8789 0.3653 −0.2906 −0.6402 0.7090 0.2027 0.4049 0.8028
−0.4538 −0.8976 −0.1401 −0.0693 −0.2665 −1.3369 0.6919 −0.3034 0.4402 1.4466
0.1097 −0.1948 0.1928 −0.2422 1.1870 0.5320 0.4281 0.8313 −1.2258 1.3349
−0.7985 −0.0205 0.3434 −0.3477 0.3422 0.2029 0.0032 0.0747 0.8667 −0.2572
0.1457 −0.5941 −0.2902 −0.0137 0.4016 0.1786 0.5295 −0.1168 0.4491 −0.0602
−0.0578 0.4532 −0.1160 0.5324 0.1973 0.4021 −0.0297 −0.3002 −0.5844 0.1455
−0.2607 0.8667 0.0397 −0.0128 0.1987 0.3351 −0.3423 0.3373 −0.0018 −0.7974
1.3200 −1.2080 0.8347 0.4064 0.5380 1.1847 −0.2747 0.1803 −0.1985 0.1151
1.4712 0.4299 −0.2972 0.7098 −1.3340 −0.2750 −0.0797 −0.1331 −0.9039 −0.4427
0.8031 0.3804 0.2401 0.7207 −0.6404 −0.2924 0.3609 −0.8630 −0.1050 1.6367

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the proposed algorithm in section 4, we can obtain C∗ ∈ LS such that
‖C∗ − C̃‖ = minC∈LS

‖C − C̃‖. Moreover, the solution C∗ is given by

C∗ =⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.6405 −0.1078 −0.8875 0.3703 −0.2894 −0.6384 0.7141 0.2080 0.3972 0.8084
−0.4574 −0.8891 −0.1455 −0.0858 −0.2658 −1.3510 0.7013 −0.3054 0.4310 1.4549
0.1118 −0.1969 0.1812 −0.2555 1.1810 0.5378 0.4160 0.8233 −1.2068 1.3381

−0.7977 −0.0109 0.3346 −0.3387 0.3376 0.2088 −0.0054 0.0533 0.8646 −0.2588
0.1512 −0.5887 −0.3039 −0.0137 0.4058 0.1813 0.5433 −0.1110 0.4449 −0.0643
−0.0643 0.4449 −0.1110 0.5433 0.1813 0.4058 −0.0137 −0.3039 −0.5887 0.1512
−0.2588 0.8646 0.0533 −0.0054 0.2088 0.3376 −0.3387 0.3346 −0.0109 −0.7977
1.3381 −1.2068 0.8233 0.4160 0.5378 1.1810 −0.2555 0.1812 −0.1969 0.1118
1.4549 0.4310 −0.3054 0.7013 −1.3510 −0.2658 −0.0858 −0.1455 −0.8891 −0.4574
0.8084 0.3972 0.2080 0.7141 −0.6384 −0.2894 0.3703 −0.8875 −0.1078 1.6405

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In addition, we note that if in Problem I, we also assume that the required ma-
trix C is symmetric, i.e., C is bisymmetric, then Problem I is reduced to the inverse
problem for submatrix constrained bisymmetric matrices discussed in [18]. For the
corresponding solvability conditions, the algorithm for finding the best approxima-
tion solution to the corresponding best approximation problem and the numerical
examples, we can refer to [18].

These examples and many other numerical experiments with the algorithm pro-
posed in section 4 confirm our theoretical results in this paper.

6. Conclusions. In this paper, we discussed the inverse eigenproblem for the
submatrix constrained centrosymmetric matrices. We also considered the best ap-
proximation solution in the corresponding solution set for the constrained inverse
problem to a given matrix in Frobenius norm. The solvability conditions and the
explicit formula for the solution are provided. We proposed an algorithm for finding
the best approximation solution. Some tests are also given to illustrate our results.

Acknowledgments. The author is very grateful to Professor Raymond H. Chan
for many helpful conversations. He also thanks the referees for their valuable com-
ments and suggestions.
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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF POSITIVE DEFINITE SOLUTIONS TO THE

SYMMETRIC RECURSIVE INVERSE EIGENVALUE PROBLEM∗

ZHENYUE ZHANG† , JING WANG† , AND MIN FANG†

Abstract. Necessary and sufficient conditions are completely characterized for the existence of
a positive definite or positive semidefinite solution to the symmetric recursive inverse eigenvalue
problem (SRIEP). When a prior (indefinite) solution A to the SRIEP is known, positive defi-
nite/semidefinite solutions are formulated in terms of A and basis matrices of the column space of
the given recursive matrix R and the null space of RT . Taking into account some computational con-
cerns, an algorithm is proposed that can check whether the SRIEP has a positive definite/semidefinite
solution and find such a solution if it exists. Several numerical experiments are given to illustrate
the performance of the algorithm.

Key words. inverse eigenvalue problem, positive definite/semidefinite solution, algorithm
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1. Introduction. Given n real scalars s1, s2, . . . , sn and n column vectors rk ∈
Rk, k = 1, 2, . . . , n, the real symmetric recursive inverse eigenvalue problem (SRIEP)
(of order n) is to find a symmetric matrix A ∈ Rn×n such that

Akrk = skrk, k = 1, 2, . . . , n,(1.1)

where Ak is the kth leading principle submatrix of A. The SRIEP is one of the several
recursive inverse eigenvalue problems discussed in [1]. In the special case when the
upper triangular matrix R consisting of the vector sequence {rk},

R =

⎡⎢⎢⎢⎣
r11 r12 . . . r1n

r22 . . . r2n
. . .

...
rnn

⎤⎥⎥⎥⎦ with rk =

⎡⎢⎢⎢⎣
r1k
r2k
...

rkk

⎤⎥⎥⎥⎦ , k = 1, 2, . . . , n,

is nonsingular, it is known that the SRIEP has a unique solution [1]. The unique
solution is formulated as A = R−T (S ◦ (RTR))R−1, where S is characterized by the
given eigenvalues {sj} as the matrix

S =

⎡⎢⎢⎢⎢⎢⎣
s1 s2 s3 . . . sn
s2 s2 s3 . . . sn
s3 s3 s3 . . . sn
...

...
sn sn sn . . . sn

⎤⎥⎥⎥⎥⎥⎦
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and ◦ denotes the Hadamard (or elementwise) product of matrices. It was proven in
[1] that the SRIEP of order n has a solution if and only if the SRIEP of order n− 1
has a solution, say An−1, such that the linear system

rnnα = snr̃ −An−1r̃, r̃Tα + rnnβ = snrnn

has a solution (α, β) with α ∈ Rn−1 and β ∈ R, where r̃ = [r1,n, . . . , rn−1,n]T . When
R is singular, the recursive conditions above are too difficult to be verified in practice.
Indeed, if R is singular and the SRIEP is solvable, then there are always multiple
solutions.

What we are interested in is the existence question of a positive definite or semidef-
inite solution to the SRIEP. It is known that when R is nonsingular, the unique
solution A is positive definite (semidefinite) if and only if S ◦ (RTR) is positive def-
inite (semidefinite). When R is singular, however, the existence question has not
been answered completely. In [1], a sufficient condition for positive definite (semidef-
inite) solutions was proposed, stating that all rk’s are nonzero and {sk} satisfies the
decreasing order

s1 > s2 > · · · > sn−1 > sn

and sn > 0 (sn ≥ 0). In fact, this condition implies a stronger result that all so-
lutions of the SRIEP are positive definite (semidefinite). It was conjectured in [1]
that a positive semidefinite solution exists if and only if the SRIEP has a solution
and S ◦ (RTR) is positive semidefinite. This conjecture was shown later in [4], using
counterexamples, to be incorrect generally. This conjecture would be true under the
rank condition

rank(S ◦ (RTR)) ≥ n− 1,(1.2)

implying that R has the null space of dimension at most one (see [4] for a proof).
One of our contributions in this paper is to show that the SRIEP may have positive

definite or semidefinite solutions even if the rank condition (1.2) is not satisfied,
provided that the SRIEP is solvable. Indeed, under the assumption that the SRIEP
is solvable and S ◦ (RTR) is positive semidefinite, we will prove the much stronger
result that the SRIEP has a positive definite solution if and only if rank(S ◦(RTR)) =
rank(R). Necessary and sufficient conditions for existence of a positive semidefinite
solution are also given in this paper.

Though it is not our intention to touch upon the existence question of indefinite
solutions in this paper, a simple structure for arbitrary (definite or indefinite) solu-
tions will be presented. By exploiting this structure, one can construct a class of
positive definite solutions to the SRIEP whenever the necessary and sufficient con-
dition rank(S ◦ (RTR)) = rank(R) is satisfied. In contrast to the positive definite
case, it is difficult to construct a positive semidefinite solution to the SRIEP if a rank
constraint to be described later does not hold—an overdetermined linear system will
be involved in order to find a positive semidefinite solution. In short, our formulae
for positive definite/semidefinite solutions are characterized in terms of an arbitrarily
given solution to the SRIEP and orthogonal basis matrices of the column space of R
and of the null space of RT , respectively, and a solution of the overdetermined linear
system if necessary.

Some computational issues will be considered for the purpose of simplifying the
formulae and reducing the computational cost. We propose an algorithm that can
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check whether the SRIEP has a positive definite or semidefinite solution. This al-
gorithm can transform a given (indefinite) solution to a positive definite solution or
a positive semidefinite solution (if it exists). Several numerical experiments will be
given to illustrate the performance of the proposed algorithm.

Notation. In the rest of this paper, we will use Q1 ∈ Rn×m to denote henceforth
an orthogonal basis matrix for the column space of R and write R = Q1G

T
1 with G1 ∈

Rn×m being of full column rank. This full-rank decomposition can be obtained via the
QR decomposition with column pivoting [2, 3]. Furthermore, Q1 can be constructed
by means of the singular value decomposition (SVD) [3] where QT

1 AQ1 = diag(0, T11)
with nonsingular T11; see section 4 for the implementation of such a decomposition.
Likewise, we shall use Q2 ∈ Rn×(n−m) to denote an orthogonal basis matrix for the
null space of RT when m = rank(R) < n. Finally, we will denote by Q = [Q1, Q2] an
orthogonal matrix of order n.

2. Structure of a solution to the SRIEP. The following simple proposition
given in [1] will be used often in our analysis for the existence of a solution to the
SRIEP.

Proposition 2.1. If A is a solution to the SRIEP, then

RTAR = S ◦ (RTR).(2.1)

Clearly, if R is invertible, the necessary condition (2.1) is also sufficient for A to
be a solution. When R is singular, a matrix satisfying (2.1) may not solve the SRIEP.
Such an example with a zero rk was given in [1]. It is not difficult to construct a
nonzero vector sequence {rk} and a scalar sequence {sk} for which there is an A that
satisfies (2.1) but does not solve the corresponding SRIEP.

For any two solutions A and Ã of the SRIEP, the difference Z = Ã− A satisfies
RTZR = 0 obviously. The following lemma shows a simple but important structure
of Z.

Lemma 2.2. Assume that A is a solution to the SRIEP. Then Ã = A + Z also
solves the SRIEP if and only if Z is symmetric and ZR is a strictly lower triangular
matrix.

Proof. Because Akrk = skrk, k = 1, 2, . . . , n, it is easy to verify that

[Ik, 0](ZR)ek = Zkrk =
(
(A + Z)k −Ak

)
rk = (A + Z)krk − skrk,

where Zk is the kth leading principle submatrix of Z in the same manner as we have
denoted for Ak. Therefore A + Z is a solution to the SRIEP if and only if

[Ik, 0](ZR)ek = 0, k = 1, 2, . . . , n;

i.e., ZR is a strictly lower triangular matrix.
Remark. The condition RTZR = 0 is automatically satisfied when Z is symmetric

and ZR is strictly lower triangular because RTZR is both strictly lower triangular
and symmetric.

A symmetric matrix Z can be characterized by its entries in the upper triangular
part. We denote by z the column vector consisting of these entries, and

z = [z11, z12, . . . , z1n, z22, . . . , znn]T = [z1, z2, . . . , zn]T ,

where zk = [zk,k, zk,k+1, . . . , zk,n] is the kth row vector in the upper triangular part
of Z. As we will show later, there is a lower triangular matrix C of order n(n + 1)/2
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such that Z is symmetric and ZR is strictly lower triangular if and only if the vector
z solves the linear system

Cz = 0.(2.2)

In fact, ZR is strictly lower triangular if and only if

eTk ZR[ek, . . . , en] = [zk,1, . . . , zk,k−1, zk]

⎡⎢⎢⎢⎣
r1,k:n

...
rk−1,k:n

R(k)

⎤⎥⎥⎥⎦ = 0, k = 1, . . . , n,(2.3)

where ri,k:n = [ri,k, ri,k+1, . . . , ri,n] and R(k) = (ri,j)i,j=k,...,n is a submatrix of R.

To give the system (2.2), let us denote by e
(n−i+1)
k−i+1 the (k − i + 1)th column of

the unit matrix In−i+1 of order n− i + 1 and write zki = zik = zie
(n−i+1)
k−i+1 for i < k.

We express the kth row [zk,1, . . . , zk,k−1, zk] of Z as

[z1e
(n)
k , z2e

(n−1)
k−1 , . . . , zk−1e

(n−k−2)
2 , zk] = zT

[
diag(e

(n)
k , . . . , e

(n−k−2)
2 , In−k+1)
0

]
.

Substituting the representation above into (2.3) gives zT ck = 0 with

ck =

⎡⎢⎢⎢⎢⎢⎢⎣
e
(n)
k r1,k:n

...

e
(n−k+2)
2 rk−1,k:n

R(k)

0

⎤⎥⎥⎥⎥⎥⎥⎦ = 0, k = 1, . . . , n.

Thus the coefficient matrix C in (2.2) is characterized by vectors ck, k = 1, . . . , n,

C = [c1, c2, . . . , cn]T =

⎡⎢⎢⎢⎢⎢⎢⎣
R(1) e

(n)
2 r1,2:n e

(n)
3 r1,3:n . . . e

(n)
n r1,n

R(2) e
(n−1)
2 r2,3:n . . . e

(n−1)
n−1 r2,n

R(3) . . . e
(n−2)
n−2 r3,n

. . .
...

R(n)

⎤⎥⎥⎥⎥⎥⎥⎦

T

.

Clearly, the upper triangular matrix C is sparse: each upper off-diagonal block is zero
except one row.

The linear system (2.2) will be used to construct an (indefinite) solution for
numerical testing. However, we do not suggest solving (2.2) directly for Z such that
A + Z is positive definite/semidefinite, taking the following into consideration:

(1) There is a simpler construction shown in (2.4) for Z that makes A + Z a
solution to the SRIEP. Indeed, under some conditions, one can construct a
W in (2.4) that ensures A + Z is positive definite or semidefinite.

(2) To ensure that A+Z with Z retrieved by a special solution z to (2.2) is pos-
itive definite or semidefinite, some necessary constraints should be imposed
to (2.2). However, it is very difficult to impose such constraints. This ob-
struction can be avoided by implicitly imposing a rank constraint to (2.2);
i.e., we just look for a solution z to (2.2) such that Â = A+Z satisfies a rank
condition. With Â, one can construct a positive semidefinite solution easily.
We will show the details in section 5.
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Lemma 2.3. Let m = rank(R) and let A be a given solution of the SRIEP.
Corresponding to any symmetric matrix W ∈ R(n−m)×(n−m), define

Z = Q2WQT
2(2.4)

with an orthogonal basis matrix Q2 of the null space RT . Then A + Z is a solution
to the SRIEP.

Proof. The result follows immediately by Lemma 2.2 because ZR = 0.
Though the set of all symmetric matrices in the form A + Q2WQT

2 may not
cover all the solutions of the SRIEP, we can prove that this subset contains a positive
definite matrix if the SRIEP has a positive definite solution; that is, one can choose
a symmetric W such that A + Q2WQT

2 is positive definite. In the next section,
we will show how to construct such a matrix W as required. Furthermore, in the
case when only positive semidefinite solutions exist, such a solution Ã = A + Z can
also be found with Z in the same form Z = Q2WQT

2 , provided that a certain rank
condition relative to A holds. However, when this rank condition is not satisfied, it
will be difficult to construct a symmetric Z such that A+Z is a positive semidefinite
solution to the SRIEP. In section 4 we will give a detailed analysis of constructing
positive semidefinite solutions.

3. Necessary and sufficient conditions for positive definite solutions.
Proposition 2.1 implies the following necessary conditions for the existence of positive
definite or semidefinite solutions:

S ◦ (RTR) is positive semidefinite.(3.1)

rank(S ◦ (RTR)) ≤ rank(R).(3.2)

In fact, the equality must hold in (3.2) if a positive definite solution exists, as we will
see in the proof below.

Theorem 3.1. Assume that the SRIEP has a solution and that S ◦ (RTR) is
positive semidefinite. Then the SRIEP has a positive definite solution if and only if

rank(S ◦ (RTR)) = rank(R).(3.3)

Furthermore, if (3.3) holds and A is an arbitrary solution to the SRIEP, then for any
positive definite matrix W0,

Ã = Q2W0Q
T
2 + AQ1(Q

T
1 AQ1)

−1QT
1 A(3.4)

is a positive definite solution to the SRIEP.
Proof. We first prove the sufficiency. Let m = rank(R) < n. By Lemma 2.3, if A

is a solution to the SRIEP, then for any symmetric W ∈ R(n−m)×(n−m), A+Q2WQT
2

is also a solution. What we need to show is that a symmetric W exists such that A+
Q2WQT

2 is positive definite. To this end, let R = Q1G
T
1 be a full-rank decomposition

of R with G1 ∈ Rn×m having full column rank. Denoting by Q = [Q1, Q2], the
orthogonal matrix gives

QTAQ =

[
QT

1 AQ1 QT
1 AQ2

QT
2 AQ1 QT

2 AQ2

]
=

[
T11 T12

T21 T22

]
,

where Tij = QT
i AQj . We have

QT (A + Q2WQT
2 )Q =

[
T11 T12

T21 T22 + W

]
=

[
I 0

T21T
−1
11 I

] [
T11 0
0 W + T22 − T21T

−1
11 T12

] [
I T−1

11 T12

0 I

]
.(3.5)
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Note that S ◦ (RTR) = RTAR = G1T11G
T
1 . It follows that T11 is at least positive

semidefinite because S ◦ (RTR) is positive semidefinite. Indeed, the rank condition
(3.3) implies that T11 is nonsingular. Hence T11 is positive definite. By (3.5), it follows
that A + Q2WQT

2 is positive definite if and only if W + T22 − T21T
−1
11 T12 is positive

definite. For any positive definite matrix W0, one can set W = W0 −T22 +T21T
−1
11 T12

as required. We can simplify the representation Ã = A+Q2WQT
2 = A+Q2(W0−T22+

T21T
−1
11 T12)Q

T
2 to (3.4). In fact, substituting Tij = QT

i AQj into the representation
above, we have that

Ã = Q2W0Q
T
2 + A−Q2Q

T
2 (A−AQ1T

−1
11 QT

1 A)Q2Q
T
2

= Q2W0Q
T
2 + A− (I −Q1Q

T
1 )(A−AQ1T

−1
11 QT

1 A)(I −Q1Q
T
1 )

= Q2W0Q
T
2 + A− (A−AQ1T

−1
11 QT

1 A)

= Q2W0Q
T
2 + AQ1T

−1
11 QT

1 A.

We next prove the necessity. Let A be a positive definite solution to the SRIEP.
Then QT

1 AQ1 is nonsingular and

rank(S ◦ (RTR)) = rank(RTAR) = rank(QT
1 AQ1) = m = rank(R).

The proof is now complete.
As a corollary of Theorem 3.1, the main result of [4] stated below can be easily

proved.
Corollary 3.2. If the SRIEP is solvable and S ◦ (RTR) is positive semidefinite

with rank(S ◦ (RTR)) ≥ n− 1, then SRIEP has a positive semidefinite solution.
Proof. We only need to prove the corollary in the case when R is singular. By

Proposition 2.1, the assumption that SRIEP is solvable implies that

n− 1 ≤ rank(S ◦ (RTR)) ≤ rank(R) ≤ n− 1,

implying that rank(S ◦ (RTR)) = rank(R) = n− 1. By Theorem 3.1, the SRIEP has
a positive definite solution.

Obviously, positive definite solutions are not unique if R is singular because of
the free choice of W0 in (3.4). Note that the positive solutions given in Theorem 3.1
have the form Ã = A + Q2WQT

2 .
Remark. It is worth mentioning that the set of positive definite solutions given

in Theorem 3.1 may not cover all the positive definite solutions; it is possible that for
two solutions A and Ã of the SRIEP the gap Z = Ã − A may be different in form
from Q2WQT

2 , even if Ã is positive definite. Below is such an example.
Example 1. Let s1 = 1, s2 = 2, s3 = 1, and

r1 = [1], r2 =

[
0
0

]
, r3 =

⎡⎣ 0
0
1

⎤⎦ , R =

⎡⎣ 1 0 0
0 0

1

⎤⎦ .

It is easy to verify that the SRIEP has a positive definite solution I and an indefinite
solution

A =

⎡⎣ 1 1 0
1 −1 0
0 0 1

⎤⎦ .

Clearly Z = I −A does not have the form (2.4) or (3.4) because ZR �= 0.



NECESSARY AND SUFFICIENT CONDITIONS 1121

It is clear that if we choose a positive semidefinite W0, the solution Ã given in
(3.4) is positive semidefinite, too, because the two matrices Ã = A + Q2(W0 − T22 +
T21T

−1
11 T12)Q

T
2 and diag(T11,W0) have the same inertia, and the latter is obviously

positive semidefinite. This means that positive semidefinite solutions to the SRIEP
exist if the conditions of Theorem 3.1 hold. In the next section, we will give weaker
necessary and/or sufficient conditions for the existence of a positive semidefinite so-
lution to the SRIEP.

4. Necessary and sufficient conditions for positive semidefinite solu-
tions. We first show a weaker rank-condition (see (4.4)) with which a positive semidef-
inite solution can be easily constructed as in the last section. The more difficult case
when (4.4) is not satisfied will be considered later.

Denote m1 = rank(RTAR) and m = rank(R) as before. Because S ◦ RTR =
RTAR, the value m1 is less than or equal to m and is invariant for all choices of A in
the solution set of the SRIEP. Clearly if m1 = m for a solution A of the SRIEP, then
the condition (3.3) holds and the existence question has been completely answered in
the last section. If m1 < m, we further assume that the orthogonal basis matrix Q1

of the range space of R can be partitioned as Q1 = [Q01, Q11] with Q01 ∈ Rn×(m−m1)

and Q11 ∈ Rn×m1 , such that QT
1 AQ01 = 0 and T11 = QT

11AQ11 is nonsingular. This
partition gives

QT
1 AQ1 =

[
0

QT
11AQ11

]
=

[
0

T11

]
.(4.1)

In fact, by the SVD, such an orthogonal basis matrix Q1 can be easily obtained and
T11 can be diagonal via the following steps:

(1) Compute an orthonormal matrix Q̃1 by column pivoting QR to R [3].
(2) Compute the eigendecomposition of Q̃T

1 AQ̃1, Q̃T
1 AQ̃1 = H1 diag(0,Λ1)H

T
1 ,

where Λ1 is nonsingular and diagonal, H1 is orthogonal.
(3) Set Q1 = Q̃1H1 and T11 = Λ1.

In the rest of this paper, we always assume that (4.1) holds. We remark that (4.1) is
always true for any other solution, say Â to the SRIEP, because RT ÂR = S◦(RTR) =
RT ÂR.

To facilitate our analysis, we need the following lemma.
Lemma 4.1. If m1 < m and (4.1) holds with Q1 = [Q01, Q11], then

rank(AR) = rank(RTAR) + rank(QT
2 AQ01).(4.2)

Proof. Obviously by (4.1),

QTAQ1 =

[
QT

1 AQ1

QT
2 AQ2

]
=

⎡⎣ 0 0
0 QT

11AQ11

QT
2 AQ01 QT

2 AQ11

⎤⎦ .(4.3)

Because QT
11AQ11 is nonsingular, we have that

rank(AR) = rank(QTAQ1) = rank(QT
11AQ11) + rank(QT

2 AQ01).

Then (4.2) follows immediately since rank(RTAR) = rank(QT
11AQ11).

Remark. Because for any two solutions A and Ã to the SRIEP, it is always true
that RTAR = RT ÃR, it follows that (4.1) holds for Ã if and only if it holds for A.

Theorem 4.2. Assume that S ◦ (RTR) is positive semidefinite.
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(1) If the SRIEP has an (indefinite) solution A, and

rank(RTAR) = rank(AR),(4.4)

then for any positive definite (or semidefinite) matrix W0,

Ã = Q2W0Q
T
2 + AQ11(Q

T
11AQ11)

−1QT
11A(4.5)

is also a positive semidefinite solution to the SRIEP.
(2) The equality (4.4) holds for any positive semidefinite solution A of the SRIEP.
Proof. By Lemma 4.1, condition (4.4) implies QT

2 AQ01 = 0. Because QT
1 AQ01 =

0, we have AQ01 = 0. It follows that

QTAQ =

⎡⎣ 0
QT

11AQ11 QT
11AQ2

QT
2 AQ11 QT

2 AQ2

⎤⎦ ≡

⎡⎣ 0
T11 T12

T21 T22

⎤⎦ .(4.6)

Recall that T11 = QT
11AQ11 is nonsingular and

S ◦ (RTR) = RTAR = G1Q
T
1 AQ1G

T
1 = G1 diag(0, T11)G

T
1

is positive semidefinite. We conclude that T11 is positive definite. By the proof of
Theorem 3.1,

B =

[
T11 T12

T21 T22 + W

]
is at least positive semidefinite if W = W0−T22+T21T

−1
11 T12 with any positive definite

or semidefinite W0 ∈ R(n−m)×(n−m). Therefore Ã = A + Q2WQT
2 = Qdiag(0, B)QT

is positive semidefinite, too. Recalling that AQ1 = [0, AQ11], similarly we have

Ã = A + Q2WQT
2

= A + Q2W0Q
T
2 − (I −Q1Q

T
1 )(A−AQ11T

−1
11 QT

11A)(I −Q1Q
T
1 )

= Q2W0Q
T
2 + AQ11T

−1
11 QT

11A,

yielding (4.5).
Furthermore, consider

[Q01, Q2]
TA[Q01, Q2] =

[
0 QT

01AQ2

QT
2 AQ01 QT

2 AQ2

]
.

Because A is positive semidefinite, we have QT
2 AQ01 = 0. Thus (4.4) is true by

Lemma 4.1.
The following example illustrates Theorems 3.1 and 4.2.
Example 2. Let n = 3, s1 = s2 = 1, s3 = 1 + s, and

r1 = [1], r2 =

[
1
0

]
, r3 =

⎡⎣ 1
1
1

⎤⎦ , R =

⎡⎣ 1 1 1
0 1

1

⎤⎦ .

It is easy to verify that for any given s, A is a solution to the SRIEP if and only if
there is a real t such that

A =

⎡⎣ 1 0 s
0 s + t 1 − t
s 1 − t t

⎤⎦ .
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Simple calculations give that

AR =

⎡⎣ 1 1 1 + s
0 0 1 + s
s s 1 + s

⎤⎦ , RTAR =

⎡⎣ 1 1 1 + s
1 1 1 + s

1 + s 1 + s 3(1 + s)

⎤⎦ .

(1) If (1 + s)(2 − s) > 0, i.e., if −1 < s < 2, then RTAR is positive semidefinite
and

rank(RTAR) = rank(AR) = rank(R) = 2.

It is not difficult to verify that det(A) =
(
t(2 − s) − (1 − s + s2)

)
(1 + s). Denote

η = (1 − s + s2)/(2 − s) > 0. It follows that A is positive definite for t > η, positive
semidefinite for t = η, or indefinite if t < η. It verifies Theorems 3.1 and 4.2.

(2) If (1+s)(2−s) < 0, then RTAR = S ◦ (RTR) is indefinite and the SRIEP has
no positive definite/semidefinite solutions, even though rank(RTAR) = rank(AR) =
rank(R). This example also shows that these rank equalities do not imply the positive
semidefiniteness of S ◦ (RTR).

(3) If s = −1, then 1 = rank(RTAR) = rank(AR) < rank(R) = 2. Because
det(A) = 0 for all t, the SRIEP does not have a positive definite solution, as is shown
by Theorem 3.1. However, positive semidefinite solutions (t ≥ 1) and indefinite
solutions (t < 1) exist.

(4) Finally, if s = 2, RTAR = S ◦ (RTR) is also positive semidefinite, and

1 = rank(RTAR) < rank(AR) = rank(R) = 2.

It is not difficult to verify that for any t, A is always indefinite because the first
diagonal of A is positive and det(A) < 0. So if condition (4.4) does not hold, SRIEP
may have no positive semidefinite solutions.

For a given solution A to the SRIEP, the rank condition (4.4) is not necessary for
the existence of positive semidefinite solutions. Below is evidence for the phenomena.

Example 3. Let n = 3, s1 = 1, s2 = 0, s3 = 2, and

r1 = [1], r2 =

[
−1
1

]
, r3 =

⎡⎣ 1
1
0

⎤⎦ , R =

⎡⎣ 1 −1 1
1 1

0

⎤⎦ .

It is easy to verify that indefinite matrix

A =

⎡⎣ 1 1 −1
1 1 1
−1 1 1

⎤⎦
is a solution of the SRIEP but does not satisfy the rank constraint (4.4). However,
the SRIEP has a positive semidefinite solution A + Z with

Z =

⎡⎣ 0 0 1
0 0 −1
1 −1 0

⎤⎦ .

We further notice that the modification matrix Z above cannot be written in the form
Q2WQT

2 since rank(Z) = 2 and rank(Q2WQT
2 ) ≤ 1 for all W .
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However, if the rank constraint (4.4) does not hold, it will be more difficult to
directly construct a Z such that A+Z is a positive semidefinite solution to the SRIEP.
In fact, for any W , (A + Q2WQT

2 )R = AR. If (4.4) does not hold for A, then it also
does not hold for A+Q2WQT

2 . Thus by Theorem 4.2, for all choices of W , A+Q2WQT
2

cannot be a positive semidefinite solution to the SRIEP, meaning that a more general
form should be considered for Z if one wants to find a positive semidefinite solution
in the form A + Z. We have mentioned in section 2 that the problem of finding such
a Z is equivalent to the problem of solving the upper triangular system (2.2) for the
vector z that consists of the entries in the upper triangular part of Z. We also pointed
out that it is very difficult to impose constraints to the linear system to ensure the
positive semidefiniteness of A+Z with Z retrieved by a solution z. To deal with this
problem, we will update A to Â = A+ Z0 with a symmetric Z0 such that Â is also a
solution to the SRIEP and the rank condition (4.4) holds for Â. This solution Â may
also be indefinite. As we have shown, as soon as such an Â is available, it is ready to
construct a positive semidefinite solution Â + Q2WQT

2 . In the proof of the following
theorem, we will show that such a symmetric Z0 can be obtained by solving the linear
system.

Theorem 4.3. Assume that S◦(RTR) is positive semidefinite and A is a solution
of the SRIEP. Then the SRIEP has a positive semidefinite solution if and only if there
exists a strictly lower triangular matrix L that satisfies

QT
1 L = 0, LP = −AQ01Q

T
01RP,(4.7)

where P ∈ Rn×(n−m1) is an orthogonal basis matrix of the null space of QT
11R.

Furthermore, if the strictly lower triangular matrix L satisfies (4.7), then cor-
responding to any positive semidefinite W0, a positive semidefinite solution to the
SRIEP is given by

Ã = Q2W0Q
T
2 + (AQ11 + E)(QT

11AQ11)
−1(AQ11 + E)T ,(4.8)

where E = (L + AQ01Q
T
01R)(RTQ11)

† and † denotes the Moore–Penrose generalized
inverse of a matrix.

Proof. Assume that the SRIEP has a positive semidefinite solution Ã. Lemma
2.2 shows that L = (Ã−A)R is a strictly lower triangular matrix. We now prove that
L satisfies (4.7).

First, by Proposition 2.1, the first equality in (4.7) follows from RTL = RT (Ã−
A)R = 0 immediately. Second, (2.4) remains true when A is replaced by Ã because
RT ÃR = RTAR. By Lemma 4.1, rank(ÃR) = rank(RT ÃR)+rank(QT

2 ÃQ01). On the
other hand, since Ã is a positive semidefinite solution, we have by Theorem 4.2 that
rank(RT ÃR) = rank(ÃR). Thus QT

2 ÃQ01 = 0, implying that ÃQ01 = 0. Therefore
the difference Z = Ã−A satisfies that ZQ01 = −AQ01 and

L = ZR = Z[Q01, Q11]Q
T
1 R = −AQ01Q

T
01R + ZQ11Q

T
11R.

It follows that for an orthogonal basis matrix P of the null space of QT
11R, the second

equality LP = −AQ01Q
T
01RP in (4.7) holds because (QT

11R)P = 0. This proves the
necessity.

We now prove the sufficiency. Let L be a strictly lower triangular matrix satisfying
(4.7). Denote G11 = RTQ11 and

W = (L + AQ01Q
T
01R)G11(G

T
11G11)

−1QT
11.(4.9)
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It is easy to verify QT
1 W = 0 because QT

1 L = 0 and QT
1 AQ01 = 0. Thus the symmetric

matrix Z defined by

Z = −AQ01Q
T
01 −Q01Q

T
01A + W + WT(4.10)

satisfies ZR = −AQ01Q
T
01R + WR. On the other hand, because P is an orthogonal

basis matrix of the null space of GT
11, we have G11(G

T
11G11)

−1GT
11 = I − PPT . It

follows from (4.9) and (4.7) that

WR = (L + AQ01Q
T
01R)(I − PPT ) = L + AQ01G

T
01.

Therefore, ZR = −AQ01Q
T
01R+WR = L is strictly lower triangular. By Lemma 2.2,

Â = A + Z = A−AQ01Q
T
01 −Q01Q

T
01A + W + WT

solves the SRIEP.
Now we show that rank(RT ÂR) = rank(ÂR) holds. In fact, by the definition

(4.9) of W , WQ01 = 0 and WTQ01 = 0. Thus by (2.4), ZQ01 = −AQ01, giving
ÂQ01 = 0. Therefore by Lemma 4.1, the equality rank(RT ÂR) = rank(ÂR) is true.

Finally, applying Theorem 4.2 to Â and using QT
11ÂQ11 = QT

11AQ11, we have the
positive semidefinite solution

Ã = Q2W0Q
T
2 + ÂQ11(Q

T
11AQ11)

−1QT
11Â(4.11)

to the SRIEP for any positive definite matrix W0. Here we have used QT
11ÂQ11 =

QT
11AQ11. The formula (4.11) of Ã can be simplified. In fact, by WTQ1 = 0,

ÂQ11 = (A + W )Q11 = AQ11 + (L + AQ01Q
T
01R)G11(G

T
11G11)

−1 = AQ11 + E.

Substituting ÂQ11 = AQ11 + E into (4.11) yields (4.8) immediately.
In the next section, we will discuss some numerical computational issues for solv-

ing the linear system (4.7) and propose our algorithm for computing a positive defi-
nite/semidefinite solution to the SRIEP.

5. Computational issues and an algorithm. The formulae for positive def-
inite/semidefinite solutions to the SRIEP proposed in Theorems 3.1 and 4.2 and
Lemma 4.1 are very simple and easy to implement. However, the formula (4.8) con-
tains a solution to the linear system (4.7). In this section, we will discuss how to
reduce the computational complexity of solving the linear system (4.7). A complete
algorithm for the construction of positive definite/semidefinite solutions to the SRIEP
will be posed later.

Obviously, (4.7) is equivalent to a linear system in vector form

Fx = −b(5.1)

with vector x consisting of n(n − 1)/2 entries in the strictly lower triangular part of
L. Notice that QT

1 L = 0 has m(n − 1) nontrivial equations, and the linear system
LP = −AQ01Q

T
01RP contains (n− 1)(n−m1) equations, ignoring the first row of the

matrix equation. Such an equivalent system (5.1) should have (n − 1)(n + m −m1)
equations; i.e., F should be a matrix of order (n− 1)(n+m−m1)× n(n− 1)/2. We
are not going to show the construction for F in detail because, taking into account
the advantage of (4.7), the large scale of (5.1) can be reduced much and an equivalent
smaller system will been given later in detail.
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To this end, we partition L, Q1, and P as follows:

L =

[
0 0
X 0

]
, Q1 =

[
qT

UT

]
, P =

[
H
hT

]
,

where q and h are column vectors. Also, denote by aT the first row of A and partition
AQ01Q

T
01RP as

AQ01Q
T
01RP =

[
aTQ01Q

T
01RP

B

]
with B = A(2 : n, :)Q01Q

T
01RP ∈ R(n−1)×(n−m1), where A(2 : n, :) denotes the sub-

matrix of the second row through the last row in A. Then (4.7) is equivalent to

UX = 0, XH = −B s.t. X ∈ R(n−1)×(n−1) is lower triangular(5.2)

together with

aTQ01Q
T
01RP = 0.(5.3)

Clearly (5.3) gives rise to a necessary condition for the existence of a positive semidef-
inite solution to the SRIEP.

Let xj = (xj,j , xj+1,j , . . . , xn−1,j)
T be the jth column vector of the low triangular

part of X = (xij); i.e., the jth column of X reads Xej = [0, . . . , 0, xT
j ]T . Denote

by uj the jth column of U and set Uj = [uj , . . . , un−1]. Thus the jth column of
UX = 0 reads Ujxj = 0, meaning that xj belongs to the null space of Uj . Denoting
by Vj an orthogonal basis matrix of the null space of Uj , we can write xj = Vjyj if
kj = dim(Vj) > 0; otherwise xj = 0. Therefore, UX = 0 if and only if

xj =

{
0 if kj = 0,
Vjyj if kj > 0,

j = 1, . . . , n− 1.(5.4)

On the other hand, we will rewrite XH = −B in terms of the vectors xi’s. To
this end, let’s denote by bi the ith column of B and H = (hij) ∈ R(n−1)×(n−m1). The
ith column equation of XH = −B can be written as

h1,ix1 +

[
0

h2,ix2

]
+ · · · +

[
0

hn−1,ixn−1

]
= −bi.

Substituting xi = Viyi into the left side of the equality above gives

h1,iV1y1 +

[
0

h2,iV2

]
y2 + · · · +

[
0

hn−1,iVn−1

]
yn−1 = −bi

or, equivalently,

[Φi,1, . . . ,Φi,n−1]y = −bi, i = 1, . . . , n−m1,(5.5)

where y is the longer column vector of dimension K =
∑n−1

i=1 ki, linked by all the
vectors y1, . . . , yn−1 one by one,

y = [yT1 , y
T
2 , . . . , y

T
n−1]

T ,
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and

Φij =

[
0

hjiVj

]
∈ R(n−1)×kj , i = 1, . . . , n−m1, j = 1, . . . , n− 1.

Note that the quantities Φij and yj disappear if kj = 0. Now we set Φ =
(
Φij

)
∈

R(n−1)(n−m1)×K and b = [bT1 , b
T
2 , . . . , b

T
n−1]

T . Thus the system XH = −B or (5.5)
can be equivalently rewritten as

Φy = −b.(5.6)

We formulate the construction as the following result.
Theorem 5.1. Assume that (5.3) holds and y is a solution to the linear system

of (5.6). Partition yT = [yT1 , y
T
2 , . . . , y

T
n−1] with yj ∈ Rkj for kj = dim(Vj), where

Vj is an orthogonal basis matrix of the null space of Uj, j = 1, . . . , n − 1. Define
xj = (xj+1,j , . . . , xn,j)

T as in (5.4). Then the lower triangular matrix

L =

⎡⎢⎢⎢⎣
0
x21 0
...

. . .
. . .

xn1 . . . xn,n−1 0

⎤⎥⎥⎥⎦(5.7)

is a solution to (4.7).

In general, K =
∑n−1

j=1 kj � n(n−1)/2 and (n−1)(n−m1) � (n−1)(n+m−m1).
Therefore, comparing its size to that of F in (5.1), Φ in (5.6) is much smaller. We will
illustrate the saving through our numerical experiments in the next section. When
(5.3) holds, SRIEP has a positive semidefinite solution if and only if (5.6) is solvable.
As soon as a solution y to (5.6) is obtained, we can reconstruct xj by (5.4), i.e., set
xj a zero vector of dimension n − j if kj = 0, or xj = Vjyj if kj > 0, as well as a
strictly lower triangular matrix L by appending xj ’s column by column in the lower
triangular part, i.e., set the jth column of L as Lej = [ 0

xj
].

Now we are ready to present our algorithm that transforms an indefinite solution
to a positive definite/semidefinite solution of the SRIEP (see Figure 1).

6. Numerical experiments. The formulae (3.4), (4.5), and (4.8) clearly show
that when R is singular and a positive definite/semidefinite solution to the SRIEP
exists, then the SRIEP must have multiple positive definite/semidefinite solutions,
because one can choose different positive definite matrix W0. In our numerical exper-
iments, we simply set W0 = I.

The required data sets in our numerical experiments are constructed artificially.
We first construct a positive definite matrix B as follows (using the notation of MAT-
LAB):

[Q,temp] = qr(full(sprand(n,n,0.8)));

lambda = 1+10*rand(n,1);

B = Q*diag(lambda)*Q’;

To construct a data set {sk, rk} such that the upper triangular matrix R constructed
by rk’s has at least a diagonal element as small as possible in absolute value (ide-
ally, we want R to be singular), and B is a positive semidefinite solution to the
corresponding SRIEP, i.e., (sk, rk) satisfies Bkrk = skrk for the kth principle sub-
matrix Bk of B, k = 1, . . . , n, we compute an eigenvalue decomposition Bk =
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Algorithm. Given a solution A of the SRIEP with singular R, this algorithm transforms
A to a positive definite/semidefinite solution if it exists.

1. Compute an orthogonal basis matrix Q1 = [Q01, Q11] of the column space of
R such that [Q01, Q11]

TA[Q01, Q11] = diag(Λ0,Λ1) with zero or empty Λ0 and
nonsingular Λ1.

2. Check the existence.

2.1 If Λ1 has negative diagonal elements, the SRIEP does not have positive
definite or positive semidefinite solutions, and terminate.

2.2 If Λ0 exists, the SRIEP has no positive definite solutions.
2.3 If Λ0 is empty and all diagonal elements of Λ1 are positive, the SRIEP has

positive definite solutions.

3. If Λ0 is empty, compute Ã by (3.4), and terminate.

4. If Λ0 exists and AQ01 = 0, compute Ã by (4.5), and terminate.

5. If Λ0 exists and AQ01 �= 0,

5.1 Check the necessary condition (5.3). If it does not hold, the SRIEP has no
positive semidefinite solutions, and terminate.

5.2 Compute the orthogonal basis matrices Vj ’s of the null spaces of Uj ’s.
5.3 If (5.6) is not solvable, the SRIEP has no positive semidefinite solutions, and

terminate,
5.4 Solve (5.6) to obtain y, retrieve xi’s by (5.4), and construct the strictly lower

triangular L by (5.7).
5.5 Compute Ã by (4.8).

Fig. 1. Algorithm for computing positive definite/semidefinite solutions of the SRIEP.

U (k) diag(λ
(k)
1 , . . . , λ

(k)
1 )(U (k))T of Bk and select an eigenpair (λ

(k)
j , u

(k)
j ) as (sk, rk) if

|u(k)
kj | = min1≤i≤k |u(k)

ki |, where u
(k)
kj is the last component of the kth unit column u

(k)
j

in U (k). To construct an indefinite solution A = B +Z to the SRIEP with respect to
the data set {sk, rk}, we select a symmetric Z such that ZR is strictly lower triangu-
lar (see the description given in section 2) and by verifying whether A = B + Z has
at least a negative eigenvalue. Those data sets {sk, rk} and the indefinite A will be
adopted if mini(|rii|) < 10−13 and A has an eigenvalue less than −0.1‖A‖2. Then we
apply our algorithm to the data set {sk, rk} together with the input A. The computed
positive definite solution is denoted by Ã.

Because of round-off errors, a computed solution Ã does not satisfy Ãkrk = skrk,
k = 1, . . . , n, exactly, where Ãk is the kth leading principle submatrix of Ã. We use
φ defined by

φ(Ã) =
1

n

n∑
k=1

‖Ãkrk − skrk‖2

to measure the reconstruction error of the computed solution Ã. (We did not use
the relative error ψ(Ã) = 1

n

∑n
k=1 ‖Ãkrk − skrk‖2/‖Ãk‖2 because Ãk may be zero,

though such a zero Ãk never occurs for all our testings and ψ(Ã) is always small. For
example, for the positive definite case, the minimum of ψ(Ã) is less than 10−14.5.)

On the other hand, the positiveness of Ã is verified by checking the positiveness of
the smallest eigenvalue λmin(Ã) of Ã with machine accuracy. If λmin(Ã) ≈ O(ε), where
ε is the machine accuracy, Ã can be referred to as a singular matrix approximately.
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Fig. 2. Reconstruction error Φ(Ã) (left) and the smallest eigenvalue λmin(Ã) (right) of the 100
testings.

The relative measure λmin(Ã)/‖Ã‖2 can also be used for this purpose.

We experiment with 100 test data sets {sk, rk} and corresponding A’s of order
n = 100. For each testing, the smallest diagonal rii of R is smaller than 10−14 in
absolute value, while the input A is indefinite with the smallest eigenvalue λmin(A)
less than −0.1. For the data sets we constructed, all the computed positive definite
solutions have high accuracy; see the left plot in Figure 2 for the reconstruction errors
φ(Ã). The smallest eigenvalues λmin(Ã) of the 100 computed solutions Ã’s are plotted
in the right plot of Figure 2. It shows that all the computed solutions are positive
definite. In general, the norm of the computed positive definite Ã is larger than the
norm of the input A.

To show the efficiency of our algorithm for the positive semidefiniteness case, we
also construct data {sk, rk} as above, but the generating vector lambda of eigenvalues
of B is replaced by

lambda = rand(n,1); lambda(1:3) = 0;

Thus the problem SRIEP has at least a positive semidefinite solution. We also update
each B to obtain an indefinite solution A = B + Z as before. Totally, 100 numerical
examples with n = 100 are tested.

Different formulae are used to construct positive semidefinite solutions, depending
on whether or not AQ01 is zero. In the case when AQ01 = 0, the algorithm computes
a positive semidefinite solution by the formula that is almost the same as that for
a positive definite solution. The computed solutions hence have accuracy as good
as that in the positive definite case. If AQ01 is not zero, it is required to update A
by solving the overdetermined system (5.6). This step may reduce the accuracy of
computed solutions. However, the computed solutions also have acceptable accuracy
in our testings. In Figure 3, we plot the sorted reconstruction errors φ(Ã), marked
by small starts and circles to distinguish the solutions computed with or without
solving a corresponding linear system, respectively. Among the 100 testings, 21 ones
require updating by solving a relative small linear system (5.6) which size is variable,
depending on the inputs. On the left-hand side of Table 1, we list the minimum,
mean, and maximum of the numbers of equations in the reduced system, respectively.
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Fig. 3. Solution errors for the 100 testings.

Table 1

Size of the linear systems (5.1) and (5.6).

(5.6) min mean max max mean min (5.1)
# of equ. 297 400.71 594 10197 10079 9999 # of equ.
# of var. 67 122.71 212 4950 4950 4950 # of var.
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Fig. 4. Semidefiniteness curve μ(Ã) (solid line) and some smallest eigenvalues of Ã (*) for
the 100 testings.

As a comparison, we also list the size of the unreduced system (5.1) on the right.
Clearly, the system size is reduced substantially.

To check semidefiniteness of the computed Ã, we use μ(Ã) defined by

μ(Ã) = min{λ
∣∣ λ ∈ λ(Ã) and |λ| > 10−14‖Ã‖2 },

where λ(Ã) denotes the set of the eigenvalues of Ã. In Figure 4, we plot μ(Ã) for
the 100 testings in the same testing order as in Figure 3. Eigenvalues of Ã satisfying
|λ| ≤ 10−14‖Ã‖2 are also plotted and marked by ∗. Figure 4 shows that the computed
solutions are numerically positive semidefinite.
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7. Conclusions. The difficult question of existence of a positive definite or
semidefinite solution to the SRIEP when the recursive matrix R is singular is com-
pletely answered in this paper. We have completely characterized the necessary and
sufficient conditions of existence for such a solution. Indeed, when an (indefinite) solu-
tion A to the SRIEP is known, we formulated a subset of positive definite/semidefinite
solutions in terms of A, orthogonal basis matrices of the null space of R, and the null
space of RT . By these formulae, it is simple to construct positive solutions or positive
semidefinite solutions when the rank quality rank(S ◦ RTR) = rank(AR) holds. If
the rank constraint is not satisfied, it is required to update A to satisfy the rank con-
straint. This updating needs a solution of an (overdetermined) linear system. Thus
our algorithm proposed in this paper requires a priori an arbitrary solution A to the
SRIEP to begin with. Finding an (indefinite) solution to the SRIEP when R is singu-
lar is still an open problem. We haven’t touched upon the sensitivity analysis of the
SRIEP or the error analysis for solving the overdetermined linear system yet. These
issues deserve further investigation.

Acknowledgments. We want to thank the anonymous referees and Prof. Moody
Chu for their careful reading of this paper. Their insightful suggestions and comments
have greatly improved the presentation of this paper.
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1. Introduction. Matrices with special properties are important tools for test-
ing numerical algorithms and software, while Riesz bases in different Hilbert spaces
are important for solving many problems in approximation theory. However, whereas
there are several methods for generating extensive classes of finite test matrices (see,
e.g., [16, 11]), we are not aware of methods for generating multi-index test matrices.
Similarly, whereas there are methods for generating Riesz bases in subspaces of L2(R)
and L2(R+) [13, 18], we are not aware of general methods for generating Riesz bases
in subspaces of L2(Rd) for d ≥ 2, except for grids of sampling points with, apart
from a positive constant factor, only integer coordinates [20, 2]. We note that there
is an increasing interest in this topic both from the theoretical and the applicational
points of view. Classes of multi-index positive definite test matrices could be used, in
particular, to compare the effectiveness of preconditioning techniques in solving linear
systems by the conjugate gradient method [22, 9, 23, 24].

In a recent joint paper [18] with Nashed on the sampling expansions of functions
defined on the real line which belong to unitarily translation invariant reproducing
kernel Hilbert spaces Hφ, we have developed a method to generate both infinite posi-
tive self-adjoint matrices and Riesz bases in suitable subspaces of Hφ. More precisely,

starting from a real function φ ∈ L1(R) ∩ L2(R) whose Fourier transform φ̂ defined

by φ̂(ω) = (2π)−d/2
∫

Rd e
iω·xφ(x)dx does not vanish, we have represented the Hilbert

space Hφ of all f such that (f̂/φ̂) ∈ L2(R) as a reproducing kernel Hilbert space with
reproducing kernel

kφ(t, u) = κφ(t− u) =

∫ ∞

−∞
φ(x− t)φ(x− u) dx.(1.1)

Assuming in addition that φ(·)(1 + (·)2)γ ∈ L2(R) for some γ > 1, and taking a
sequence of sampling points {tj}∞j=−∞ such that |ti− tj | ≥ ε > 0 for i �= j, it has been
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proved that for all f in a suitable closed subspace Xφ of Hφ we have the following
results:

(a) The Gram matrix

Gij = kφ(ti, tj), i, j ∈ Z,

is bounded and strictly positive self-adjoint on �2(Z).
(b) The sequence

{kφ(·, tj)}∞j=−∞

is a Riesz basis in Xφ.
(c) The sampling expansion

f(t) =
1

‖φ‖2
2

∞∑
j=−∞

f(tj)κφ(t− tj), t ∈ R,(1.2)

is valid for every f ∈ Xφ. Note that κφ(0) = ‖φ‖2
2.

Though the closure Xφ of the linear span of the functions {kφ(·, tj)}∞j=−∞ has not
been explicitly specified, in [18] various examples have been worked out in detail.

In [18] the main emphasis of the research has been on the development of sam-
pling expansions in unitarily translation invariant reproducing kernel Hilbert spaces.
Although in the present article we have generalized the main results in [18] on sam-
pling expansions for functions on the line to sampling expansions for functions on R

d,
the present authors are primarily interested in the multi-index Toeplitz matrices aris-
ing as Gram matrices of the Riesz bases involved in the case of equidistant sampling
points. These matrices are presently being used as test matrices in the development
of numerical methods for solving multi-index Toeplitz systems. We are, in particu-
lar, interested in comparing the effectiveness of recent preconditioning techniques in
solving linear systems by the conjugate gradient method with the most commonly
used preconditioning techniques. We are also interested in solving large multi-index
Toeplitz systems by using the solution of the corresponding infinite Toeplitz system.
For these reasons the present paper contains many explicit examples whose entries
have Gaussian, exponential, or algebraic decay away from the diagonal, including the
condition numbers of some of the Toeplitz matrices generated.

The outline of the paper is as follows. In section 2 we compile some useful defi-
nitions and results involving Gram matrices, Riesz bases, and frame inequalities. In
section 3 we illustrate the method proposed for generating positive definite multi-
index Toeplitz matrices. In section 4 we present various examples of strictly positive
self-adjoint multi-index Toeplitz matrices. Finally, in Appendix A we present a dupli-
cation formula for Bessel polynomials that has been used to generate a specific class
of multi-index Toeplitz matrices, while in Appendix B we compute the condition
numbers of some of the Toeplitz matrices introduced.

Throughout this article, | · | will stand for the Euclidean vector norm or the
absolute value of a real or complex number.

2. Preliminaries. Given a complex Hilbert space H, a sequence {fn}n∈J , J ⊆
Z
d and J infinite, of vectors in H is called a frame (cf. [10, 26]) if there exist positive

constants C1, C2 such that

C1‖f‖H ≤
[∑
n∈J

|〈f, fn〉H |2
]1/2

≤ C2‖f‖H , f ∈ H.



1134 C. V. M. VAN DER MEE AND S. SEATZU

These inequalities are called the frame inequalities. The frame is called an exact frame
if the removal of any vector from the frame causes it not to be a frame anymore. Given
a frame, the linear operator T defined by Tf =

∑
n∈J〈f, fn〉Hfn is a bounded linear

operator on H. Further, if {fn}n∈J is an exact frame, for every f ∈ H there exists a
unique sequence {an}n∈J such that

f =
∑
n∈J

anfn,

where
∑

n∈J |an|2 < ∞. A well-known result [10, 26] states that a sequence {fn}n∈J

in a separable Hilbert space H is an exact frame if and only if it is a Riesz basis in H
(i.e., if it can be obtained from an orthonormal basis in H by applying a boundedly
invertible operator).

Proposition 2.1. Let H be a complex Hilbert space and let {fj}j∈J , J ⊆ Z
d, be

a sequence of functions in H. Then the following statements are equivalent:
1. There exist positive constants C1, C2 such that

C1‖f‖H ≤

⎡⎣∑
j∈J

|〈f, fj〉H |2
⎤⎦1/2

≤ C2‖f‖H , f ∈ H,(2.1)

holds for every f ∈ H and no such relation holds for any proper subset of functions
{fj}.

2. The sequence {fj}j∈J is a Riesz basis in H.
3. The sequence of functions {fj}j∈J is complete, and the Gram matrix Gij =

(〈fi, fj〉H)i,j∈J is bounded and strictly positive self-adjoint on �2(J).
Recall that by a reproducing kernel Hilbert space of functions supported on a set

S we mean a (complex) Hilbert space of functions on S, where all of the evaluation
functionals ξt(f) = f(t), for f ∈ H and each fixed t ∈ S, are continuous [3, 5, 17].
Then, by the Riesz representation theorem, for each t ∈ S there exists a unique
element kt ∈ H such that

f(t) = 〈f, kt〉, f ∈ H,

where 〈·, ·〉 is the scalar product on H. We then call k(t, u) = 〈kt, ku〉, for t, u ∈ S,
the reproducing kernel of H. Clearly, k(·, ·) is Hermitian and positive definite.

In [18], Proposition 2.1 has been applied more specifically to the situation in
which H is a reproducing kernel Hilbert space of complex-valued functions on a set S
with reproducing kernel k(t, s) and fj(t) = k(t, tj)/

√
k(tj , tj) for a sequence of points

{tj}j∈J in S. Then, under any of the conditions of Proposition 2.1, for every f ∈ H
we have the moment expansion

f(t) =
∑
j∈J

〈f, fj〉Hfj(t).(2.2)

When J = Z
d, the Gram matrix {Gij}i,j∈Zd is a multi-index Toeplitz matrix (i.e.,

Gij = Gi−j for i, j ∈ Z
d).

The following elementary result has been adapted from [18].
Proposition 2.2. Let J = Z

d. Then the statements of Proposition 2.1 and the
following two claims are equivalent:
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1. The sequence of functions {fj}j∈Zd is complete, and the multi-index Toeplitz
matrix (Gi−j)i,j∈Zd defined by

Gi−j = 〈fi, fj〉H

is bounded and strictly positive self-adjoint on �2(Zd).
2. The sequence of functions {fj}j∈Zd is complete, and the symbol

Ĝ(s) =
∑
j∈Zd

sjGj , s = (s1, . . . , sd), |s1| = · · · = |sd| = 1,

is positive, essentially bounded, and essentially bounded away from zero.
If any of these conditions holds and J = Z

d, the condition number of G equals

maxs∈Td Ĝ(s)

mins∈Td Ĝ(s)
,(2.3)

where T
d is the d-dimensional torus.

3. The method. Let φ be a real function in L1(Rd) ∩ L2(Rd) and let

kφ(t, u) = κφ(t− u) =

∫
Rd

φ(x− t)φ(x− u) dx =

∫
Rd

e−iω(t−u)|φ̂(ω)|2 dω.(3.1)

Then

κ̂φ(ω) = (2π)d/2|φ̂(ω)|2,(3.2)

where φ̂(ω) = (2π)−d/2
∫

Rd e
iω·xφ(x) dx. Now suppose {tj}j∈J , J ⊂ Z

d, is an infinite

sequence of sampling points in R
d and

(Gφ)ij := kφ(ti, tj) =

∫
Rd

φ(x− ti)φ(x− tj) dx, i, j ∈ J,

the associated Gram matrix. When the sampling points are equidistant (i.e., when
tj = αj for some α > 0), Gφ is a multi-index Toeplitz matrix whose symbol we define
by

Ĝ(s, α) =
∑
j∈Zd

sj
∫

Rd

φ(x)φ(x + αj) dx =
∑
j∈Zd

sjκφ(αj),

where the series converge uniformly and absolutely in s on the d-dimensional torus
T
d if the condition ∑

j∈Zd

|κφ(αj)| < ∞(3.3)

is satisfied.
The condition that φ̂(ω) �= 0 for every ω ∈ R

d is sufficient for kφ(·, ·) to be a
reproducing kernel on S = R

d. Indeed, let t1, . . . , tn be distinct points in R
d. Then

for every nontrivial n-tuple (ξ1, . . . , ξn) of complex numbers we have

n∑
i,j=1

kφ(ti, tj)ξiξj =

∫
Rd

|φ̂(ω)|2
n∑

i,j=1

ei(ti−tj)·ωξiξj dω

=

∫
Rd

|φ̂(ω)|2
∣∣∣∣∣

n∑
i=1

eiti·ωξi

∣∣∣∣∣
2

dω > 0,
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which proves that kφ(·, ·) is a reproducing kernel on S = R
d if φ̂(ω) �= 0 for every

ω ∈ R
d. As in [18], we now easily identify the corresponding reproducing kernel

Hilbert space Hφ (cf. [3, 5, 17] for reproducing kernel Hilbert spaces) with the complex

Hilbert space of all measurable functions f on R
d such that (f̂/φ̂) ∈ L2(Rd), endowed

with the norm

‖f‖Hφ
=

1

(2π)d/2

[∫
Rd

|f̂(ω)|2 dω

|φ̂(ω)|2

]1/2
.

The following result provides a general condition on φ and the sampling points
in order that the Gram matrix {κφ(ti, tj)}i,j∈J be bounded on �2(J). In the case of
equidistant sampling points, we actually prove that condition (3.3) holds. Note that
all of the examples given in the next section satisfy these conditions.

Theorem 3.1. Let the distinct sampling points {tj}j∈J , with J ⊆ Z
d an infinite

set, satisfy |ti − tj | ≥ ε > 0 for i �= j in J . Further, let φ have the property

∃γ > d :

∫
Rd

(1 + |x|2)γφ(x)2 dx < ∞.(3.4)

Then the Gram matrix {kφ(ti, tj)}i,j∈J is bounded on �2(J). In particular, if ti = αi
(i ∈ J = Z

d) for some α > 0, then (3.3) is satisfied.

Proof. Note that

sup
i∈J

∑
j∈J

|kφ(ti, tj)| = sup
i∈J

∑
j∈J

|κφ(ti − tj)|(3.5)

is an upper bound for the norm of the Gram matrix on �2(J). Therefore,

(1 + |t|)γ |κφ(t)| ≤
∫

Rd

(1 + |x|)γ |φ(x)| · (1 + |x + t|)γ |φ(x + t)| dx

≤
∫

Rd

(1 + |x|)2γφ(x)2 dx ≤ 2γ
∫

Rd

(1 + |x|2)γφ(x)2 dx,

which implies that (3.5) is bounded above when |ti − tj | ≥ ε for i �= j.

We now give sufficient conditions on φ and the sampling points for the Gram ma-
trix {κφ(ti, tj)}i,j∈J to be bounded below on �2(J) by a positive multiple of the iden-
tity. With Theorem 3.1, we then obtain sufficient conditions on φ and the sampling
points in order that this Gram matrix be bounded and strictly positive self-adjoint
on �2(J) and that the frame inequalities (2.1) be satisfied. All of the examples of the
next section satisfy these conditions. The two proofs we give are based in part on
ideas of Schaback [21, Theorem 3.1].

Theorem 3.2. Let (tj)j∈Zd be sampling points with t0 = 0 and

|tis − tjs| ≥ ε|is − js| > 0, i, j ∈ Z
d with tis �= tjs.

Let φ be a real function in L1(Rd) ∩ L2(Rd) satisfying the conditions of Theorem

3.1 whose Fourier transform φ̂(ω) �= 0 for max(|ω1|, . . . , |ωd|) ≤ M for any M >

π/ε
√

3(21/d − 1). Then the Gram matrix {κφ(ti − tj)}i,j∈Zd is bounded and strictly
positive self-adjoint on �2(Zd).
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Moreover, if φ̂(ω) �= 0 for all ω ∈ R
d and Xφ denotes the closed linear span of

κφj(x) = κφ(x − tj), j ∈ Z
d in Hφ, then there exist positive constants C1, C2 such

that the frame inequalities

C1‖f‖Hφ
≤

⎡⎣∑
j∈Zd

|f(tj)|2
⎤⎦1/2

≤ C2‖f‖Hφ
, f ∈ Xφ,(3.6)

hold. Consequently, {κφj}j∈Zd is a Riesz basis in Xφ and for each f ∈ Xφ we have
the interpolating expansion

f(t) =
1

‖φ‖2
2

∑
j∈Zd

f(tj)κφ(t− tj).(3.7)

Proof. We present two proofs, the first one adapted to φ such that φ̂(ω) is zero

free for max(|ω1|, . . . , |ωd|) ≤ 2M , and the second one adapted to φ such that φ̂(ω) is
zero free for |ω| ≤ 2R, where M and R are specified in the first and second proofs,
respectively.

First proof. For N ∈ N and any set of N sampling points and arbitrary complex
numbers c1, . . . , cN , by Parseval’s theorem we have

N∑
j,r=1

cjcrκφ(tj − tr) =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cjφ(x− tj)

∣∣∣∣∣∣
2

dx =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
iω·tj φ̂(ω)

∣∣∣∣∣∣
2

dω

≥
(

inf
|ωs|≤2M, s=1,...,d

|φ̂(ω)|2
)∫ 2M

−2M

· · ·
∫ 2M

−2M

ΨM (ω)

N∑
i,j=1

cicje
iω·(ti−tj) dω,(3.8)

where

ΨM (ω) =

⎧⎪⎨⎪⎩(2M)−d

d∏
s=1

(2M − |ωs|), |ωs| ≤ 2M, s = 1, . . . , d,

0 otherwise.

Putting

B(u) =

∫ 1

−1

(1 − |ζ|)eiζu dζ =

⎧⎪⎨⎪⎩
(

sin( 1
2u)

1
2u

)2

, u �= 0,

1, u = 0,

(3.9)

we obtain for tj = (tj1, . . . , tjd) (j = 1, . . . , N)

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cjφ(x− tj)

∣∣∣∣∣∣
2

dx ≥
(

inf
|ωs|≤2M, s=1,...,d

|φ̂(ω)|2
) N∑

i,j=1

cicjAij ,

where

Aij =

d∏
s=1

B(2M(tis − tjs)).(3.10)
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Now choose ε > 0 such that |tis − tjs| ≥ ε|is − js| for tis �= tjs. Then in view of
(3.9)

0 <

d∏
s=1

B(2M(tis − tjs)) =

d∏
s=1

tis �=tjs

B(2M(tis − tjs))

≤
∏

s=1,...,d
tis �=tjs

1

(Mε(is − js))2
=
∏

s=1,...,d
is �=js

1

(Mε(is − js))2
.

We easily prove, by induction on d, that

∑
j∈Zd

d∏
s=1

B(2M(tis − tjs)) ≤ 1 +
∑
j∈Z

d

j �=i

d∏
s=1

B(2M(tis − tjs))

≤ 1 +
∑
j∈Z

d

j �=i

∏
s=1,...,d
is �=js

1

(Mε(is − js))2

≤ 1 +
∑

j∈Zd\{0}

∏
s=1,...,d
js �=0

1

(Mεjs)2
≤ (1 + 2S(Mε))d,

where

S(z) =
∞∑
i=1

1

(zi)2
=

π2

6z2
.

Using Gershgorin’s theorem [12, Theorem 8.1.3], it appears that the real symmetric
matrix (Aij)

N
i,j=1 with elements defined by the right-hand side of (3.10) has all of its

diagonal elements equal to 1, and hence all of its eigenvalues λ are real and satisfy

|1 − λ| ≤ max
i=1,...,N

N∑
j=1
j �=i

|Aij |.

Thus its eigenvalues can be found in the open interval from 2− (1+2S(Mε))d to (1+
2S(Mε))d whose endpoints do not depend on N . Thus if M > π/(ε

√
3(21/d − 1)1/2),

this matrix is positive definite. Therefore, for this choice of M the lower bound (3.8)
extends to arbitrary subsets of the set of the sampling points, and hence the Gram
matrix {κφ(ti− tj)}i,j∈Z is strictly positive self-adjoint. Its boundedness follows from
Theorem 3.1. The frame inequalities (3.6) now follow with the help of Proposition 2.1.
Finally, (3.7) is immediate from (2.2), (3.6), and kφ(tj , tj) = κφ(0) = ‖φ‖2

2.
Second proof. Let R be a positive real number and let χd

R(x) be the characteristic
function of the sphere in R

d with center the origin and radius R. Then

0 ≤
∫

Rd

dxχd
R(x− t)χd

R(x− s) ≤ RdVd, t, s ∈ R
d,

where Vd is the volume of the unit ball in R
d. Then for N ∈ N and any set of N
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sampling points and arbitrary complex numbers c1, . . . , cN , we have

N∑
j,r=1

cjcrκφ(tj − tr) =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cjφ(x− tj)

∣∣∣∣∣∣
2

dx =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
iω·tj φ̂(ω)

∣∣∣∣∣∣
2

dω

≥
(

inf
|ω|≤2R

|φ̂(ω)|2
)∫

|ω|≤2R

Ψd
R(ω)

N∑
i,j=1

cicje
iω·(ti−tj) dω

≥
(

inf
|ω|≤2R

|φ̂(ω)|2
) N∑

i,j=1

cicjFd(R, ti − tj),(3.11)

where φ̂(ω) is zero free for |ω| ≤ 2R,

Ψd
R(ω) =

1

RdVd

∫
Rd

χd
R(ξ)χd

R(ξ − ω) dξ,

and

Fd(R, t) =

∫
|ω|≤2R

Ψd
R(ω)eiω·t dω = (2π)d/2Ψ̂d

R(t) =
(2π)d

RdVd
|χ̂d

R(t)|2.

Using [14, 8.411(5) and 6.561(5)] and Sd−2 = 2π(d−1)/2/Γ((d−1)/2) we easily compute

χ̂d
R(t) = (2π)−d/2Sd−2

∫ R

0

drrd−1

∫ π

0

dϕ1(sinϕ1)
d−2eir|t| cosϕ1

= (2π)−d/2Rd

∫ 1

0

dρρd−1

∫ π

0

(sinϕ1)
d−2 cos(ρR|t| cosϕ1)

= R2

(
R

|t|

) d−2
2
∫ 1

0

dρρ
d
2 J d−2

2
(ρR|t|) =

(
R

|t|

) d
2

J d
2
(R|t|),

so that

Fd(R, t) =
(2π)d

Vd|t|d
J d

2
(R|t|)2 and hence Fd(R, 0) =

(πR)d

VdΓ(d+2
2 )2

.

According to [14, 8.479], for |t| ≥ (d/2R) we have the estimate

Fd(R, t) =
(2π)d

Vd|t|d
J d

2
(R|t|)2 ≤ 2

π

(2π)d

Vd|t|d
1√

(R|t|)2 − (d2 )2
,

and hence for |t| ≥ ((μd)/(2R)) with fixed μ > 1 we have

Fd(R, t) ≤ 1

πVdR
√
μ2 − 1

(
2π

|t|

)d+1

.

Now choose ε > 0 such that |ti − tj | ≥ ε[
∑d

s=1(is − js)
2]1/2. Then for ε ≥

((μd)/(2R)) and some μ > 1 we have for i �= j

Fd(R, ti − tj) ≤
(2π/ε)d+1

πVdR
√
μ2 − 1

1

[
∑d

s=1(is − js)2]
d+1
2

.
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Therefore, for |t| ≥ ((μd)/(2R)) with fixed μ > 1 we have

max
i=1,...,N

N∑
j=1
j �=i

Fd(R, ti − tj) ≤
(2π/ε)d+1

πVdR
√
μ2 − 1

S[d],

where S[d] =
∑

0 �=j∈Zd [j2
1 + · · · + j2

d ]−
d+1
2 . Using Gershgorin’s theorem [12, Theorem

8.1.3], it appears that the real symmetric matrix (F (ti− tj))
N
i,j=1, appearing in (3.11),

has its eigenvalues in the open interval of half-length (2π/ε)d+1S[d]/πVdR
√
μ2 − 1

centered about Fd(R, 0). Consequently, if ε strictly exceeds the number ε0(R, d, μ)
defined by

ε0(R, d, μ) = max

⎛⎝ μd

2R
,

2

R

[
S[d]Γ(d+2

2 )2√
μ2 − 1

] 1
d+1

⎞⎠
for some μ > 1, then the real symmetric matrix (F (ti− tj))

N
i,j=1 appearing in (3.11) is

positive definite, irrespective of the choice of finite subset of the sampling points. The
frame inequalities (3.6) now follow with the help of Proposition 2.1. Finally, (3.7) is
immediate from (2.2), (3.6), and kφ(tj , tj) = κφ(0) = ‖φ‖2

2.

Assuming φ̂(ω) �= 0 for all ω ∈ R
d and given the finite linear combination∑

j cjκφ(· − tj) in Xφ, we easily compute that∥∥∥∥∥∥
∑
j

cjκφ(· − tj)

∥∥∥∥∥∥
2

Hφ

=
1

(2π)d

∫
Rd

∣∣∣∣∣∣
∑
j

cje
iω·tj

∣∣∣∣∣∣
2

|κ̂φ(ω)|2 dω

|φ̂(ω)|2

=

∫
Rd

∣∣∣∣∣∣
∑
j

cje
iω·tj

∣∣∣∣∣∣
2

|φ̂(ω)|2 dω.

Hence if t = {tj : j ∈ Z
d} denotes the set of sampling points, then the image F [Xφ]

of Xφ under the Fourier transformation F coincides with the completion APt,φ of the
vector space of d-variate almost periodic polynomials with spectrum within t with
respect to the scalar product

(f, g)Xφ
=

∫
Rd

f(ω)g(ω)|φ̂(ω)|2 dω.

Here by the spectrum of a d-variate almost periodic function f : R
d → C we mean the

set of all t ∈ R
n for which limT→+∞

1
Td

∫ T
0
· · ·
∫ T
0
e−ix·tf(x)dx �= 0, where we note

(cf. [6]) that

lim
T→+∞

1

T d

∫ T

0

· · ·
∫ T

0

eix·(u−t) dx1 . . . dxd =

{
1, t = u ∈ R

d,

0, t, u ∈ R
d and t �= u.

Denoting the Banach space of d-variate almost periodic functions with spectrum
within t with respect to the supremum norm by APt, one can also identify F [Xφ] with

the closure of φ̂[APt] in L2(Rd). Since φ̂[L∞(Rd)] is dense in L2(Rd) and APt is not
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dense in L∞[Rd], the space Xφ is a proper closed linear subspace of Hφ. Furthermore,
due to the estimate∥∥∥∥∥∥

∑
j

cjκφ(· − tj)

∥∥∥∥∥∥
Hφ

≤ ‖φ‖2 sup
ω∈Rd

∣∣∣∣∣∣
∑
j

cje
iω·tj

∣∣∣∣∣∣ ,
we see that

APt ⊂ APt,φ = F [Xφ].

When the sampling points form a rectangular grid in R
d containing the origin

(i.e., when there exists α > 0 such that tj = αj for j ∈ Z
d), the space APt coincides

with the Banach space of all bounded continuous functions f : R
d → C satisfying

f(ω + 2jπ
α ) = f(ω) for all ω ∈ R

d and j ∈ Z
d, endowed with the supremum norm.

4. Examples. Let us discuss the following examples of real functions. Here
we remark that if φ(t) depends only on |t|, then κφ(t) depends only on |t| and

φ̂(ω) depends only on |ω|. Consequently, expressing the Cartesian coordinates in
spherical coordinates by putting x1 = r cosϕ1, x2 = r sinϕ1 cosϕ2, . . . , xd−1 =
r sinϕ1 . . . sinϕd−2 cosϕd−1, xd = r sinϕ1 . . . sinϕd−2 sinϕd−1, where we have ϕj ∈
[0, π] (j = 1, . . . , d− 2) and ϕd−1 ∈ [−π, π], with Jacobian

J = rd−1(sinϕ1)
d−2(sinϕ2)

d−3 . . . sinϕd−2,

we obtain

φ̂(ω) = (2π)−d/2

(
2

|ω|

) d−2
2

Γ

(
d

2

)
Sd−1

∫ ∞

0

rd/2J d−2
2

(|ω|r)φ(r) dr,(4.1)

where Sd−1 is the surface measure of Sd−1, Sd−1 = Sd−2B(d−1
2 , 1

2 ), and B(p, q) and
Jν(z) stand for the Euler beta function and the Bessel function of order ν, respectively.

Example 4.1. A typical example involves the Gram matrix of the multinomial
distribution [19]. Let Σ be a positive definite real d× d matrix,

φ(x) =

(
det Σ

πd

)1/2

e−(Σx,x) = π−d/2(det Σ)1/2 exp

⎛⎝−
d∑

i,j=1

Σijxixj

⎞⎠ ,(4.2)

where x = (x1, . . . , xd) ∈ R
d and κφ(t, s) =

∫
Rd φ(x− t)φ(x− s)dx. Then

κφ(t) =

∫
Rd

φ(x)φ(x− t) dx = (2π)−d/2(det Σ)1/2e−
1
2 (Σt,t),(4.3)

where t ∈ R
d. In particular, for t, s ∈ R

d we have

φ̂(ω) = (2π)−d/2e−
1
4 (Σ−1ω,ω) �= 0

in R
d and

kφ(t, s) =

∫
Rd

φ(x− t)φ(x− s) dx = κφ(t− s) = κφ(s− t).
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Hence, if tj = αj, α > 0, j ∈ Z
d, the Toeplitz matrix

Gi−j(α) = kφ(α|i− j|),

whose entries have a Gaussian decay away from the diagonal elements, is bounded
and strictly positive self-adjoint on �2(Zd). Furthermore, as φ̂ has no zeros in R

d, the
expansion (3.7) holds with ‖φ‖2

2 = (2π)−d/2(det Σ)1/2.
Example 4.2. For σ > 0, consider φ(x) = e−σ|x|, where the length of x ∈ R

d is

its Euclidean vector norm. Then φ̂(ω) depends only on |ω| and κφ(x) depends only
on |x|. For d = 2 we use κφ(t) = kφ(− 1

2 |t|e1,
1
2 |t|e1), where e1 = (1, 0), and apply

the transformation x = 1
2 |t|(coshu cos v, sinhu sin v) to elliptical coordinates (u, v) in

(3.1) to find

κφ(t) =
π|t|2

4

∫ ∞

0

cosh(2u)e−σ|t| coshu du =
π|t|2

4
K2(σ|t|),

where K2 stands for McDonald’s function [14, 8.432(1)].
For d ≥ 3 we observe that (1) κφ(t) = kφ(− 1

2 |t|e1,
1
2 |t|e1), where e1 = (1, 0, . . . , 0),

and (2) the integrand does not change if the relative position of x in the two-
dimensional plane containing ± 1

2 |t| and x remains the same. Denoting the surface

measure of Sd−2 by Sd−2 and using the fact that Sd−1 = Sd−2B(d−1
2 , 1

2 ), we obtain
[1, 9.6.23 and 9.6.26]

κφ(t) =
Sd−1

2d
|t|d
∫ ∞

0

[
sinhd u +

d− 1

d
sinhd−2 u

]
e−σ|t| coshu du

=
Γ(d+1

2 )Sd−1√
π

(
|t|
2σ

)d/2 [
K d

2
(σ|t|) +

σ|t|
d

K d−2
2

(σ|t|)
]

=
σ2Γ(d+1

2 )Sd−1√
π

(
|t|
2σ

) d+2
2

K d+2
2

(σ|t|).

For d = 3, in particular, we have

κφ(t) =
π

2
|t|3
∫ ∞

1

(
ξ2 − 1

3

)
e−σ|t|ξ dξ =

π

σ3

(
2

3
σ2|t|2 + σ|t| + 1

)
e−σ|t|.

Moreover, for any d ≥ 2 we have

φ̂(ω) = (2π)−d/2Sd−2

∫ ∞

0

∫ π

0

rd−1 sind−2 θei|ω|r cos θe−σr dθdr

= (2π)−d/2Sd−2Γ

(
d− 1

2

)
Γ

(
1

2

)(
|ω|
2

)− d−2
2
∫ ∞

0

rd/2J d−2
2

(|ω|r)e−σr dr

= (2π)−d/2Sd−2B

(
d− 1

2
,
1

2

)
Γ(d)

F
(

d
2 ,−

1
2 ; d

2 ; |ω|2
σ2+|ω|2

)
(σ2 + |ω|2)d/2

= (2π)−d/2Sd−2B

(
d− 1

2
,
1

2

)
(d− 1)!σ

(σ2 + |ω|2) d+1
2

= (2π)−d/2Sd−1
(d− 1)!σ

(σ2 + |ω|2) d+1
2

,
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where we have used (4.1), [14, line 3 of 6.621(1)], and Sd−1 = Sd−2B(d−1
2 , 1

2 ), while
F stands for the hypergeometric function. For d = 3 we trivially find

φ̂(ω) =
4√
2π

σ

(σ2 + |ω|2)2 ,

which has no zeros in R. As a result, the Gram matrix G given by Gij = κφ(ti − tj),
i, j ∈ Z

d, whose entries decay exponentially away from the diagonal, is strictly positive
definite and the expansion (3.7) holds with kφ defined as above.

Example 4.3. For d ≥ 2 and σ > 0 consider the algebraically decaying function

φ(x) = (σ2 + |x|2)− d+1
2 . Then φ satisfies condition (3.4) for γ ∈ (d, d+ 1), while (4.1)

and [14, 6.565(3)] imply

φ̂(ω) = (2π)−d/2 Sd

2σ
e−σ|ω|,

where we have employed Sd−1B(d2 ,
1
2 ) = Sd. Thus

κ̂φ(ω) = (2π)d/2|φ̂(ω)|2 = (2π)−d/2 S2
d

4σ2
e−2σ|ω|.

Consequently,

κφ(t) =
Sd

σ

1

(4σ2 + |t|2) d+1
2

.

More generally, for d ≥ 2, σ > 0, and q = 0, 1, . . . consider φ(x) = (σ2+ |x|2)−( d+1
2 +q).

Then (4.1) and [14, 6.565(4)] imply

φ̂(ω) = (2π)−d/2

(
|ω|
2σ

)q+ 1
2 Γ(d2 )Sd−1

Γ(d+1
2 + q)

K−(q+ 1
2 )(σ|ω|)

= (2π)−d/2 θq(σ|ω|)
2q+1σ2q+1

Γ(d2 )Γ( 1
2 )

Γ(d+1
2 + q)

Sd−1e
−σ|ω|

= (2π)−d/2 θq(σ|ω|)Sd

2q+1σ2q+1(d+1
2 )q

e−σ|ω|,(4.4)

where we have used the Pochhammer symbol c0 = 1 and cs = c(c+1)(c+2) · · · (c+s−1)
for s = 1, 2, . . . and the expression (see [14, 8.486(14) and 8.486(16)], plus induction
on q)

K±(q+ 1
2 )(z) =

√
π

2z

θq(z)

zq
e−z

for the so-called Bessel polynomials θq(z) of degree q which satisfy the recurrence
relations (see [14, 8.486(14) and 8.486(10)])

θ0(z) = 1, θ1(z)= z + 1, θq+1(z) = z[θq(z) − θ′q(z)] + (2q + 1)θq(z),(4.5)

θ0(z) = 1, θ1(z)= z + 1, θq+1(z) = (2q + 1)θq(z) + z2θq−1(z)(4.6)

and have the explicit form (see [1, 10.2.15] and [15, Chap. 2, (7)–(8)])

θq(z) =

q∑
k=0

1

2q−k

(2q − k)!

k!(q − k)!
zk.
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Using the fact that κφ(t) is a linear combination of expressions of the type (4.4) with
σ replaced by 2σ as well as (A.1), we obtain

κφ(t) =
Sd

(2σ)2q+1[d + 1]q

2q∑
s=q

dq,sσ
2(s−q)[d + 2q + 1]s−q

(4σ2 + |t|2) d+1
2 +s

,

where dq,2q−n = (2n)!
2nn!

(
q
n

)
(n = 0, 1, . . . , q), [c]0 = 1, and [c]s = c(c + 2)(c + 4) · · · (c +

2s− 2) for s = 1, 2, . . . . In particular, for q = 1 we find

κφ(t) =
Sd

8(d + 1)σ3

[
1

(4σ2 + |t|2) d+3
2

+
σ2(d + 3)

(4σ2 + |t|2) d+5
2

]
.

Further, for q = 2 and q = 3 we find

κφ(t) =
Sd

32σ5(d + 1)(d + 3)

[
3

(4σ2 + |t|2) d+5
2

+
2(d + 5)σ2

(4σ2 + |t|2) d+7
2

+
(d + 5)(d + 7)σ4

(4σ2 + |t|2) d+9
2

]

and

κφ(t) =
Sd

128σ7(d + 1)(d + 3)(d + 5)

[
15

(4σ2 + |t|2) d+7
2

+
9σ2(d + 7)

(4σ2 + |t|2) d+9
2

+
3σ4(d + 7)(d + 9)

(4σ2 + |t|2) d+11
2

+
σ6(d + 7)(d + 9)(d + 11)

(4σ2 + |t|2) d+13
2

]
,

respectively. For q = 4 and q = 5 we obtain

κφ(t) =
Sd

512σ9(d + 1)(d + 3)(d + 5)(d + 7)

[
105

(4σ2 + |t|2) d+9
2

+
60σ2(d + 9)

(4σ2 + |t|2) d+11
2

+
18σ4(d + 9)(d + 11)

(4σ2 + |t|2) d+13
2

+
4σ6(d + 9)(d + 11)(d + 13)

(4σ2 + |t|2) d+15
2

+
σ8(d + 7)(d + 9)(d + 11)(d + 13)(d + 15)

(4σ2 + |t|2) d+17
2

]

and

κφ(t) =
Sd

2048σ11(d + 1)(d + 3)(d + 5)(d + 7)(d + 9)

[
945

(4σ2 + |t|2) d+11
2

+
525σ2(d + 11)

(4σ2 + |t|2) d+13
2

+
150σ4(d + 11)(d + 13)

(4σ2 + |t|2) d+15
2

+
30σ6(d + 11)(d + 13)(d + 15)

(4σ2 + |t|2) d+17
2

+
5σ8(d + 11)(d + 13)(d + 15)(d + 17)

(4σ2 + |t|2) d+19
2

+
σ10(d + 11)(d + 13)(d + 15)(d + 17)(d + 19)

(4σ2 + |t|2) d+21
2

]
,



GENERATING TEST MATRICES AND RIESZ BASES 1145

respectively. In this example the Gram matrix {kφ(ti, tj)}i,j∈Zd , whose entries decay
algebraically away from the diagonal, is strictly positive self-adjoint. Furthermore,
the expansion (3.7) holds with kφ as above, as φ̂ does not have zeros in R

d.
Example 4.4. Now consider the box spline

φ(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − x2, 0 ≤ x1 ≤ x2 ≤ 1,

1 − x1, 0 ≤ x2 ≤ x1 ≤ 1,

1 − x1 + x2, 0 ≤ x1 ≤ 1, −1 + x1 ≤ x2 ≤ 0,

φ(−x1,−x2), −1 ≤ x1 ≤ 0, −1 ≤ x2 ≤ 1 + x1,

and zero elsewhere. Then

φ̂(ω1, ω2) =
1

π

sin(ω1) + sin(ω2) − sin(ω1 + ω2)

ω1ω2(ω1 + ω2)

=
1

2π

sin( 1
2ω1)

1
2ω1

sin( 1
2ω2)

1
2ω2

sin( 1
2 (ω1 + ω2))

1
2 (ω1 + ω2)

,

while φ̂(0, 0) = (1/2π) and

φ̂(ω1, 0) = φ̂(0, ω1) = φ̂(ω1,−ω1) =
1

π

1 − cos(ω1)

ω2
1

.

Thus

φ̂(ω1, ω2) > 0, max(|ω1|, |ω2|, |ω1 + ω2|) < 2π.

As a consequence, the Gram matrix {kφ(ti, tj)}i,j∈Zd is positive self-adjoint, but the

expansion (3.7) is not valid, because φ̂(ω1, ω2) has zeros in R
d.

Let us now employ (3.2) to get

κ̂φ(ω1, ω2) =
4

π

1 − cos(ω1)

ω2
1

1 − cos(ω2)

ω2
2

1 − cos(ω1 + ω2)

(ω1 + ω2)2
.(4.7)

Introducing ψ(x) = 1 − |x| for −1 ≤ x ≤ 1 and ψ(x) = 0 for |x| ≥ 1, so that

ψ̂(ω) =
√

2
π

1−cos(ω)
ω2 , we can write (4.7) in the form

κ̂φ(ω1, ω2) =
√

2πψ̂(ω1)ψ̂(ω2)ψ̂(ω1 + ω2),

which implies that

κφ(t1, t2) =
√

2π

∫ ∞

−∞
dω1e

−iω1t1 ψ̂(ω1)

∫ ∞

−∞
dzψ(t2 − z)eiω1zψ(z)

=

∫ ∞

−∞
dzψ(z)ψ(t1 − z)ψ(t2 − z)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(t2), 0 ≤ t1 ≤ t2 ≤ 2,

S(t1), 0 ≤ t2 ≤ t1 ≤ 2,

S(t1 − t2), 0 ≤ t1 ≤ 2, −2 + t1 ≤ t2 ≤ 0,

kφ(−t1,−t2), −2 ≤ t1 ≤ 0, −2 ≤ t2 ≤ 2 + t1,

(4.8)
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where

S(t) =

⎧⎪⎨⎪⎩
1

12
t3 +

2

3
(1 − t) − 1

6
(1 − t)3, 0 ≤ t ≤ 1,

1

12
(2 − t)4, 1 ≤ t ≤ 2,

and zero outside [−2, 2]2.

Appendix A. Some expressions involving Bessel polynomials. In this
appendix we prove the following result of independent interest.

Theorem A.1. We have

22qθq(z)
2 =

q∑
n=0

(2n)!

2nn!

(
q

n

)
θ2q−n(2z).(A.1)

Proof. According to (5.6) of [8] we have the addition formula

θq(z + w) = 2q
q∑

r=0

(−1)q−r q!(2r + 1)

(q − r)!(q + r + 1)!
(zw)q−rθr(z)θr(w)(A.2)

and the inverse addition formula

θq(z)θq(w) =

q∑
r=0

(q + r)!

(q − r)!r!
2−r(zw)q−rθr(z + w),(A.3)

which follow from analogous expressions for the Laguerre polynomials [7]. From (A.3)
we have the duplication formula

22qθq(z)
2 =

q∑
r=0

(q + r)!

(q − r)!r!
2r(2z)2(q−r)θr(2z).(A.4)

Using (3.1) and (1.5) of [8], we see that

z2kθn(z) =

k∑
s=0

(−1)s
(
k

s

)
(2n + 2k + 1)!!

(2n + 2k − 2s + 1)!!
θn+2k−s(z),(A.5)

which generalizes (4.6). Substituting (A.5) into (A.4) (with 2z, r, and q − r instead
of z, n, and k) we get

22qθq(z)
2 =

q∑
r=0

(q + r)!

(q − r)!r!
2r

q−r∑
s=0

(−1)s
(
q − r

s

)
(2q + 1)!!

(2q − 2s + 1)!!
θ2q−r−s(2z)

=

q∑
n=0

n∑
s=0

(−1)s2n−s (q + n− s)!

s!(n− s)!(q − n)!

(2q + 1)!!

(2q − 2s + 1)!!
θ2q−n(2z)

=

q∑
n=0

(
q

n

)
B(q, n)θ2q−n(2z),
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where

B(q, n) =

n∑
s=0

(−1)s2n−s

(
n

s

)
(q + n− s)!

q!

(2q + 1)!!

(2q − 2s + 1)!!

= 2n(n!)

n∑
s=0

(−q − 1
2 )s(q + 1)n−s

s!(n− s)!
= 2n(n!)

((−q − 1
2 ) + (q + 1))n

n!

= 2n
(

1

2

)
n

=
(2n)!

2nn!
.(A.6)

In the penultimate equality of (A.6) we have applied a corollary of the Chu–Vander-
monde identity derived in Remark 2.2.1 of [4].

Appendix B. Condition numbers. In this appendix the condition numbers
cond(Gφ) of the multi-index Toeplitz matrix Gφ are listed in the case ti = αi (i ∈ Z

d)
for Examples 4.1–4.4 as far we have been able to compute them, in some cases only
for d = 1.

Example 4.1. For d = 1 we have φ(x) = e−σx2

and

Ĝ(s, α) =

√
π

2σ

⎛⎝1 + 2
∞∑
j=1

e−σα2j2/2 cos(jθ)

⎞⎠
=

√
π

2σ
ϑ3

(
1

2
θ, e−σα2/2

)
= G(α)

√
π

2σ

∞∏
j=1

{(
1 + e−(j− 1

2 )σα2

eiθ
)(

1 + e−(j− 1
2 )σα2

e−iθ
)}

,

where s = eiθ, ϑ3 denotes a Jacobian Theta function [25, sect. 21.11 and 21.3], and

G(α) =
∏∞

j=1(1 − e−jσα2

). Consequently,

cond(Gφ) =
Ĝ(1, α)

Ĝ(−1, α)
=

⎛⎝ ∞∏
j=1

1 + e−(j− 1
2 )σα2

1 − e−(j− 1
2 )σα2

⎞⎠2

.

Example 4.2. For d = 1 we have φ(x) = e−σ|x| and

Ĝ(s, α) = α
p(ασ) + q(ασ)[s + s−1]

(1 − se−ασ)2(1 − s−1e−ασ)2
,

where p(β) = 1
β −4e−2β− 1

β e
−4β and q(β) = (1+ 1

β )e−3β +(1− 1
β )e−β . Consequently,

cond(Gφ) =
Ĝ(1, α)

Ĝ(−1, α)
=

p(ασ) + 2q(ασ)

p(ασ) − 2q(ασ)

(
1 + e−ασ

1 − e−ασ

)4

.

Example 4.3. For d = 1 and q = 0 we have φ(x) = 1/(σ2 + x2) and

Ĝ(s, α) =
π2

α

2

πσ2

⎛⎝ α

4σ
+

2σ

α

∞∑
j=1

(−1)j cos{j(π − θ)}
j2 + (2σ/α)2

⎞⎠
=

1

σ3

e2(π−θ)σ/α + e−2(π−θ)σ/α

e2πσ/α − e−2πσ/α
,
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where s = eiθ (cf. [25, Prob. 9 of Chap. IX]). Consequently,

cond(Gφ) =
Ĝ(1, α)

Ĝ(−1, α)
= cosh

(
2πσ

α

)
.

Example 4.4. We now compute the Toeplitz matrix G = (Gi−j)i,j∈Z2 where

Gi =

∫
R2

φ(x)φ(x− i) dx, i = (i1, i2) ∈ Z
2.

By using (4.8) it is immediate to obtain

Gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
, i1 = i2 = 0,

1

12
, i ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)},

1

12
, i ∈ {(1, 1), (−1,−1)},

0 elsewhere.

The corresponding symbol is given by

Ĝ(s, α = 1) =
1

6
(3 + cosϑ1 + cosϑ2 + cos(ϑ1 + ϑ2)) > 0,

where s = (eiϑ1 , eiϑ2), from which we immediately have

cond(G) =
Ĝ(1, 1)

Ĝ(e2πi/3, e2πi/3)
= 4.
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1. AC power networks. Consider the linear system

ATD−1Av = ATD−1b(1)

in which A is an m × n real matrix, D is an m ×m complex diagonal matrix whose
diagonal entries have positive real parts, b is a complex m-vector, and v is the n-vector
of unknowns.

Equation (1) arises in the analysis of an alternating-current (AC) electrical net-
work composed of generators and loads joined by a graph. Each node in the graph
has a voltage, which is a complex number. The magnitude of the complex number is
the magnitude of the voltage, and the argument is the phase difference of the voltage
with respect to some reference phase.

Similarly, currents in the system are also complex numbers associated with graph
edges. The generators can be modeled as voltage sources with a fixed voltage. The
loads can be modeled as devices with fixed impedance. The impedance is a complex
number with a positive real part.

If one is given the voltages of the generators and the impedances of the loads, then
the problem of recovering the voltages at all nodes reduces to solving linear equations
of the form (1). In this case, A is the node-arc incidence matrix (NAI) of the network.
An NAI of a directed graph has one row for every edge of the graph and one column
for every node. In each row, all entries are zeros except for exactly one “1” and one
“−1” per row, which correspond to the endpoints of the graph edges. The diagonal
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1 2V V

1 2 3

54 6

1Z Z2 3Z

Z7

10Z

6Z

Z98Z

Z4 5Z

Fig. 1. A simple AC network with two generators. Each edge j has a given constant impedance
Zj .

matrix D stores the impedances of the loads, b holds the generator voltages, and v
is the vector of node voltages. The linear system (1) is obtained from Ohm’s law and
Kirchhoff’s law (current balance):

Di + Av = b (Ohm),

AT i = 0 (Kirchhoff).(2)

If we multiply Ohm’s law by ATD−1 and apply current balance, we obtain the linear
system (1).

As an example of the various components in (1), consider the simple network in
Figure 1.

For this network,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

1 −1
1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D = diag(
[
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

]
),

b =
[
V1 0 0 0 0 0 0 0 0 V2

]T
.(3)

When there are no faults, the diagonal elements of D, i.e., the impedances, are
of approximately the same magnitude. When there is a fault in the network, e.g., a
nearly open circuit exists in transmission lines, some of the impedances are much larger
than the impedances associated with the functioning edges, making D extremely ill
conditioned. See Bergen [1] for more information about modeling AC networks.

In the network shown in Figure 2, there are nearly open circuits in the edges
associated with impedances Z2 and Z9. For this system, the matrix A and the vector
b would be the same as those for the system in Figure 1, but the matrix D would
now contain impedances of greatly varying magnitudes, e.g.,

D = diag(
[
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

]
),(4)
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Z7

10Z
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Fig. 2. A simple AC network with two generators. Each edge j has a given constant impedance
Zj . In this example, we show faults in the edges associated with impedances Z2 and Z9. In the case
of a nearly open circuit, for example, the magnitudes of Z2 and Z9 would be much greater than the
magnitudes of the other impedances.

where the Z2 and Z9 values are much larger in magnitude than the other impedances.
Modeling faulty networks is important in practice since load-regulating devices must
be designed to function properly even if part of the network fails.

We assume throughout this paper that the gap between the magnitudes of high
impedance wires and low impedance wires is large and that removal of the high
impedance wires disconnects the graph. In this case, the matrix K = ATD−1A can
be arbitrarily ill conditioned. It is not required that the removal of high impedance
wires disconnect the graph for our algorithm to work; however, it is for this case that
our method is a significant improvement over previous work [9].

We make two main contributions in this paper. The first contribution is an
extension of Gremban’s support tree preconditioner to cover complex weights (i.e.,
AC networks) and widely varying edge weights (i.e., faults). Even once we have a
good preconditioner M , in the presence of a fault that disconnects the graph, K and
therefore M−1 can be extremely ill conditioned separately. Even though the product
M−1K is well conditioned, M−1(Kv) may be computed inaccurately. Our second
contribution is a technique that computes M−1(Kv) accurately by splitting Kv into
its components in the range and null space of the functioning edges. For our algorithm
to work efficiently, we need an efficient projection into the range and null spaces of
the functioning edges.

A more general approach to achieving high accuracy in this kind of layered system
was proposed by Bobrovnikova and Vavasis [3]. The method of [3] does not assume
that there is an efficient projection into the range and null space of the functioning
edges. But that method appears to be very difficult to precondition.

A direct algorithm known as complete orthogonal decomposition was proposed
by Hough and Vavasis [13]. This method applies to the weighted least squares prob-
lem associated with faulted DC power networks. However, the method relies on the
system being real and positive definite. There is no simple extension to the complex-
symmetric case.

Other previous related work includes another combinatorial preconditioner for
weighted node-arc adjacency matrices by Guo and Skeel [11], previous versions of
support-tree preconditioners by Vaidya [18] and Bern et al. [2], and work by Vuik,
Segal, and Meijerink [20] on a related mathematical problem arising in diffusion mod-
eling using an explicit eigenvector projection. The problem analyzed by Vuik, Segal,
and Meijerink involves a real, symmetric, positive definite matrix that is highly ill
conditioned due to a large contrast in permeability coefficients in the system being
modeled. The method proposed by Vuik, Segal, and Meijerink relies on a good choice
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of projection vector, which involves knowing properties of the eigenvectors.
From the electrical power modeling perspective, there has been some work on

using iterative methods for solving the complex-symmetric systems arising in electri-
cal power modeling; see, e.g., [4], [7], [15], [17]. However, these methods have not
addressed the ill-conditioning associated with faults in the electrical power system.

2. Support trees. Our system (1) is singular because the nodes are ungrounded.
Since the voltage values are potentials, if we have not set one of the nodes to some
reference voltage (i.e., grounded the node), we can add an arbitrary constant to all
of the voltages and have an equally valid solution. Mathematically, this means that
the matrix ATD−1A is singular, because the vector of all 1’s is in the nullspace of A.
We address this detail by projecting vectors onto the range space of ATD−1A. This
projection is ignored for the remainder of the paper. After grounding the system, it
is still ill conditioned for two reasons.

The first source of ill-conditioning is inherent in NAI matrices. For example, if
A describes an n × n grid-graph, κ(ATA) = O(n2). This ill-conditioning has been
addressed by support-tree preconditioners developed by Gremban, Miller, and Zagha
[10]. We also use support-tree preconditioners in our method. The second source of ill-
conditioning is caused by the widely varying weights in the faulted system. Gremban,
Miller, and Zagha analyze only the case of nearly equal weights. We extend their
analysis of condition numbers of the preconditioned system first to subgraphs having
edge weights with widely varying magnitudes and then to graphs with complex edge
weights.

2.1. Support trees of Gremban, Miller, and Zagha. Gremban, Miller, and
Zagha form a support-tree preconditioner as follows. First, divide the nodes of the
network graph into some number of approximately equal-sized subgraphs. Then re-
cursively subdivide the subgraphs, etc., until all of the individual nodes have been
separated. Note that the method does not depend on the number of subgraphs in
each subdivision. For the results in this paper, we recursively subdivide into quarters.
Next, build a tree based on this partitioning. The root of the tree is in correspon-
dence with the entire original graph. The children of the root are in correspondence
with the subgraphs of the graph obtained from the first partition, and so on down to
the leaves of the tree, which are in correspondence with the individual nodes of the
original graph. (See Figure 3.)

Next assign weights to the edges of this tree based on the edge weights in the
original graph. Let G be the original network graph and let S be the support tree.
Let v be a support-tree node corresponding to subgraph V of G, and let e be the
support-tree edge from v to its parent. Assign weight to e equal to the sum of the
conductances (i.e., reciprocal resistances) of edges in G connecting V to G − V . In
other words, the weight on e is the sum of the entries of D−1 corresponding to the
nodes of V .

Definition 1. We define the weighted Laplacian matrix L(G) of an n-node
graph G as the n × n matrix whose jth diagonal entry corresponds to the sum of
weights of the edges incident on the jth node of the graph. The (i, j) entry of L(G) is
equal to the negative of the weight of the edge in G connecting nodes i and j.

Note that the system matrix K is the weighted Laplacian of the input graph G.
Let T be the weighted Laplacian matrix of the new network S. If n is the number
of original circuit nodes and t is number of nonsingleton subgraphs created during
partitioning, then n + t is the number of support-tree nodes. The matrix T is an
(n + t) × (n + t) very sparse matrix.
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Fig. 3. Example of constructing a support tree. The top left picture shows a network graph with

six nodes and ten edges. Successive cuts into subgraphs are shown in the pictures progressing left to
right. The support tree is shown on the bottom left, with the corresponding Laplacian matrix T on
the bottom right. Notice that the leaves of the support tree correspond to the nodes of the network
graph, and the root of the support tree corresponds to the entire original network graph.

Let M be the Schur complement of T obtained by eliminating the internal tree
nodes, that is, the tree nodes that are not leaves. Gremban, Miller, and Zagha showed
that M is a good preconditioner for ATD−1A in the real case (DC) with uniform edge
weights (no faults). In particular, they showed that for equally weighted instances
of (1) (i.e., D = I), the condition number of grid-graphs is reduced from O(n2) to
O(n log n). Although M is dense, linear systems of the form Mv = r can nonetheless
be solved in linear time using Cholesky factorization on the larger sparse matrix T .
Note that T has a perfect elimination order since it is the weighted Laplacian matrix
of a tree and we can eliminate from the leaves to the root. They show that solving(

T1 T2

TT
2 T3

)(
v1

v2

)
=

(
r
0

)
(5)

and letting v = v1 are equivalent to solving Mv = r, where M = T1 − T2T
−1
3 TT

2 is
the support-tree preconditioner. Thus, the preconditioner is efficient in practice.

2.2. Extensions of the support-tree preconditioner. To extend the idea of
support-tree preconditioners to the case of an AC network with faults, we change how
we build the support tree as follows. First, assume that removal of the faulted edges
disconnects the graph into at least two subgraphs. (If this assumption does not hold,
then our method does not constitute an improvement over previous work [9].) We
require the top level of the support tree to be composed entirely of faulted edges, and
children of the root should be connected subgraphs of the network after faulty edges
are deleted. We include all of the faulted edges in the first separator. This in turn
puts all of the weights corresponding to faulted edges in the top level of the support
tree. We build the rest of the support tree as before. We show below that with
this change, the support-tree preconditioners are good preconditioners for ATD−1A.
In applying the preconditioner M in the AC case, the matrices K = ATD−1A and
M are complex-symmetric and hence the Cholesky factorization technique does not
apply directly. We show that the LU factorization can still be stably performed
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without pivoting (and thus without fill-in). Thus, as before, we can solve systems of
the form Mv = r by solving the larger sparse system involving T .

Theorem 2. T has an LU factorization, and the elements of L are bounded; i.e.,
the computation is stable without pivoting.

Proof. The diagonal elements of T are exactly the negative sums of the off-
diagonal elements. In addition, because we have ordered the tree nodes from the
leaves to the root, T has perfect elimination order. The elements of L are thus only
0’s, 1’s, and −1’s. The L matrix has 1’s on the diagonal, −1’s in the elements of T
below the diagonal that are nonzero, and 0’s elsewhere.

In addition to the ill-conditioning inherent in NAI matrices, there is also ill-
conditioning in our application of (1) caused by widely varying weights in a faulted
system. Let ρ1 be the absolute value of a typical admittance in functioning wires, and
let ρ2 be the absolute value of a typical admittance in faulty wires. Then ρ1 � ρ2,
and the original linear system can be decomposed as K = ATD−1A = K1+K2, where
K1 = AT

1 D
−1
1 A1 and K2 = AT

2 D
−1
2 A2. Here subscripts 1, 2 denote the partition into

functioning and faulty wires, respectively; hence ‖D1‖ ≈ ρ1 and ‖D2‖ ≈ ρ2.

Gremban, Miller, and Zagha analyze only the case of nearly equal weights. We
extend their analysis of condition numbers of the preconditioned system first to graphs
having edge weights with widely varying magnitudes, assuming the change in forming
the support tree that we discussed above and then to graphs with complex edge
weights. We assume for simplicity in the following theorems that the faults are nearly
open circuits, i.e., low admittance wires.

2.3. Extensions to analysis. In the rest of this section, we extend Gremban’s
analysis as follows. Since electrical power networks are laid out geographically, n ×
n grid-graphs are a reasonable first approximation to consider. Therefore, we first
extend Gremban’s analysis to DC networks (i.e., networks in which the edges have
real weights) with faults by proving that in the DC grid-graph case with faults along
the median edges, the condition number of the preconditioned system is O(n log n),
where n2 is the number of nodes in the system. The median edges are the edges
running through the middle of the grid-graph, horizontally and vertically. That is,
removal of the median edges would divide the grid-graph into four approximately
equal-sized subgraphs. Since in general electrical power networks are not actually
laid out on grid-graphs and faults are not confined to being along the median edges,
we show results for general graphs. Little is known about the behavior of support-
tree preconditioners on general graphs. Although we do not have an upper bound on
the condition number of the preconditioned system on a general graph, we can show
that for general DC networks with arbitrarily located faults, there is a bound on the
condition number of the preconditioned system that is independent of the relative
magnitude of the faults. Finally, we extend our results for grid-graphs and general
graphs to the AC case. Given certain assumptions about the impedance values in the
network, we show that we can bound the condition number in the AC faulted case
based on the condition number of the related DC network obtained by taking the real
part of the impedance values. In particular, we assume that the impedance values in
the network (the diagonal elements of D) lie in a pointed cone in the complex plane;
i.e., if dj is a diagonal element of D, then dj = xj + iyj where xj > 0 and |yj | ≤ μxj

for some positive cone constant μ. This series of theorems then shows that we can
extend Gremban’s support-tree preconditioner, with certain changes, to be a good
preconditioner in the case of AC networks with faults.
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2.3.1. Extensions to analysis of DC grid-graph networks with faults.
We first extend Gremban’s analysis to the case of DC (real) networks with faults. We
first introduce some notation that will be useful in the proofs that follow. Note that
the definitions that do not specifically rely on the matrices being real apply equally
to the AC case.

Definition 3. We refer to the condition number of the preconditioned system
M−1K as κ(M,K), where

κ(M,K) = max
|x∗Mx|
|x∗Kx| · max

|x∗Kx|
|x∗Mx| ,(6)

where the maxima are taken over nonzero vectors x in the range space of K (which
is equal to the range space of M). In the real case, the absolute value symbols are not
needed.

Note that this definition is equivalent to the usual eigenvalue definition of condi-
tion number in the real case.

We next prove a series of lemmas that we will use to show that in the DC (real)
case, the upper bound on the condition number of the preconditioned system does not
depend on the values of the faulted edges, and that for n× n (real) grid-graphs, the
condition number is O(n log n). The key technique we will use is support numbers.

Definition 4 (see [9]). For two real positive semidefinite matrices A and B, the
support of B for A, σ(A,B), is defined to be the greatest lower bound over all τ such
that τB −A is positive semidefinite.

Gremban relates this quantity to the condition number as follows.
Lemma 5. Let A,B be real positive semidefinite matrices. Then κ(A,B) =

σ(A,B)σ(B,A).
Thus, for our grid-graph construction, we must obtain upper bounds on σ(M,K)

and σ(K,M).
We start with σ(M,K). The support tree for the grid-graph is not completely

regular because subgraphs that are adjacent to the boundary of the entire grid have
fewer edges emanating from them than subgraphs on the interior. Our analysis of
σ(M,K) is simplified by assuming, however, that all subgrids of size 2h × 2h have
exactly 4h edges emanating from them. This assumption may be made without loss of
generality for the following reason. Let T ′ be the network resulting from augmentation
of T with these extra edges. Then T ′−T is positive semidefinite (since inserting edges
corresponds to adding a semidefinite matrix); hence so is M ′ −M , where M ′ is the
Schur complement of T ′ according to the following theorem.

Theorem 6 (see [12]). Let A,B be n×n symmetric positive semidefinite matrices
of the same size, and let k be an integer between 1 and n− 1. Assume that the upper
left k × k submatrices of both A and B are invertible, and let Schurk(A) denote the
Schur complement of the upper left k × k submatrix (i.e., Schurk(A) = A(k + 1 :
n, k + 1 : n) − A(k + 1 : n, 1 : k)A(1 : k, 1 : k)−1A(1 : k, k + 1 : n)). Similarly, let
Schurk(B) be the Schur complement of the upper left k × k submatrix of B. Then if
A−B is positive semidefinite, so is Schurk(A) − Schurk(B).

This means that if τ is a scalar such that τK −M ′ is positive semidefinite, so is
τK − M ′ + (M ′ − M) = τK − M . Therefore, σ(M,K) ≤ σ(M ′,K), so any upper
bound for σ(M ′,K) applies also to σ(M,K).

Hence we assume T has the regular structure mentioned earlier for the remainder
of this analysis. The next step in the analysis of σ(M,K) is to obtain upper bounds
for the off-diagonal entries of M . This is the purpose of the next three lemmas.
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Lemma 7. Let M be the Schur complement of T as described earlier. Then
M(j, k) is the kth entry of i, where i and y satisfy the following equation in which ej
denotes the jth column of the identity matrix:

T

[
y
ej

]
=

[
0
i

]
.(7)

Remark 1. This lemma has an interpretation in terms of electrical networks.
Recall that multiplying a weighted Laplacian matrix of a graph by a vector v corre-
sponds to assigning voltages to the nodes given by v and then determining the excess
currents at the nodes. Therefore, the above lemma corresponds to holding leaf node j
of the support tree to voltage equal to 1, the other leaf nodes to voltage 0, letting the
nonleaf tree nodes “float” (i.e., assume whatever voltage is needed so that the current
at the node balances), and measuring the excess current at node k.

Proof. This lemma holds because M is obtained from T by performing Gaus-
sian elimination steps on (7) to eliminate the nonleaf tree nodes. If we perform
Gaussian elimination on (7), we obtain Mej = i; i.e., the kth entry of i is equal to
M(j, k).

There is exactly one path between nodes j and k in the support tree. In estimating
i(k), we need to consider two cases: either the path between nodes j and k goes
through the root node (Lemma 8), or it does not (Lemma 9).

Lemma 8. Let M be the support-tree preconditioner for the n×n grid-graph with
edge weights described above. Assume n is an exact power of 2. Let l be the number
of levels in the tree, i.e., n = 2l, assuming exact quadrisection at each level. Let the
median (faulted) edges have admittance ε/4 and the nonfaulted edges have admittance
1/4. Assume the path from j to k passes through the root node of the support tree.
Then

|M(j, k)| ≤ 49 · 2−3lε

288
+ O(2−6lε) + O(ε2).

Remark 2. The assumption about powers of 2 is made to simplify the proof and
the notation. The factor of 1/4 unclutters the figures but is otherwise unnecessary.

Proof. Although this lemma can be proved using purely algebraic arguments, we
prefer to argue using principles of electrical networks because we believe this gives
more insight.

The first part of the proof contracts T almost to a path using series-parallel
equivalent circuits. A similar argument was used by Gremban. For example, consider
two leaf nodes of T , both holding a voltage 0, attached to the same parent node p
with edges that both have resistance r. These two leaf nodes can be merged into a
single node of voltage 0 connected to the same parent with resistance r/2. Then, since
p is a floating node and is connected to exactly two edges with resistance r1 and r2,
p can be deleted and the two edges can be replaced by a single edge with resistance
r1 + r2. Proceeding in this manner, we can merge and contract many tree nodes as
shown in Figure 4.

As in Gremban’s analysis, if we reduce nodes up to a child w of a node u at
level (i− 1), the reduced system is equivalent to a node connected to u with an edge
resistance less than or equal to 1/2i−1. (It can be shown using electrical reasoning or
algebra that overestimating the resistance of an off-path edge will lead to overestima-
tion of |M(j, k)|, which is valid since we are trying to obtain an upper bound on this
quantity.)
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Fig. 4. The solid lines in the first tree show the path between nodes j and k. The dashed lines
are the edges that we reduce up to the (j, k)-path. The second tree shows the result of reducing all
other nodes up to the path between j and k. The (j, k)-path is again shown with solid lines, with the
reduced edges shown as dashed lines.
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Fig. 5. Support-tree reduced to the (j, k)-path. The node v̂′l represents the root of the tree, v0

represents the j-node, and v′0 represents the k-node. The edge labels shown are resistances.

Therefore, the reduced system will look like the system in Figure 5 for a power-
of-two grid. In this figure, v0 represents the jth node of the tree (whose voltage has
been set to one), v′0 represents the kth node of the tree (whose voltage has been set
to zero), and v̂l represents the root of the tree.

Once we have reduced the system to the (j, k)-path, we solve for the net current
at the kth node, i.e., at v′0 in Figure 5. Recall that finding this current is equivalent
to finding i(k) = M(j, k).

Solving current balance equations at each floating node, we get the recurrence
relations

4vi+2 − 9vi+1 + 2vi = 0,(8)

4v′i+2 − 9v′i+1 + 2v′i = 0.

We also have equations for the root node and its neighbors. Using standard
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techniques, we can solve these recurrences to obtain

ik =
49ε2−3l

288
+ O(ε2−6l) + O(ε2),(9)

which bounds the element M(j, k) in the case where the (j, k)-path goes through the
root of the support tree. For details of the analysis, see [14].

Next we deal with the case where the (j, k)-path does not pass through the root
of the tree.

Lemma 9. Let M be the support-tree preconditioner as defined above. Then
|M(j, k)| ≤ 3.5/8h assuming the (j, k)-path does not pass through the root of the tree.
Here h is the height of the common ancestor of j, k in the support tree.

Proof. As in Lemma 8, we begin by reducing up to the (j, k)-path. In this case,
after reducing the tree as before to the (j, k)-path, we have a completely unfaulted
path between nodes j and k in the support tree, with an extra path off of the root v̂l
containing all of the faulted edges and other edges hanging off the path. The same
recursion (8) applies to this analysis, and the same techniques can be used to solve
it.

The approach used for estimating σ(M,K) is the same as Gremban’s; namely, we
first partition the graph and the preconditioner, and then for each piece we apply a
congestion/dilation argument. The first lemma concerns partitioning.

Lemma 10. If A = A1 + · · · + As and B = B1 + · · · + Bs, where each Ai and
each Bi is symmetric positive semidefinite, then

σ(A,B) ≤ max{σ(A1, B1), . . . , σ(As, Bs)}.

Proof. This lemma is proved by Gremban [9, Chapter 4].
The particular partitioning to be used in our analysis is as follows. As in Gremban,

we write K = K1 + · · ·+Kl and M = M1 + · · ·+Ml. The partition of K is given by
Kh = 2h−l−1K. Thus, Kl = K/2, Kl−1 = K/4, etc. (This leaves the fraction 2−l of K
“unused.” This is valid because underestimating K can only increase σ(M,K).) The
partition of M is given by the rule that Mh(i, j) = M(i, j) provided that the highest
tree node in the support tree on the (i, j)-path is at height h; else Mh(i, j) = 0. (We
order “height” so that the leaves are at height 0 and the root at height l.)

The next part of the analysis of σ(M,K) involves a congestion-dilation argument.
The terms are defined as follows.

Definition 11 (see [9]). Let A and B be graphs. Let p0 be an injective mapping
from nodes of A into nodes of B. Suppose there exists a mapping p from edges in A
to paths in B such that if e = (a, b) is an edge in A,then the endpoints of p(e) are
(p0(a), p0(b)). For an edge f in B, let d1, . . . , dk be the edges in A such that f ∈ p(di);
that is, di are the A edges whose embedding path in B includes edge f . The congestion
of edge f is

γ(A,B, f) =

∑k
i=1 weight(di)

weight(f)
.(10)

The congestion of the mapping γ(A,B) is the maximum congestion over all edges in
B.

Definition 12 (see [9]). Given an embedding of a graph A into a graph B as in
Definition 11, the dilation of the embedding is defined to be the length of the longest
path in B onto which an edge of A is mapped.
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Fig. 6. The graph K on the left is the original four-node system, and the graph M on the right
is the graph corresponding to the Schur complement support-tree preconditioner M . Consider edge
e ∈ M (the dotted edge in the figure connecting M vertices vM = 2 and wM = 3). The corresponding
path in K is the one shown by dotted edges in K (connecting K-nodes vK = 2 to 4 to wK = 3).

Lemma 13. The support σ(A,B) of a matrix B for a matrix A is less than or
equal to the maximum congestion over edges in B times the maximum dilation over
paths in B.

Proof. This lemma is proved by Gremban [9, Chapter 4].
In order to apply the congestion–dilation analysis, we assume the following stan-

dard mapping of the edges of M onto paths in the grid-graph corresponding to K. Let
e be an edge in M . The nodes of M correspond to the nodes in the original network
K. If edge e ∈ M connects nodes vM and wM in M , we map edge e to the path
in K obtained by starting at the node vK ∈ K that corresponds to vM and moving
vertically until we reach the same row as node wK (the node in K corresponding to
node wM ). We then complete the path by moving horizontally until we reach node
wK .

As an example, consider the very simple four-node system shown in Figure 6.
Form the support tree by bisecting the graph repeatedly, form the weighted Laplacian
matrix T from the support tree, and then let M be the Schur complement obtained
by performing Gaussian elimination on the internal (nonleaf) nodes of the tree. The
graph corresponding to the preconditioner M is then as shown in the same figure.
Consider edge e ∈ M (the dotted edge in Figure 6 connecting M vertices vM = 2
and wM = 3). The corresponding path in K is the one shown by dotted edges in K
(connecting K-nodes vK = 2 to 4 to wK = 3).

Now finally we have enough tools to estimate σ(M,K).
Lemma 14. Let K = ATD−1A correspond to a DC (real weights) network on an

n× n grid-graph containing wires of two magnitudes, functioning wires with conduc-
tance 1/4 and faulty wires with conductance ε/4, where the faulty wires are along the
median edges of the grid. Let M be the support-tree preconditioner as defined above.
Then σ(M,K) = O(n).

Proof. As explained above, we estimate σ(Mh,Kh) for each h = 1, . . . , l by
considering γ(Mh,Kh) · δ(Mh,Kh). Let us pick an h and select an e in K. We try
to determine γ(Mh,Kh, e). There are two cases to consider: either e is one of the
median edges of K whose conductivity is ε/4 or it is another edge.

Let us consider the median-edge case first. We observe that γ(Mh,Kh, e) = 0 if
h < l since no edge in Mh corresponds to a path that passes through the root node.
This is because for h < l, all the edges in Mh correspond to K-paths that lie inside
one of the four quadrants of K (after the median edges are removed). Thus, e does
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not support any of these M -edges.
Thus, for a median edge we need consider only γ(Ml,Kl, e). Let d1, . . . , dp be the

edges in Ml whose corresponding K-paths s1, . . . , sp pass through e. Note that the tree
paths corresponding to d1, . . . , dp must all pass through the root of the support tree.
Therefore, the weight in Ml of each of these p edges is (49ε2−3l)/288+O(ε2−6l)+O(ε2)
by Lemma 8. Next, we have p ≤ 23l. This is because e is either in the same row
(if e is horizontal) or column (if e is vertical) of one of the two endpoints of each
si. Therefore, the number of possible endpoints for one end of si is n; the number
of possible endpoints for the other end is n2 (the total number of nodes). Thus,
p ≤ n3 = 23l. The weight in Kl of this edge e is ε/8 (since Kl = K/2). Therefore, the
maximum congestion in this case is

γ(Ml,Kl, e) =

∑p
μ=1

49ε2−3l

288 + O(ε2−6l) + O(ε2)

weight(e)

=
O(23l 49

288ε2
−3l)

ε/8

= O(1).

Next, consider the case that e is a functioning edge of K. Let (i, j) be the
endpoints of e. Let h′ be the height of the highest node z on the support-tree path
connecting i to j. By assumption for this case, h′ < l. If h < h′, then γ(Mh,Kh, e) = 0
because no paths induced by Mh-edges can use edge e, since any path in K induced
by an edge of Mh uses nodes whose highest common ancestor in the support tree is
at level h.

Thus, assume h ≥ h′. Let d1, . . . , dp be the edges in Mh whose corresponding
K-paths s1, . . . , sp pass through e. This means that s1, . . . , sp are all contained in a
2h × 2h subgrid that also contains e, namely, the subgraph of K corresponding to the
nodes in the support tree at z′, where z′ is the unique ancestor of z at height h. The
total number p of such paths that can use e is therefore at most 8h. This is because,
depending on whether e is vertical or horizontal, one endpoint of each si is either in
the same row or in the same column as e, so there are at most 2h choices for one of
the endpoints. The other endpoint could be anywhere in the subgrid determined by
z′, which has 22h nodes total.

Note that the weight of any Mh-edge is at most 3.5/8h by Lemma 9. The weight
of e in Kh is (1/4) · 2h−l−1 = 2h−l−3 by definition of Kh and the assumption that e
is a functioning edge. Thus,

γ(Mh,Kh, e) =

∑p
μ=1 weight(dμ)

weight(e)

=
8h · 3.5/8h

2h−l−3

= O(2l−h).

Thus, we have shown in all cases (both functioning and faulty wires) that for all
e, γ(Mh,Kh, e) = O(2l−h); hence γ(Mh,Kh) = O(2l−h). Next, we observe that
δ(Mh,Kh) = 2h. This is because the path in Kh induced by a node in Mh lies in the
subgraph induced by a node in the support tree at height h, a grid whose diameter is
2h. Thus, by Lemma 13, σ(Mh,Kh) ≤ O(2l−h) · 2h = O(2l) = O(n). This holds for
all h, so by Lemma 10, σ(M,K) = O(n).
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Next, we turn our attention to σ(K,M). The following lemma greatly simplifies
this analysis.

Lemma 15. Let K,M be two n×n symmetric positive semidefinite matrices. Let
M be the Schur complement of the lower right block of a larger symmetric positive
semidefinite matrix T as in (5). Let K̃ be K extended with zeros so that it is the same
size as T ; i.e.,

K̃ =

[
K 0
0 0

]
.(11)

Then σ(K,M) ≤ σ(K̃, T ).
Proof. See Gremban [9, Chapter 4] for the proof. This also follows directly from

Theorem 6 as follows. Define K̃ε = [K, 0; 0, εI], where ε > 0 and I is the identity
matrix. Then clearly K is the Schur complement of the lower right block of K̃ε, so
σ(K,M) ≤ σ(K̃ε, T ) by the theorem. Then take the limit as ε → 0.

The analysis of σ(K,M) is now fairly straightforward.
Lemma 16. Let K = ATD−1A correspond to a DC (real weights) network on an

n× n grid-graph containing wires of two magnitudes—high admittance (functioning)
wires and low admittance (nearly open circuit) wires—where the faults are along the
median edges of the grid. Let T be as defined above and let K̃ be as defined in Lemma
15. Then σ(K̃, T ) = O(log n).

Proof. In this case, we are considering how well the support-tree matrix T sup-
ports the extended system matrix K̃. The only edges of K̃ are the edges of K;
therefore we need only to map edges of K onto paths of T . We assume the following
standard mapping of edges of K onto paths in T . Let e be an edge in K connecting
nodes vK and wK . The leaves of the support tree correspond exactly to the nodes
of the original network. Since vK and wK are nodes in the original network, they
correspond to two leaf nodes in the support tree. We map edge e to the unique path
between the corresponding leaves vT and wT in the support tree.

As before, the support of matrix T for K̃ is less than or equal to the product of
the maximum congestion over edges in T and the maximum dilation over paths in T ;
i.e., σ(K̃, T ) ≤ γ(K̃, T )δ(K̃, T ). We bound these two quantities separately.

The maximum dilation comes from the edge in K that must be mapped through
a path that goes through the root of T . The length of this path is 2 log2 n + 2.

Next we find the maximum congestion. Let p be the mapping described above
from edges in K to paths in T , let e be an edge in T , and let d1, . . . , dk be the edges
in K such that e ∈ p(di) for some i.

Assume that edge e ∈ T connects nodes vj and vk, where vj is a child node of vk.
Then we have defined the edge weights of T such that the weight of edge e equals the
sum of the edges in K that connect the nodes associated with the leaves of the tree
rooted at vj to the rest of the graph. This sum is exactly

∑k
i=1 weight(di). Therefore,

the congestion over any edge in T is one.
Thus, the support σ(K̃, T ) is less than or equal to 1×O(log n) = O(log n).
Using Lemma 5 and Lemmas 13 through 16, we can show that in the case of an

n×n grid-graph with faults along the median edges of the grid, the condition number
of the preconditioned system is O(n log n). We summarize this result in the following
theorem.

Theorem 17. Let K = ATD−1A correspond to a DC (real weights) network on
an n×n grid-graph containing wires of two magnitudes—high admittance (functioning)
wires and low admittance (nearly open circuit) wires—where the faults are along the
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median edges of the grid. Let the preconditioner M be as above. Then κ(M,K) =
O(n log n).

Proof. This follows from Lemmas 5, 14, and 16.

2.3.2. Extensions to analysis of general DC networks with faults. In the
nongrid case, we show that the condition number of the preconditioned system has a
bound that is independent of the magnitude of the fault.

Since the condition number of the preconditioned system is bounded above by the
product of the support of K for M , σ(M,K), and the support of T for K̃, σ(K̃, T ),
we prove this result by showing that σ(M,K) and σ(K̃, T ) are each independent of
the magnitude of the fault. We do this by considering the congestion and dilation
of the respective embeddings. We show that both the congestion and dilation are
independent of ρ1 and ρ2 for the case of K supporting M and for the case of T
supporting K̃.

Lemma 18. Let K = ATD−1A correspond to a connected DC (real weights)
network containing wires of two magnitudes—high admittance (functioning) wires and
low admittance (nearly open circuit) wires. Let the preconditioner M be as above.
Assume that the admittance of a typical functioning edge is ρ1, and the admittance of
a typical faulted edge is ρ2. Then σ(M,K) has an upper bound that is independent of
ρ1 and ρ2.

Proof. In this lemma, we are considering the case of K supporting M , σ(M,K).
Fix a mapping from edges in M to paths in K. Such a mapping exists by the as-
sumption that the network is connected. We further require that if there exists a
path from a to b in K using unfaulted edges, then such a path must be selected for
the embedding. The dilation is given by the longest path in K onto which an edge of
M is embedded. For any mapping we choose, this path can be as long as the longest
path in the K graph, but this length does not depend on ρ1 or ρ2.

For the congestion, we follow a proof similar to that for the grid-graph case. As
in that case, we need an upper bound on the elements of M , which will give us a
bound on the edge weights of the graph associated with M . Choose an edge e ∈ K.
There are two cases to consider: either e is a faulted edge or it is not a faulted edge.
If e is not a faulted edge, then weight(e) = ρ1. Let d1, . . . , dk be the M edges whose
K-paths include edge e. We claim that these edges all have weight of approximately
ρ1. We show this by using the same process of branch/path reduction as in Lemma
14, reducing the support tree to the (j, k)-path that connects the leaf nodes of T that
correspond to the nodes in K connected by edge e. We can get an upper bound on
the current at node k by removing the faulted branch of the reduced system. We can
do this because the extra edges associated with the faulted parts of the system will
only make the current that gets to the kth node less. The current at the kth node
is therefore O(ρ1) giving us that M(j, k) = O(ρ1). As before, the current at node
k equals the value of M(j, k), so the M edges whose K-paths include edge e have
weights of ρ1. Thus the congestion in this case is approximately O(ρ1)/ρ1 = O(1)
and is independent of ρ1 and ρ2.

If e is a faulted edge, then weight(e) = ρ2. We again let d1, . . . , dk be the M -
edges whose K-paths include edge e. We claim that in this case these edges have
weights approximately equal to ρ2. We again show this by using the same process of
branch/path reduction as in Lemma 14. By construction, any K-path using e must
be a path between different K1-subgraphs of K. Therefore, the (j, k)-path in T must
go through the root of the tree. Contracting as before to the (j, k)-path, we can see
that the current at node k must be O(ρ2). Therefore, M(j, k) = O(ρ2), and the M
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edges whose K-paths include edge e have weights of O(ρ2). Thus the congestion in
this case is approximately O(ρ2)/ρ2 = O(1) and is independent of ρ1 and ρ2.

Since we have now shown that the dilation and congestion are separately bounded
independently of ρ1 and ρ2, their product, which is an upper bound on the support
of K for M , σ(K,M), is also bounded independently of ρ1 and ρ2.

Lemma 19. Let K = ATD−1A correspond to a connected DC (real weights)
network containing wires of two magnitudes—high admittance (functioning) wires and
low admittance (nearly open circuit) wires. Let the preconditioner M be as above.
Assume that the admittance of a typical functioning edge is ρ1, and the admittance of
a typical faulted edge is ρ2. Then σ(K̃, T ) has an upper bound that is independent of
ρ1 and ρ2.

Proof. In this lemma, we consider the support of T for K̃, σ(K̃, T ). We map
the edges of K (which are the same as the edges of K̃) onto paths in T using the
same mapping as in Lemma 14. As in the previous case, the dilation is given by the
longest path in T onto which an edge of K is mapped. This path can be as long as the
longest path in T but is nevertheless independent of ρ1 and ρ2. For the congestion,
let e be an edge in T and let d1, . . . , dk be the edges in K whose embedding path
in T includes edge e. If e is a faulted edge, that is, weight(e) ≈ ρ2, then the di are
faulted edges of K since only faulted edges of K would be mapped to paths that
pass through the faulted edges of T . Therefore,

∑k
i=1 weight(di) ≈ kρ2. Since the

weight of e is also approximately ρ2 and the congestion is defined as the previous sum
divided by the weight of e, the congestion is independent of ρ1 and ρ2. If e is not a
faulted edge, then some of the di may be faulted edges and some may not. In this
case,

∑k
i=1 weight(di) = O(ρ1 + ρ2) = O(ρ1). Since e is not a faulted edge, its weight

is approximately ρ1, and the congestion is again independent of ρ1 and ρ2. Since the
congestion and dilation separately are independent of ρ1 and ρ2, so is their product,
which is an upper bound on the support of T for K̃, σ(K̃, T ).

Theorem 20. Let K = ATD−1A correspond to a connected DC (real weights)
network containing wires of two magnitudes—high admittance (functioning) wires and
low admittance (nearly open circuit) wires. Let the preconditioner M be as above.
Assume that the admittance of a typical functioning edge is ρ1, and the admittance of
a typical faulted edge is ρ2. Then κ(M,K) has an upper bound that is independent of
ρ1 and ρ2.

Proof. From Lemma 15, we have κ(M,K) ≤ σ(K̃, T )σ(M,K), where K, K̃, T ,
and M are as before. We have shown in Lemmas 18 and 19 that the upper bounds on
σ(K,M) and σ(K̃, T ) are each independent of ρ1 and ρ2. Therefore, their product,
which is an upper bound on the condition number of the preconditioned system,
κ(M,K), is also independent of ρ1 and ρ2.

2.3.3. Extensions to analysis of AC networks. Finally, we extend the anal-
ysis to the AC network case.

Definition 21. Let B be a matrix of the form B = ATD−1A, where A is real
with full column rank and D is a diagonal matrix. We say that B is cone positive
definite if the diagonal elements of D lie in a pointed cone in the complex plane. In
other words, if dj is a diagonal element of D, then dj = xj + iyj, where xj > 0 and
|yj | ≤ μxj for some positive cone constant μ.

We assume that the original system K = ATD−1A is cone positive definite. Note
that satisfying this assumption simply requires that all of the impedances have some
resistive component, which is true of any real power network. In this case, we can
bound the condition number of the AC case by the condition number of the real part
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of the system and a function of the cone constant. Strictly speaking, our matrices are
not cone positive definite because of the 1-dimensional nullspace arising because the
nodes are ungrounded. Again, this detail is not significant since our system matrix
and our preconditioner have the same nullspace.

Lemma 22. If the original system matrix K is cone positive definite, so is the
preconditioner M .

Proof. The edge weights of the support tree are by construction sums of edge
weights of the original graph. Therefore, the weighted Laplacian matrix T of the
support tree is cone positive definite with the same cone constant as K. The pre-
conditioner M is the Schur complement of T obtained by eliminating the internal
tree nodes. Gaussian elimination performed on the internal nodes of the support tree
is equivalent to performing series circuit reduction on those nodes [9]. If we reduce
a node with edges connecting two nodes in series with admittances c1 and c2, the
resulting edge has admittance cnew = c1c2/(c1 + c2). Thus, if c1 and c2 are in the
pointed cone with cone constant μ, so is cnew since

cnew =
c1c2

c1 + c2
=

1
1
c1

+ 1
c2

,(12)

and pointed cones are closed under addition and under taking reciprocals. Therefore,
after eliminating all of the internal nodes of the support tree, we have a graph whose
edge weights lie in the original pointed cone. The preconditioner M is the weighted
Laplacian matrix of this graph; therefore, M is cone positive definite with the same
cone constant μ as the original system matrix K.

Theorem 23. In the AC case with impedances lying in a pointed cone in the
complex plane, κ(M,K) ≤ (1 + μ2)κ(Re(M),Re(K)), where μ is the cone constant.

Proof. Assume that K = ATD−1A as before and that D−1 = E + iF . Since
the preconditioner M is also a weighted Laplacian matrix, we can write M = RTΔR
where R is an NAI matrix and Δ is a diagonal matrix. As with the components of
K, R is a real matrix made up of 1’s, −1’s, and 0’s, and Δ is a diagonal matrix with
complex diagonal entries lying in the same cone as the diagonal entries of D. Let
Δ = B + iC.

We first establish bounds on |x∗ATD−1Ax| in terms of the real part of D−1 and
the cone constant μ. Let w = Ax. Let dj represent the diagonal elements of D−1,
ej represent the diagonal elements of E, and fj represent the diagonal elements of F .
Then we have

|x∗ATD−1Ax| = |w∗D−1w|

=

∣∣∣∣∣∣
∑
j

|wj |2 · dj

∣∣∣∣∣∣
≤

∑
j

(
|wj |2 · |dj |

)
≤

∑
j

(
|wj |2

√
1 + μ2 · ej

)
= |w∗Ew|

√
1 + μ2

= |x∗ATEAx|
√

1 + μ2.

(13)
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Next we bound |x∗ATD−1Ax| from below. In this case we have

|x∗ATD−1Ax| = |w∗D−1w|
= |w∗(E + iF )w|

=
∣∣∣∑ |wj |2ej + i

∑
|wj |2fj

∣∣∣
≥

∣∣∣∑ |wj |2ej
∣∣∣

= |x∗ATEAx|.

(14)

The preconditioner M is also a weighted Laplacian matrix of the form M = RTΔR
where R is an NAI matrix and Δ is a diagonal matrix. In addition, by Lemma 22,
M is cone positive definite with the same cone constant μ as K. Therefore, the same
bounds apply to M . Namely,

|x∗RTΔRx| ≤ |x∗RTCRx|
√

1 + μ2,(15)

and

|x∗RTΔRx| ≥ |x∗RTCRx|.(16)

Using these bounds, we can establish an upper bound on the condition number
of the preconditioned AC network in terms of the condition number of the real part
of the network.

κ(M,K) = max
|x∗Mx|
|x∗Kx| · max

|x∗Kx|
|x∗Mx|

≤ max

√
1 + μ2|x∗RTCRx|
|x∗ATEAx| · max

√
1 + μ2|x∗ATEAx|
|x∗RTCRx|

= (1 + μ2) max
|x∗RTCRx|
|x∗ATEAx| · max

|x∗ATEAx|
|x∗RTCRx|

= (1 + μ2)κ(Re(M),Re(K)).

(17)

This analysis seemingly implies that we may as well precondition the AC network
based only on its DC components. But our experiments indicate that keeping the
imaginary part in the preconditioner gives better results. Therefore, there may exist
a stronger analysis of the complex case.

3. Splitting. Since we are assuming that the gap between the magnitudes of
high impedance wires and low impedance wires is large, and that removal of the high
impedance wires disconnects the graph, the matrix K = ATD−1A can be arbitrarily
ill conditioned. Even though the preconditioner effectively reduces condition number,
it does not lead to accurate solution by itself under these conditions. Again letting
M be the preconditioner for K, the difficulty is that although the product M−1K
is well conditioned, nonetheless the resulting vector M−1(Kv) may be computed
inaccurately because M−1 and K are very ill conditioned separately.

We solve this problem by splitting K into its “large space,” i.e., the range of
K1 (where K1 denotes, as before, the weighted Laplacian of the functioning wires)
and its “small space,” which is null(K1). These spaces (“large” versus “small”) are
reversed for M−1. We can easily identify these spaces from the graph and then split
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Fig. 7. The same faulted AC network as shown in Figure 2 split into its functioning (K1) and
faulted (K2) subgraphs. The top graph shows the functioning subgraphs, and the bottom graph shows
the faulted subgraphs.

r = (K1+K2)v (in O(n) time) into r = rR+rN . We then compute y = M−1(rR+rN )
term by term, changing interim quantities that would be zero in exact arithmetic to
zero, then recombining.

The matrix K1 is just the weighted Laplacian of the functioning part of the
system, and K2 is the weighted Laplacian of the faulted part of the system. The
original matrix K then equals K1 + K2. In Figure 7, we show these two graphs for
the same network as shown in Figure 2.

For this network, K1 = AT
1 D

−1
1 A1 and K2 = AT

2 D
−1
2 A2, where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D1 = diag(
[
Z1 Z3 Z4 Z5 Z6 Z7 Z8 Z10

]
),

A2 =

[
1 −1

1 −1

]
,

D2 = diag(
[
Z2 Z9

]
).(18)

In particular, our algorithm is as follows. Each time we form M−1(Kv) =
M−1(K1 + K2)v, we first split (K1 + K2)v into its subgraphs in range(K1) and
null(K1). To do this, we form an orthogonal projector PPT onto the null space of
K1. The projector PPT is formed based on the graph structure of the network and
can be applied in O(n) time as follows. Removing the high impedance (faulty) wires
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disconnects the graph into separate subgraphs of functioning wires, which we refer to
as K1-subgraphs. A vector in range(K1) is defined by the property that its entries
over each K1-subgraph sum to zero. On the other hand, any vector in null(K1) has
the defining property that entries corresponding to nodes within a K1-subgraph of the
graph have the same value. Thus, we build an orthogonal projector onto null(K1) us-
ing a connected subgraph search. Consider forming the product r = Kv. We can split
r according to: rN = PPTKv and rR = (I−PPT )Kv. We compute rN as PPTK2v
since the other term drops out. Similarly, we compute rR as K1v +K2v−PPTK2v.
We then invoke our preconditioning algorithm with this split r.

In invoking our preconditioning algorithm, as described in section 2, instead of
solving My = r, we solve the equivalent (but sparse) problem

LU

[
y
c

]
= Gr,(19)

where LU is the (sparse) LU factorization of T , and G is the matrix that extends a
vector with zeros to be the size of the range space of T , i.e.,

Gr =

[
r
0

]
.(20)

We next forward solve for uR = L−1GrR and uN = L−1GrN . Let S be the set
of row numbers of nodes whose paths to the root contain only high-impedance edges.
(Because of our definitions, S is exactly the root and children of the root.) Let J be
the matrix that zeros out the components in S (i.e., J is a diagonal matrix with zeros
in the diagonal positions corresponding to elements of S, and ones elsewhere on the
main diagonal). We claim below that in exact arithmetic uR = JuR. Next we do the
two backward solves, wN = U−1uN and wR = U−1JuR. Note the important step in
our algorithm of explicitly applying J to uR before performing the back substitution.

Finally, we extract and return the part of wR + wN that corresponds to the y in
My = v; i.e., y = GT (wR + wN ).

Thus, our algorithm for evaluating y = M−1Kv is summarized as follows:

rN = PPTK2v,
rR = K1v + K2v − PPTK2v,
uN = L−1GrN ,
uR = L−1GrR,
wN = U−1uN ,
wR = U−1JuR,

y = GT (wR + wN ).

(21)

Let us now provide three preliminary lemmas about this construction.
Lemma 24. Let L and U be lower and upper triangular matrices such that T =

LU , and let Δ be a diagonal matrix consisting of the main diagonal elements of U .
Let Ũ = Δ−1U . Applying L−1 sums the entries from the leaves to the root of the
support tree. The matrices Ũ and L have the properties that ‖Ũ−1‖ ≤ cn, ‖Ũ‖ ≤ dn,
‖L−1‖ ≤ kn, and ‖L‖ ≤ fn, where cn, dn, fn, and kn are constants that depend only
on n.

Proof. These properties can all be proven combinatorially. We omit the
proof.

Lemma 25. In exact arithmetic, JuR = uR, where uR is defined in (21).
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Proof. Let ni be a node in the support tree, and let Ni be the set of leaves rooted
at ni. Recall that the leaves of the support tree correspond directly to the nodes
of the original network. The weight of the parent edge of ni is constructed (as in
Gremban) to be the sum of the edges connecting the original graph nodes Ni to the
rest of the graph. This sum is known as the frontier of Ni. Since in our algorithm
we force all high impedance edges to be in the top level graph separator, the nodes in
the support tree indexed by elements of S are those whose corresponding nodes in the
original graph are connected to the rest of the graph by only high impedance edges.
This implies that leaves rooted at such a node make up one or more K1-subgraphs.

Since applying L−1 sums the entries from the leaves to the root of the support
tree, if uR = L−1GrR, for example, then uR(i) equals the sum of the entries in rR
associated with leaves rooted at ni. As mentioned above, entries in rR corresponding
to a K1-subgraph sum to zero since rR ∈ range(K1). Therefore, if i ∈ S, then
uR(i) = 0 in exact arithmetic.

Let the constants α and β be defined as

α = max

(
maxi(D

−1
1 (i, i))

mini(D
−1
1 (i, i))

,
maxi(D

−1
2 (i, i))

mini(D
−1
2 (i, i))

)
,

β = max
i

(D−1
1 (i, i)),

(22)

where the D−1
1 (i, i) are the weights of the low impedance edges, and the D−1

2 (i, i) are
the weights of the high impedance edges.

Lemma 26. ‖Δ−1J‖ ≤ cn · α/β, where cn is a constant depending only on n.
Proof. The elements of Δ are either sums of low impedance weights, sums of high

impedance weights, or a mixture of low and high impedance weights. The elements of
Δ consisting of the sums of high impedance weights correspond to the row numbers
of nodes whose paths to the root contain only high impedance edges, i.e., elements
whose associated entries in rR correspond to a K1-subgraph. As shown in Lemma 25,
these are the same elements of J that are set to zero. Therefore, the product Δ−1J
is diagonal with the only nonzero elements being sums of low impedance weights.
Therefore, ‖Δ−1J‖ is equal to the reciprocal of a sum of low impedance (high admit-
tance) weights. The number of weights in the sum is bounded by the number of nodes
in the support tree. Therefore, ‖Δ−1J‖ ≤ cn · 1/mini(D

−1
1 (i, i)) ≤ cn · α/β.

Now we can state our main theorem for this section.
Theorem 27. Using the algorithm defined by (21) in the presence of roundoff

error, the computed M−1(Kv) has the form (M−1K +E)v, where E satisfies ‖E‖ ≤
εmachcncmα + O(εmach

2), and εmach is machine epsilon.
Remark 3. In contrast, if we compute M−1Kv in the naive manner, the computed

result has the form (M−1K + E)v, where ‖E‖ ≤ ‖K‖ · ‖M−1‖ · εmach, which could
be very large.

Proof. The heart of this proof is in the following two lemmas, which show that
wR and wN are both computed accurately.

Lemma 28. The computed wR has the form ŵR = [(U−1JL−1G(I−PPT )(K1 +
K2)) + ER]v, where ‖ER‖ ≤ εmach · cn · α/β · ‖K1 + K2‖ + O(εmach

2) and α and β
are defined by (22).

Proof. Note that we will reuse the symbol cn in this proof to mean a constant
depending only on n whose value may change from statement to statement.

The range space component of r is given by rR = K1v +K2v−PPTK2v = (I −
PPT )(K1+K2)v, and the computed rR has the form r̂R = [(I−PPT )(K1+K2)+E′]v,
where ‖E′‖ ≤ ‖K1‖ · εmach · cn. We are assuming here that ‖K2‖ 	 ‖K1‖.



1170 VICTORIA E. HOWLE AND STEPHEN A. VAVASIS

We next extend rR with zeros (i.e., apply G), and perform the forward solve
uR = L−1GrR. Note that uR is no longer necessarily in range(K1). The computed
results again have the form ûR = (L−1G+E′′′)r̂R, where ‖E′′′‖ ≤ ‖L−1‖ · εmach · cn.

Next, let J be the matrix that sets to zero the elements of ûR that would have
been zero in exact arithmetic. (This step is explained in Lemma 25.)

Now we do the back solve wR = U−1JuR. The computed wR has the form
(U + F )ŵR = JûR, where |F | ≤ |U | · εmach · cn entrywise. Rearranging we get
ŵR = (U + F )−1JûR. Substituting the Taylor series approximation for (U + F )−1

and dropping the high-order terms, we have ŵR = (U−1 + U−1FU−1)JûR.
Recall that U = ΔŨ , where Δ is a diagonal matrix and Ũ is well conditioned.

Since |F | ≤ |U | · εmach · cn entrywise, F has the same structure, i.e., F = ΔF̃ , where
Δ is the same diagonal matrix and |F̃ | ≤ |Ũ | · εmach · cn entrywise. We can now write
the computed wR as ŵR = (Ũ−1 + Ũ−1F̃ Ũ−1)Δ−1JûR.

Putting all of the steps together, we have that

ŵR = (Ũ−1 + Ũ−1F̃ Ũ−1)(Δ−1J)(L−1G + E′′′)

· [(I − PPT )(K1 + K2) + E′]v

= [(U−1JL−1G(I − PPT )(K1 + K2)) + ER]v,

(23)

where

ER = Ũ−1F̃ Ũ−1Δ−1JL−1G(I − PPT )(K1 + K2)

+ Ũ−1Δ−1JL−1GE′

+ Ũ−1Δ−1JE′′′(I − PPT )(K1 + K2)

+ O(εmach
2).

(24)

Thus we have

‖ER‖ ≤ ‖Ũ−1F̃ Ũ−1Δ−1JL−1G(I − PPT )(K1 + K2)‖
+ ‖Ũ−1Δ−1JL−1GE′‖
+ ‖Ũ−1Δ−1JE′′′(I − PPT )(K1 + K2)‖
+ O(εmach

2)

≤ ‖Ũ−1F̃ Ũ−1‖ · ‖Δ−1J‖ · ‖L−1G(I − PPT )(K1 + K2)‖
+ ‖Ũ−1‖ · ‖Δ−1J‖ · ‖L−1G‖ · ‖E′‖
+ ‖Ũ−1‖ · ‖Δ−1J‖ · ‖E′′′‖ · ‖(I − PPT )(K1 + K2)‖
+ O(εmach

2)

≤ εmach · cn · α/β · ‖K1 + K2‖ + O(εmach
2),

(25)

where α and β are as described for Lemma 26.
Lemma 29. The computed wN has the form ŵN = [(U−1L−1GPPTK2)+EN ]v,

where ‖EN‖ ≤ εmachcn
α
β ‖K1‖ + O(εmach

2) and α and β are defined by (22).

Proof. The computed rN has the form r̂N = (PPTK2 + E0)v, where ‖E0‖ ≤
‖K2‖ · εmach ·cn, and cn is a small constant that depends only on n. This follows from
the standard properties of matrix-vector multiplication and the fact that ‖PPT ‖ = 1.
Note that we will reuse the symbol cn in this proof to mean a constant depending
only on n whose value may change from statement to statement.
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We next extend rN with zeros (i.e., apply G), and perform the forward solve
uN = L−1GrN . Note that uN is no longer necessarily in null(K1).

The computed results again have the form ûN = (L−1G+E′′)r̂N , where ‖E′′‖ ≤
‖L−1‖ · εmach · cn.

Now we do the back solve, wN = U−1uN . Similarly to the case for wR, for wN

we have

ŵN = (U−1 + U−1FU−1)(L−1G + E′′)r̂N

= (U−1 + U−1FU−1)(L−1G + E′′)(PPTK2 + E0)v

= (Ũ−1 + Ũ−1F̃ Ũ−1)Δ−1(L−1G + E′′)(PPTK2 + E0)v

= [(U−1L−1GPPTK2) + EN ]v,

(26)

where

EN = Ũ−1Δ−1E′′PPTK2

+ Ũ−1Δ−1L−1GE0

+ Ũ−1F̃ Ũ−1Δ−1L−1GPPTK2

+ O(εmach
2).

(27)

So we have

‖EN‖ ≤ ‖Ũ−1‖ · ‖Δ−1E′′PPTK2‖
+ ‖Ũ−1‖ · ‖Δ−1L−1GE0‖
+ ‖Ũ−1‖ · ‖F̃‖ · ‖Ũ−1‖ · ‖Δ−1L−1GPPTK2‖
+ O(εmach

2).

(28)

We have shown in Lemma 24 that ‖Ũ−1‖ ≤ cn and ‖L−1‖ ≤ cn. As above,
‖E′′‖ ≤ εmach · cn‖L−1‖ and ‖E0‖ ≤ εmach · cn · ‖K2‖. Finally, we are assuming that
the high impedance weights are significantly larger than the low impedance weights,
i.e., that ‖K2‖ ≤ ρ‖K1‖ for a small constant ρ.

Since Δ is a diagonal matrix with sums of high impedance and low impedance
weights on its diagonal, ‖Δ−1‖ ≤ 1/ρ · maxi(1/D

−1
1 (i, i)), where D−1

1 (i, i) are the
weights of the low impedance edges. Therefore, ‖Δ−1‖ ≤ α/(ρβ), where α and β are
defined by (22).

Therefore, we can bound the error term ‖EN‖ as

‖EN‖ ≤ cn
1

ρ

α

β
εmachρ‖K1‖ + O(εmach

2)

≤ εmachcn
α

β
‖K1‖ + O(εmach

2).
(29)

Now finally, we conclude the proof of the main theorem. We have shown in
Lemmas 28 and 29 that the computed wR has the form ŵR = [(U−1JL−1G(I −
PPT )(K1 +K2))+ER]v, where ‖ER‖ ≤ εmach · cn ·α/β · ‖K1 +K2‖+O(εmach

2), and
the computed wN has the form ŵN = [(U−1L−1GPPTK2) + EN ]v, where ‖EN‖ ≤
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εmachcn
α
β ‖K1‖ + O(εmach

2) . Therefore, the total computed w has the form

ŵ = ŵR + ŵN

= [(U−1JL−1G(I − PPT )(K1 + K2)) + ER]v

+ [(U−1L−1GPPT (K1 + K2)) + EN ]v

= (M−1K + E)v,

(30)

where

‖E‖ = ‖ER + EN‖

≤ εmachcn
α

β
‖K‖ + O(εmach

2).
(31)

Finally, since β = maxi(D
−1
1 (i, i)) and the functioning admittances are assumed

to be larger than the faulty admittances, β is the maximum of all of the admittances.
In particular, ‖D−1‖/β = 1; therefore, ‖K‖/β = cm, where cm is a constant depend-
ing on the number of edges in the graph. Therefore, we have

‖E‖ ≤ εmachcncmα + O(εmach
2).(32)

4. Computational experiments. We have tested this algorithm on two qual-
itatively different graphs: grid-graphs and sample power network graphs from the
MATPOWER [21] power flow simulation package.

In our analysis, we assume that all of the high-impedance (nonfunctioning) edges
are included in the top level of the graph separator. For these examples we defined the
high-impedance edges to be exactly those edges cut in the top level graph partition.
All remaining edges were taken to be low-impedance (functioning) edges. The low-
impedance weights were chosen uniformly at random from a disk in C centered at 2
of radius 1. The high-impedance (low-admittance) weights were chosen uniformly at
random from a disk centered at 2 ·10−10 of radius 1 ·10−10. For a 16, 384-node system,
this choice results in faulted systems of with condition number of approximately 1018

(as reported by MATLAB’s condest() function). We tried several size problems of
this kind, with similar results.

All experiments were conducted in MATLAB using sparse matrix operations.
The extended preconditioner T was LU-factored without pivoting (and, as mentioned
earlier, with no fill-in). The graph partitioning was done using the MATLAB Mesh
Partitioning Toolbox [8].

Exact solutions were computed by first forming a random solution vector x and
computing b = Ax. We then used our splitting technique to compute M−1ATD−1b
accurately to initialize the iterative method.

The results we present in this section are with our algorithm implemented in
TFQMR [6]. We have also had success with BiCG [19] and GMRES [16] (not re-
ported here). Note that CG and LSQR are not applicable since (1) is not Hermitian.
In addition, we do not use a method such as CSQMR [5] that can take advantage
of the complex symmetry of the problem. We have special techniques for comput-
ing M−1(Kv) accurately and cannot easily reuse our existing methods to compute
KT (M−Tv). A transpose method could almost certainly be developed using similar
ideas, but we have not tried to implement such a method.

We first compare our algorithm with other iterative methods. In all of the tests
that follow, the stopping tolerance is ‖residual‖2 < (10−10 ∗ ‖b‖2).
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Fig. 8. Our algorithm and unpreconditioned TFQMR applied to the same faulted 16,384-node
AC network problem on a grid-graph. The dashed line is unpreconditioned TFQMR without splitting;
the solid line is our preconditioned TFQMR with splitting.
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Fig. 9. Residuals from our algorithm and unpreconditioned TFQMR applied to the same faulted
16,384-node AC network problem on a grid-graph. The dashed line is unpreconditioned TFQMR
without splitting; the solid line is our preconditioned TFQMR with splitting.

Figure 8 shows the results from a 16,384-node grid-graph and compares unpre-
conditioned TFQMR (without splitting) and preconditioned TFQMR with splitting.
We see from the figure that our preconditioned TFQMR with splitting is far superior
in terms of reducing the error. For TFQMR without preconditioning or splitting, the
error was hardly reduced at all from the initial guess. It is important to note that
we are plotting error ‖x(j) − x‖ rather than residual ‖Kx(j) − b‖. The residual for
such an ill-conditioned problem does not give a valid picture of convergence. We can
see, for example, in Figure 9 that unpreconditioned TFQMR without splitting does
in fact eventually converge (after approximately 250 iterations) in terms of reducing
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Fig. 10. Our algorithm and unpreconditioned TFQMR applied to the same 984-node AC net-
work problem on a graph from MATPOWER [21]. The dashed line is unpreconditioned TFQMR
without splitting; the solid line is our preconditioned TFQMR with splitting.

the updated residual to the specified tolerance, but the error stagnates at approxi-
mately 1.2 and never improves. In this example, TFQMR with our preconditioning
and splitting took approximately 172.56 seconds, i.e., approximately 2.36 seconds per
iteration. All remaining examples in this section will plot the error ‖x(j) − x‖.

Figure 10 shows the results from a 984-node network example from the MAT-
POWER [21] power flow simulation package. As in the previous example, our pre-
conditioned TFQMR with splitting is far superior in terms of reducing the error. For
TFQMR without preconditioning or splitting, the error was hardly reduced at all from
the initial guess, stagnating at approximately 6.2. In this example, our algorithm took
approximately 119.17 seconds (0.99 seconds per iteration) and reduced the error to
approximately 2.58 · 10−9.

Next we compare our algorithm to TFQMR with an incomplete LU (ILU) pre-
conditioner. In Figure 11, we compare TFQMR with an ILU preconditioner (with
no fill) to our algorithm on a 16,384-node AC network with no faults. In this ex-
ample, our algorithm and TFQMR with ILU perform similarly. We use MATLAB’s
luinc() function for the incomplete LU factorization. In this example, unprecondi-
tioned TFQMR without splitting took 180.28 seconds (0.41 seconds per iteration),
TFQMR with ILU preconditioning took 75.15 seconds (0.62 seconds per iteration),
and our algorithm took 206.84 seconds (2.35 seconds per iteration). In Figure 12, we
make the same comparison on a system with faults. Again we see that in a faulted
system, our algorithm is far superior in terms of reducing the error. As expected, in
unpreconditioned TFQMR without splitting and TFQMR with ILU preconditioning
the error stagnates fairly quickly and is never significantly reduced. Our algorithm
took 172.56 seconds (2.36 seconds per iteration) and reduced the error substantially.

Next, we examine the effect of the splitting as separate from the support-tree
preconditioning. In Figure 13 we compare the results of solving a faulted 16,384-
node AC network problem on a grid-graph with and without splitting. This example
shows the critical importance of the splitting technique. Although the support-tree
preconditioner is a good preconditioner in the sense of improving the condition number
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Fig. 11. Our algorithm, unpreconditioned TFQMR, and TFQMR with ILU preconditioning
applied to the same unfaulted 16,384-node AC network problem on a grid-graph. The dashed line is
unpreconditioned TFQMR without splitting; the dotted line is TFQMR with an ILU preconditioner
(no fill); and the solid line is our preconditioned TFQMR with splitting.
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Fig. 12. Our algorithm, unpreconditioned TFQMR, and TFQMR with ILU preconditioning
applied to the same faulted 16,384-node AC network problem on a grid-graph. The dashed line is
unpreconditioned TFQMR without splitting; the dotted line is TFQMR with an ILU preconditioner
(no fill); and the solid line is our preconditioned TFQMR with splitting.

of the system, it is not helpful unless it can be applied accurately.

Note that we do not perform the opposite experiment of applying our splitting
technique without the support-tree preconditioner or with another preconditioner.
Our splitting technique is tightly bound to the support-tree preconditioner, and it is
not clear how to apply it to an arbitrary preconditioner.

The convergence rate of TFQMR is not known to be related to the condition num-
ber in Definition 3 (or indeed, to any condition number). Nonetheless, our experience
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Fig. 13. Our algorithm, unpreconditioned TFQMR, and TFQMR with our preconditioner but
no splitting applied to the same faulted 16,384-node AC network problem on a grid-graph. The dashed
line shows unpreconditioned TFQMR without splitting; the dotted line is TFQMR with support-tree
preconditioning but without splitting; and the solid line is our preconditioned TFQMR with splitting.

indicates that these two are related. Note that the condition number in Definition 3 is
related to the condition number of (M∗M)−1(K∗K), which is the condition number
that would apply if we were using CGNR.

Finally, we compare our algorithm with two direct methods, MATLAB’s backslash
command and the complete orthogonal decomposition (COD) method of Hough and
Vavasis [13]. On the unfaulted 16,384-node grid-graph problem, MATLAB’s backslash
command is both fast and accurate, taking 9.21 seconds and resulting in a solution
with error 2.96 · 10−11. On the same unfaulted problem, our algorithm takes 203.76
seconds with a resulting error of 4.41 ·10−8. On the faulted system, however, although
backslash is still fast (9.23 seconds), the resulting solution has an error of 1.57 · 10−3.
Note that one step of iterative refinement improved this error by approximately one
order of magnitude. However further steps of iterative refinement produced no further
improvement in the error. In contrast, our algorithm takes 169.42 seconds with a
resulting error of 3.87 · 10−7 on the same faulted system.

The COD algorithm requires SPD systems, so we compare our algorithm with
COD using real values for the impedances. Analogously to the complex-symmetric
case, low-impedance weights were chosen uniformly at random from an interval on
the real line centered at 2 of radius 1. High-impedance weights were chosen from an
interval centered at 2 · 10−10 of radius 1 · 10−10. The COD algorithm is accurate,
even in the presence of faults, but is significantly slower than our algorithm. On
an unfaulted 256-node grid system with real edge weights, the COD algorithm took
117.38 seconds with a resulting error of 7.55 · 10−15, MATLAB’s backslash command
took approximately 0.04 seconds with a resulting error of 2.6·10−14, and our algorithm
took approximately 0.94 seconds with a resulting error of 4.64 · 10−9.

Once we introduce faults, our algorithm and the COD algorithm remain accurate,
but the COD algorithm is still significantly slower. On a faulted 1024-node systems
with real edge weights, the COD algorithm took 117.45 seconds with a resulting error
of 4.94·10−15, MATLAB’s backslash command took approximately 0.014 seconds with
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a resulting error of 5.96 · 10−5, and our algorithm took approximately 0.84 seconds
with a resulting error of 2.23 · 10−8.

5. Conclusions. We have presented an iterative method for solving complex-
symmetric linear systems arising in electrical power networks. We extend Gremban,
Miller, and Zagha’s [10] support-tree preconditioner to handle the case of faulted AC
networks, i.e., complex weights and vastly different admittances. In addition to these
extensions, we present a splitting technique that allows us to apply the precondi-
tioner accurately even when the system matrix, and therefore the preconditioner, is
arbitrarily ill conditioned. Our computational results show that this iterative method
works well in practice in reducing the error.

Note that these results can also apply to the sandstone and shale problem of
Vuik [20] and may also apply to interior point methods if we have nullspace informa-
tion.
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THE SCALING AND SQUARING METHOD FOR THE
MATRIX EXPONENTIAL REVISITED∗

NICHOLAS J. HIGHAM†

Abstract. The scaling and squaring method is the most widely used method for computing the
matrix exponential, not least because it is the method implemented in MATLAB’s expm function. The
method scales the matrix by a power of 2 to reduce the norm to order 1, computes a Padé approximant
to the matrix exponential, and then repeatedly squares to undo the effect of the scaling. We give a
new backward error analysis of the method (in exact arithmetic) that employs sharp bounds for the
truncation errors and leads to an implementation of essentially optimal efficiency. We also give new
rounding error analysis that shows the computed Padé approximant of the scaled matrix to be highly
accurate. For IEEE double precision arithmetic the best choice of degree of Padé approximant turns
out to be 13, rather than the 6 or 8 used by previous authors. Our implementation of the scaling
and squaring method always requires at least two fewer matrix multiplications than expm when the
matrix norm exceeds 1, which can amount to a 37% saving in the number of multiplications, and
it is typically more accurate, owing to the fewer required squarings. We also investigate a different
scaling and squaring algorithm proposed by Najfeld and Havel that employs a Padé approximation
to the function x coth(x). This method is found to be essentially a variation of the standard one
with weaker supporting error analysis.

Key words. matrix function, matrix exponential, Padé approximation, matrix polynomial
evaluation, scaling and squaring method, MATLAB, expm, backward error analysis, performance
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1. Introduction. The matrix exponential is a much-studied matrix function,
owing to its key role in the solution of differential equations. Computation of eA

is required in applications such as nuclear magnetic resonance spectroscopy [8], [18],
control theory [5], and Markov chain analysis [20]. Motivated by the applications,
mathematicians and engineers have produced a large amount of literature on methods
for computing eA.

A wide variety of methods for computing eA were analyzed in the classic paper of
Moler and Van Loan [16], which was reprinted with an update in [17]. The conclusion
of the paper was that there are three or four candidates for best method. One of
these, the scaling and squaring method, has become by far the most widely used, not
least because it is the method implemented in MATLAB.

In this work we take a fresh look at the scaling and squaring method, giving a
sharp analysis of truncation errors and a careful treatment of computational cost.
We derive a new implementation that has essentially optimal efficiency and show
that it requires at least one less matrix multiplication than existing implementations,
including that in MATLAB. Our analysis and implementation are presented in sec-
tion 2. Section 3 contains a comparison with existing implementations and numerical
experiments. The new implementation is found to be typically more accurate than
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the existing ones, owing to the fact that it usually requires fewer matrix squarings.
This work therefore provides another example of the phenomenon, illustrated in the
work of Dhillon and Parlett [2], for example, that speed and accuracy are not always
conflicting goals in matrix computations.

The standard scaling and squaring method employs Padé approximants to ex.
Najfeld and Havel [18] propose a variation using Padé approximants to the function
x coth(x) instead, and they argue that this approach is more efficient than direct
Padé approximation. In section 4 we show that the proposed method is essentially a
variation of the standard method, but with weaker supporting error analysis, both in
exact arithmetic and in floating point arithmetic.

For other recent work on the scaling and squaring method, concerned particularly
with arbitrary precision computations, see Sofroniou and Spaletta [21].

Throughout this paper, ‖ · ‖ denotes any subordinate matrix norm. We use the
standard model of floating point arithmetic with unit roundoff u [11, sec. 2.2]. Our
rounding error bounds are expressed in terms of the constants

γk =
ku

1 − ku
, γ̃k =

cku

1 − cku
,(1.1)

where c denotes a small integer constant whose exact value is unimportant.

2. The scaling and squaring method. The scaling and squaring method
exploits the relation eA = (eA/σ)σ, for A ∈ C

n×n and σ ∈ C, together with the
fact that eA can be well approximated by a Padé approximant near the origin, that
is, for small ‖A‖. The idea is to choose σ an integral power of 2, σ = 2s say,
so that A/σ has norm of order 1, approximate eA/2s ≈ rkm(A/2s), where rkm is
a [k/m] Padé approximant to the exponential, and then take eA ≈ rkm(A/2s)2

s

,
where the approximation is formed by s repeated squarings. Recall that rkm(x) =
pkm(x)/qkm(x) is defined by the properties that p and q are polynomials of degrees
at most k and m, respectively, and that ex − rkm(x) = O(xk+m+1). The scaling and
squaring method method goes back at least to Lawson [15].

The mathematical elegance of the scaling and squaring method is enhanced by the
fact that the [k/m] Padé approximants rkm(x) = pkm(x)/qkm(x) to the exponential
function are known explicitly for all k and m:

pkm(x) =

k∑
j=0

(k + m− j)!k!

(k + m)! (k − j)!

xj

j!
, qkm(x) =

m∑
j=0

(k + m− j)!m!

(k + m)! (m− j)!

(−x)j

j!
.(2.1)

Note that pkm(x) = qmk(−x), which reflects the property 1/ex = e−x of the expo-
nential function. Later we will exploit the fact that pmm(x) and qmm(x) approx-
imate ex/2 and e−x/2, respectively, though they do so much less accurately than
rmm = pmm/qmm approximates ex. That rkm satisfies the definition of Padé approx-
imant is demonstrated by the error expression [6, Thm. 5.5.1]

ex − rkm(x) = (−1)m
k!m!

(k + m)!(k + m + 1)!
xk+m+1 + O(xk+m+2).(2.2)

Diagonal approximants (k = m) are preferred, since rkm with k �= m is less accu-
rate than rjj , where j = max(k,m), but rjj can be evaluated at a matrix argument
at the same cost. Moreover, the diagonal approximants have the property that if
the eigenvalues of A lie in the open left half-plane then the eigenvalues of rmm(A)
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have modulus less than 1 (that is, the spectral radius ρ(rmm(A)) < 1), which is an
important property in applications to differential equations [23, Chap. 8]. We will
write the diagonal approximants as rm(x) = pm(x)/qm(x).

Our aim is to choose s, in the initial scaling A ← A/2s, so that the exponential is
computed with backward error bounded by the unit roundoff and with minimal cost.
In bounding the backward error we assume exact arithmetic and examine solely the
effects of the approximation errors in the Padé approximant.

We begin by considering errors. The choice of s will be based on ‖A‖, where
the norm can be any subordinate matrix norm. Our aim is therefore to bound the
backward error in terms of ‖2−sA‖ and then to determine, for each degree m, the max-
imum ‖2−sA‖ for which rm can be guaranteed to deliver the desired backward error.
Moler and Van Loan [16] give a very elegant backward error analysis, from which they
obtain a criterion for choosing m; see also Golub and Van Loan [7, sec. 11.3]. Their
analysis has two weaknesses. First, it makes an initial assumption that ‖A‖ ≤ 1/2,
whereas, as we will see, there are good reasons for allowing ‖A‖ to be much larger.
Second, it is designed to provide an explicit and easily computable error bound, and
the resulting bound is far from being sharp. We now adapt the ideas of Moler and
Van Loan in order to obtain a bound that makes no a priori assumption on ‖A‖ and
is as sharp as possible. The tradeoff is that the bound is hard to evaluate, but this is
a minor inconvenience because the evaluation need only be done during the design of
the algorithm.

Let

e−Arm(A) = I + G = eH ,(2.3)

where we assume that ‖G‖ < 1, so that H = log(I +G) is guaranteed to exist. (Here,
log denotes the principal logarithm.) From log(I +G) =

∑∞
j=1(−1)j+1Gj/j, we have

‖H‖ = ‖ log(I + G)‖ ≤
∞∑
j=1

‖G‖j/j = − log(1 − ‖G‖).

Now G is clearly a function of A (in the sense of matrix functions [9], [12, Chap. 6]),
hence so is H, and therefore H commutes with A. It follows that

rm(A) = eAeH = eA+H .

Now we replace A by A/2s, where s is a nonnegative integer, and raise both sides of
this equation to the power 2s to obtain

rm(A/2s)2
s

= eA+E ,

where E = 2sH satisfies

‖E‖ ≤ −2s log(1 − ‖G‖)

and G satisfies (2.3) with A replaced by 2−sA. We summarize our findings in the
following theorem.

Theorem 2.1. Let the diagonal Padé approximant rm satisfy

e−2−sA rm(2−sA) = I + G,(2.4)
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where ‖G‖ < 1. Then

rm(2−sA)2
s

= eA+E ,

where E commutes with A and

‖E‖
‖A‖ ≤ − log(1 − ‖G‖)

‖2−sA‖ .(2.5)

Theorem 2.1 is a backward error result: it interprets the truncation errors in the
Padé approximant as equivalent to a perturbation in the original matrix A. (The
result holds, in fact, for any rational approximation rm, as we have not yet used
specific properties of a Padé approximant.) The advantage of the backward error
viewpoint is that it automatically takes into account the effect of the squaring phase
on the error in the Padé approximant and, compared with a forward error bound,
avoids the need to consider the conditioning of the problem.

Our task now is to bound the norm of G in (2.4) in terms of ‖2−sA‖. Define the
function

ρ(x) = e−xrm(x) − 1.

In view of the Padé approximation property (2.2), ρ has a power series expansion

ρ(x) =

∞∑
i=2m+1

cix
i,(2.6)

and this series will converge absolutely for |x| < min{ |t| : qm(t) = 0 } =: νm. Hence

‖G‖ = ‖ρ(2−sA)‖ ≤
∞∑

i=2m+1

|ci|θi =: f(θ),(2.7)

where θ := ‖2−sA‖ < νm. It is clear that if A is a general matrix and only ‖A‖ is
known then (2.7) provides the smallest possible bound on ‖G‖. The corresponding
bound of Moler and Van Loan [16, Appx. 1, Lem. 4] is easily seen to be less sharp,
and a refined analysis of Dieci and Papini [3, sec. 2], which bounds a different error,
is also weaker when adapted to bound ‖G‖.

Combining (2.7) with (2.5) we have

‖E‖
‖A‖ ≤ − log(1 − f(θ))

θ
.(2.8)

Evaluation of f(θ) in (2.7) would be easy if the coefficients ci were one-signed, for
then we would have f(θ) = |ρ(θ)|. Experimentally, the ci are one-signed for some, but
not all, m. Using MATLAB’s Symbolic Math Toolbox, we have evaluated f(θ), and
hence the bound (2.8), in 250 decimal digit arithmetic, summing the first 150 terms
of the series, where the ci in (2.6) are obtained symbolically. For m = 1: 21 we have
used a zero-finder to determine the largest value of θ, denoted by θm, such that the
backward error bound (2.8) does not exceed u = 2−53 ≈ 1.1×10−16, the unit roundoff
in IEEE double precision arithmetic. The results are shown to two significant figures
in Table 2.1.

The second row of the table shows the values of νm, and we see that θm < νm
in each case, confirming that the bound (2.7) is valid. The inequalities θm < νm also
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Table 2.1

Maximal values θm of ‖2−sA‖ such that the backward error bound (2.8) does not exceed
u = 2−53, values of νm = min{ |x| : qm(x) = 0}, and upper bound ξm for ‖qm(A)−1‖.

m 1 2 3 4 5 6 7 8 9 10

θm 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1 1.5e0 2.1e0 2.8e0
νm 2.0e0 3.5e0 4.6e0 6.0e0 7.3e0 8.7e0 9.9e0 1.1e1 1.3e1 1.4e1
ξm 1.0e0 1.0e0 1.0e0 1.0e0 1.1e0 1.3e0 1.6e0 2.1e0 3.0e0 4.3e0

m 11 12 13 14 15 16 17 18 19 20 21

θm 3.6e0 4.5e0 5.4e0 6.3e0 7.3e0 8.4e0 9.4e0 1.1e1 1.2e1 1.3e1 1.4e1
νm 1.5e1 1.7e1 1.8e1 1.9e1 2.1e1 2.2e1 2.3e1 2.5e1 2.6e1 2.7e1 2.8e1
ξm 6.6e0 1.0e1 1.7e1 3.0e1 5.3e1 9.8e1 1.9e2 3.8e2 8.3e2 2.0e3 6.2e3

confirm the important fact that qm(A) is nonsingular for ‖A‖ ≤ θm (which is in any
case implicitly enforced by our analysis).

Next we need to determine the cost of evaluating rm(A). Because of the relation
qm(x) = pm(−x) between the numerator and denominator polynomials, an efficient
scheme can be based on explicitly computing the even powers of A, forming pm and qm,
and then solving the matrix equation qmrm = pm [22]. If pm(x) =

∑m
i=0 bix

i, we have,
for the even-degree case,

p2m(A) = b2mA2m + · · · + b2A
2 + b0I + A(b2m−1A

2m−2 + · · · + b3A
2 + b1I)(2.9)

=: U + V ,

which can be evaluated with m + 1 matrix multiplications by forming A2, A4, . . . ,
A2m. Then

q2m(A) = U − V

is available at no extra cost. For odd degrees,

p2m+1(A) = A(b2m+1A
2m + · · · + b3A

2 + b1I) + b2mA2m + · · · + b2A
2 + b0I(2.10)

=: U + V ,

and so p2m+1 and q2m+1 = −U +V can be evaluated at exactly the same cost as p2m

and q2m. However, for m ≥ 12 this scheme can be improved upon. For example, we
can write

p12(A) = A6(b12A
6 + b10A

4 + b8A
2 + b6I) + b4A

4 + b2A
2 + b0I(2.11)

+ A
[
A6(b11A

4 + b9A
2 + b7I) + b5A

4 + b3A
2 + b1I

]
=: U + V ,

and q12(A) = U −V . Thus p12 and q12 can be evaluated in just six matrix multiplica-
tions (for A2, A4, A6, and three additional multiplications). For m = 13 an analogous
formula holds with the outer multiplication by A transferred to the U term. Similar
formulae hold for m ≥ 14. Table 2.2 summarizes the number of matrix multiplications
required to evaluate pm and qm, which we denote by πm, for m = 1: 21.

The information in Tables 2.1 and 2.2 enables us to determine the optimal algo-
rithm when ‖A‖ ≥ θ21. From Table 2.2, we see that the choice is between m = 1, 2, 3,
5, 7, 9, 13, 17, and 21. (There is no reason to use m = 6, for example, since the cost of
evaluating the more accurate q7 is the same as the cost of evaluating q6.) Increasing
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Table 2.2

Number of matrix multiplications, πm, required to evaluate pm(A) and qm(A), and the measure
of overall cost Cm in (2.12).

m 1 2 3 4 5 6 7 8 9 10

πm 0 1 2 3 3 4 4 5 5 6
Cm 25 12 8.1 6.6 5.0 4.9 4.1 4.4 3.9 4.5

m 11 12 13 14 15 16 17 18 19 20 21

πm 6 6 6 7 7 7 7 8 8 8 8
Cm 4.2 3.8 3.6 4.3 4.1 3.9 3.8 4.6 4.5 4.3 4.2

from one of these values of m to the next requires an extra matrix multiplication to
evaluate rm, but this is offset by the larger allowed θm = ‖2−sA‖ if θm jumps by
more than a factor 2, since decreasing s by 1 saves one multiplication in the final
squaring stage. Table 2.1 therefore shows that m = 13 is the best choice. Another
way to arrive at this conclusion is to observe that the cost of the algorithm in matrix
multiplications is, since s = 	log2 ‖A‖/θm
 if ‖A‖ ≥ θm and s = 0 otherwise,

πm + s = πm + max (	log2 ‖A‖ − log2 θm
, 0) .

(We ignore the required matrix equation solution, which is common to all m.) We
wish to determine which m minimizes this quantity. For ‖A‖ ≥ θm we can remove
the max and ignore the ‖A‖ term, which is essentially a constant shift, and so we
minimize

Cm = πm − log2 θm.(2.12)

The Cm values are shown in the second line of Table 2.2. Again, m = 13 is clearly
the best choice. We repeated the computations with u = 2−24 ≈ 6.0× 10−8, which is
the unit roundoff in IEEE single precision arithmetic, and u = 2−105 ≈ 2.5 × 10−32,
which corresponds to quadruple precision arithmetic; the optimal m are now m = 7
and m = 17, respectively.

Now we consider the effects of rounding errors on the evaluation of rm(A). We
immediately rule out m = 1 and m = 2 because r1 and r2 can suffer from loss
of significance in floating point arithmetic. For example, r1 requires ‖A‖ to be of
order 10−8 after scaling, and then the expression r1(A) = (I + A/2)(I − A/2)−1

loses about half the significant digits in A in double precision arithmetic; yet if the
original A has norm of order at least 1 then all the significant digits of some of the
elements of A should contribute to the result.

The effect of rounding errors on the evaluation of the numerator and denominator
of rm(A) is described by the following result, which can be proved using techniques
from [11].

Theorem 2.2. Let gm(x) =
∑m

k=0 bkx
k. The computed polynomial ĝm obtained

by evaluating gm at X ∈ C
n×n using explicit formation of matrix powers as in the

methods above satisfies

|gm − ĝm| ≤ γ̃mn g̃m(|X|),

where g̃m(X) =
∑m

i=0 |bk|Xk. Hence ‖gm − ĝm‖1 ≤ γ̃mn g̃m(‖X‖1).

Applying the theorem to pm(A), where ‖A‖1 ≤ θm, and noting that pm has all
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positive coefficients, we deduce that

‖pm(A) − p̂m(A)‖1 ≤ γ̃mn pm(‖A‖1)

≈ γ̃mn e
‖A‖1/2

≤ γ̃mn‖eA/2‖1 e
‖A‖1

≈ γ̃mn‖pm(A)‖1 e
‖A‖1 ≤ γ̃mn‖pm(A)‖1 e

θm .

Hence the relative error is bounded approximately by γ̃mne
θm , which is a very satis-

factory bound, given the values of θm in Table 2.1. Replacing A by −A in the latter
bound we obtain

‖qm(A) − q̂m(A)‖1 � γ̃mn‖qm(A)‖1 e
θm .

In summary, the errors in the evaluation of pm and qm are nicely bounded. This
analysis improves that of Ward [24, equation (3.5)], who assumes ‖A‖ ≤ 1 and obtains
absolute error bounds.

To obtain rm we solve a multiple right-hand side linear system with qm(A) as
coefficient matrix, so to be sure that this system is solved accurately we need to check
that qm(A) is well conditioned. It is possible to obtain a priori bounds for ‖qm(A)−1‖
under assumptions such as ‖A‖ ≤ 1/2 [16, Appx. 1, Lem. 2], ‖A‖ ≤ 1 [24, Thm. 1],
or qm(−‖A‖) < 2 [3, Lem. 2.1], but these assumptions are not satisfied for all the m
and ‖A‖ of interest to us. Therefore we take a similar approach to the way we derived
the constants θm. With ‖A‖ ≤ θm and by writing

qm(A) = e−A/2
(
I + eA/2qm(A) − I)

)
≡ e−A/2(I + F ),

we have, if ‖F‖ < 1,

‖qm(A)−1‖ ≤ ‖eA/2‖ ‖(I + F )−1‖ ≤ eθm/2

1 − ‖F‖ .

We can expand ex/2qm(x) − 1 =
∑∞

i=2 dix
i, from which ‖F‖ ≤

∑∞
i=2 |di|θim follows.

Our overall bound is

‖qm(A)−1‖ ≤ eθm/2

1 −
∑∞

i=2 |di|θim
.

By determining the di symbolically and summing the first 150 terms of the sum in
250 decimal digit arithmetic, we obtained the bounds in the last row of Table 2.1,
which confirm that qm is very well conditioned for m up to about 13 when ‖A‖ ≤ θm.

Our algorithm is as follows. It first checks whether ‖A‖ ≤ θm for m ∈ {3, 5, 7,
9, 13} and, if so, evaluates rm for the smallest such m. Otherwise it uses the scaling
and squaring method with m = 13.

Algorithm 2.3. This algorithm evaluates the matrix exponential of A ∈ C
n×n

using the scaling and squaring method. It uses the constants θm given in Table 2.3.
1 % Coefficients of degree 13 Padé approximant.
2 b(0: 13) = [64764752532480000, 32382376266240000, 7771770303897600,
3 1187353796428800, 129060195264000, 10559470521600,
4 670442572800, 33522128640, 1323241920,
5 40840800, 960960, 16380, 182, 1]
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Table 2.3

Constants θm needed in Algorithm 2.3.

m θm
3 1.495585217958292e-2
5 2.539398330063230e-1
7 9.504178996162932e-1
9 2.097847961257068e0

13 5.371920351148152e0

6 % Preprocessing to reduce the norm.
7 A ← A− μI, where μ = trace(A)/n.
8 A ← D−1AD, where D is a balancing transformation (or set D = I if

balancing does not reduce the 1-norm of A).

9 for m = [3 5 7 9 13]
10 if ‖A‖1 ≤ θm
11 X = rm(A) % rm(A) = [m/m] Padé approximant to A.
12 X = eμDXD−1 % Undo preprocessing.
13 end
14 end
15 A ← A/2s with s a minimal integer such that ‖A/2s‖1 ≤ θ13

(i.e., s = 	log2(‖A‖1/θ13)
).
16 % Form [13/13] Padé approximant to eA.
17 A2 = A2, A4 = A2

2, A6 = A2A4

18 U = A
[
A6(b13A6 + b11A4 + b9A2) + b7A6 + b5A4 + b3A2 + b1I

]
19 V = A6(b12A6 + b10A4 + b8A2) + b6A6 + b4A4 + b2A2 + b0I
20 Solve (−U + V )r13 = U + V for r13.

21 X = r13
2s

by repeated squaring.
22 X = eμDXD−1 % Undo preprocessing.
The cost of Algorithm 2.3 is πm +	log2(‖A‖1/θm)
 matrix multiplications, where

m is the degree of Padé approximant used, and πm is tabulated in Table 2.2, plus the
solution of one matrix equation.

It is readily checked that the sequences θ2k
13b2k and θ2k+1

13 b2k+1 are approximately
monotonically decreasing with k, and hence the ordering given in Algorithm 2.3 for
evaluating U and V takes the terms in approximately increasing order of norm. This
ordering is certainly preferable when A has nonnegative elements, and since there
cannot be much cancellation in the sums it cannot be a bad ordering [11, Chap. 4].

The Padé approximant rm at line 11 is intended to be evaluated using (2.10) for
m ≤ 9, or as in lines 17–19 for m = 13.

The preprocessing in Algorithm 2.3 is precisely that suggested by Ward [24] and
attempts to reduce the norm by a shift and a similarity transformation.

The use of the [13/13] Padé approximation in Algorithm 2.3 gives optimal effi-
ciency. However, Table 2.1 reports a bound of 3.0 for ‖q9(A)−1‖, which is somewhat
smaller than the bound of 17 for ‖q13(A)−1‖, and C9 is only slightly larger than C13;
therefore the best compromise between numerical stability and efficiency could con-
ceivably be obtained by limiting to maximum degree m = 9. We will compare these
two degrees experimentally in the next section.

3. Comparison with existing algorithms. We now compare Algorithm 2.3
with existing implementations of the scaling and squaring method that also employ
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Padé approximations to ex.
The function expm in MATLAB 7 uses m = 6 with ‖2−sA‖∞ ≤ 0.5 as the scal-

ing criterion and does not employ preprocessing. (expm is a built-in function, but
expmdemo1 is an M-file implementation of the same algorithm, and in all our tests
expm and expmdemo1 produced exactly the same results.) Sidje [19] uses the same
parameters in his function padm. Surprisingly, neither expm nor padm evaluates r6 op-
timally: whereas (2.9) requires just 4 multiplications, expm uses 5, because it evaluates
all the powers A2, A3, . . . , A6, while padm expends 7 multiplications in using Horner’s
method with a variant of (2.9). We note that in padm, pm and qm are evaluated in
increasing order of norms of the terms, as in Algorithm 2.3, whereas expm uses the
reverse ordering.

Ward [24] uses m = 8 with ‖2−sA‖1 ≤ 1 and carries out the same preprocessing
as Algorithm 2.3.

In the following discussion we will assume that all the algorithms use the same
norm and ignore the preprocessing.

Since Ward’s value of θ is twice that used in expm and padm, and the [8/8] Padé
approximant can be evaluated with just one more matrix multiplication than the
[6/6] one, Ward’s algorithm would have exactly the same cost as expm and padm for
‖A‖ ≥ 0.5, were the latter algorithms to evaluate r6 efficiently.

It is clear from our analysis that the three algorithms under discussion are not
of optimal efficiency. If the [6/6] or [8/8] Padé approximants are to be used, then
one can take larger values of θ, as shown by Table 2.1. Moreover, as we have argued,
there is no reason to use the degree 6 or 8 approximants because the degree 7 and 9
approximants have the same cost, respectively.

By considering Tables 2.1 and 2.2 it is easy to see the following:
• When ‖A‖1 > 1, Algorithm 2.3 requires one or two fewer matrix multiplica-

tions than Ward’s implementation, two or three fewer than expm, and four
or five fewer than padm. For example, when ‖A‖1 ∈ (2, 2.1), the number of
matrix multiplications reduces from 8 for expm and 7 for Ward’s implementa-
tion to 5 for Algorithm 2.3 (which takes m = 9)—a saving of 37% and 29%,
respectively.

• When ‖A‖1 ≤ 1, Algorithm 2.3 requires no more matrix multiplications than
expm, padm, and Ward’s algorithm, and up to 3, 5, and 3 fewer, respectively.

Our analysis shows that all these algorithms have a backward error no larger
than u, ignoring roundoff. However, it is well known that rounding errors can sig-
nificantly affect the scaling and squaring method, because the squaring phase can
suffer from severe numerical cancellation. The fundamental problem can be seen in
the result [11, sec. 3.5]

‖A2 − fl(A2)‖ ≤ γn‖A‖2,

which shows that the errors in the computed squared matrix are small compared with
the square of the norm of the original matrix but not necessarily small compared with
the matrix being computed. By using standard error analysis techniques it is possible
to derive a forward error bound for the scaling and squaring method, as has been
done by Ward [24]. However, with our current knowledge of the eA problem it is not
easy to determine whether a large value for the bound signals potential instability of
the method or an ill-conditioned problem.

Since the matrix squarings in the scaling and squaring method are potentially
dangerous it seems desirable to minimize the number of them. Algorithm 2.3 uses



1188 NICHOLAS J. HIGHAM

0 10 20 30 40 50 60
10

–18

10
 –16

10
 –14

10
 –12

10
 –10

10
 – 8

10
– 6 

Exp(3)
Exp(5)
Exp(7)
Exp(9)
Exp(13)
cond*u

Fig. 3.1. Normwise relative errors for Algorithm 2.3 (Exp(13)) and variants with mmax re-
stricted to 3, 5, 7, and 9.

one to three fewer squarings than the algorithms with which we have compared it,
and hence it has a potential advantage in accuracy.

We now present some numerical experiments, carried out in MATLAB 7.0 (R14),
that provide some insight into the accuracy of the scaling and squaring method and
of Algorithm 2.3. We took 66 8 × 8 test matrices: 53 obtained from the function
matrix in the Matrix Computation Toolbox [10] (which include test matrices from
MATLAB itself), together with 13 further test matrices of dimension 2–10 from [1,
Ex. 3], [3, Ex. 3.10], [14, Ex. 2 and p. 655], [18, p. 370], and [24, Test Cases 1–4]. We
evaluated the relative error in the 1-norm of the computed matrices from expm, from
Algorithm 2.3, and from a modified version of Algorithm 2.3 in which the maximal
degree of the Padé approximant is a parameter, mmax. The latter algorithm, denoted
by Exp(mmax), allows us to study the dependence of the error on mmax. We did not
use any preprocessing in this experiment, although we found that turning on prepro-
cessing in Algorithm 2.3 makes essentially no difference to the results. The “exact” eA

is obtained at 100-digit precision using MATLAB’s Symbolic Math Toolbox.
Figure 3.1 compares the errors for the different maximal Padé degrees. It shows

a clear trend that the smaller the mmax the larger the error. The solid line is the unit
roundoff multiplied by the (relative) condition number

cond(A) = lim
ε→0

max
‖E‖2≤ε‖A‖2

‖eA+E − eA‖2

ε‖eA‖2
,

which we estimate using the finite-difference power method of Kenney and Laub [13],
[9]. For a method to perform in a backward stable, and hence forward stable, man-
ner, its error should lie not far above this line on the graph. In all our figures the
results are sorted by decreasing condition number cond(A). We see that Algorithm 2.3
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Fig. 3.2. Normwise relative errors for expm, padm (Sidje), funm, and Algorithm 2.3 (Exp(13)).

(mmax = 13) performs in a numerically stable way on this experiment, even though
two of the test matrices were chosen to cause the scaling and squaring method to
“overscale”—a phenomenon investigated in [3] and [14]. Some instability is appar-
ent for the smaller mmax. The numerical results therefore concur with the theory in
suggesting that the fewer the number of squarings, the smaller the error.

Figure 3.2 compares Algorithm 2.3 with expm, Sidje’s function padm, and MAT-
LAB 7’s funm, which implements the Schur–Parlett method of Davies and Higham [1],
which is designed for general f . The figure shows that expm exhibits minor instability
on many of the test matrices.

Finally, Figure 3.3 plots a performance profile [4] for the experiment. Each of
the methods is represented by a curve on the plot. For a given α on the x-axis,
the y-coordinate of the corresponding point on the curve is the probability that the
method in question has an error within a factor α of the smallest error over all the
methods, where probabilities are defined over the set of test problems. For α = 1,
the Exp(13) curve is the highest: it intersects the y-axis at p = 0.52, which means
that this method has the smallest error in 52% of the examples—more often than
any other method. For α � 1.6, Exp(9) is more likely than Exp(13) to be within a
factor α of the smallest error. Since the curve for expm lies below all the other curves,
expm is the least accurate method on this set of test matrices, as measured by the
performance profile. Recall that the functions expm and padm both use m = 6 and
differ only in how they evaluate r6, as described at the start of this section.

In interpreting the results it is worth noting that the actual errors the methods
produce are sensitive to the details of the arithmetic. The version of Figure 3.3
produced by a prerelease version of MATLAB 7.0 was different, though qualitatively
similar. (For example, the Exp(13) and Exp(9) curves touched at α = 3, though they
did not cross.)
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This experiment shows that in terms of accuracy in floating point arithmetic there
is no clear reason to favor Exp(13) over Exp(9) or vice versa. Our choice of Exp(13)
in Algorithm 2.3 on the grounds of its lower cost is therefore justified.

4. Indirect Padé approximation. Najfeld and Havel [18, sec. 2] suggest an
interesting variation of the standard scaling and squaring method that they claim is
more efficient. Instead of approximating the exponential directly, they use a Padé
approximation to the even function

τ(x) = x coth(x) = x(e2x + 1)(e2x − 1)−1

= 1 +
x2

3 +
x2

5 +
x2

7 + · · ·

,(4.1)

in terms of which the exponential can be written

e2x =
τ(x) + x

τ(x) − x
.(4.2)

The Padé approximants to τ can be obtained by truncating the continued fraction
expansion (4.1). For example, using r̃2m to denote the diagonal [2m/2m] Padé ap-
proximant to τ ,

r̃8(x) =
1

765765x
8 + 4

9945x
6 + 7

255x
4 + 8

17x
2 + 1

1
34459425x

8 + 2
69615x

6 + 1
255x

4 + 7
51x

2 + 1
.
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The numerators and denominators of r̃2m comprise only even powers of x, and so they
can be evaluated at a matrix argument A in m matrix multiplications by explicitly
forming the required even powers.

The error in r2m has the form

τ(x) − r̃2m(x) =

∞∑
k=1

dkx
4m+2k =

∞∑
k=1

dk(x
2)2m+k.(4.3)

(The error is one order in x higher than the definition of Padé approximant requires,
due to the fact that τ is even.) Hence the error in the matrix approximation satisfies

‖τ(A) − r̃2m(A)‖ ≤
∞∑
k=1

dk‖A2‖2m+k =: ω2m(‖A2‖).(4.4)

Let θ2m be the largest θ such that ω2m(θ) ≤ u. The algorithm of Najfeld and Havel

scales Ã ← A/2s+1 with s ≥ 0 chosen so that ‖Ã2‖ = ‖A2‖/22s+2 ≤ θ2m. Padé ap-

proximation is applied to the scaled matrix, Ã. The final stage consists of s squarings,
just as in the standard scaling and squaring method. Note that there are s squarings
rather than s + 1, because the underlying approximation (4.2) is to e2x and not ex.
Computation of the θ2m and analysis of computational cost in [18] leads Najfeld and
Havel to conclude that the choice m = 8 of Padé approximant degree leads to the
most efficient algorithm.

Detailed study of this algorithm shows that it is competitive in cost with Algo-
rithm 2.3. The following result reveals a close connection with Algorithm 2.3.

Theorem 4.1. The [2m/2m] Padé approximant r̃2m(x) to x coth(x) is related
to the [2m + 1/2m + 1] Padé approximant r2m+1(x) to ex by

r2m+1(x) =
r̃2m(x/2) + x/2

r̃2m(x/2) − x/2
.

Proof. By (4.3),

e2m(x) := τ(x) − r̃2m(x) = O(x4m+2).

Then

g(x) :=
r̃2m(x) + x

r̃2m(x) − x
=

τ(x) + x− e2m(x)

τ(x) − x− e2m(x)

=
τ(x) + x

τ(x) − x

[
1 − e2m(x)/(τ(x) + x)

1 − e2m(x)/(τ(x) − x)

]
= e2x

[
1 − e2m(x)

τ(x) + x
+

e2m(x)

τ(x) − x
+ O(e2m(x)2)

]
= e2x

[
1 +

2xe2m(x)

(τ(x) + x)(τ(x) − x)
+ O(e2m(x)2)

]
= e2x(1 + xO(e2m(x)) = e2x + O(x4m+3).

Now g(x) is a rational function with numerator and denominator both of degree at
most 2m+ 1, and g(x/2) = ex +O(x4m+3). By the uniqueness of Padé approximants
to the exponential, g(x/2) ≡ r2m+1(x).
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Hence the algorithm of Najfeld and Havel, which takes m = 8, is implicitly using
the same Padé approximant to ex as Algorithm 2.3 when the latter takes m = 9.
The difference is essentially in how A is scaled prior to forming the approximant
and in the precise formulae from which the approximant is computed. While the
derivation of Najfeld and Havel’s algorithm ensures that the error ‖τ(A)− r̃2m(A)‖ is
sufficiently small for the scaled A, what this implies about the error e2A − (r̃2m(A) +
A)(r̃2m(A)−A)−1 is unclear, particularly since the matrix r̃2m(A)−A that is inverted
can be arbitrarily ill conditioned. Moreover, it is unclear how to derive an analogue
of Theorem 2.1 that expresses the truncation errors in the Padé approximant to τ as
backward errors in the original data.

We conclude that the algorithm suggested by Najfeld and Havel is essentially a
variation of the standard scaling and squaring method with direct Padé approximation
but with weaker guarantees concerning its behavior both in exact arithmetic (since
a backward error result is lacking) and in floating point arithmetic (since a possibly
ill-conditioned matrix must be inverted). Without stronger supporting analysis the
method cannot therefore be recommended.

5. Conclusions. The scaling and squaring method has long been the most pop-
ular method for computing the matrix exponential. By analyzing it afresh we have
found that existing implementations of Sidje [19] and Ward [24], and in the function
expm in MATLAB, are not optimal. While they do guarantee a backward error of or-
der the unit roundoff in the absence of roundoff (that is, solely considering truncation
errors in the Padé approximation), they use more matrix multiplications than neces-
sary. By developing an essentially optimal backward error bound for the scaling and
squaring method in exact arithmetic that depends on A only through ‖A‖, we have
identified the most efficient choice of degree m of Padé approximation and initial scal-
ing for IEEE double precision arithmetic: m = 13, as opposed to m = 6 for expm and
Sidje’s algorithm and m = 8 for Ward’s algorithm, with scaling to ensure ‖A‖ ≤ 5.4.
A welcome side effect has been to reduce the amount of scaling, and hence the number
of squarings in the final stage. This reduction, together with a careful evaluation of
the Padé approximation, makes the new algorithm typically more accurate than the
old ones (see Figures 3.2 and 3.3).

With the aid of some new error analysis we have shown that all but one part of
Algorithm 2.3 is numerically stable. The effect of rounding errors on the final squaring
phase remains an open question, but in our experiments the overall algorithm has
performed in a numerically stable way throughout.

Acknowledgments. I am grateful to Philip Davies for insightful comments on
section 4 and Roy Mathias for suggesting evaluation schemes of the form (2.11).
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